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Estimation of SU(2) operation and dense coding: An information geometric approach
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This paper addresses quantum statistical estimation of opeta&U(2) acting onCP? as (U 1) ¢
wherey e C2® (2. This is regarded as a continuous analog of the dense coding. We first prove that the quantum
Crame-Rao lower bound takes the minimum, and is achievable, if and oglysfa maximally entangled state.

We next show that an S@) orbit on CP? equipped with the standard Riemannian structure is isometric to
SU2)/{=1}=S073) if and only if ¢ is a maximally entangled state. These results provide an alternative view
for the optimality of the use of a maximally entangled state.
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I. INTRODUCTION I'y: S(CH—-S(C?): p—UpU* [UeSU?2)].
Let s be a maximally entangled vector 68® (2, say, In particular, we focus on the estimation of the operatior

through the extension

1/[1] [2] |0] |O : *
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on S(C2®(?), or its restriction
and let Up=1, U;=ioy, U,=io,, Us=io,. Then Fyel: | {yl=(Uahy){((Usl)y]

((Uio)y|(U;@1) )= 6;, so that one can distinguish reli- o - _
operators{Ui}iS:O in SU(2). This is the basic idea of the the three-dimensional complex projective sp&a&€. This is
so-called dense codinfl], and is a manifestation of im- naturally regarded as a continuous analog of the dense cod-
proved distinguishability t,hrough entanglement. ing, and its analysis demonstrates the qualitative difference

The dense coding and its variafi#, as well as the cel- between distinguishability for finitely many alternatives and
ebrated quantum channel coding thedl[éih concern distin-  that for continuously many alternatives. The main results are
guishability among finitely many alternatives, and the propesummarized as follows.

guantum statistical framework for dealing with finite alterna- (i) The quantum CrafmeRao lower bound for the family
tives is the hypothesis testirig,5]. There is another, essen- {(U& 1)}y  sup Of output states takes the minimum, and is

tially different, framework in quantum statistics, called the ycpieyable, if and only ify is a maximally entangled state
parameter estimatiof®,6], in which one deals with continu- (Theorems 3.4

ously many alternatives. Among recent development in the (i) The manifold of output statef.e., an SU2) orbit]

latter framework is a quantum channel identification prOblemequipped with the quantum Fisher metric is isometric to
[7,8], in which one seeks Fhe besj strategy of estimating a%U(Z)/{tI}sSO@) if and only if ¢ is a maximally en-
unknown quantum operatioh acting on the setS(*) of tangled statéTheorem 6.

guantum states on a Hilbert spate In quantum informa-

tion theory, it is customary that a quantum channel is gwen These results provide an alternative view for the optimality
priori. In practice, however, one first identifies the quantumof the use of a maximally entangled state.

channel of interest, and then applies various information The paper is organized as follows. In Sec. Il, we formu-
theoretic results to the channel. Identification of a quantumate a statistical estimation problem of &) and analyze it
channel thus precedes every quantum information schem&om a noncommutative statistical point of view. In Sec. IlI,
and its optimization is of fundamental importance in quan-we introduce a general framework of information geometry
tum information theory. As an illustrative example, we haveon a projective Hilbert space(#). The standard Riemann-
explored in Ref[7] the identification problem of a depolar- ian structure oP () is derived as a special example. In Sec.
ization channel: S(C?)—S(C?), and have observed im- |V, a Riemannian geometric study of &) orbits onCP3 is
provement of distinguishability through quantum entangle-presented. These results are discussed in a unified manner in
ment and a rather unexpected transitionlike behavior of th&ec. V. Throughout the paper, the symbols™and “ ="

optimal estimation scheme. stand for “isomorphic” and “isometric,” respectively.
In this paper, we explore the identification problem of a
unitary channel II. STATISTICAL ESTIMATION OF SU  (2)

Suppose an unknown operatidh acting on S(C?) is
*Email address: fujiwara@math.wani.osaka-u.ac.jp noiseless, in that there is a unitary operdtbe SU(2) such
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that T'(=T"y): p—UpU*, and our problem is to estimate Vg [M]=3, (o)
the unknownJ. A general scheme of estimating an unknown
quantum operatiom\ acting onS(H) is this: input a well-  Here J,(o) denotes the symmetric logarithmic derivative

prepared statere S(H) to A and estimate the dynamical (SLD) Fisher information matrix with respect to the coordi-
changeo— A (o) by performing a certain measurement on nate systen® of the output family{AUa(cr); e 0}, and the
the output state\(s). WhenA belongs to a parametric fam- inequality means that the matrik, [M]—J, (o) L is posi-
ily {A,; 6O} of operations, the problem amounts to find- . L 0 0
ing an optimal inputo- and an optimal estimator for the pa tive semidefinite.
- ‘ ~2 ‘ ~2

rameterd of the family{A ,(o); < O} of output state$7]. Lemma 1For all o, 7e S(L7@7) and A €[0,1],

In our problem, the group SQ) is a three-dimensional

manifold and is parametrized, for example, as Jo o+ (1=M 7<)+ (1=M)I4(7).

Proof. This follows immediately from the convexity of the
SLD Fisher metrid 7]. O
In contrast to the one-dimensional parameter ¢@geve
cannot conclude directly from Lemma 1 that the optimal
<0s¢s 2 O=a<2m, 0s'8<277). input is a pure state. Thi§ is pa'rtly becausg the matrices
J,(o) and J,(7) appeared in the right-hand side do not al-

) ’ ) ways comparable with each other. However, we have the
Since, for anyp € S(C9), the family{I'(p); U e SU(2)} of following lemma.

output states is at most two-dimensional, we must extgnd Lemma 2 Let ¢ be the maximally entangled state (1).
on an enlarged Hilbert spacé?) ®", (n=2), in order forthe  Then for alloe S((2@(?),

parametrization of output states to be nondegenerate. In this
paper, we focus on the extensian;:=I'y®]l, i.e., Jf()<I(|¥)(]). 3

} (20 2 (20 (2Y. *

Ay SE@CH=SERE): a>(Ug@ha(Ueh)™, g equality holds if and only i is a maximally entangled
@ state

where 6:=(6%,62,6%):=(¢,a,B). Since A_y=Ay, we Proof. We first prove the inequality@) for all pure states

might as well express that our problem is to estimate the? ©f the forma=[4(x))(y(x)], where

parametew of the quotient group S@)/{*1}=S0O(3). Con-

e“cos¢p —€ePsing

U:U = . . .
($@B) o=1Bsing e '*cose

sequently, the estimation of $2) operation must be a local —J1— e 0 [0} <y<1

one: the domair® of the parameted to be estimated forms #)=vl=x 0/®lo X 1/°]1 (O=x=2).

a local chart of S®) on which the parametrization . ] ) ]

6—Ay (o) is one to one. The corresponfjmg parametric family of output states is
Let us proceed to the parameter estimation for the famil)ﬂ‘ﬂo(x))w”(x)" 00}, where

(2). Our task was to find an optimal inputand an optimal e cose 1

estimator for the parametric fami{y\ug(o); 0 O} of out- Po(X):=(U,@1)p=1—x e Bsing ®[0}

put states. One of the most fundamental results in quantum

estimation theory is the quantum CramfiRao inequality —efsing] [0

[4,6], (cf., Appendix A: when the true value of the param- VX e ' cose ®[1}- 4)

eter is 6y, the covariance matri%/, [M] of an arbitrary
estimatorM for the paramete# that is locally unbiased &, By a direct computation, the SLD Fisher information matrix

is bounded from below as Jy(X):=Jy(0o) for the family (4) is
1 0 0
J(x)=4| 0 cosp—(1-2x)?cod ¢ (1—2x)?cos ¢sirf ¢ |. (5)

0 (1-2x)%cog ¢sirt¢p  sir? ¢p—(1—2x)?sin ¢

It suffices to show thall,(x) is monotone increasing i In fact, for O<y<x<1/2

0 0 0
Jy(X)—Jy(y)=16(x—y)(1—x—y)| O coé ¢ —cog ¢sirt ¢ |,
0 —cog ¢sirt¢ sirt ¢
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which is positive semidefinite, and equals zero if and only if Theorem 3 hints that the optimal input will be a maxi-
X=Y. mally entangled state. However, it alone does not lead to a

We next prove the inequalit§8) for any pure state~. Let  decisive conclusion, because the CrafRao lower bound
o= (X, V,W) ) 4(x,V,W)|, where  #(x,V,W):=(V  J,(o) lis not always achievable for a multiparameter quan-
@W) (), V, We SU(2), and letd ,(x,V,W):=J,(o) bethe tum statistical model. Here we say that the CraiRao
corresponding SLD Fisher information. Since we are dealindower bound isachievableat @ if there is a locally unbiased
with the operations of the fory ,®1, the SLD Fisher in- estimatoM that satisfies/ ,[ M]=J,(c) 1. In this sense the
formation matrix is invariant under the transformatidhof = next theorem is the key to the conclusion that a maximally
the second frame, i.eJy(x,V,W)=J,(x,V,l) for all W. On  entangled state is in fact the optimal one.

the other hand, the transformatidh of the first frame in- Theorem 4The Crame-Rao lower bound J(x) ~?* for the
duces the coordinate transformi—0':=(¢’,a’,B’) of  family (4) is achievable if and only ifx1/2.
SU(2) as Proof. The Crame-Rao lower bound is achievable aif
and only if
e cosp’ —eP sing’

{(Laitbo(X)|Lg (X))} =i, j=3

are all real, Where{L,,yi}?:1 are SLDs,(cf., Appendix A,

Then the above proof applies to the new coordinate systerfroroliary 10. By a direct computation, we have

0’, to obtain the monotonicity ofl,(x) in x. [Note that _

Jo(X)# J4(x,V,1) in general:J, (x) is the list of compo- IM(L g 136(X)|L g 286(X)) =1M(L 5 19(X) | L 6 380(X) )
nents of the SLD Fisher metric with respect to the coordinate =2(2x—1)sin 2¢,
system@’, while J,(x,V,I) is the list with respect td.]

Since the monotonicity is a purely geometric property and isand

invariant under a coordinate transform, we conclude that

UoV: Car L Sy, .
e ' sing’ e '* cos¢’

Jo(x,V,I) also exhibits monotonicity ik (with V fixed). IM(L g o1 4(X) |L 6. 314(X) ) =0.

Now we claim J,(1/2)=J,(1/2V,1) for all Ve SU2). In o _

fact, it is a well-known fact that giveiv, there is av’  The assertion immediately follows. O

e SU(2) such that Y1) y=(1®V')y for a maximally en- The implication of Theorem 4 is profound. The existence

tangled ¢, (cf., Appendix B, Lemma 11 Therefore, Of an estimator that achieves the CrarRao lower bound
I (112N, 1)=3,(1/2) V') =3,(1/2),1)=3,(1/2). In sum- implies the existence of compatible observables that corre-
mary, J,(x,V,W)<J,(1/2)=J,(|¢)(s]) for all v,w  spond to the parameters of ). Theorem 4 thus asserts
eSU@2) and 0<x<1/2, with equality if and only ifx thatthe noncommutative nature of the @Uparameters is
=1/2. “suppressible” (at least locally by using a maximally en-
Now we prove the inequality(3) for any state o tangled input. Moreover, the achievability condition used in
e S(C2®(2). Let o=3\;0 be a pure state decomposition the pro'of. is an intrinsic property of the.tangent space.and
in which \,>0 and=\,=1. Then by Lemma 1 and the hence is independent of a particular choice of the_ coordinate
above fact, we conclude that systemé. As a consequence, the local suppression of non-
commutativity is also a parametrization-independér.,
geometrig property.
Jo)=>, N <Jy(| )], (6) In summary, for estimating the extended (@lJoperation
i Ay, o=(Ul)a(Uye1)*, the optimal inputo is a
maximally entangled state. This gives an estimation theoretic
Finally, observe that the inequalities in E@) hold for  verification for the optimality of the use of a maximally en-
any pure state decomposition eof. As a consequence, tangled state. In the subsequent sections, we explore a differ-
Jo(o)=J4(|¢){y]) implies that every pure state decomposi- ential geometric interpretation of this result to obtain a
tion of o comprises only maximally entangled pure statesdeeper insight into the role of entanglement.
This is the case only i itself is a maximally entangled pure

state,(cf., [9]). The lemma was verified. O Iil. INFORMATION GEOMETRY OF PURE STATES
Theorem 3 For each value of the parametef, the

Crume-Rao lower bound ) o) ! takes the minimum if and It is well known that the parameter estimation theory for a

only if o is a maximally entangled state classical statistical manifold is closely related to an informa-

Proof. This follows immediately from Lemma 2 and the tion geometric structure of the manifdldil]. Such a geomet-
fact that the functiorf (t) = — 1/ is operator monotone di®,  ric structure has been successfully extended to a quantum
), [10]. O regime, i.e., to manifolds of faithful quantum states on a

Note that the inequalities derived in Lemmas 1,2 are infinite-dimensional complex Hilbert spa@é ([11], Chap. 7.
trinsic properties of the SLD Fisher metric and are indepenin this section we further extend an information geometric
dent of a particular choice of the coordinate systérds a  structure to the manifoldM:=d.,S(H) of pure quantum
consequence, Theorem 3 holds for any parametrization dftates that is identified with the projective Hilbert space
SU(2). P(H). For more information, s€d 2,13, where a relation to
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Berry’s phase and extensions to manifolds of generic quanand is called theexponentialconnection. It is well defined
tum states are also presented. because the right-hand side uniquely defines a derivatipe of
Let B(H) and B,(H) denote the sets of linear operators by Lemma 5. The other connection is defined via duality:

and Hermitian operators oH. In order to introduce an in-

formation geometric structure o, the following lemma is g(V%Y,Z):=Xg(Y,Z)—g(Y,Vx2)
useful.
=Tr(X(Yp))Lz,

Lemma 5For pe M and De By('H), the following con-

ditions are equivalent{a) There exists a unique tangent vec- . : : .
tor Xe T, M that satisfies B-Xp, (b) There exists an op- and is called thenixtureconnection. Note that in contrast to

a quantum statistical manifold of faithful states, the mixture
erator L Bn(H) that satisfies B- L+Lp) and TrpL . . .
~0. & Bn(H) 2(p ) P connection cannot be defined b¥{Y)p=X(Yp), since

Proof. Let p=|¢)(y| and let{#;}"_, be an orthonormal X(Yp) dogs not corresp_ond to a derivativepofg general.
(moving frame of H with y;,=y. We introduceR-linear By a direct com*putatlon, the torsioffsand T* that cor-
spacesT(), (i=1,2,3), as follows. Ther{" is the set of respond tov and v are
Hermitian operators satisfying TroL=0, theT{?) is the set T(X,Y)p=1[[Ly Ly].pl, T*(X,Y)=0
{Xp; XeT, M}, and theT( is the set of Hermitian opera- ' TR ' '
tors whose matrix representatmn with respect to the framahe Riemannian curvatures do not vanish in general. Thus

{4}, is of the form one cannot expect the existence of the divergence on the
- - space (M,q,V,V*) in general.
0 a  a, Here is a special but important example: by differentiating
a, 0 - 0 the relationp= p? valid for pure states, we have a canonical
. (a;eC). choicel,:=2(Xp) of the SLD representatiofiL4]. Interest-
ingly, the corresponding dualistic structure is reduced to the
a, 0 -~ 0 standard Riemannian structure of the projective Hilbert space

~ P(H) in which V=V* is the Levi-Civita connection of the
It is easily shown thaf(L):=3(pL+Lp) defines a sur- Fubini-Study metricg. In fact, by using &real local coor-
jective linear mapf: T(l)HT(” On the other hand, the dinate systenf=(¢') of P(*), the components of the SLD
tangent spac& M is clearly |somorph|c tdl'(z), and since  Fisher metricg are given by
Xp=|Xep){ ] +|¢><X¢| the spacd? is obwously identi-

i=q(d L 0) = : A - i
cal to TS (Note that Trp) = X(Trp) 0.) Thus there is a 9ij=9(d;,9;) =2 Tr(d;p)(djp), (d;:=013¢"),
(1) )
Surjectlve linear may: T,;”/— T, M. . _D and the components of the mixture connectith are
The operatorlL in Lemma 5b) is uniquely determined

[14] only up to I e=0(V5d, .60 =Tr(99;p) (20p)

kerf={K < By(H):Kp=0}. =2(6i9k+ 99— 9ij)-
Because of this ambiguity, we must arbitrarily choose a rep-
resentative of the SLD in order to define a one-one homo-
morphismZ,: T,M— By(H), which satisfies

Clearly the torsionl vanishes in this case. In what follows,
we will work with this special differential geometric struc-
ture.
=3(pLy+Lop).
IV. INFORMATION GEOMETRY OF SU (2) ORBITS
In addition, we assume thaf, is smooth inp. Such an ON CP3
operator-valued one-fornf, is called an SLDrepresenta-

. . 3 . . .
tion. When no confusion is likely to arise, we simply denote [N this section, we regardP" as a real Riemannian mani-
L,(X) asLy for eachXe T, M, fold equipped with the SLD Fisher metri; and explore the

Let us introduce an information geometric structure ondeometry of orbits of S(2) actiony—(U®1) ¢ on CPS. We
M. We first define a Riemannian metric by the SLD Fishersay that unit vectorss and ¢ on (?® (2 are equivalentand
metric: denotey~ i) if they lie on the same S(@) orbit on CP3,
ie., if there is a UeSU2) such that |§)(y|

n—l =
9X.Y) =2 Trp(Lxby T LyL) =Tr(Xp)Ly. =[(Ua)){((UxI1)y|. Let their Schmidt decompositions

It is invariant under the arbitrariness kieof SLD represen- be

tations. Moreover, it is shown thaj is identical to the .
Fubini-Study metrid14]. We next introduce a pair of affine p=V1-xe@f;+xeaf, (0sx<1i),
connections that are mutually dual with respect to the SLD

Fisher metric. One is defined by an

(VxY)p:=3{p[XLy—Tr p(XLy) ]+ [XLy=Tr p(XLy)]p}, p=\1-x&;0f,+\%&0f, (0=x<}).
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It is shown thaty~ ¢ if and only if eitherx=%=1/2, orx Rio1= — 16(1—2x)(1+ x—x?)cog ¢ sir? ¢,
=% and f,=\;f; for some \;(eC) of unit modulus, {
=1,2), (cf., Appendix B, Lemma 11 As a consequence, R1225= R1325=0.

CP? is partitioned into disjoint S(2) orbits as i ’ o
The component®;,:=R;;'=Ry; " of the Ricci curvature

cp3= U My, R then becomes
Yel
Ry1=4(1—2x+2x?),
whereM, denotes the orbit that passes throughThe orbit
spaceZ:=CP3/SU(2) is identified with a complete list of Ryy=2 cog ¢[1+(1—2x)3{1—2(1+2x—2x%)cos ¢}],
initial points that generates disjoint orbits, and is explicitly

given, for example, by Rgs=2 sirf ¢[ 1+ (1—2x)%{1—2(1+2x—2x?)sir? ¢}],
_ [T Cos7 cosy R1o=R21=R13=R3=0,
y=vl=x e?siny|®| e Psiny
5 5 Ro3= Rg=4(1—2%)?(1+ 2x—2x?)cos ¢ Sir? ¢.
o _esiny] [—esiny 23= R3p=4( )<( )COS” ¢ sint ¢
X 1 . - . . -
cosy cosy It is easy to show that the orbit is Einstdire., R=\g for a

constant\) if and only if x=1/2 orx=0. The scalar curva-
: o i i
dix B, Eq.(12)]. Note that the parameterizatioR,,6)—~¢  the parametex(e[0,1/2]) is, the “flatter” the orbit be-
degenerates at= 1/% and aty=0,7/2. In Refs[15,16 other  comes on average. Let us take a closer look at this point.
stratifications ofCP° based on different S@) actions are The sectional curvature with respect to the subspace
presented. _ _ spanned by{d,,d,} is given by
We are interested in the relation between entanglement

and the geometry of S@) orbits as Riemannian submani- Ri212

folds of CP3. Since the orbits that correspond to the same (9127~ =1+x-x

degreex of entanglement are isometric to each other, we 912 911922

choose representative orbits by settipg=0 in the orbit 8x(1—Xx)

spaceZ. The corresponding orbits are given by Ed). - 1+4x(1—x)—(1—2x)%cos 24

The components;; of the metricg on the orbit(4) with

respect to the coordinate systefnare given by the SLD  This is independent o if and only if x=1/2 orx=0. When
Fisher information matrixJ,(x), Eg. (5), and the volume x—1/2 the orbit turns out to be a space of constant positive

element is curvature 1/4, in that
w:=+/detdy(x)dp dar dB=8X(1—x) sin 2¢ d¢p da d 3. Rijia = 3 (9jkGil — 9ikdj1).

This simple formula already offers some information aboutfor all i,j,k,|=1,2,3.[This is confirmed either by a direct
the relation between entanglement and the geometry of ogomputation, or by the fact that the orbit is a three-
bits: an orbit maximally inflates at=1/2, and collapses as dimensional Einstein manifold[17], p. 293.] Since the fun-
x— 0. Note that the scaling factafx(1—x) is identical, up  damental group of the orbit i¥,, it is the quotient
to a constant factor, to the concurrerels). S3(2)/{ =1}, (cf., [18]), i.e., the three-dimensional real pro-
In order to get full information about the global structure jective spaceRP3(2) of radius 2. It is also important to
of the orbits, we compute the Riemannian curvailief the  observe that for 82x<1/2, the orbit is not of constant cur-
Levi-Civita connection. LeR;j,:=g(R(4; ,d;)dx,d;) denote  vature and hence isot isometric(though diffeomorphigto
the componentgThe readers may be warned not to confuses®(r)/{+1} for any r>0. Since the manifold S(2)
the order of indices with that used in a standard book ofequipped with the Cartan-Killing metric is isometric 5,
differential geometry such as R¢fL7]. We follow the book  these facts could be paraphrased by saying that the “shape”
[11]) Due to the symmetriesRij=—Rji=—Rijjk  of the Riemannian manifold S@)/{+1}=SQ(3), the coor-
=Ryij , there are at most 36 nonvanishing components: sixlinates of which are to be estimated, comes into full view
independent componeni;»1,, Riz13, Rozos, Riz13, Rioos, only through the S(2) action —(U®1) ¢ on a maximally
Ri323, and those which are obtained by permuting indicesentangledy. This gives a geometric insight into Theorems 3

By a direct computation, they are given by and 4.
) ) When x=0, on the other hand, the orbit collapses to a
Riz1= —4 oS ¢[1+(1-2x)*{3—4(1+x—x*)cos ¢}],  lower-dimensional manifold in whicki,=d5. In this case,

_ _ the only independent componeRy,,, of the Riemannian
Rigi5= — 4 SI? ¢[ 1+ (1—2x)%{3—4(1+x~x?)sir? ¢}], curvature tensor satisfieR;,1,=(012)°—911022. Namely,
the collapsed manifold is a space of constant positive curva-
Rypz25= — 64x%(1—x)? coS’ ¢ sir? ¢, ture 1. Since the manifold is simply connected, it is the two-
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dimensional spher&? of unit radius. This is, of course, in takes values on a finite séf, and 6: X—O is a map that

a(Z:cordance with the known isomorphism betwé#h and  gives an estimate of from a measurement outcorreln the

S . quantum estimation theory, we often assume the local unbi-
In summary we have_ the foII_owmg th(_eorem. . asedness condition on estimatf$ an estimatorl(!l,@) for
Theor.em. 6 Th_e Riemannian ‘T‘?T'f‘g'dsu(z)’{—'} the parametep is calledlocally unbiasedat 6= 6,, or 6y-

=S0(3) is isometrically embedded intoP* as anSU2)  nniasedfor short, if the unbiasedness condition

orbit M, if and only if # is a maximally entangled state

| —pl T
V. DISCUSSIONS ;E:XH(X)TrpHM(x)—a (i=1,...4d),
We have studied a quantum statistical estimation problenyq its differentiation
of operatorsU e SU(2) acting on d.S(C2®(C%)=CP? as
y—>(U®1)¢. It was shown that the quantum CraniRao e P
lower bound takes the minimum, and is achievable, if and EX )T (9peM () =85 (i,j=1,...d),
only if ¢ is a maximally entangled stat@heorems 3,4 and
that an SW2) orbit on CP*® equipped with the SLD Fisher hold até= ¢,. Clearly, an estimator is unbiased if and only
metric is isometric to S2)/{=1}=SQ3) if and only if #is  if it is locally unbiased at everge ©.
a maximally entangled stat@heorem 6. The performance of an estimator is usually evaluated by

The information geometric study of $) orbits pre-  the covariance matrix. When the actual quantum staje is
sented in Sec. IV has clarified what happens when the degre§| wo) (|, the covariance matriy/,[M,8]=[v'}] for a

x of entanglement varies: asncreases toward 1/2, the orbit . . Al .
inflates and hence points on the orbit are getting separate%unb'ased estimator, 6) is defined by
from each other. This is the geometric mechanism behind the B - o _
estimation theoretic Theorem 3. In fact, the larger the SLD vy= > [0(x)— 60} (x)— 61]Tr poM(X).
distance of two nearby quantum states becomes, the easier xed
one can distinguish these states, as the quantum G The smaller the covariance matrix is, the more accurately
mequqhty asserts. Theorem 4, on the other hand, concems. o can estimate the parameter
e Sxence of o st of Smulaneously measurable Sbsel one of e most mportant ot i th quantu st
SU(2). More precisely, it asserts that the nonccr))mmutative(t:}gn theory is the SLD: given a modely=|vg)(#|, the
' ' o y SLD with respect tofd', (i=1,...d), is defined by the
nature of the S(2) parameters “disappears” whéand only Hermiti _ L :
: ; ermitian operatot_,; that satisfies the equation

when we use a maximally entangled state as the input. '
Theorem 4 can also be viewed as providing an “operational”
characterization of the otherwise inaccessible quantity of the
Fubini-Study metric tensor. Since the SLD is not unique for a pure-state model, it is

Finally we touch upon a generalization to $1)( For the  convenient to work with the vectdy, ;:=2(d;py) ¢, Which
achievability of the CranteRao lower bound, a result analo- is identical toL , ;4 for any representative,; of the SLD.
gous to Theorem 4 holds for all In fact, the only essential While the vectors{l, 1, ... |44} are not always-linearly
ingredient of the proof is that elements of the Lie algebraindependent, they ar&-linearly independen{due to the
su(n) have trace zero. On the other hand, the maximality ohondegeneracy of the parametrization>p,). Moreover,
the SLD Fisher metric analogous to Lemma 2 does not holdince (|l ,;) =0, the vectors{i,,l 41, ... l44} are also
for n=3. This fact suggests an essential role of the dimenR-linearly independent. The positive definite matriy
sionality. A detailed analysis of the statistical estimation of:=[Re(l,;|l,;)] is called the SLDFisher information matrix
SU(n), as well as the proofs of the above facts, will be For later convenience, we introduce the dual vecfos' ;

9ipe=3(Lgipatpolai)-

presented in a subsequent paper. of {1y} by Iy:=JU1,;, whereJd} is the (,j)th entry of
the inverse matrixJ, *, and Einstein’s summation conven-
APPENDIX A: ESTIMATION OF PURE STATES tion is used. Note that Ri|l,)=J).
This appendix gives a brief account of the parameter es- ASsociated with ag-unbiased estimatorM, ) are the
timation theory for a finite-dimensional pure-state model.VECtOrs
For more information, seg12—-14,19,2Q Suppose an un-
known quantum state lies in a parametric famify, E=> [(0)—0TIMX) ¢, (i=1,...d).
=) (ol |Wdl=1,0=(6", ...,09OCR?Y} of pure xed

states on a finite-dimensional complex Hilbert spateThe
problem is to estimate, by means of a certain measureme
the true value of the parametérWe assume that the param- (Egy=0, Re&ll,)=5!, (i,j=1,...d). (7
etrization#— p, is smooth and nondegenerate. An estimator

for the parametem is given by a pair ¥1,9), whereM  We denote byX, the ordered lisf&,...,£5] of vectors, and
={M(x);xe X} is a positive operator valued measure thatby X} X, the dxd matrix whose {,j)th entry is(&,|&}).

nI?ue to thef-unbiasedness, they satisfy
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(We takeX, for a “matrix” whose ith column is the vector #0 for all k. (To find such a basis, one first performs the
|€4).) Now by a standard argume(i6], pp. 88, 274, we  Gram-Schmidt procedure opy, 7%, ... ,%, and then ro-

have tates the basis slightly to meet the conditioey|)+0.)
R Then lettingE (k) :=| e )(e | anda'(k) :=(ey| 7' )/{& ), we
VM, 0]=X5 X, 8  have
and d+1

i i
V,[M,9]=Rex}X,=J;* 9 7=, AI0EWY.
(4 U= 0N Yo -

If V=M then let X={1,...d+1}, otherwise let X

Here ReX; X, is the matrix whose i(j)th entry is H- i ;
={0,1, ... d+1}, E(0) the projection ontd/*, anda'(0)

Re(£Y)€L). (The matrix ImX%X, is defined likewise. The — ~ =\
inequality (9) is called the SLDCrame-Rao inequality _OI' Ther;)the [i)roj(?c“o;\./ihied mﬁaSlE?{E(é()}’fOX and
We now focus on achievability of the SLD CrarRao '@ ”“rl‘i erda (iX),)i(E i=1,...d} saﬂ_sfy a.( A)' )
lower bound at a giver. In what follows, we shall drop the ~ Let 6'(k):=6'+a'(k). Then the estimator K,6) is

subscripté for notational simplicity. o ¢-unbiased, and

Lemma 7ReX*X=J"1if and only if & =1' for all i.

Proof. The second relation in Eq7) with i =], which is 77 =2> D ai(k)al(I){EK) ¢E() ¥
equivalent to R& —I'|I'Y=0, implies that for each the vec- Crlon’) kT < | )

tors {£',1',& —1'} form a right triangle(¢' being the hypot-

enus¢ with respect to the real inner product(Re). Then by =D [6'(k)—6'[ 0 (k) — 01 1( | E(K) )

the Pythagoras theorem, we see thaf¢tRé€)=Re(l' |I') if and K

only if &'=1". o _ . R .
Lemma 8V[M, §]=ReX* X impliesIm X*X=0. is the G,j):[h entry of the covariance matri E, 6], proving
Proof. If V[M,9]=ReX*X, then R&X* X=X*X by Eqs.  hatV[E,0]=Y"Y=ReY*Y. o -

(8) and (9), that is, 0=i Im X*X. Since ImX*X is a real We say that the SLD lower bour(@) is achievableat 0 if

skew-symmetric matrix, this implies that it X=0. [0  there is ag-unbiased estimatorM,¢) for which V[M, 6]
Motivated by Eq.(7), we say that a collection of vectors =J"1 holds. The next corollary is also due to Matsumoto
{#% ...,7% in H is ¢-unbiasedif [20]
. . _ Corollary 10. The SLD lower bound is achievable if and
(7'|¥y=0, Rex[l=0] (i,j=1,...4d). only if (I;]1;) are all real
Proof. We first note thatl;|l;) are all real if and only if

H 1 d ; . -
In this case, the vector%-,...,n°} are necessarily (1|17} are all real. Assume first that M, §]=J"* for a cer-

R-linearly independent. The next lemma, due to Matsumotq . . . -
[20], subsumes the converse of Lemma 8. tain #-unbiased estimatomM, #). Then by Lemmas 7, 8, and

Lemma 9Suppose a collection of vectofs?, . . . 7% is Eg. (9), we have Indl'|))=0 for all i,j. Assume next that

. L - i i ionl1 Ay
f-unbiased and satisfies the condition (' >. are all real. Since the collectiodl”, L 1% 1S
#-unbiased, we see from Lemma 9 that there is an estimator
ImY*Y=0, (E, ) that satisfie/[E, #]=[Re(l' [Il)]=J". O
where Y=[ 7", ... 5]. Then there is a projection-valued  AppENDIX B: CHARACTERIZATION OF SU (2) ORBIT
measure E={E(x);xe X'} and real numberga'(x);xe X,i SPACE

=1,...d} such that A
Let  and ¢ be unit vectors onC?®C?, and let their

7= 2 AEX Y (i=1,...d). (10) Schmidt decompositions be
Xe X

p=\V1—-xe,®f,+xeof, (0=x<1),
In particular, letting 6'(x) := §'+a' (x), the pair (E, 8) forms and
a ¢-unbiased estimator that satisfie§ &, #]=ReY*Y.
Proof. Since ImY*Y=0, the Gram matriXY*Y with re- 5 A o F oA o F o1
. o ) =J1-%é®f 1+ VXé,of 0=x=<3).
spect to the complex inner produgt|-) is identical to the v 10fi+ et 2)
Gram matrix R&¥*Y with respect to the real inner product

Re(-|-}, and is positive definite becaugey?, Y are These vectors are equivalenty{ ) if there is a U

e SU(2) such that){(#|=|(U 1)) {(Ua1)y|. We claim

R-linearly independent. This implies théy?, . .. 7% are i PIAL

C-linearly independent. Moreover, sin¢g'|)=0, the vec- Lemma 11 ¢~¢ if and only if either x=%=1/2, or

tors{y, ', ... % are alsoC-linearly independent. x=% and f=\f; for some \;eC of unit modulus
Let V:=Span {4, 7%, ...,7%. Since(7'|y) and(7'|7))  (i=1,2).

are all real, there is an orthonormal ba&ss, . .. eq. 1} of Proof. Since we are dealing with the $2) action

V such that(e,| ) and (e, 7'} are all real, and thate,|¢)  ¥—>(U®1)4, we set, without loss of generality, as
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R 1 i 0 (Y ¢ |0
e =& =f= ol e=8=f,= 1l f1= 0l fa= 1y
It suffices to show that for for the second, ¢g,aq,B0) = (7/2,0,0), i.e.,
: _ e“ocosgy| . [—€Posing, ~ o] . [-1
1= e—|BOSin¢O; 2= e_|a0C05¢0 fl 1 ] f2 0 ’
- and for the third, ¢g,aq,B0)=(¢$1,0,81+ a1(mod 27)),
0S¢OS§' O<a0, B0<27T y Iey
) - cosy ~ [—€?siny
Y~ if and only if eitherx=%=1/2, orx=X and ¢y=0. f1= e siny|’ fa= cosy
We first show the “if” part. If x=%=1/2, let (¢,a,B)
=(¢g,ag+ m(mod 27),27m— By), else if x=X and ¢¢=0,
let (¢,a,B)=(0,a0,0). Then by a routine calculation, we (0< <7T 0<S5<2 )
N . , = a | .
have|(US 1) )((Us1)#|=|5)(d] for U=Ugg, . » e

We next show the “only if” part. Since the S@) action
does not change the singular values of a Schmidt decomp

sition, ¢~ fﬂ implies x=X. As we have already shown that
the equation(U® 1) ) (U 1) ¢|=|d){(¢| with x=%=1/2
has a solutiorJ e SU(2) for any{f;};, we need only con-

™ summary, a complete list of representatives of equivalence
classes is as follows: For=1/2,

sider the case whex=X# 1/2. By a direct computation, we . 1 ({1} ®[1} N [0} ®{OD
see that the equation with=%=0 implies = ¢,=0, while va 01T 10) (1] L))
the equation with 82x=%<1/2 implies ¢=¢py=0 and «
=aqy. The claim was verified. O

Let us specify a complete list of equivalence classes exfor 0=x<1/2 and O< y<m/2,
plicitly. Let the orthonormal framege;};, {&};, and{f;}; be

as in the above proof, and let 1 cosy 0] [—e'’siny
zp:\/l—x_o ®le siny +Vx 11®|  cosy

. e'*1cos¢y _[—ePrsing,

17 le Aising, | "2 | e '*1cose, (0=6<2m)

T and for 0=x<1/2 andy= /2
Og(ﬁlgE, O$a1, Bl<27T y
1| |0 0 -1
y=V1-x, ®M+\/§ 1 ®[ 0 }

We denote{f,,f,}~{f,,f,} if y~¢. Then by Lemma 11,

{f1,f,0~{f,,f,} if and only if eitherx=%=1/2, orx=% and
The above family shows a discontinuity e 1/2 and at
v= /2. By a slight modification, however, we obtain a com-

ei/.L 0 . . . .

2oz plete list of representatives that forms a three-dimensional
[f1.f2]=[f1,T5] 0 e ir (Quek).  AD  gnooth compact submanifold 6P>:
s ; ; CoSy CoSy

When X qué 1/2, the equa_ltlon(ll) characterizes all the d=1—x ai g | ®| g0 ain

frames{f,,f,} that are equivalent t¢f,,f,}, and the solu- Y Y

tion is as follows. If #;=0, then ¢=0, ag=a; —e Psiny] [—€?siny

+u(mod2r), and B, arbitrary; if ¢,;=m/2, then ¢, +X cosy cosy |’ (12

=7/2, Bo=B1— m (Mod27), and aq arbitrary; if 0<¢,
<m/2, then ¢o= 1, ag=ai+u(mod27), and By=p1
—u (mod 27). A representative of the first case is given by where 0=x<1/2, O0< y< /2, and 0< §<2. Note that the
(¢o,20,B0)=(0,0,0), i.e., parametrization degeneratesxat 1/2 and aty=0,7/2.
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