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Estimation of SU„2… operation and dense coding: An information geometric approach
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This paper addresses quantum statistical estimation of operatorsUPSU~2! acting onCP3 asc°(U ^ I )c
wherecPC2

^ C2. This is regarded as a continuous analog of the dense coding. We first prove that the quantum
Cramér-Rao lower bound takes the minimum, and is achievable, if and only ifc is a maximally entangled state.
We next show that an SU~2! orbit on CP3 equipped with the standard Riemannian structure is isometric to
SU~2!/$6I %>SO~3! if and only if c is a maximally entangled state. These results provide an alternative view
for the optimality of the use of a maximally entangled state.
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I. INTRODUCTION

Let c be a maximally entangled vector onC2
^ C2, say,

c5
1

&
S F10G ^ F10G1F01G ^ F01G D , ~1!

and let U05I , U15 isx , U25 isy , U35 isz . Then
^(Ui ^ I )cu(U j ^ I )c&5d i j , so that one can distinguish rel
ably four vectors$(Ui ^ I )c% i 50

3 on C2
^ C2, and hence four

operators$Ui% i 50
3 in SU~2!. This is the basic idea of the

so-called dense coding@1#, and is a manifestation of im
proved distinguishability through entanglement.

The dense coding and its variants@2#, as well as the cel-
ebrated quantum channel coding theorem@3#, concern distin-
guishability among finitely many alternatives, and the pro
quantum statistical framework for dealing with finite altern
tives is the hypothesis testing@4,5#. There is another, essen
tially different, framework in quantum statistics, called t
parameter estimation@4,6#, in which one deals with continu
ously many alternatives. Among recent development in
latter framework is a quantum channel identification probl
@7,8#, in which one seeks the best strategy of estimating
unknown quantum operationG acting on the setS(H) of
quantum states on a Hilbert spaceH. In quantum informa-
tion theory, it is customary that a quantum channel is givea
priori . In practice, however, one first identifies the quantu
channel of interest, and then applies various informat
theoretic results to the channel. Identification of a quant
channel thus precedes every quantum information sche
and its optimization is of fundamental importance in qua
tum information theory. As an illustrative example, we ha
explored in Ref.@7# the identification problem of a depola
ization channelG: S(C2)→S(C2), and have observed im
provement of distinguishability through quantum entang
ment and a rather unexpected transitionlike behavior of
optimal estimation scheme.

In this paper, we explore the identification problem of
unitary channel
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GU : S~C2!→S~C2!: r°UrU* @UPSU~2!#.

In particular, we focus on the estimation of the operatorU
through the extension

GU ^ I : s°~U ^ I !s~U ^ I !*

on S(C2
^ C2), or its restriction

GU ^ I : uc&^cu°u~U ^ I !c&^~U ^ I !cu

to the set]eS(C2
^ C2) of pure states that is identified wit

the three-dimensional complex projective spaceCP3. This is
naturally regarded as a continuous analog of the dense
ing, and its analysis demonstrates the qualitative differe
between distinguishability for finitely many alternatives a
that for continuously many alternatives. The main results
summarized as follows.

~i! The quantum Crame´r-Rao lower bound for the family
$(U ^ I )c%UPSU~2! of output states takes the minimum, and
achievable, if and only ifc is a maximally entangled stat
~Theorems 3,4!.

~ii ! The manifold of output states@i.e., an SU~2! orbit#
equipped with the quantum Fisher metric is isometric
SU~2!/$6I %>SO~3! if and only if c is a maximally en-
tangled state~Theorem 6!.

These results provide an alternative view for the optima
of the use of a maximally entangled state.

The paper is organized as follows. In Sec. II, we form
late a statistical estimation problem of SU~2!, and analyze it
from a noncommutative statistical point of view. In Sec. I
we introduce a general framework of information geome
on a projective Hilbert spaceP(H). The standard Riemann
ian structure ofP(H) is derived as a special example. In Se
IV, a Riemannian geometric study of SU~2! orbits onCP3 is
presented. These results are discussed in a unified mann
Sec. V. Throughout the paper, the symbols ‘‘.’’ and ‘‘ >’’
stand for ‘‘isomorphic’’ and ‘‘isometric,’’ respectively.

II. STATISTICAL ESTIMATION OF SU „2…

Suppose an unknown operationG acting on S(C2) is
noiseless, in that there is a unitary operatorUPSU~2! such
©2001 The American Physical Society16-1
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that G(5..GU): r°UrU* , and our problem is to estimat
the unknownU. A general scheme of estimating an unknow
quantum operationL acting onS~H! is this: input a well-
prepared statesPS(H) to L and estimate the dynamica
changes°L(s) by performing a certain measurement
the output stateL~s!. WhenL belongs to a parametric fam
ily $Lu ; uPQ% of operations, the problem amounts to fin
ing an optimal inputs and an optimal estimator for the pa
rameteru of the family $Lu(s); uPQ% of output states@7#.

In our problem, the group SU~2! is a three-dimensiona
manifold and is parametrized, for example, as

U5U ~f,a,b!ªF eia cosf 2eib sinf

e2 ib sinf e2 ia cosf G
S 0<f<

p

2
, 0<a,2p, 0<b,2p D .

Since, for anyrPS(C2), the family $GU(r); UPSU~2!% of
output states is at most two-dimensional, we must extendGU
on an enlarged Hilbert space (C2) ^ n, (n>2), in order for the
parametrization of output states to be nondegenerate. In
paper, we focus on the extensionLUªGU ^ I , i.e.,

LUu
: S~C2

^ C2!°S~C2
^ C2!: s°~Uu ^ I !s~Uu ^ I !* ,

~2!

where uª(u1,u2,u3)ª(f,a,b). Since L2U5LU , we
might as well express that our problem is to estimate
parameteru of the quotient group SU~2!/$6I %.SO~3!. Con-
sequently, the estimation of SU~2! operation must be a loca
one: the domainQ of the parameteru to be estimated forms
a local chart of SU~2! on which the parametrization
u°LUu

(s) is one to one.
Let us proceed to the parameter estimation for the fam

~2!. Our task was to find an optimal inputs and an optimal
estimator for the parametric family$LUu

(s); uPQ% of out-
put states. One of the most fundamental results in quan
estimation theory is the quantum Crame´r-Rao inequality
@4,6#, ~cf., Appendix A!: when the true value of the param
eter is u0 , the covariance matrixVu0

@M # of an arbitrary

estimatorM for the parameteru that is locally unbiased atu0
is bounded from below as
01231
is

e

y

m

Vu0
@M #>Ju0

~s!21.

Here Ju(s) denotes the symmetric logarithmic derivativ
~SLD! Fisher information matrix with respect to the coord
nate systemu of the output family$LUu

(s); uPQ%, and the

inequality means that the matrixVu0
@M #2Ju0

(s)21 is posi-
tive semidefinite.

Lemma 1. For all s, tPS(C2
^ C2) and lP@0,1#,

Ju„ls1~12l!t…<lJu~s!1~12l!Ju~t!.

Proof. This follows immediately from the convexity of th
SLD Fisher metric@7#. h

In contrast to the one-dimensional parameter case@7#, we
cannot conclude directly from Lemma 1 that the optim
input is a pure state. This is partly because the matri
Ju(s) and Ju(t) appeared in the right-hand side do not a
ways comparable with each other. However, we have
following lemma.

Lemma 2. Let c be the maximally entangled state (1
Then for allsPS(C2

^ C2),

Ju~s!<Ju~ uc&^cu!. ~3!

The equality holds if and only ifs is a maximally entangled
state.

Proof. We first prove the inequality~3! for all pure states
s of the forms5uc(x)&^c(x)u, where

c~x!ªA12xF10G ^ F10G1AxF01G ^ F01G ~0<x< 1
2 !.

The corresponding parametric family of output states
$ucu(x)&^cu(x)u; uPQ%, where

cu~x!ª~Uu ^ I !c5A12xF eia cosf
e2 ib sinf G ^ F10G

1AxF2eib sinf
e2 ia cosf G ^ F01G . ~4!

By a direct computation, the SLD Fisher information matr
Ju(x)ªJu(s) for the family ~4! is
Ju~x!54F 1 0 0

0 cos2 f2~122x!2 cos4 f ~122x!2 cos2 f sin2 f

0 ~122x!2 cos2 f sin2 f sin2 f2~122x!2 sin4 f
G . ~5!

It suffices to show thatJu(x) is monotone increasing inx. In fact, for 0<y<x<1/2

Ju~x!2Ju~y!516~x2y!~12x2y!F 0 0 0

0 cos4 f 2cos2 f sin2 f

0 2cos2 f sin2 f sin4 f
G ,
6-2
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which is positive semidefinite, and equals zero if and only
x5y.

We next prove the inequality~3! for any pure states. Let
s5uc(x,V,W)&^c(x,V,W)u, where c(x,V,W)ª(V
^ W)c(x), V, WPSU~2!, and letJu(x,V,W)ªJu(s) be the
corresponding SLD Fisher information. Since we are dea
with the operations of the formUu ^ I , the SLD Fisher in-
formation matrix is invariant under the transformationW of
the second frame, i.e.,Ju(x,V,W)5Ju(x,V,I ) for all W. On
the other hand, the transformationV of the first frame in-
duces the coordinate transformu°u8ª(f8,a8,b8) of
SU~2! as

UuV5F eia8 cosf8 2eib8 sinf8

e2 ib8 sinf8 e2 ia8 cosf8
G .

Then the above proof applies to the new coordinate sys
u8, to obtain the monotonicity ofJu8(x) in x. @Note that
Ju8(x)ÞJu(x,V,I ) in general:Ju8(x) is the list of compo-
nents of the SLD Fisher metric with respect to the coordin
systemu8, while Ju(x,V,I ) is the list with respect tou.#
Since the monotonicity is a purely geometric property and
invariant under a coordinate transform, we conclude t
Ju(x,V,I ) also exhibits monotonicity inx ~with V fixed!.
Now we claim Ju(1/2)5Ju(1/2,V,I ) for all VPSU~2!. In
fact, it is a well-known fact that givenV, there is aV8
PSU~2! such that (V^ I )c5(I ^ V8)c for a maximally en-
tangled c, ~cf., Appendix B, Lemma 11!. Therefore,
Ju(1/2,V,I )5Ju(1/2,I ,V8)5Ju(1/2,I ,I )5Ju(1/2). In sum-
mary, Ju(x,V,W)<Ju(1/2)5Ju(uc&^cu) for all V,W
PSU~2! and 0<x<1/2, with equality if and only if x
51/2.

Now we prove the inequality~3! for any state s
PS(C2

^ C2). Let s5( il is i be a pure state decompositio
in which l i.0 and ( il i51. Then by Lemma 1 and th
above fact, we conclude that

Ju~s!<(
i

l iJu~s i !<Ju~ uc&^cu!. ~6!

Finally, observe that the inequalities in Eq.~6! hold for
any pure state decomposition ofs. As a consequence
Ju(s)5Ju(uc&^cu) implies that every pure state decompo
tion of s comprises only maximally entangled pure stat
This is the case only ifs itself is a maximally entangled pur
state,~cf., @9#!. The lemma was verified. h

Theorem 3. For each value of the parameteru, the
Crumér-Rao lower bound Ju(s)21 takes the minimum if and
only if s is a maximally entangled state.

Proof. This follows immediately from Lemma 2 and th
fact that the functionf (t)521/t is operator monotone on~0,
`!, @10#. h

Note that the inequalities derived in Lemmas 1,2 are
trinsic properties of the SLD Fisher metric and are indep
dent of a particular choice of the coordinate systemu. As a
consequence, Theorem 3 holds for any parametrization
SU~2!.
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Theorem 3 hints that the optimal input will be a max
mally entangled state. However, it alone does not lead t
decisive conclusion, because the Crame´r-Rao lower bound
Ju(s)21 is not always achievable for a multiparameter qua
tum statistical model. Here we say that the Crame´r-Rao
lower bound isachievableat u if there is a locally unbiased
estimatorM that satisfiesVu@M #5Ju(s)21. In this sense the
next theorem is the key to the conclusion that a maxima
entangled state is in fact the optimal one.

Theorem 4. The Crame´r-Rao lower bound Ju(x)21 for the
family (4) is achievable if and only if x51/2.

Proof. The Crame´r-Rao lower bound is achievable atu if
and only if

$^Lu,icu~x!uLu, jcu~x!&%1< i , j <3

are all real, where$Lu,i% i 51
3 are SLDs,~cf., Appendix A,

Corollary 10!. By a direct computation, we have

Im^Lu,1cu~x!uLu,2cu~x!&5Im^Lu,1cu~x!uLu,3cu~x!&

52~2x21!sin 2f,

and

Im^Lu,2cu~x!uLu,3cu~x!&50.

The assertion immediately follows. h
The implication of Theorem 4 is profound. The existen

of an estimator that achieves the Crame´r-Rao lower bound
implies the existence of compatible observables that co
spond to the parameters of SU~2!. Theorem 4 thus assert
that the noncommutative nature of the SU~2! parameters is
‘‘suppressible’’ ~at least locally! by using a maximally en-
tangled input. Moreover, the achievability condition used
the proof is an intrinsic property of the tangent space a
hence is independent of a particular choice of the coordin
systemu. As a consequence, the local suppression of n
commutativity is also a parametrization-independent~i.e.,
geometric! property.

In summary, for estimating the extended SU~2! operation
LUu

: s°(Uu ^ I )s(Uu ^ I )* , the optimal inputs is a
maximally entangled state. This gives an estimation theor
verification for the optimality of the use of a maximally en
tangled state. In the subsequent sections, we explore a d
ential geometric interpretation of this result to obtain
deeper insight into the role of entanglement.

III. INFORMATION GEOMETRY OF PURE STATES

It is well known that the parameter estimation theory fo
classical statistical manifold is closely related to an inform
tion geometric structure of the manifold@11#. Such a geomet-
ric structure has been successfully extended to a quan
regime, i.e., to manifolds of faithful quantum states on
finite-dimensional complex Hilbert spaceH ~@11#, Chap. 7!.
In this section we further extend an information geomet
structure to the manifoldMª]eS(H) of pure quantum
states that is identified with the projective Hilbert spa
P(H). For more information, see@12,13#, where a relation to
6-3
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Berry’s phase and extensions to manifolds of generic qu
tum states are also presented.

Let B~H! and Bh(H) denote the sets of linear operato
and Hermitian operators onH. In order to introduce an in-
formation geometric structure onM, the following lemma is
useful.

Lemma 5. For rPM and DPBh(H), the following con-
ditions are equivalent:~a! There exists a unique tangent ve
tor XPTrM that satisfies D5Xr, ~b! There exists an op
erator LPBh(H) that satisfies D5 1

2 (rL1Lr) and Tr rL
50.

Proof. Let r5uc&^cu and let$c i% i 51
n be an orthonorma

~moving! frame of H with c15c. We introduceR-linear
spacesTr

( i ) , (i 51,2,3), as follows. TheTr
(1) is the set of

Hermitian operatorsL satisfying TrrL50, theTr
(2) is the set

$Xr; XPTrM%, and theTr
(3) is the set of Hermitian opera

tors whose matrix representation with respect to the fra
$c i% i 51

n is of the form

F 0 a2 ¯ an

a2 0 ¯ 0

] ] ]

an 0 ¯ 0

G ~aiPC!.

It is easily shown thatf̃ (L)ª 1
2 (rL1Lr) defines a sur-

jective linear mapf̃ : Tr
(1)→Tr

(3) . On the other hand, the
tangent spaceTrM is clearly isomorphic toTr

(2) , and since
Xr5uXc&^cu1uc&^Xcu, the spaceTr

(2) is obviously identi-
cal toTr

(3) . ~Note that Tr(Xr)5X(Tr r)50.! Thus there is a
surjective linear mapf: Tr

(1)→TrM. h

The operatorL in Lemma 5~b! is uniquely determined
@14# only up to

ker f 5$KPBh~H!;Kr50%.

Because of this ambiguity, we must arbitrarily choose a r
resentative of the SLD in order to define a one-one hom
morphismLr : TrM→Bh(H), which satisfies

dr5 1
2 ~rLr1Lrr!.

In addition, we assume thatLr is smooth inr. Such an
operator-valued one-formLr is called an SLDrepresenta-
tion. When no confusion is likely to arise, we simply deno
Lr(X) asLX for eachXPTrM.

Let us introduce an information geometric structure
M. We first define a Riemannian metric by the SLD Fish
metric:

g~X,Y!ª 1
2 Tr r~LXLY1LYLX!5Tr~Xr!LY .

It is invariant under the arbitrariness kerf of SLD represen-
tations. Moreover, it is shown thatg is identical to the
Fubini-Study metric@14#. We next introduce a pair of affine
connections that are mutually dual with respect to the S
Fisher metric. One is defined by

~“XY!rª 1
2 $r@XLY2Tr r~XLY!#1@XLY2Tr r~XLY!#r%,
01231
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and is called theexponentialconnection. It is well defined
because the right-hand side uniquely defines a derivativer
by Lemma 5. The other connection is defined via duality

g~¹X* Y,Z!ªXg~Y,Z!2g~Y,¹XZ!

5Tr„X~Yr!…LZ ,

and is called themixtureconnection. Note that in contrast t
a quantum statistical manifold of faithful states, the mixtu
connection cannot be defined by (¹X* Y)r5X(Yr), since
X(Yr) does not correspond to a derivative ofr in general.

By a direct computation, the torsionsT andT* that cor-
respond to¹ and¹* are

T~X,Y!r5 1
4 †@LX ,LY#,r‡, T* ~X,Y!50.

The Riemannian curvatures do not vanish in general. T
one cannot expect the existence of the divergence on
space (M,g,¹,¹* ) in general.

Here is a special but important example: by differentiati
the relationr5r2 valid for pure states, we have a canonic
choiceLxª2(Xr) of the SLD representation@14#. Interest-
ingly, the corresponding dualistic structure is reduced to
standard Riemannian structure of the projective Hilbert sp
P(H) in which ¹5¹* is the Levi-Civita connection of the
Fubini-Study metricg. In fact, by using a~real! local coor-
dinate systemz5(z i) of P(H), the components of the SLD
Fisher metricg are given by

gi jªg~] i ,] j !52 Tr~] ir!~] jr!, ~] iª]/]z i !,

and the components of the mixture connection¹* are

G i j ,k* ªg~¹] i
* ] j ,]k!5Tr~] i] jr!~2]kr!

5 1
2 ~] igjk1] jgki2]kgi j !.

Clearly the torsionT vanishes in this case. In what follows
we will work with this special differential geometric struc
ture.

IV. INFORMATION GEOMETRY OF SU „2… ORBITS
ON CP3

In this section, we regardCP3 as a real Riemannian man
fold equipped with the SLD Fisher metricg, and explore the
geometry of orbits of SU~2! actionc°(U ^ I )c onCP3. We
say that unit vectorsc and ĉ on C2

^ C2 are equivalent~and
denotec;ĉ! if they lie on the same SU~2! orbit on CP3,
i.e., if there is a UPSU~2! such that uĉ&^ĉu
5u(U ^ I )c&^(U ^ I )cu. Let their Schmidt decomposition
be

c5A12xe1^ f 11Axe2^ f 2 ~0<x< 1
2 !,

and

ĉ5A12 x̂ê1^ f̂ 11Ax̂ê2^ f̂ 2 ~0< x̂< 1
2 !.
6-4
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It is shown thatc;ĉ if and only if eitherx5 x̂51/2, or x

5 x̂ and f̂ i5l i f i for some l i(PC) of unit modulus, (i
51,2), ~cf., Appendix B, Lemma 11!. As a consequence
CP3 is partitioned into disjoint SU~2! orbits as

CP35 ø
cPI

Mc ,

whereMc denotes the orbit that passes throughc. The orbit
spaceIªCP3/SU~2! is identified with a complete list o
initial points that generates disjoint orbits, and is explici
given, for example, by

c5A12xF cosg
eid sing G ^ F cosg

e2 id sing G
1AxF2e2 id sing

cosg G ^ F2eid sing
cosg G ,

where 0<x<1/2, 0<g<p/2, and 0<d,2p, @cf., Appen-
dix B, Eq. ~12!#. Note that the parameterization (x,g,d)°c
degenerates atx51/2 and atg50,p/2. In Refs.@15,16# other
stratifications ofCP3 based on different SU~2! actions are
presented.

We are interested in the relation between entanglem
and the geometry of SU~2! orbits as Riemannian subman
folds of CP3. Since the orbits that correspond to the sa
degreex of entanglement are isometric to each other,
choose representative orbits by settingg50 in the orbit
spaceI. The corresponding orbits are given by Eq.~4!.

The componentsgi j of the metricg on the orbit~4! with
respect to the coordinate systemu are given by the SLD
Fisher information matrixJu(x), Eq. ~5!, and the volume
element is

vªAdetJu~x!df da db58Ax~12x! sin 2f df da db.

This simple formula already offers some information abo
the relation between entanglement and the geometry of
bits: an orbit maximally inflates atx51/2, and collapses a
x→0. Note that the scaling factorAx(12x) is identical, up
to a constant factor, to the concurrence@9,15#.

In order to get full information about the global structu
of the orbits, we compute the Riemannian curvatureR of the
Levi-Civita connection. LetRi jklªg„R(] i ,] j )]k ,] l… denote
the components.~The readers may be warned not to confu
the order of indices with that used in a standard book
differential geometry such as Ref.@17#. We follow the book
@11#.! Due to the symmetriesRi jkl 52Rjikl 52Ri jlk
5Rkli j , there are at most 36 nonvanishing components:
independent componentsR1212, R1313, R2323, R1213, R1223,
R1323, and those which are obtained by permuting indic
By a direct computation, they are given by

R1212524 cos2 f@11~122x!2$324~11x2x2!cos2 f%#,

R1313524 sin2 f@11~122x!2$324~11x2x2!sin2 f%#,

R23235264x2~12x!2 cos2 f sin2 f,
01231
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R12135216~122x!~11x2x2!cos2 f sin2 f,

R12235R132350.

The componentsRjkªRi jk
i5Ri jkl

gli of the Ricci curvature
R then becomes

R1154~122x12x2!,

R2252 cos2 f@11~122x!2$122~112x22x2!cos2 f%#,

R3352 sin2 f@11~122x!2$122~112x22x2!sin2 f%#,

R125R215R135R3150,

R235R3254~122x!2~112x22x2!cos2 f sin2 f.

It is easy to show that the orbit is Einstein~i.e.,R5lg for a
constantl! if and only if x51/2 or x50. The scalar curva-
ture rªRj

j5Rjk
gk j52(12x1x2) indicates that the large

the parameterx(P@0,1/2#) is, the ‘‘flatter’’ the orbit be-
comes on average. Let us take a closer look at this poin

The sectional curvature with respect to the subsp
spanned by$]1 ,]2% is given by

R1212

~g12!
22g11g22

511x2x2

2
8x~12x!

114x~12x!2~122x!2 cos 2f
.

This is independent off if and only if x51/2 orx50. When
x51/2, the orbit turns out to be a space of constant posi
curvature 1/4, in that

Ri jkl 5
1
4 ~gjkgil 2gikgjl !,

for all i , j ,k,l 51,2,3. @This is confirmed either by a direc
computation, or by the fact that the orbit is a thre
dimensional Einstein manifold~ @17#, p. 293!.# Since the fun-
damental group of the orbit isZ2 , it is the quotient
S3(2)/$6I %, ~cf., @18#!, i.e., the three-dimensional real pro
jective spaceRP3(2) of radius 2. It is also important to
observe that for 0,x,1/2, the orbit is not of constant cur
vature and hence isnot isometric~though diffeomorphic! to
S3(r )/$6I % for any r .0. Since the manifold SU~2!
equipped with the Cartan-Killing metric is isometric toS3,
these facts could be paraphrased by saying that the ‘‘sha
of the Riemannian manifold SU~2!/$6I %>SO~3!, the coor-
dinates of which are to be estimated, comes into full vi
only through the SU~2! actionc°(U ^ I )c on a maximally
entangledc. This gives a geometric insight into Theorems
and 4.

When x50, on the other hand, the orbit collapses to
lower-dimensional manifold in which]25]3 . In this case,
the only independent componentR1212 of the Riemannian
curvature tensor satisfiesR12125(g12)

22g11g22. Namely,
the collapsed manifold is a space of constant positive cu
ture 1. Since the manifold is simply connected, it is the tw
6-5
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dimensional sphereS2 of unit radius. This is, of course, in
accordance with the known isomorphism betweenCP1 and
S2.

In summary we have the following theorem.
Theorem 6. The Riemannian manifoldSU~2!/$6I %

>SO~3! is isometrically embedded intoCP3 as an SU~2!
orbit Mc if and only if c is a maximally entangled state.

V. DISCUSSIONS

We have studied a quantum statistical estimation prob
of operators UPSU~2! acting on ]eS(C2

^ C2).CP3 as
c°(U ^ I )c. It was shown that the quantum Crame´r-Rao
lower bound takes the minimum, and is achievable, if a
only if c is a maximally entangled state~Theorems 3,4!, and
that an SU~2! orbit on CP3 equipped with the SLD Fishe
metric is isometric to SU~2!/$6I %>SO~3! if and only if c is
a maximally entangled state~Theorem 6!.

The information geometric study of SU~2! orbits pre-
sented in Sec. IV has clarified what happens when the de
x of entanglement varies: asx increases toward 1/2, the orb
inflates and hence points on the orbit are getting separ
from each other. This is the geometric mechanism behind
estimation theoretic Theorem 3. In fact, the larger the S
distance of two nearby quantum states becomes, the e
one can distinguish these states, as the quantum Crame´r-Rao
inequality asserts. Theorem 4, on the other hand, conc
the existence of a set of simultaneously measurable obs
ables as an estimator for the three-dimensional paramet
SU~2!. More precisely, it asserts that the noncommutat
nature of the SU~2! parameters ‘‘disappears’’ when~and only
when! we use a maximally entangled state as the inp
Theorem 4 can also be viewed as providing an ‘‘operation
characterization of the otherwise inaccessible quantity of
Fubini-Study metric tensor.

Finally we touch upon a generalization to SU(n). For the
achievability of the Crame´r-Rao lower bound, a result analo
gous to Theorem 4 holds for alln. In fact, the only essentia
ingredient of the proof is that elements of the Lie algeb
su(n) have trace zero. On the other hand, the maximality
the SLD Fisher metric analogous to Lemma 2 does not h
for n>3. This fact suggests an essential role of the dim
sionality. A detailed analysis of the statistical estimation
SU(n), as well as the proofs of the above facts, will
presented in a subsequent paper.

APPENDIX A: ESTIMATION OF PURE STATES

This appendix gives a brief account of the parameter
timation theory for a finite-dimensional pure-state mod
For more information, see@12–14,19,20#. Suppose an un
known quantum state lies in a parametric family$ru
5ucu&^cuu; icui51, u5(u1, . . . ,ud)PQ,Rd% of pure
states on a finite-dimensional complex Hilbert spaceH. The
problem is to estimate, by means of a certain measurem
the true value of the parameteru. We assume that the param
etrizationu°ru is smooth and nondegenerate. An estima
for the parameteru is given by a pair (M ,û), where M
5$M (x);xPX % is a positive operator valued measure th
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takes values on a finite setX, and û: X→Q is a map that
gives an estimate ofu from a measurement outcomex. In the
quantum estimation theory, we often assume the local u
asedness condition on estimators@6#: an estimator (M ,û) for
the parameteru is called locally unbiasedat u5u0 , or u0-
unbiasedfor short, if the unbiasedness condition

(
xPX

û i~x!Tr ruM ~x!5u i ~ i 51, . . . ,d!,

and its differentiation

(
xPX

û i~x!Tr~] jru!M ~x!5d j
i ~ i , j 51, . . . ,d!,

hold atu5u0 . Clearly, an estimator is unbiased if and on
if it is locally unbiased at everyuPQ.

The performance of an estimator is usually evaluated
the covariance matrix. When the actual quantum state isru

5ucu&^cuu, the covariance matrixVu@M ,û #5@vu
i j # for a

u-unbiased estimator (M ,û) is defined by

vu
i j
ª(

xPX
@ û i~x!2u i #@ û j~x!2u j #Tr ruM ~x!.

The smaller the covariance matrix is, the more accura
one can estimate the parameteru.

One of the most important notions in the quantum estim
tion theory is the SLD: given a modelru5ucu&^cuu, the
SLD with respect tou i , (i 51, . . . ,d), is defined by the
Hermitian operatorLu,i that satisfies the equation

] iru5 1
2 ~Lu,iru1ruLu,i !.

Since the SLD is not unique for a pure-state model, it
convenient to work with the vectorl u,iª2(] iru)cu , which
is identical toLu,icu for any representativeLu,i of the SLD.
While the vectors$ l u,1 , . . . ,l u,d% are not alwaysC-linearly
independent, they areR-linearly independent~due to the
nondegeneracy of the parametrizationu°ru!. Moreover,
since ^cuu l u,i&50, the vectors$cu ,l u,1 , . . . ,l u,d% are also
R-linearly independent. The positive definite matrixJu
ª@Rê lu,i ulu,j&# is called the SLDFisher information matrix.
For later convenience, we introduce the dual vectors$ l u

i % i 51
d

of $ l u,i% i 51
d by l u

i
ªJu

i j l u, j , whereJu
i j is the (i , j )th entry of

the inverse matrixJu
21, and Einstein’s summation conven

tion is used. Note that Re^lu
i ulu

j &5Ju
ij .

Associated with au-unbiased estimator (M ,û) are the
vectors

ju
i
ª(

xPX
@ û i~x!2u i #M ~x!cu ~ i 51, . . . ,d!.

Due to theu-unbiasedness, they satisfy

^ju
i ucu&50, Rê ju

i u l u, j&5d j
i , ~ i , j 51, . . . ,d!. ~7!

We denote byXu the ordered list@ju
1,...,ju

d# of vectors, and
by Xu* Xu the d3d matrix whose (i , j )th entry is ^ju

i uju
j &.
6-6
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~We takeXu for a ‘‘matrix’’ whose i th column is the vector
uju

i &.! Now by a standard argument~@6#, pp. 88, 274!, we
have

Vu@M ,û #>Xu* Xu ~8!

and

Vu@M ,û #>ReXu* Xu>Ju
21. ~9!

Here ReXu* Xu is the matrix whose (i , j )th entry is
Rê j u

i uj u
j &. ~The matrix ImXu* Xu is defined likewise.! The

inequality ~9! is called the SLDCramér-Rao inequality.
We now focus on achievability of the SLD Crame´r-Rao

lower bound at a givenu. In what follows, we shall drop the
subscriptu for notational simplicity.

Lemma 7. ReX* X5J21 if and only if j i5 l i for all i .
Proof. The second relation in Eq.~7! with i 5 j , which is

equivalent to Rêji2liuli&50, implies that for eachi, the vec-
tors $j i ,l i ,j i2 l i% form a right triangle~j i being the hypot-
enuse! with respect to the real inner product Re^•u•&. Then by
the Pythagoras theorem, we see that Re^ji uji&5Rê li uli& if and
only if j i5 l i . h

Lemma 8. V@M ,û #5ReX* X implies Im X* X50.
Proof. If V@M ,û #5ReX* X, then ReX* X>X* X by Eqs.

~8! and ~9!, that is, 0> i Im X* X. Since ImX* X is a real
skew-symmetric matrix, this implies that ImX* X50. h

Motivated by Eq.~7!, we say that a collection of vector
$h1, . . . ,hd% in H is u-unbiasedif

^h i uc&50, Rê h i u l j&5d j
i ~ i , j 51, . . . ,d!.

In this case, the vectors$h1,...,hd% are necessarily
R-linearly independent. The next lemma, due to Matsum
@20#, subsumes the converse of Lemma 8.

Lemma 9. Suppose a collection of vectors$h1, . . . ,hd% is
u-unbiased and satisfies the condition

Im Y* Y50,

where Y5@h1, . . . ,hd#. Then there is a projection-value
measure E5$E(x);xPX % and real numbers$ai(x);xPX,i
51,...,d% such that

h i5 (
xPX

ai~x!E~x!c ~ i 51, . . . ,d!. ~10!

In particular, letting û i(x)ªu i1ai(x), the pair (E,û) forms

a u-unbiased estimator that satisfies V@E,û #5ReY* Y.
Proof. Since ImY* Y50, the Gram matrixY* Y with re-

spect to the complex inner product^•u•& is identical to the
Gram matrix ReY* Y with respect to the real inner produ
Rê •u•&, and is positive definite because$h1, . . . ,hd% are
R-linearly independent. This implies that$h1, . . . ,hd% are
C-linearly independent. Moreover, since^h i uc&50, the vec-
tors $c,h1, . . . ,hd% are alsoC-linearly independent.

Let VªSpanC $c,h1, . . . ,hd%. Since^h i uc& and^h i uh j&
are all real, there is an orthonormal basis$e1 , . . . ,ed11% of
V such that̂ ekuc& and ^ekuh i& are all real, and that̂ekuc&
01231
o

Þ0 for all k. ~To find such a basis, one first performs th
Gram-Schmidt procedure on$c,h1, . . . ,hd%, and then ro-
tates the basis slightly to meet the condition^ekuc&Þ0.!
Then lettingE(k)ªuek&^eku andai(k)ª^ekuh i&/^ekuc&, we
have

h i5 (
k51

d11

ai~k!E~k!c.

If V5H then let X5$1, . . . ,d11%, otherwise let X
5$0,1, . . . ,d11%, E(0) the projection ontoV', andai(0)
50. Then the projection valued measureE5$E(x)%xPX and
real numbers$ai(x);xPX,i 51, . . . ,d% satisfy Eq.~10!.

Let û i(k)ªu i1ai(k). Then the estimator (E,û) is
u-unbiased, and

^h i uh j&5(
k

(
l

ai~k!aj~ l !^E~k!cuE~ l !c&

5(
k

@ û i~k!2u i #@ û j~k!2u j #^cuE~k!c&

is the (i , j )th entry of the covariance matrixV@E,û #, proving
that V@E,û #5Y* Y5ReY* Y. h

We say that the SLD lower bound~9! is achievableat u if
there is au-unbiased estimator (M ,û) for which V@M ,û #
5J21 holds. The next corollary is also due to Matsumo
@20#.

Corollary 10. TheSLD lower bound is achievable if and
only if ^ l i u l j& are all real.

Proof. We first note that̂ l i u l j& are all real if and only if

^ l i u l j& are all real. Assume first thatV@M ,û #5J21 for a cer-
tain u-unbiased estimator (M ,û). Then by Lemmas 7, 8, and
Eq. ~9!, we have Im̂li ul j&50 for all i , j . Assume next that
^ l i u l j& are all real. Since the collection$ l 1, . . . ,l d% is
u-unbiased, we see from Lemma 9 that there is an estim
(E,û) that satisfiesV@E,û #5@Rê li ul j&#5J21. h

APPENDIX B: CHARACTERIZATION OF SU „2… ORBIT
SPACE

Let c and ĉ be unit vectors onC2
^ C2, and let their

Schmidt decompositions be

c5A12xe1^ f 11Axe2^ f 2 ~0<x< 1
2 !,

and

ĉ5A12 x̂ê1^ f̂ 11Ax̂ê2^ f̂ 2 ~0< x̂< 1
2 !.

These vectors are equivalent (c;ĉ) if there is a U

PSU(2) such thatuĉ&^ĉu5u(U ^ I )c&^(U ^ I )cu. We claim
Lemma 11. c;ĉ if and only if either x5 x̂51/2, or

x5 x̂ and f̂i5l i f i for some l iPC of unit modulus,
( i 51,2).

Proof. Since we are dealing with the SU~2! action
c°(U ^ I )c, we set, without loss of generality, as
6-7
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e15ê15 f 15F10G , e25ê25 f 25F01G .
It suffices to show that for

f̂ 15F eia0 cosf0

e2 ib0 sinf0
G , f̂ 25F2eib0 sinf0

e2 ia0 cosf0
G

S 0<f0<
p

2
, 0<a0 , b0,2p D ,

c;ĉ if and only if eitherx5 x̂51/2, orx5 x̂ andf050.
We first show the ‘‘if’’ part. If x5 x̂51/2, let (f,a,b)

5„f0 ,a01p(mod 2p),2p2b0…, else if x5 x̂ and f050,
let (f,a,b)5(0,a0,0). Then by a routine calculation, w
haveu(U ^ I )c&^(U ^ I )cu5uĉ&^ĉu for U5U (f,a,b) .

We next show the ‘‘only if’’ part. Since the SU~2! action
does not change the singular values of a Schmidt decom
sition, c;ĉ implies x5 x̂. As we have already shown tha
the equationu(U ^ I )c&^(U ^ I )cu5uĉ&^ĉu with x5 x̂51/2
has a solutionUPSU(2) for any$ f̂ i% i , we need only con-
sider the case whenx5 x̂Þ1/2. By a direct computation, we
see that the equation withx5 x̂50 impliesf5f050, while
the equation with 0,x5 x̂,1/2 implies f5f050 and a
5a0 . The claim was verified. h

Let us specify a complete list of equivalence classes
plicitly. Let the orthonormal frames$ei% i , $êi% i , and$ f̂ i% i be
as in the above proof, and let

f 15F eia1 cosf1

e2 ib1 sinf1
G , f 25F2eib1 sinf1

e2 ia1 cosf1
G

S 0<f1<
p

2
, 0<a1 , b1,2p D ,

We denote$ f 1 , f 2%;$ f̂ 1 , f̂ 2% if c;ĉ. Then by Lemma 11,

$ f 1 , f 2%;$ f̂ 1 , f̂ 2% if and only if eitherx5 x̂51/2, orx5 x̂ and

@ f̂ 1 , f̂ 2#5@ f 1 , f 2#Feim 0

0 e2 imG ~'mPR!. ~11!

When x5 x̂Þ1/2, the equation~11! characterizes all the
frames$ f̂ 1 , f̂ 2% that are equivalent to$ f 1 , f 2%, and the solu-
tion is as follows. If f150, then f050, a05a1
1m (mod 2p), and b0 arbitrary; if f15p/2, then f0
5p/2, b05b12m (mod 2p), and a0 arbitrary; if 0,f1
,p/2, then f05f1 , a05a11m (mod 2p), and b05b1
2m (mod 2p). A representative of the first case is given
(f0 ,a0 ,b0)5(0,0,0), i.e.,
01231
o-

x-

f̂ 15F10G , f̂ 25F01G ,
for the second, (f0 ,a0 ,b0)5(p/2,0,0), i.e.,

f̂ 15F01G , f̂ 25F21
0 G ,

and for the third, (f0 ,a0 ,b0)5„f1,0,b11a1(mod 2p)…,
i.e.,

f̂ 15F cosg
e2 id sing G , f̂ 25F2eid sing

cosg G

S 0,g,
p

2
, 0<d,2p D .

In summary, a complete list of representatives of equivale
classes is as follows: Forx51/2,

c5
1

&
S F10G ^ F10G1F01G ^ F01G D ,

for 0<x,1/2 and 0<g,p/2,

c5A12xF10G ^ F cosg
e2 id sing G1AxF01G ^ F2eid sing

cosg G
~0<d,2p!

and for 0<x,1/2 andg5p/2

c5A12xF10G ^ F01G1AxF01G ^ F21
0 G .

The above family shows a discontinuity atx51/2 and at
g5p/2. By a slight modification, however, we obtain a com
plete list of representatives that forms a three-dimensio
smooth compact submanifold ofCP3:

c5A12xF cosg
eid sing G ^ F cosg

e2 id sing G
1AxF2e2 id sing

cosg G ^ F2eid sing
cosg G , ~12!

where 0<x<1/2, 0<g<p/2, and 0<d,2p. Note that the
parametrization degenerates atx51/2 and atg50,p/2.
6-8
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