PHYSICAL REVIEW A, VOLUME 65, 012310
Degrees of concealment and bindingness in quantum bit commitment protocols
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Although it is impossible for a bit commitment protocol to be both arbitrarily concealing and arbitrarily
binding, itis possible for it to be botlpartially concealing angbartially binding. This means that Bob cannot,
prior to the beginning of the unveiling phase, find out everything about the bit committed, and Alice cannot,
through actions taken after the end of the commitment phase, unveil whatever bit she desires. We determine
upper bounds on the degrees of concealment and bindingness that can be achieved simultan@oybly in
commitment protocol, although it is unknown whether these can be saturatetb, \Wewever, determine the
maxima of these quantities in a restricted class of bit commitment protocols, namely, those wherein all the
systems that play a role in the commitment phase are supplied by Alice. We show that these maxima can be
achieved using a protocol that requires Alice to prepare a pair of systems in an entangled state, submit one of
the pair to Bob at the commitment phase, and the other at the unveiling phase. Finally, we determine the form
of the trade off that exists between the degree of concealment and the degree of bindingness given various
assumptions about the purity and dimensionality of the states used in the protocol.
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[. INTRODUCTION ferent cryptographic tasks between mistrustful parties. As
such, the kinds of security that can be achieved in BC has
Bit commitment(BC) is a cryptographic task involving implications for the kinds of security that can be achieved in
two mistrustful parties, Alice and Bob, wherein one seeks tahese other tasks. In this paper we consider only the impli-
have Alice submit an encoded bit of information to Bob in cations of our results to the task of coin tossj6g7].
such a way that Bob cannot reliably identify the bit before
Alice decodes it for him, and Alice cannot reliably change
the bit after she has submitted it. In other words, Bob is || DEGREES OF CONCEALMENT AND BINDINGNESS
interested in binding Alice to some commitment, and Alice is
interested in concealing this commitment from Bob. It is A bit commitment protocol involves three phases, which
well known[1,2] that a BC protocol that is both concealing are called the commitment phase, the holding phase, and the
and binding is impossiblE3]. Nonetheless, its possible to  unveiling phase. During the commitment phase, Alice and
devise a BC protocol that is botpartially concealing and Bob engage in some number of rounds of communication,
partially binding, that is, one wherein if Alice is honest then with at least one communication from Alice to Bob. The
the probability that Bob can estimate her commitment corperiod after the end of the commitment phase and prior to the
rectly is strictly less than 1, and if Bob is honest then thebeginning of the unveiling phase is called the holding phase,
probability that Alice can unveil whatever bit she desires isand may be of arbitrary duration. During the unveiling phase,
strictly less than 1. This paper addresses the problem of déhere is again some number of rounds of communication,
termining theoptimal degrees of concealment and binding- with at least one communication from Alice to Bob. At the
ness that can be achieved simultaneously in quantum b&nd of the unveiling phase, an honest Bob performs a mea-
commitment protocol$4,5]. surement that has three outcomes, labeled “0,” “1,” and
We establish an upper bound on the degrees of concedlfail,” corresponding, respectively, to Alice unveiling a bit O,
ment and bindingness for all BC protocols. It is unclear atAlice unveiling a bit 1, and Alice being caught cheating. The
this time whether or not this upper bound can be saturateqrotocol specifies the sequence of actions an honest Alice
Nonetheless, ware able to provide a saturable upper bound performs in order to commit to a bt and guarantees that if
for a more restricted class of BC protocols, namely, protocolshe follows the actions for committing a lithen an honest
wherein Alice initially holds all of the systems that play a Bob’s measurement at the end of the unveiling phase yields
role in the commitment phase of the protocol. We also introthe outcomeb with certainty.
duce a kind of BC protocol that achieves this maximum. The To discuss the security of BC protocols, it is useful to
protocol essentially consists of Alice preparing two systemsntroduce two quantities which we shall call Alicetentrol
in an entangled state, submitting one system to Bob at thand Bob'sinformation gain These quantities are defined un-
commitment phase, and submitting the other system at thder the assumption that the other party is honest, and depend
unveiling phase. We show that in such protocols the maxion the sequence of actions performed by the party in ques-
mum achievable degree of bindingness is related in a simplgon. Alice’s control is meant to quantify the extent to which
way to the fidelity between the reduced density operators foshe can influencéafter the commitment phasée outcome
the systems held by Bob at the end of the commitment phasef Bob’s measurement beyond what she could accomplish by
BC appears as a primitive in the protocols of many dif-following the honest strategy. Bob’s information gain is
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meant to quantify his ability to estimate Alice’s commitment (i) What is Bob’s maximal information gain, and what
(prior to the unveiling phagebeyond what he could accom- strategy achieves this maximum? That is, f&d* and find
plish by following the honest strategy. SE* such thatG(Sg®)=Gm.

We now present the specific measures of control and in- (i) What is Alice’s maximal control, and what strategy
formation gain which we make use of in this paper. We asgchieves this maximum? That is, fir@™® and find Sp
sume for simplicity that Bob has no prior information on gych thatC(SI®)=Cm*
which bit Alice has committed, and that Alice is as likely to
wish to unveil a bit 0 as she is to wish to unveil a bit 1. We  |n another papef9], we provide answers to these ques-
take our measure of Bob's information gain for the strategytions for BC protocols that are generalizations of the 1984
S?, which we denote b5 (S°), to be the difference between Bennett-BrassarBB84) BC protocol[10]. In this paper, we
his probability of estimating Alice’s commitment correctly provide the complete solution for a different type of BC pro-

when he implement§® and when he is honest, tocol, which we call gurification BC protocol.
The above questions involve an optimization over strate-
G(S%)=Pg(S%) —-1/2. gies. We will also be interested in optimizing over protocols.
Specifically, we wish to answer the following question.
We take our measure of Alice’s control for the strategfy For a given class of protocols, what is thenimumAl-

which we denote by>(S"), to be the difference between her ice’s maximum control can be made for a given value of
probability of unveiling whatever bit she desires when sheBob’s maximum information gain, and which protocol in the

implementsS* and when she is honest, class achieves this minimum? In other words, denoting pro-
tocols byP, the given class of protocols iy, and the subset
C(SH=Py(SH—-1/2. of this class associated witlG™ by K(G™®), find
Minp_ i mayC™(P) and find P°P* such thatC™®{(PP)
It follows that G(S®) andC(S") vary between 0 and 1/2.  =miny_y gmayC"(P).

We quantify the degrees of concealment and bindingness If this question can be answered for every valuesa™,
in a BC protocol by Bob’s maximum information gain and then one obtains a curve in ti@&"®C™ plane. Moreover,

Alice’s maximum control, defined, respectively, by if this curve is monotonically decreasing then it is identical
to what would have been obtained by minimizing Bob’s
GM¥*=maxG(SP), maximum information gain for a given value of Alice’s
sB maximum control. In this case, we call the curve tptimal
trade-off relationbetweenC™®* and G™® Specifying this
maX=maxC(S"). relation for a given class of protocols is a convenient way of
sh expressing the maximum degrees of concealment and bind-
ingness that can be achieved with such protocols.
A protocol is said to bepartially concealingif Bob’s maxi- In this paper, we determine a lower bound on the optimal

mum information gain is strictly less than complete informa-trade-off relation betwee@™* and G™ for all BC proto-
tion gain, GM*<1/2; it is said to beperfectly concealingf cols. Unfortunately, we have not determined whether this
his information gain is zerdz™®=0; finally, it is said to be lower bound is saturable or not. However, we do find the
arbitrarily concealingor simply concealingif his informa-  optimal trade-off relation for a restricted class of BC proto-
tion gain can be made arbitrarily small by increasing thecols, which we callAlice-suppliedBC protocols. The gener-
value of a security paramett, that is, G™"*<e, wheree alized BB84 BC protocols and the purification BC protocols
—0 asN—<o [8]. Similar definitions hold for the degrees of mentioned above both fall into this class. In fact, we show
security against Alice. A protocol is said to partially bind-  that the purification BC protocols are optimal within this
ing if Alice’s maximal control is strictly less than complete class. These protocols will be defined precisely in the next
control, C™<1/2; it is said to beperfectly bindingif her  section.
control is zero,C™®=0; finally, it is said to bearbitrarily
binding or simply binding if her control can be made arbi-
trarily small by increasing the value of a security parameter
N, that is,C"™*<§, where5—0 asN— . In order to perform optimizations over all quantum BC

If a degree of securitysuch as concealment or binding- protocols, it is necessary to have a completely general model
nessg can be guaranteed by assuming only the laws of physef such protocols. We make use of the following model for
ics (and the integrity of a party’s laboratgrythen it is said to  cryptographic protocols implemented between two mistrust-
hold unconditionally In this paper, we shall only be con- ful parties[1]. The Hilbert space required to describe the
cerned with unconditional security. Thus, every time we asjprotocol is the tensor product of the Hilbert spaces for all the
sign some degree of securifguch as concealment or bind- systems that play a role in the protocol. Every action taken
ingnes$ to a protocol, it is implied that the protocol has this by a party in their laboratory corresponds to that party per-
feature unconditionally. forming a unitary operation on the systems in their posses-

To understand the degree to which a protocol can be madsgon. Every communication corresponds to a party sending
concealing or binding we must answer the following ques-some subset of the systems in their possession to the other
tions: party (it follows that the mere transmission of information

Ill. BC PROTOCOLS
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from one party to the other does not change the quanturnommits to a bitb, the measurement must have outcolme
state of the total system, but does change the Hilbert spaagith probability 1. This implies thafyg™) and|y{™) must
upon which the parties can implement their unitary operape orthogonal,
tions). It is assumed that the total system is initially in a pure
state. (Yo" 141™) =0,

It has been previously arguéd] that this model is com- ) o
pletely general. It incorporates the possibility of randomand thaf¢™) must be an eigenstate blf, with eigenvalue
choices and measurements during the protocol, since thede
can always be kept at the quantum level until the end without un un
any loss of generality. A random choice is performed at the Mol ™) =14™)- @
quantum level by implementing a unitary transformatipq _that As mentioned earlier, we will be interested in a restricted
is conditioned upon the state of an ancilla prepared initially

) i f states. M i ‘ d class of BC protocols, which we calllice-suppliedBC pro-
In & superposition of states. Measurements are performed gi. s Thege protocols impose no restrictions on the details
the quantum level by unitarily coupling the system to be

. . . ; - -~ of the unveiling phase and may involve an arbitrary number
measured to an ancilla that is prepared in some fixed initials -0\14s of communication between Alice and Bob during
pure state.

In th {BC. th ; | brotocol Vol the commitment phase. However, it is required #ilabf the
n the case o » (€ mOst general protocol may nvo Vesystems that Bob makes use of during the commitment phase
many rounds of communication during the commitment

. . S are supplied by Alice. The class of Alice-supplied BC proto-
phase. Denoting the number_ of roundsrb)denqtlng Al|qes cols includes the generalized BB84 BC protocols, defined in
honest sequence of operations for’comm|tt|ng alby  peg [9], as well as the purification BC protocols defined
{Wo,1, c 'Wbl“},’ and deinotlng Bob’s 'honest sequence Ofbelow. An example of a protocol that faltsitsidethis class
operations bYW, ... Wy}, the total unitary operation they js one wherein, at the beginning of the commitment phase,
jointly implement is Bob submits to Alice a system that is entangled with one he

! / / keeps in his possession, and Alice encodes her commitment
Wo=WoWon-- - WoWo 23 W1 in the unitary transformation she performs upon this system

The transmissions that occur in each round will determind®€fore resubmitting it to Bob. Another example of such a
the Hilbert space over whiciiV,,; and W/ act nontrivially. ~ Protocol is one wherein, during the commitment phase, Bob
Thus, despite the fact that we have assumed that Alice implélsej an0|rl1la_s that Alu;e did not supply in order to make a
ments the first unitary operation, this operation could beranwom choice (')dr periorm a n;e?sg_remefnt. fication BC

trivial and it remains arbitrary which party is first to submit a e now provide a precise definition of a purification

sytem to the other party. If the initial state of all systems isprOtOCOI'

denoted by i), then the state at the holding phase, if both A purification BC p'rotocoISuch a protocol makes use of
parties are honest, is just two systems, which we shall call the token system and

the proof systengsince one is the token of Alice’s commit-
[0 =Wy| init) - ment and the other is the proof of her commitmeiihese
are associated with Hilbert spackg and7, . A purification
It follows that the reduced density operator for Bob'’s systemBC protocol also specifies two orthogonal statgs) and
at the holding phase, assuming both parties are honest, is | y,) defined orH,®H,. The honest actions are as follows.
(1) At the commitment phase, Alice prepares the two sys-
po=Tr([¢p) (), tems in the statéy,) in order to commit to bib, and sends
,éhe token system to Bob.

(2) At the unveiling phase, Alice sends the proof system
to Bob, and Bob performs a measurement of the projector-
valued measurélly, 114,11}, wherell,=|xp){xpl-

So we see there is only a single communication from
fAlice to Bob during both the commitment and the unveiling
phases. In the notation of the general model presented above,
W, transforms | i) 10 |ép)=|xp), and Vp=1 so that

=) =lxo)- |
V=V Vpm: ViV ViVp . We call this a purification BC protocol, since at the un-
veiling phase an honest Alice is required to provide Bob with
Thus, if both parties are honest, the state of the total system purification of the state that he received from her during the
at the end of the unveiling phase is commitment phase.

where the trace is over all the systems that end up in Alice
possession at the holding phase.

During the unveiling phase, a similar process occurs. De
noting the number of rounds hy, denoting Alice’s honest
sequence of operations given that she committed tb bit
{Vb1, ... .Vpm}, and denoting Bob's honest sequence o
operations by{Vy, ...V, }, the total unitary operation they
jointly implement is

[y =V ihp). (1) V. MEASURES OF DISTINGUISHABILITY FOR DENSITY

. : OPERATORS
The protocol ends with Bob performing a three-outcome pro-

jective measurementtlly,I1,,I1;,;} on the systems in his Two measures of the distinguishability of density opera-
possession. If both parties are honest, then whenever Alic®rs will be important in the present work: the trace distance
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and the fidelity, defined, respectively, bid] V. OPTIMIZING OVER ALL BC PROTOCOLS
1 In this section, we demonstrate an upper bound on the
D(p,0)= ETI’|p—0‘| simultaneous degrees of concealment and bindingness
(hence dower bound onG™* and C™®) for any BC proto-
and col. It should be noted that the main ideas that go into the
proof of this result are present in the work of Maygt$and
F(p,o)=Tr|\VpVal, Lo and Chat[6].
Theorem 11ln any BC protocol,
where|A|= JATA.
We will find the following relations between these two , maxe L
measures to be very useful. For any two density operators, (i) G™= ED(PO’Pl)'

the fidelity and the trace distance sati§h?]

1-F(p,0)<D(p,0) 3 (ii) cmaX>%F(p0,pl)2.

and
Proof. We begin by proving(i). To analyze security
D(p,0)<V1-F(p,0)°. (49 against Bob, we assume that Alice is honest. Suppose that
Bob uses a strategy wherein he acts honestly throughout the
Tommitment phase. In this case, the state of the total system
at the end of this phase will beyo) or |i,), depending on
, =V1=F( &N Alice’s commitment. The reduced density operators for
DUg»D0Y=V1=F(1¥). 1) © Bob’s system will bepy or p;. Now suppose that during the
for all |¢) and|x). A stronger lower bound for the trace holding phase Bob does the measurement which optimally
distance betweep and o exists if one of the density opera- discriminates betweep, andp;. It is a well-known result of

The second inequality is saturated for any pair of pure state
that is,

tors is pure. Specifically, state estimation theorjl4,15 that his information gain in
this case will be
1=F(p,[4))*<D(p.|4)). (6)
1
This stronger lower bound also applies to the mixed states of G= ED(po,pl)-

qubits. More precisely, we have the following result.
Lemma 1For pairs of density operatogs o whose sup-

o . . . . Bob’s maximum information gain may be greater than this
ports lie in a single two-dimensional Hilbert space, 9 y g

value, since it may be beneficial for him to also cheat during
1—F(p,0)?<D(p, ). the commitment phaséor instance, if the _redu_ced_ d_ensity
operators on Bob’s systems are more easily discriminated at
The proof of this is presented in the Appendix. All of the Some point during the commitment phase than they are at the
above inequalities can be saturated. Explicit examples wilholding phasg Bob’s maximum information gain cannot,
be presented in Sec. VI. however, be less than this bound. This establighes
Finally, we present some properties of the fidelity that will e now prove(ii). To analyze security against Alice, we
be useful for the present investigation. UhImann’s theorenan assume that Bob is honest. Suppose that Alice uses the
[13] states that the fidelity between two density operators igollowing strategy. During the commitment phase, she fol-
equal to the overlap of two maximally parallel purifications lows the honest protocol for committing a bit 0, so that the
of these density operators. Thusgifand o are density op- total system is in the sta{g),) at the holding phase. There-
erators on a Hilbert spack, |¢> and|X> are arbitrary puri- after, if Alice wishes to unveil a bit 0, she acts honestly for
fications ofp ando on’H'®H, andU is a unitary transfor- the rest of the protocol, while if she wishes to unveil a bit 1,

mation on’’, then she applies a unitary transformatiai"® to the systems in
her possession just prior to the unveiling phase, and thereaf-
F(p,o0)=max(|UxI|x)|. (7)  ter acts honestlyu™* is chosen such that
U
ma; —

Another critical property is given by the following (U™ 14o) muax( talUellgo). ®
lemma.

Lemma 2The fidelity satisfies The probability that Alice succeeds at unveiling a bit 0 when

she attempts to do so is unity =1, since she has simply

followed the honest protocol for committing a 0. The prob-

ability that Alice succeeds at unveiling a bit 1 when she
The proof of this can be found in the derivation of Eq. attempts to do so is

(11 from Eq. (9) in Sec. VI and by making use of Uhl-

mann’s theorem. Pu1 =TI IV (U™ 1) | o) ol (U™ 1) V]].

ma){F(p,cr)2+ F(p,w)2]=l+ Flo,w).
p
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Now since the stat¢y,™=V,|¢,) is an eigenstate offl, 0.5
with eigenvalue Isee Eq(2)], one can write
I = [y (g™ + Ty, ~ %4
)
for some non-negative operatol’;, orthogonal to =
[gA™ (™. 1t follows that ) 03
£
Pur= (™ V(UMD D[ gho) 2= (e U@ 1 | o) |*. 2 0l
Eo
Since we are assuming that Alice is equally likely to wish to =
unveil a 0 as a 1, her probability of unveiling the bit of her § 014
choosing satisfies <
1 1 1 1 max ) 0.0
= — —_ = — —_ . T T T T T T v T v
Py 2 Puot 2 Pu 212 (gl U™ 1 o). 0.0 0.1 0.2 0.3 0.4 0.5
Bob’s Maximum Information Gain (G™)
Recalling the definition o)™ [Eq. (8)], and making use of
Uhlmann'’s theoreniEq. (7)], we conclude that Alice’'s con- FIG. 1. Curve | is a lower bound for the trade-off relation be-
trol for this particular strategy satisfies tweenC™® andG™M® for any BC protocol. The other curves are the

optimal trade-off relations for Alice-supplied BC under different
’ restrictions onp, and p4: curve Il no restrictions, curve Il both
C= 5 F(po,p1)*. qubit states or not both mixed states, and curve IV both pure states.
A, B, C, and D correspond to the points along these curves where
Alice’s maximum control may be greater than this bound,the protocol is fair, i.e.CT**=G"*.
since she may be able to cheat during the commitment and )
unveiling phases as well, but it cannot be less. This estaplh€orem 1 simultaneously. Such a protocol would have to be
lishes(ii ). u such that Bob could not get any more information by cheat-
It is common in quantum information theory to question N during the commitment phase than he can by cheating
the degree to which the sharing of prior entanglement endUring the holding phase, and such that Alice could not get
hances one’s ability to perform information processing tasks2ny more control by cheating during the commitment phase
With this in mind it is perhaps interesting to note that the©' the unveiling phase than she can by cheating during the
proof of Theorem 1 makes no restriction ¢t,;). Thus holdmg phase. It seems to us that such a protocol is unlikely
Theorem 1 applies even if Alice and Bob share entangled® €XISt
states that they both trust prior to the initialization of the BC
protocol. VI. OPTIMIZING OVER ALICE-SUPPLIED BC
Corollary 1. In any BC protocol, the optimal trade-off PROTOCOLS

max max ; 1 1
betweenG™ and C™*"is a curve satisfying A. Optimal degrees of concealment and bindingness

2GMaxY \[pCcMmax=1q The main results of this paper are

Theorem 21In Alice-supplied BC protocols,
(the lower bound corresponds to curve | in Fig. 1

Proof. This follows from Theorem 1 and E@3). [ | N GMeIp
It is well-known [1,2] that it is impossible to have a BC (i) 2 (Po.p1),
protocol that is both arbitrarily concealing and arbitrarily
binding, that is, one for whiclt™*<e and C"®< for ar- . 1
bitrarily small ¢ and §. This clearly follows from Corollary (i) Ccm¥= EF(PO’Pl)’
1. However, Corollary 1 sayworethan this, since it also sets
a lower bound on the extent to which any BC protocol can beynd
partially concealing and partially binding. Thus, in addition  Theorem 3Purification BC protocols saturate the bounds
to being able to rule out the possibility of a BC protocol with in Theorem 2.
G™ and C™® arbitrarily close to the origin in Fig. 1, one  Proof of Theorem 2lnequality (i) follows trivially from
can rule out the possibility of a BC protocol anywhere belowTheorem 1, since ilG™*=1D(py,p,) for all BC protocols
curve | of Fig. 1. The best one can hope for is a BC protocothen clearlyG™®=3D(p,,p,) for any Alice-supplied BC pro-
with 2GM&+2CM¥=1 (curve | of Fig. 1. In particular, the  tocol.
best fair BC protocol one can hope for h@8®=G"#=(3 Inequality (ii), on the other hand, is stronger than Theo-
—/5)/4~0.19098(point A in Fig. 1). rem 1. To prove it, we must consider Alice’s most general
In this paper, we do not settle the question of whetheicheating strategy. Without loss of generality, we can assume
there exists a protocol for which Alice’s maximal control and that she keeps all of her cheating actions at the quantum
Bob’s maximal information gain achieve the lower bounds oflevel. During the commitment phase, Alice can cheat by
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implementing a sequence of wunitary operations

{Wy, ... W,} different from the honest sequence. She can PU¥= maxbe%l} max  max(yp" Ve

cheat at the end of the holding phase by implementing a W T Vb Vot U

unitary transformatiord,®| that depends on the bit she X (Up® W] i) 2.

would like to unveil. Finally, she can cheat during the un-

veiling phase by implementing a sequence of unitary opera- Clearly the maximum ovefVyy, ... Vpm must be
tions{Vp 1, ...,V that depends on the biit she would  greater than or equal to the value Y, 4, ... Vp m}, the

like to unveil and that is different from the honest sequencehonest sequence of operations for unveilingthiThus,
The maximum probability of Alice unveiling the bit of her

choosing is therefore, given b 1
’ e PE™= 5 max, 3, mad(iT V(U Wi

1 w be{0,1}
max__ — \/
Py 2 W maxW ' be%‘l} g ma>\</ n&?XTr{Hbe SinceW varies over all unitary operators, we can wirfite
W BLEEER bmi =W| ;) and vary over all ). Making use of the fact that
X (Up® ) W] i) (i W (U DV, [¥5™)= Vel g) [EQ. (D], we have
1
where PU¥e omax > max(y|(Up®DIW)I%  (9)
2 1) béPY 'y,

W=W/W,,- - -W;W,W;W,, and S _
We perform the maximization over) for a givenU, and
U,. By a variational approach, it is easy to show that the

Vo=ViVbm' -+ VaVp2V1Vpy- optimal |) has the form(up to an arbitrary overall phase

W andV,, are the total unitary operations that Alice and Bob o) + exd —i arg (ol 1)1 ¥1)
jointly implement given that Bob is honest and Alice cheats. | ) = , (10
We begin by optimizing over Alice’s cheating strategy \/E\/1+|(?00|7ﬂ1>|
during the commitment phase. It turns out that the assump-
tion of an Alice-supplied protocol allows us to replace thewhere
maximization over{W,, ... W, by a maximization over ~
all unitary operations on the total system. This means that |#h0)=(Uo® [0},
Alice has as much cheating power in an arbitrary Alice- ~
supplied protocol as she does in a protocol where Bob does [y =(Ur1)|¢h).
not play any role in the commitment phase. The reason i?t follows that
that Alice can bring about any unitary operatidfby imple-
menting the sequence of operations 1
- pEaX;§(1+ max|{go|UoU1®1[i1)]). (13)
Wo=(W/---W))~tw, Ug.Uy
- ) Inequality(ii) now follows trivially from Uhlmann’s theorem
Wi=1 for i#1. and the definition of Alice’s control. [ |
Proof of Theorem 3Recall the definition of a purification
This result only applies for Alice-supplied BC protocols, BC protocol, provided in Sec. IlI. If Alice is honest she pre-

since Alice must initially have access to all the systems thagares the proof-token composite in eithgp) or |x,) and
will appear in the commitment phase in order to implementsypmits the token system to Bob. In this case, the reduced

W;,. We can conclude that density operatorgy and p, that describe the token system
are s_imply the trace over the proof system gf) and|x),
Pﬂ‘”z%mvs\xbe% y o max rTJaxTr[Hbe that is,
“ Vi Vomb b po="Tro(| xp){Xb|)-
X (Up@ )W i) rindl X W (U@ 1) VL. The only cheating strategy available to Bob is to try to esti-

_ N ~ mate the state of the token system, that is, to discriminate
We now consider the unveiling measurement. Equatiometweenp, and p;. It follows from state estimation theory
(2) implies that the honest state at the end of the unveilinghat his maximum information gain i6™®=21D(p,,p,) and

phase|4y™), must be an eigenstate bf,. Thus, is achieved by performing a Helstrom measureniédt15.
Alice can cheat iriwo ways in a purification BC protocol.
Mp= ™ (g™ + Ty, She can cheat during the commitment phase by preparing the
total system in a statie)) that is different from xo) or | x1),
for some non-negative operatby,. It follows that and she can cheat just prior to the unveiling phase by imple-
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menting a unitary operatiot,, on the proof system. The rate the inequality of Eq(3). The simplest example makes
identity of U, can of course depend on which Witshe use of commuting density operators in a three-dimensional

wishes to unveil. Hilbert space. Specifically,
Recalling thatlT,= | xp){ xs|, Alice’s maximum probabil-
ity of unveiling whatever bit she desires is A O 0 0 0 0
1 Po= 0 1_)\ 0 and pP1= 0 l—)\ O
PI®=max > =maX{xyUp®!|s)|% 00 0 0 0 A
) b0y 2y,

o _ It is straightforward to show thatD(pg,p;)=N and
Defining p=Try(|#)(¢]) and making use of Uhlmann's F(p,,p,)=1—X\, which implies thatD(pg,p1) +F(po.p1)

theorem, we obtain =1. It is worth emphasizing that a three-dimensional Hilbert
1 space is the smallest space in which this bound can be satu-
PM_ = max E(p.po)2+F(p.p1)2]. rated, since states in a two-dimensional Hilbert space must
U —5Max{F(p.po)“+F(p.p1)°] satisfy Lemma 1.

’ We now provide a specific example of a family of proto-

It now follows trivially from lemma 2 and the definition of cols that achieve the optimal trade-off of Corollary 3. We
the control thalC™=3F(p,,p,). Alice achieves this control consider purification BC protocols wherein
by implementing any unitary operatiokk, andU, that sat-

isfy UoU;=UM whereU™ s defined in Eq(8), and by R I R
initially preparing the statey™) of Eq. (10) with | ) Po=lo o Pimlo 1-a\/)
= xp)- |

Note that this example qualifies both as an example whgre
B. Optimal trade-off relations and p; have supports that lie in the same two-dimensional
i o ] ] Hilbert space, and as an example where ongy0dndp, is
Given Theorem 3, it is straightforward to determine thepure. It is easy to see thB(pg,p1)=1—\ andF(po,p1)

optimal trade-off relations betwedd™® and C™ for vari-  _ A" Thus. we have saturated the lower bounds in 8.
ous restrictions on the states of Bob’s system at the holding,4 Iemma, 1, and consequently, this family of protocols is
phase. _ _ optimal for the specified restrictions gn and p;.

Corollary 2. In Alice-supplied BC protocols, wherpg It is trivial to find BC protocols that achieve the optimal
andp, are arbitrary, the optimal trade-off is trade-off of Corollary 4. Any purification BC protocol, where
1 po andp, are pure states, will do. Specifically, if
GMmaxy cmax— —

2 po=10)(0] and p1=|#) (|,

(This corresponds to curve Il in Fig.)1. where| ¢) = cos¢|0)+sin ¢|1), then one achieves every point
Proof. This follows from Theorem 3 and EqQ). B on the curve C™)2+(G™)?=1 by varying over¢ in the
Corollary 3. In Alice-supplied BC protocols, whergg range 0 tom/2.

and p, either (1) have supports that lie in a single two-  If we define a “fair” BC protocol to be one wher€ma

dimensional Hilbert space, d@) are not both mixed, the =G™ then by substituting this identity into the trade-off

optimal trade-off is relations presented above, we obtain the following results.
The best fair BC protocol from among the class of Alice-

GMaxy Z(CmaX)ZZE. Sl_JppIied BC protoqols ha€m**=GM**=0.25 (point B on
2 Fig. 1). The best fair BC protocol from among the class of

Alice-supplied BC protocols, whepg, andp, are both qubit

(This corresponds to curve Illin Fig.)1. states or at least one @f, and p; is pure, hasC™*=Gma
Proof. This follows from Theorem 3, Eq(6), and  =(,/5—1)/4~0.30902(point C on Fig. 1. Finally, the best
Lemma 1. B fair BC protocol, from among the class of Alice-supplied BC
Corollary 4. In Alice-supplied BC protocols, wherpy,  protocols wherep, and p; are both pure states, h&m
andp, are both pure states, the optimal trade-off is =GMax=1/2,/2=0.35355(point D on Fig. 1.
(GmaX)2+(cmaX)2:%_ VII. SIGNIFICANCE FOR COIN TOSSING
We briefly discuss the relevance of these results to coin
(This corresponds to curve IV in Fig.)1. tossing[6,7,16. Coin tossing(CT) is a cryptographic task
Proof. This follows from Theorem 3 and E¢pb). [ | wherein at the end of the protocol both parties decide, based
We now provide simple examples of protocols thaton the outcome of their measurements, whether they have
achieve the optimal trade-offs of Corollaries 2—4. won, lost, or detected the other party cheating. If neither

To achieve the optimal trade off of Corollary 2, it suffices party is caught cheating, then the protocol must be such that
to consider a purification BC protocol, whesg andp, satu-  the two parties agree on who won the coin toss. We can
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define a party'shiasin a CT protocol as the difference be- bance relation This suggests that it may be fruitful to pur-
tween their probability of winning and 1/2. A CT protocol sue the analogy between the notions of control and informa-
with maximum biasa for Alice and maximum biag3 for  tion gain in more detail. In future work we hope to consider
Bob is one where if Bob is honest, the maximum Alice canthese optimization problems in the context of purification BC
make her probability of winning is 1/2«, and if Alice is  protocols.
honest, the maximum Bob can make his probability of win-
ning is 1/2+ B. CT can be built upon BC as follows. After
the commitment phase, Bob sends Alice a hit which repre-
sents his guess of her commitment. If his guess corresponds \We have studied the extent to which BC protocols can be
to the bit Alice unveils, he wins the coin toss; if not, Alice made simultaneously both partially concealing and partially
wins. Our results show that it is possible to build a secure Chinding. The degrees of concealment and bindingness were
protocol for any pair of biases satisfyimg+ 5=1/2, and that  quantified by Bob’s maximum information gain about the bit
this inequality can be saturated. In particular, a fair CT pro-committed and Alice’s maximum control over the bit she
tocol with both biases equal to 0.25 can be built up in thisynveils. A lower bound on Alice’'s maximum control and
way. Bob’s maximum information gain foany BC protocol has
Since CT is a weaker primitive than B@6], the impos-  been derived, although it is not known whether or not this
sibility of a BC protocol that is arbitrarily concealing and pound can be saturated. A stronger lower bound was ob-
binding doesnot imply the impossibility of a CT protocol  tained for a restricted class of BC protocols, called “Alice-
with arbitrarily small biases for both parti¢d7]. Whether  supplied” protocols, wherein Alice provides Bob with all of
such a protocol is possible remains an open question in quathe systems that he makes use of during the commitment
tum cryptography. phase. Moreover, this lower bound has been shown to be
It should be noted that even if such a CT protocol doessaturated by what we have called a “purification” BC proto-
not exist, the fact that there exist CT protocols with boundectol, wherein an honest Alice must prove her commitment to
biases for both parties is still potentially very useful. ForBob by providing him with a purification of the state she
instance, these can provide protocols for gamblfd@]  submitted to him during the commitment phase.

IX. CONCLUSION

wherein both partiesthe casino and the gamblecan be We have also considered the trade-off between conceal-
assured that their probability of winning is greater than somenent and bindingness for Alice-supplied BC protocols given
bound, regardless of the actions of the other party. different constraints op, andp, (these are the states of the

systems in Bob’s possession during the holding phase given
commitments of 0 and 1 respectivelySuch constraints
might arise from practical restrictions on the physical imple-
The central result of this paper has beenrieximization ~mentation of a BC protocol. We have shown that for BC
of Alice’s control for certain BC protocols. However, Alice protocols wherepg and p; have supports in a single two-
may wish to sacrifice some control in order to reduce hedimensional Hilbert space, or whergig andp, are not both
probability of being caught cheating. Specifically, if Alice mixed, one cannot achieve the optimal trade-off relattbat
assigns costs to the various outcomes of a BC protocol, theis, the optimal degree of bindingness for every degree of
in order to optimize her costs she must know thimimum  concealment Using protocols whereip, and p; are both
probability of being caught cheating for every possible de{ure, one does even worse. The optimal trade-off for Alice-
gree of control. Since this probability quantifies the degree tsupplied BC protocols isC™+G"*=1/2 and can be
which she has “disturbed” the outcome of the protocol from achieved using a purification BC protocol wherggandp,
what it would have been had she been honest, we may cadlre mixed but commuting states of a three-dimensional Hil-
the result of this optimization problem theontrol versus bert space.
disturbancerelation. The following question concerning the degrees of con-
It is also interesting to consider a simple generalization otealment and bindingness in BC protocols remains unan-
BC (which one might call “integer commitmen}; wherein  swered: do there exist any BC protocols with a trade-off
Alice seeks to unveil one of a set of more than two integerselation that is better than the linear trade-off relat@f®
(rather than just “0” or “1"), and to consider the generali- +G"®=1/2? In order to settle this question, the scope of our
zation of the optimization problems mentioned above,analysis must be extended beyond Alice-supplied protocols.
namely, the problems of determining the maximum probabil\We conjecture that the linear trade off is in fact the optimal
ity that Alice can successfully unveil the integer of hertrade-off from amongll BC protocols.
choosing. and the minimal probability of being caught cheat- We end with some comments on the broader significance
ing for every possible probability of success. of the results of this paper. Alice’s cheating strategy in a BC
These optimization problems have obvious analogies irprotocol is an example of a task that can be described as the
the context of quantum state estimation. When discriminatpreparation of quantum states at a remote location. There are
ing a set of states, one often seeks to determine both thmany tasks of this sort, which differ in the constraints im-
maximum probability of correctly estimating the stdtee  posed upon the “preparer.” These constraints may specify
maximum information gain as well as the minimum distur- what is known about the state to be prepared, whether the
bance upon the system that is incurred for every possiblparties involved in its implementation are cooperative or ad-
degree of information gaithe information gain vs distur- versarial, and how much resource material is available, such

VIIl. RELATED OPTIMIZATION PROBLEMS
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as the number of classical or quantum bits that can be eX-uchs that the task of state estimation is such a primitive
changed, and the amount of prior entanglement the partig20]. We add to this our own speculation, namely, that the
share. For instance, in purification BC protocols, Alice seekdask of preparing quantum states at a remote location is such
to maximize her probability of remotely preparing one of a primitive as well.
two states of a bipartite systefwhich may be entangled Note addedRecently, the authors were informg2fl] of
given that Bob is adversarial and given that she only learnselated results obtained by Ambainis on fair coin tossing pro-
which state she wishes to prepare after she has already suiocols with bounded biasg¢&2].
mitted half of the systemEquivalently, one may say that the
states which Alice must remotely prepare are improper ACKNOWLEDGMENTS
mixed states, and that she proves that she has done so by
providing purifications of these statedhere has also been ~ This work was supported by the Natural Science and En-
interest recently in a different sort of task involving the gineering Research Council of Canada, the Austrian Science
preparation of quantum states at a remote locaftk®j. In  Foundation FWF, and the TMR programs of the European
this task, the parties are cooperative and the optimizatio®/nion Project No. ERBFMRXCT960087.
problem to be solved is the minimization of the number of
classical bits of communication asymptotically required to APPENDIX
remotely prepare a state for a given amount of prior en- ) _
tanglement. Although this task has been called “remote state Pr00f of Lemma IThe density operators for qubits can be
preparation,” this term may be better suited as a label for alfePresented by vectors on the Bloch spherg #nd o are
tasks involving the preparation of quantum states at a remof€Presented by vectorsands, then in terms of these, the
location, just as the term “state estimation” refers to manytrace distance and fidelity squared can be writtefilas13
tasks differing in the constraints imposed on the “estimator.” 1

We feel that the general problem of remote state prepara- D(p,0)==|F—§,
tion may be, in some sense, as fundamental in quantum me- 2
chanics as the general problem of state estimation. In particu-
lar, a greater understanding of remote state preparation may
have significance for foundational research. It has been pro-
posed 20] that the structure of quantum mechanics might be
deduced from some simple information-theoretic principlesDefiningr=|r|,s=|§|, and cosp=r-grs, we have
for instance, assumptions about how well information can be
gathered, manipulated, and stored in our universe. Critical to
the program is determining the extent to which various in-
formation processing tasks can be successfully implemented
using quantum resources. The implications of our results for +V(1-r%)(1-59)].
various cryptographic tasks constitute a contribution to this
endeavour. Ultimately, however, the program requires underThis is minimized for $=0. Moreover, assumingdarbi-
standing the success of all achievable tasks in terms of a fewarily) that r=s, we have \r?+s?—2rs=r—s and
simple facts about information processing, for instance, facts/(1—r?)(1—s?)=(1-r)(1+s). Together, these facts im-

1
F(p,0)2=§(1+ F-S+ (1= [r*)(1-]8]%).

1 1
D+F2=§\/r2+sz—2rs cos¢+ 5[1+rs cos¢

about a few “primitive” tasks. It has been speculated byply D(p,0)+F(p,0)?=1. [ |
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