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Degrees of concealment and bindingness in quantum bit commitment protocols
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Although it is impossible for a bit commitment protocol to be both arbitrarily concealing and arbitrarily
binding, it is possible for it to be bothpartially concealing andpartially binding. This means that Bob cannot,
prior to the beginning of the unveiling phase, find out everything about the bit committed, and Alice cannot,
through actions taken after the end of the commitment phase, unveil whatever bit she desires. We determine
upper bounds on the degrees of concealment and bindingness that can be achieved simultaneously inany bit
commitment protocol, although it is unknown whether these can be saturated. Wedo, however, determine the
maxima of these quantities in a restricted class of bit commitment protocols, namely, those wherein all the
systems that play a role in the commitment phase are supplied by Alice. We show that these maxima can be
achieved using a protocol that requires Alice to prepare a pair of systems in an entangled state, submit one of
the pair to Bob at the commitment phase, and the other at the unveiling phase. Finally, we determine the form
of the trade off that exists between the degree of concealment and the degree of bindingness given various
assumptions about the purity and dimensionality of the states used in the protocol.
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I. INTRODUCTION

Bit commitment~BC! is a cryptographic task involving
two mistrustful parties, Alice and Bob, wherein one seeks
have Alice submit an encoded bit of information to Bob
such a way that Bob cannot reliably identify the bit befo
Alice decodes it for him, and Alice cannot reliably chan
the bit after she has submitted it. In other words, Bob
interested in binding Alice to some commitment, and Alice
interested in concealing this commitment from Bob. It
well known @1,2# that a BC protocol that is both concealin
and binding is impossible@3#. Nonetheless, itis possible to
devise a BC protocol that is bothpartially concealing and
partially binding, that is, one wherein if Alice is honest the
the probability that Bob can estimate her commitment c
rectly is strictly less than 1, and if Bob is honest then t
probability that Alice can unveil whatever bit she desires
strictly less than 1. This paper addresses the problem of
termining theoptimal degrees of concealment and bindin
ness that can be achieved simultaneously in quantum
commitment protocols@4,5#.

We establish an upper bound on the degrees of conc
ment and bindingness for all BC protocols. It is unclear
this time whether or not this upper bound can be satura
Nonetheless, weare able to provide a saturable upper bou
for a more restricted class of BC protocols, namely, protoc
wherein Alice initially holds all of the systems that play
role in the commitment phase of the protocol. We also int
duce a kind of BC protocol that achieves this maximum. T
protocol essentially consists of Alice preparing two syste
in an entangled state, submitting one system to Bob at
commitment phase, and submitting the other system at
unveiling phase. We show that in such protocols the ma
mum achievable degree of bindingness is related in a sim
way to the fidelity between the reduced density operators
the systems held by Bob at the end of the commitment ph

BC appears as a primitive in the protocols of many d
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ferent cryptographic tasks between mistrustful parties.
such, the kinds of security that can be achieved in BC
implications for the kinds of security that can be achieved
these other tasks. In this paper we consider only the im
cations of our results to the task of coin tossing@6,7#.

II. DEGREES OF CONCEALMENT AND BINDINGNESS

A bit commitment protocol involves three phases, whi
are called the commitment phase, the holding phase, and
unveiling phase. During the commitment phase, Alice a
Bob engage in some number of rounds of communicati
with at least one communication from Alice to Bob. Th
period after the end of the commitment phase and prior to
beginning of the unveiling phase is called the holding pha
and may be of arbitrary duration. During the unveiling pha
there is again some number of rounds of communicati
with at least one communication from Alice to Bob. At th
end of the unveiling phase, an honest Bob performs a m
surement that has three outcomes, labeled ‘‘0,’’ ‘‘1,’’ an
‘‘fail,’’ corresponding, respectively, to Alice unveiling a bit 0
Alice unveiling a bit 1, and Alice being caught cheating. T
protocol specifies the sequence of actions an honest A
performs in order to commit to a bitb, and guarantees that i
she follows the actions for committing a bitb then an honest
Bob’s measurement at the end of the unveiling phase yie
the outcomeb with certainty.

To discuss the security of BC protocols, it is useful
introduce two quantities which we shall call Alice’scontrol
and Bob’sinformation gain. These quantities are defined u
der the assumption that the other party is honest, and dep
on the sequence of actions performed by the party in qu
tion. Alice’s control is meant to quantify the extent to whic
she can influence~after the commitment phase! the outcome
of Bob’s measurement beyond what she could accomplish
following the honest strategy. Bob’s information gain
©2001 The American Physical Society10-1
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R. W. SPEKKENS AND T. RUDOLPH PHYSICAL REVIEW A65 012310
meant to quantify his ability to estimate Alice’s commitme
~prior to the unveiling phase! beyond what he could accom
plish by following the honest strategy.

We now present the specific measures of control and
formation gain which we make use of in this paper. We
sume for simplicity that Bob has no prior information o
which bit Alice has committed, and that Alice is as likely
wish to unveil a bit 0 as she is to wish to unveil a bit 1. W
take our measure of Bob’s information gain for the strate
SB, which we denote byG(SB), to be the difference betwee
his probability of estimating Alice’s commitment correct
when he implementsSB and when he is honest,

G~SB!5PE~SB!21/2.

We take our measure of Alice’s control for the strategySA,
which we denote byC(SA), to be the difference between he
probability of unveiling whatever bit she desires when s
implementsSA and when she is honest,

C~SA!5PU~SA!21/2.

It follows that G(SB) andC(SA) vary between 0 and 1/2.
We quantify the degrees of concealment and bindingn

in a BC protocol by Bob’s maximum information gain an
Alice’s maximum control, defined, respectively, by

Gmax[max
SB

G~SB!,

Cmax[max
SA

C~SA!.

A protocol is said to bepartially concealingif Bob’s maxi-
mum information gain is strictly less than complete inform
tion gain,Gmax,1/2; it is said to beperfectly concealingif
his information gain is zero,Gmax50; finally, it is said to be
arbitrarily concealingor simply concealingif his informa-
tion gain can be made arbitrarily small by increasing
value of a security parameterN, that is,Gmax<«, where«
→0 asN→` @8#. Similar definitions hold for the degrees o
security against Alice. A protocol is said to bepartially bind-
ing if Alice’s maximal control is strictly less than complet
control, Cmax,1/2; it is said to beperfectly bindingif her
control is zero,Cmax50; finally, it is said to bearbitrarily
binding or simply binding if her control can be made arb
trarily small by increasing the value of a security parame
N, that is,Cmax<d, whered→0 asN→`.

If a degree of security~such as concealment or binding
ness! can be guaranteed by assuming only the laws of ph
ics ~and the integrity of a party’s laboratory!, then it is said to
hold unconditionally. In this paper, we shall only be con
cerned with unconditional security. Thus, every time we
sign some degree of security~such as concealment or bind
ingness! to a protocol, it is implied that the protocol has th
feature unconditionally.

To understand the degree to which a protocol can be m
concealing or binding we must answer the following qu
tions:
01231
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~i! What is Bob’s maximal information gain, and wha
strategy achieves this maximum? That is, findGmax, and find
SB

max such thatG(SB
max)5Gmax.

~ii ! What is Alice’s maximal control, and what strateg
achieves this maximum? That is, findCmax, and findSA

max

such thatC(SA
max)5Cmax.

In another paper@9#, we provide answers to these que
tions for BC protocols that are generalizations of the 19
Bennett-Brassard~BB84! BC protocol@10#. In this paper, we
provide the complete solution for a different type of BC pr
tocol, which we call apurification BC protocol.

The above questions involve an optimization over stra
gies. We will also be interested in optimizing over protoco
Specifically, we wish to answer the following question.

For a given class of protocols, what is theminimumAl-
ice’s maximum control can be made for a given value
Bob’s maximum information gain, and which protocol in th
class achieves this minimum? In other words, denoting p
tocols byP, the given class of protocols byK, and the subse
of this class associated withGmax by K(Gmax), find
minPPK(Gmax)C

max(P) and find P opt such thatCmax(P opt)
5minPPK(Gmax)C

max(P).
If this question can be answered for every value ofGmax,

then one obtains a curve in theGmax-Cmax plane. Moreover,
if this curve is monotonically decreasing then it is identic
to what would have been obtained by minimizing Bob
maximum information gain for a given value of Alice’
maximum control. In this case, we call the curve theoptimal
trade-off relationbetweenCmax and Gmax. Specifying this
relation for a given class of protocols is a convenient way
expressing the maximum degrees of concealment and b
ingness that can be achieved with such protocols.

In this paper, we determine a lower bound on the optim
trade-off relation betweenCmax and Gmax for all BC proto-
cols. Unfortunately, we have not determined whether t
lower bound is saturable or not. However, we do find t
optimal trade-off relation for a restricted class of BC prot
cols, which we callAlice-suppliedBC protocols. The gener
alized BB84 BC protocols and the purification BC protoco
mentioned above both fall into this class. In fact, we sh
that the purification BC protocols are optimal within th
class. These protocols will be defined precisely in the n
section.

III. BC PROTOCOLS

In order to perform optimizations over all quantum B
protocols, it is necessary to have a completely general mo
of such protocols. We make use of the following model f
cryptographic protocols implemented between two mistru
ful parties @1#. The Hilbert space required to describe t
protocol is the tensor product of the Hilbert spaces for all
systems that play a role in the protocol. Every action tak
by a party in their laboratory corresponds to that party p
forming a unitary operation on the systems in their poss
sion. Every communication corresponds to a party send
some subset of the systems in their possession to the o
party ~it follows that the mere transmission of informatio
0-2
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DEGREES OF CONCEALMENT AND BINDINGNESS IN . . . PHYSICAL REVIEW A65 012310
from one party to the other does not change the quan
state of the total system, but does change the Hilbert sp
upon which the parties can implement their unitary ope
tions!. It is assumed that the total system is initially in a pu
state.

It has been previously argued@1# that this model is com-
pletely general. It incorporates the possibility of rando
choices and measurements during the protocol, since t
can always be kept at the quantum level until the end with
any loss of generality. A random choice is performed at
quantum level by implementing a unitary transformation t
is conditioned upon the state of an ancilla prepared initia
in a superposition of states. Measurements are performe
the quantum level by unitarily coupling the system to
measured to an ancilla that is prepared in some fixed in
pure state.

In the case of BC, the most general protocol may invo
many rounds of communication during the commitme
phase. Denoting the number of rounds byn, denoting Alice’s
honest sequence of operations for committing a bitb by
$Wb,1 , . . . ,Wb,n%, and denoting Bob’s honest sequence
operations by$W18 , . . . ,Wn8%, the total unitary operation the
jointly implement is

Wb[Wn8Wb,n•••W28Wb,2W18Wb,1 .

The transmissions that occur in each round will determ
the Hilbert space over whichWb,i and Wi8 act nontrivially.
Thus, despite the fact that we have assumed that Alice im
ments the first unitary operation, this operation could
trivial and it remains arbitrary which party is first to submit
sytem to the other party. If the initial state of all systems
denoted byuc init&, then the state at the holding phase, if bo
parties are honest, is

ucb&[Wbuc init&.

It follows that the reduced density operator for Bob’s syst
at the holding phase, assuming both parties are honest,

rb5Tr~ ucb&^cbu!,

where the trace is over all the systems that end up in Alic
possession at the holding phase.

During the unveiling phase, a similar process occurs.
noting the number of rounds bym, denoting Alice’s honest
sequence of operations given that she committed to bitb by
$Vb,1 , . . . ,Vb,m%, and denoting Bob’s honest sequence
operations by$V18 , . . . ,Vm8 %, the total unitary operation the
jointly implement is

Vb[Vm8 Vb,m•••V28Vb,2V18Vb,1 .

Thus, if both parties are honest, the state of the total sys
at the end of the unveiling phase is

ucb
unv&[Vbucb&. ~1!

The protocol ends with Bob performing a three-outcome p
jective measurement$P0 ,P1 ,P fail% on the systems in his
possession. If both parties are honest, then whenever A
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commits to a bitb, the measurement must have outcomeb
with probability 1. This implies thatuc0

unv& and uc1
unv& must

be orthogonal,

^c0
unvuc1

unv&50,

and thatucb
unv& must be an eigenstate ofPb with eigenvalue

1,

Pbucb
unv&5ucb

unv&. ~2!

As mentioned earlier, we will be interested in a restrict
class of BC protocols, which we callAlice-suppliedBC pro-
tocols. These protocols impose no restrictions on the de
of the unveiling phase and may involve an arbitrary num
of rounds of communication between Alice and Bob duri
the commitment phase. However, it is required thatall of the
systems that Bob makes use of during the commitment ph
are supplied by Alice. The class of Alice-supplied BC prot
cols includes the generalized BB84 BC protocols, defined
Ref. @9#, as well as the purification BC protocols define
below. An example of a protocol that fallsoutsidethis class
is one wherein, at the beginning of the commitment pha
Bob submits to Alice a system that is entangled with one
keeps in his possession, and Alice encodes her commitm
in the unitary transformation she performs upon this syst
before resubmitting it to Bob. Another example of such
protocol is one wherein, during the commitment phase, B
uses ancillas that Alice did not supply in order to make
random choice or perform a measurement.

We now provide a precise definition of a purification B
protocol.

A purification BC protocol.Such a protocol makes use o
just two systems, which we shall call the token system a
the proof system~since one is the token of Alice’s commit
ment and the other is the proof of her commitment!. These
are associated with Hilbert spacesHp andHt . A purification
BC protocol also specifies two orthogonal statesux0& and
ux1& defined onHp^ Ht . The honest actions are as follow

~1! At the commitment phase, Alice prepares the two s
tems in the stateuxb& in order to commit to bitb, and sends
the token system to Bob.

~2! At the unveiling phase, Alice sends the proof syste
to Bob, and Bob performs a measurement of the projec
valued measure$P0 ,P1 ,P fail%, wherePb5uxb&^xbu.

So we see there is only a single communication fro
Alice to Bob during both the commitment and the unveilin
phases. In the notation of the general model presented ab
Wb transforms uc init& to ucb&5uxb&, and Vb5I so that
ucb

unv&5ucb&5uxb&.
We call this a purification BC protocol, since at the u

veiling phase an honest Alice is required to provide Bob w
a purification of the state that he received from her during
commitment phase.

IV. MEASURES OF DISTINGUISHABILITY FOR DENSITY
OPERATORS

Two measures of the distinguishability of density ope
tors will be important in the present work: the trace distan
0-3
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R. W. SPEKKENS AND T. RUDOLPH PHYSICAL REVIEW A65 012310
and the fidelity, defined, respectively, by@11#

D~r,s!5
1

2
Trur2su

and

F~r,s!5TruArAsu,

whereuAu5AA†A.
We will find the following relations between these tw

measures to be very useful. For any two density operat
the fidelity and the trace distance satisfy@12#

12F~r,s!<D~r,s! ~3!

and

D~r,s!<A12F~r,s!2. ~4!

The second inequality is saturated for any pair of pure sta
that is,

D~ uc&,ux&)5A12F~ uc&,ux&)2, ~5!

for all uc& and ux&. A stronger lower bound for the trac
distance betweenr ands exists if one of the density opera
tors is pure. Specifically,

12F~r,uc&)2<D~r,uc&). ~6!

This stronger lower bound also applies to the mixed state
qubits. More precisely, we have the following result.

Lemma 1.For pairs of density operatorsr, s whose sup-
ports lie in a single two-dimensional Hilbert space,

12F~r,s!2<D~r,s!.

The proof of this is presented in the Appendix. All of th
above inequalities can be saturated. Explicit examples
be presented in Sec. VI.

Finally, we present some properties of the fidelity that w
be useful for the present investigation. Uhlmann’s theor
@13# states that the fidelity between two density operator
equal to the overlap of two maximally parallel purificatio
of these density operators. Thus, ifr ands are density op-
erators on a Hilbert spaceH, uc& and ux& are arbitrary puri-
fications ofr ands on H 8^ H, andU is a unitary transfor-
mation onH 8, then

F~r,s!5max
U

u^cuU ^ I ux&u. ~7!

Another critical property is given by the following
lemma.

Lemma 2.The fidelity satisfies

max
r

@F~r,s!21F~r,v!2#511F~s,v!.

The proof of this can be found in the derivation of E
~11! from Eq. ~9! in Sec. VI and by making use of Uhl
mann’s theorem.
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V. OPTIMIZING OVER ALL BC PROTOCOLS

In this section, we demonstrate an upper bound on
simultaneous degrees of concealment and bindingn
~hence alower bound onGmax andCmax) for any BC proto-
col. It should be noted that the main ideas that go into
proof of this result are present in the work of Mayers@1# and
Lo and Chau@6#.

Theorem 1.In any BC protocol,

~ i! Gmax>
1

2
D~r0 ,r1!,

~ ii ! Cmax>
1

2
F~r0 ,r1!2.

Proof. We begin by proving~i!. To analyze security
against Bob, we assume that Alice is honest. Suppose
Bob uses a strategy wherein he acts honestly throughou
commitment phase. In this case, the state of the total sys
at the end of this phase will beuc0& or uc1&, depending on
Alice’s commitment. The reduced density operators
Bob’s system will ber0 or r1. Now suppose that during th
holding phase Bob does the measurement which optim
discriminates betweenr0 andr1. It is a well-known result of
state estimation theory@14,15# that his information gain in
this case will be

G5
1

2
D~r0 ,r1!.

Bob’s maximum information gain may be greater than t
value, since it may be beneficial for him to also cheat dur
the commitment phase~for instance, if the reduced densit
operators on Bob’s systems are more easily discriminate
some point during the commitment phase than they are a
holding phase!. Bob’s maximum information gain canno
however, be less than this bound. This establishes~i!.

We now prove~ii !. To analyze security against Alice, w
can assume that Bob is honest. Suppose that Alice use
following strategy. During the commitment phase, she f
lows the honest protocol for committing a bit 0, so that t
total system is in the stateuc0& at the holding phase. There
after, if Alice wishes to unveil a bit 0, she acts honestly f
the rest of the protocol, while if she wishes to unveil a bit
she applies a unitary transformationUmax to the systems in
her possession just prior to the unveiling phase, and ther
ter acts honestly.Umax is chosen such that

^c1uUmax
^ I uc0&5max

U
^c1uU ^ I uc0&. ~8!

The probability that Alice succeeds at unveiling a bit 0 wh
she attempts to do so is unity,PU051, since she has simply
followed the honest protocol for committing a 0. The pro
ability that Alice succeeds at unveiling a bit 1 when s
attempts to do so is

PU15Tr@P1V1~Umax
^ I !uc0&^c0u~Umax†

^ I !V1
†#.
0-4
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DEGREES OF CONCEALMENT AND BINDINGNESS IN . . . PHYSICAL REVIEW A65 012310
Now since the stateuc1
unv&5V1uc1& is an eigenstate ofP1

with eigenvalue 1@see Eq.~2!#, one can write

P15uc1
unv&^c1

unvu1G1 ,

for some non-negative operatorG1, orthogonal to
uc1

unv&^c1
unvu. It follows that

PU1>u^c1
unvuV1~Umax

^ I !uc0&u25u^c1uUmax
^ I uc0&u2.

Since we are assuming that Alice is equally likely to wish
unveil a 0 as a 1, her probability of unveiling the bit of h
choosing satisfies

PU5
1

2
PU01

1

2
PU1>

1

2
1

1

2
u^c1uUmax

^ I uc0&u2.

Recalling the definition ofUmax @Eq. ~8!#, and making use of
Uhlmann’s theorem@Eq. ~7!#, we conclude that Alice’s con
trol for this particular strategy satisfies

C>
1

2
F~r0 ,r1!2.

Alice’s maximum control may be greater than this boun
since she may be able to cheat during the commitment
unveiling phases as well, but it cannot be less. This es
lishes~ii !. j

It is common in quantum information theory to questi
the degree to which the sharing of prior entanglement
hances one’s ability to perform information processing tas
With this in mind it is perhaps interesting to note that t
proof of Theorem 1 makes no restriction onuc init&. Thus
Theorem 1 applies even if Alice and Bob share entang
states that they both trust prior to the initialization of the B
protocol.

Corollary 1. In any BC protocol, the optimal trade-o
betweenGmax andCmax is a curve satisfying

2Gmax1A2Cmax>1.

~the lower bound corresponds to curve I in Fig. 1!.
Proof. This follows from Theorem 1 and Eq.~3!. j
It is well-known @1,2# that it is impossible to have a BC

protocol that is both arbitrarily concealing and arbitrar
binding, that is, one for whichGmax<« andCmax<d for ar-
bitrarily small « andd. This clearly follows from Corollary
1. However, Corollary 1 saysmorethan this, since it also set
a lower bound on the extent to which any BC protocol can
partially concealing and partially binding. Thus, in additio
to being able to rule out the possibility of a BC protocol wi
Gmax and Cmax arbitrarily close to the origin in Fig. 1, on
can rule out the possibility of a BC protocol anywhere bel
curve I of Fig. 1. The best one can hope for is a BC proto
with 2Gmax1A2Cmax51 ~curve I of Fig. 1!. In particular, the
best fair BC protocol one can hope for hasCmax5Gmax5(3
2A5)/4'0.19098~point A in Fig. 1!.

In this paper, we do not settle the question of whet
there exists a protocol for which Alice’s maximal control a
Bob’s maximal information gain achieve the lower bounds
01231
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Theorem 1 simultaneously. Such a protocol would have to
such that Bob could not get any more information by che
ing during the commitment phase than he can by chea
during the holding phase, and such that Alice could not
any more control by cheating during the commitment ph
or the unveiling phase than she can by cheating during
holding phase. It seems to us that such a protocol is unlik
to exist.

VI. OPTIMIZING OVER ALICE-SUPPLIED BC
PROTOCOLS

A. Optimal degrees of concealment and bindingness

The main results of this paper are
Theorem 2.In Alice-supplied BC protocols,

~ i! Gmax>
1

2
D~r0 ,r1!,

~ ii ! Cmax>
1

2
F~r0 ,r1!,

and
Theorem 3.Purification BC protocols saturate the boun

in Theorem 2.
Proof of Theorem 2.Inequality ~i! follows trivially from

Theorem 1, since ifGmax>1
2D(r0,r1) for all BC protocols

then clearlyGmax>1
2D(r0,r1) for any Alice-supplied BC pro-

tocol.
Inequality ~ii !, on the other hand, is stronger than The

rem 1. To prove it, we must consider Alice’s most gene
cheating strategy. Without loss of generality, we can assu
that she keeps all of her cheating actions at the quan
level. During the commitment phase, Alice can cheat

FIG. 1. Curve I is a lower bound for the trade-off relation b
tweenCmax andGmax for anyBC protocol. The other curves are th
optimal trade-off relations for Alice-supplied BC under differe
restrictions onr0 and r1: curve II no restrictions, curve III both
qubit states or not both mixed states, and curve IV both pure sta
A, B, C, and D correspond to the points along these curves wh
the protocol is fair, i.e.,Cmax5Gmax.
0-5
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R. W. SPEKKENS AND T. RUDOLPH PHYSICAL REVIEW A65 012310
implementing a sequence of unitary operatio

$W̃1 , . . . ,W̃n% different from the honest sequence. She c
cheat at the end of the holding phase by implementin
unitary transformationUb^ I that depends on the bitb she
would like to unveil. Finally, she can cheat during the u
veiling phase by implementing a sequence of unitary ope
tions $Ṽb,1 , . . . ,Ṽb,m% that depends on the bitb she would
like to unveil and that is different from the honest sequen
The maximum probability of Alice unveiling the bit of he
choosing is therefore, given by

PU
max5

1

2
max

$W̃1 , . . . ,W̃n%

(
bP$0,1%

max
$Ṽb,1 , . . . ,Ṽb,m%

max
Ub

Tr$PbṼb

3~Ub^ I !W̃uc init&^c inituW̃†~Ub
†

^ I !Ṽb
†%,

where

W̃[Wn8W̃n•••W28W̃2W18W̃1 , and

Ṽb[Vm8 Ṽb,m•••V28Ṽb,2V18Ṽb,1 .

W̃ andṼb are the total unitary operations that Alice and B
jointly implement given that Bob is honest and Alice chea

We begin by optimizing over Alice’s cheating strateg
during the commitment phase. It turns out that the assu
tion of an Alice-supplied protocol allows us to replace t
maximization over$W̃1 , . . . ,W̃n% by a maximization over
all unitary operations on the total system. This means
Alice has as much cheating power in an arbitrary Alic
supplied protocol as she does in a protocol where Bob d
not play any role in the commitment phase. The reaso
that Alice can bring about any unitary operationW by imple-
menting the sequence of operations

W̃15~Wn8•••W18!21W,

W̃i5I for iÞ1.

This result only applies for Alice-supplied BC protocol
since Alice must initially have access to all the systems t
will appear in the commitment phase in order to implem
W̃1. We can conclude that

PU
max5

1

2
max

W
(

bP$0,1%
max

$Ṽb,1 , . . . ,Ṽb,m%

max
Ub

Tr@PbṼb

3~Ub^ I !Wuc init&^c initu3W†~Ub
†

^ I !Ṽb
†#.

We now consider the unveiling measurement. Equat
~2! implies that the honest state at the end of the unvei
phase,ucb

unv&, must be an eigenstate ofPb . Thus,

Pb5ucb
unv&^cb

unvu1Gb ,

for some non-negative operatorGb . It follows that
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PU
max>

1

2
max

W
(

bP$0,1%
max

$Ṽb,1 , . . . ,Ṽb,m%

max
Ub

u^cb
unvuṼb

3~Ub^ I !Wuc init&u2.

Clearly the maximum over$Ṽb,1 , . . . ,Ṽb,m% must be
greater than or equal to the value for$Vb,1 , . . . ,Vb,m%, the
honest sequence of operations for unveiling bitb. Thus,

PU
max>

1

2
max

W
(

bP$0,1%
max

Ub

u^cb
unvuVb~Ub^ I !Wuc init&u2.

SinceW varies over all unitary operators, we can writeuc&
5Wuc init& and vary over alluc&. Making use of the fact tha
ucb

unv&5Vbucb& @Eq. ~1!#, we have

PU
max>

1

2
max
uc&

(
bP$0,1%

max
Ub

u^cbu~Ub^ I !uc&u2. ~9!

We perform the maximization overuc& for a givenU0 and
U1. By a variational approach, it is easy to show that t
optimal uc& has the form~up to an arbitrary overall phase!

ucmax&5
uc̃0&1exp@2 i arg~^c̃0uc̃1&!#uc̃1&

A2A11u^c̃0uc̃1&u
, ~10!

where

uc̃0&5~U0^ I !uc0&,

uc̃1&5~U1^ I !uc1&.

It follows that

PU
max>

1

2
~11 max

U0 ,U1

u^c0uU0U1^ I uc1&u!. ~11!

Inequality~ii ! now follows trivially from Uhlmann’s theorem
and the definition of Alice’s control. j

Proof of Theorem 3.Recall the definition of a purification
BC protocol, provided in Sec. III. If Alice is honest she pr
pares the proof-token composite in eitherux0& or ux1& and
submits the token system to Bob. In this case, the redu
density operatorsr0 and r1 that describe the token syste
are simply the trace over the proof system ofux0& and ux1&,
that is,

rb5Trp~ uxb&^xbu!.

The only cheating strategy available to Bob is to try to es
mate the state of the token system, that is, to discrimin
betweenr0 and r1. It follows from state estimation theory
that his maximum information gain isGmax51

2D(r0,r1) and
is achieved by performing a Helstrom measurement@14,15#.

Alice can cheat intwo ways in a purification BC protocol
She can cheat during the commitment phase by preparing
total system in a stateuc& that is different fromux0& or ux1&,
and she can cheat just prior to the unveiling phase by im
0-6
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menting a unitary operationUb on the proof system. The
identity of Ub can of course depend on which bitb she
wishes to unveil.

Recalling thatPb5uxb&^xbu, Alice’s maximum probabil-
ity of unveiling whatever bit she desires is

PU
max5max

uc&
(

bP$0,1%

1

2
max
Ub

u^xbuUb^ I uc&u2.

Defining r[Trp(uc&^cu) and making use of Uhlmann’
theorem, we obtain

PU
max5

1

2
max

r
@F~r,r0!21F~r,r1!2#.

It now follows trivially from lemma 2 and the definition o
the control thatCmax51

2F(r0,r1). Alice achieves this contro
by implementing any unitary operationsU0 andU1 that sat-
isfy U0U15Umax, whereUmax is defined in Eq.~8!, and by
initially preparing the stateucmax& of Eq. ~10! with ucb&
5uxb&. j

B. Optimal trade-off relations

Given Theorem 3, it is straightforward to determine t
optimal trade-off relations betweenGmax andCmax for vari-
ous restrictions on the states of Bob’s system at the hold
phase.

Corollary 2. In Alice-supplied BC protocols, wherer0
andr1 are arbitrary, the optimal trade-off is

Gmax1Cmax5
1

2
.

~This corresponds to curve II in Fig. 1.!
Proof. This follows from Theorem 3 and Eq.~3!. j

Corollary 3. In Alice-supplied BC protocols, wherer0
and r1 either ~1! have supports that lie in a single two
dimensional Hilbert space, or~2! are not both mixed, the
optimal trade-off is

Gmax12~Cmax!25
1

2
.

~This corresponds to curve III in Fig. 1.!
Proof. This follows from Theorem 3, Eq.~6!, and

Lemma 1. j

Corollary 4. In Alice-supplied BC protocols, wherer0
andr1 are both pure states, the optimal trade-off is

~Gmax!21~Cmax!25
1

4
.

~This corresponds to curve IV in Fig. 1.!
Proof. This follows from Theorem 3 and Eq.~5!. j
We now provide simple examples of protocols th

achieve the optimal trade-offs of Corollaries 2–4.
To achieve the optimal trade off of Corollary 2, it suffice

to consider a purification BC protocol, wherer0 andr1 satu-
01231
g

t

rate the inequality of Eq.~3!. The simplest example make
use of commuting density operators in a three-dimensio
Hilbert space. Specifically,

r05S l 0 0

0 12l 0

0 0 0
D and r15S 0 0 0

0 12l 0

0 0 l
D .

It is straightforward to show thatD(r0 ,r1)5l and
F(r0 ,r1)512l, which implies thatD(r0 ,r1)1F(r0 ,r1)
51. It is worth emphasizing that a three-dimensional Hilb
space is the smallest space in which this bound can be s
rated, since states in a two-dimensional Hilbert space m
satisfy Lemma 1.

We now provide a specific example of a family of prot
cols that achieve the optimal trade-off of Corollary 3. W
consider purification BC protocols wherein

r05S 1 0

0 0D and r15S l 0

0 12l
D .

Note that this example qualifies both as an example wherer0
and r1 have supports that lie in the same two-dimensio
Hilbert space, and as an example where one ofr0 andr1 is
pure. It is easy to see thatD(r0 ,r1)512l and F(r0 ,r1)
5Al. Thus, we have saturated the lower bounds in Eq.~6!
and lemma 1, and consequently, this family of protocols
optimal for the specified restrictions onr0 andr1.

It is trivial to find BC protocols that achieve the optim
trade-off of Corollary 4. Any purification BC protocol, wher
r0 andr1 are pure states, will do. Specifically, if

r05u0&^0u and r15uf&^fu,

whereuf&5cosfu0&1sinfu1&, then one achieves every poin
on the curve (Cmax)21(Gmax)251

4 by varying overf in the
range 0 top/2.

If we define a ‘‘fair’’ BC protocol to be one whereCmax

5Gmax, then by substituting this identity into the trade-o
relations presented above, we obtain the following resu
The best fair BC protocol from among the class of Alic
supplied BC protocols hasCmax5Gmax50.25 ~point B on
Fig. 1!. The best fair BC protocol from among the class
Alice-supplied BC protocols, wherer0 andr1 are both qubit
states or at least one ofr0 and r1 is pure, hasCmax5Gmax

5(A521)/4.0.30902~point C on Fig. 1!. Finally, the best
fair BC protocol, from among the class of Alice-supplied B
protocols wherer0 and r1 are both pure states, hasCmax

5Gmax51/2A2.0.35355~point D on Fig. 1!.

VII. SIGNIFICANCE FOR COIN TOSSING

We briefly discuss the relevance of these results to c
tossing@6,7,16#. Coin tossing~CT! is a cryptographic task
wherein at the end of the protocol both parties decide, ba
on the outcome of their measurements, whether they h
won, lost, or detected the other party cheating. If neith
party is caught cheating, then the protocol must be such
the two parties agree on who won the coin toss. We
0-7
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define a party’sbias in a CT protocol as the difference be
tween their probability of winning and 1/2. A CT protoco
with maximum biasa for Alice and maximum biasb for
Bob is one where if Bob is honest, the maximum Alice c
make her probability of winning is 1/21a, and if Alice is
honest, the maximum Bob can make his probability of w
ning is 1/21b. CT can be built upon BC as follows. Afte
the commitment phase, Bob sends Alice a bit which rep
sents his guess of her commitment. If his guess correspo
to the bit Alice unveils, he wins the coin toss; if not, Alic
wins. Our results show that it is possible to build a secure
protocol for any pair of biases satisfyinga1b>1/2, and that
this inequality can be saturated. In particular, a fair CT p
tocol with both biases equal to 0.25 can be built up in t
way.

Since CT is a weaker primitive than BC@16#, the impos-
sibility of a BC protocol that is arbitrarily concealing an
binding doesnot imply the impossibility of a CT protoco
with arbitrarily small biases for both parties@17#. Whether
such a protocol is possible remains an open question in q
tum cryptography.

It should be noted that even if such a CT protocol do
not exist, the fact that there exist CT protocols with bound
biases for both parties is still potentially very useful. F
instance, these can provide protocols for gambling@18#
wherein both parties~the casino and the gambler! can be
assured that their probability of winning is greater than so
bound, regardless of the actions of the other party.

VIII. RELATED OPTIMIZATION PROBLEMS

The central result of this paper has been themaximization
of Alice’s control for certain BC protocols. However, Alic
may wish to sacrifice some control in order to reduce
probability of being caught cheating. Specifically, if Alic
assigns costs to the various outcomes of a BC protocol,
in order to optimize her costs she must know theminimum
probability of being caught cheating for every possible d
gree of control. Since this probability quantifies the degree
which she has ‘‘disturbed’’ the outcome of the protocol fro
what it would have been had she been honest, we may
the result of this optimization problem thecontrol versus
disturbancerelation.

It is also interesting to consider a simple generalization
BC ~which one might call ‘‘integer commitment’’!, wherein
Alice seeks to unveil one of a set of more than two integ
~rather than just ‘‘0’’ or ‘‘1’’ !, and to consider the general
zation of the optimization problems mentioned abo
namely, the problems of determining the maximum proba
ity that Alice can successfully unveil the integer of h
choosing. and the minimal probability of being caught che
ing for every possible probability of success.

These optimization problems have obvious analogies
the context of quantum state estimation. When discrimin
ing a set of states, one often seeks to determine both
maximum probability of correctly estimating the state~the
maximum information gain!, as well as the minimum distur
bance upon the system that is incurred for every poss
degree of information gain~the information gain vs distur
01231
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bance relation!. This suggests that it may be fruitful to pu
sue the analogy between the notions of control and inform
tion gain in more detail. In future work we hope to consid
these optimization problems in the context of purification B
protocols.

IX. CONCLUSION

We have studied the extent to which BC protocols can
made simultaneously both partially concealing and partia
binding. The degrees of concealment and bindingness w
quantified by Bob’s maximum information gain about the
committed and Alice’s maximum control over the bit sh
unveils. A lower bound on Alice’s maximum control an
Bob’s maximum information gain forany BC protocol has
been derived, although it is not known whether or not t
bound can be saturated. A stronger lower bound was
tained for a restricted class of BC protocols, called ‘‘Alic
supplied’’ protocols, wherein Alice provides Bob with all o
the systems that he makes use of during the commitm
phase. Moreover, this lower bound has been shown to
saturated by what we have called a ‘‘purification’’ BC prot
col, wherein an honest Alice must prove her commitment
Bob by providing him with a purification of the state sh
submitted to him during the commitment phase.

We have also considered the trade-off between conc
ment and bindingness for Alice-supplied BC protocols giv
different constraints onr0 andr1 ~these are the states of th
systems in Bob’s possession during the holding phase g
commitments of 0 and 1 respectively!. Such constraints
might arise from practical restrictions on the physical imp
mentation of a BC protocol. We have shown that for B
protocols wherer0 and r1 have supports in a single two
dimensional Hilbert space, or whereinr0 andr1 are not both
mixed, one cannot achieve the optimal trade-off relation~that
is, the optimal degree of bindingness for every degree
concealment!. Using protocols whereinr0 and r1 are both
pure, one does even worse. The optimal trade-off for Ali
supplied BC protocols isCmax1Gmax51/2 and can be
achieved using a purification BC protocol whereinr0 andr1
are mixed but commuting states of a three-dimensional H
bert space.

The following question concerning the degrees of co
cealment and bindingness in BC protocols remains un
swered: do there exist any BC protocols with a trade-
relation that is better than the linear trade-off relationCmax

1Gmax51/2? In order to settle this question, the scope of o
analysis must be extended beyond Alice-supplied protoc
We conjecture that the linear trade off is in fact the optim
trade-off from amongall BC protocols.

We end with some comments on the broader significa
of the results of this paper. Alice’s cheating strategy in a B
protocol is an example of a task that can be described as
preparation of quantum states at a remote location. There
many tasks of this sort, which differ in the constraints im
posed upon the ‘‘preparer.’’ These constraints may spe
what is known about the state to be prepared, whether
parties involved in its implementation are cooperative or
versarial, and how much resource material is available, s
0-8
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as the number of classical or quantum bits that can be
changed, and the amount of prior entanglement the pa
share. For instance, in purification BC protocols, Alice se
to maximize her probability of remotely preparing one
two states of a bipartite system~which may be entangled!,
given that Bob is adversarial and given that she only lea
which state she wishes to prepare after she has already
mitted half of the system.~Equivalently, one may say that th
states which Alice must remotely prepare are impro
mixed states, and that she proves that she has done s
providing purifications of these states.! There has also bee
interest recently in a different sort of task involving th
preparation of quantum states at a remote location@19#. In
this task, the parties are cooperative and the optimiza
problem to be solved is the minimization of the number
classical bits of communication asymptotically required
remotely prepare a state for a given amount of prior
tanglement. Although this task has been called ‘‘remote s
preparation,’’ this term may be better suited as a label for
tasks involving the preparation of quantum states at a rem
location, just as the term ‘‘state estimation’’ refers to ma
tasks differing in the constraints imposed on the ‘‘estimato

We feel that the general problem of remote state prep
tion may be, in some sense, as fundamental in quantum
chanics as the general problem of state estimation. In par
lar, a greater understanding of remote state preparation
have significance for foundational research. It has been
posed@20# that the structure of quantum mechanics might
deduced from some simple information-theoretic principl
for instance, assumptions about how well information can
gathered, manipulated, and stored in our universe. Critica
the program is determining the extent to which various
formation processing tasks can be successfully impleme
using quantum resources. The implications of our results
various cryptographic tasks constitute a contribution to t
endeavour. Ultimately, however, the program requires un
standing the success of all achievable tasks in terms of a
simple facts about information processing, for instance, fa
about a few ‘‘primitive’’ tasks. It has been speculated
ity
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Fuchs that the task of state estimation is such a primi
@20#. We add to this our own speculation, namely, that t
task of preparing quantum states at a remote location is s
a primitive as well.

Note added. Recently, the authors were informed@21# of
related results obtained by Ambainis on fair coin tossing p
tocols with bounded biases@22#.
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APPENDIX

Proof of Lemma 1.The density operators for qubits can b
represented by vectors on the Bloch sphere. Ifr and s are
represented by vectorsrW and sW, then in terms of these, th
trace distance and fidelity squared can be written as@11,13#

D~r,s!5
1

2
urW2sWu,

F~r,s!25
1

2
~11rW•sW1A~12urWu2!~12usWu2!!.

Defining r 5urWu,s5usWu, and cosf5rW•sW/rs, we have

D1F25
1

2
Ar 21s222rs cosf1

1

2
@11rs cosf

1A~12r 2!~12s2!#.

This is minimized for f50. Moreover, assuming~arbi-
trarily! that r>s, we have Ar 21s222rs5r 2s and
A(12r 2)(12s2)>(12r )(11s). Together, these facts im
ply D(r,s)1F(r,s)2>1. j
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