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Quantum error-correcting codes associated with graphs
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We present a construction for quantum error correcting codes. The basic ingredients are a graph and a finite
Abelian group, from which the code can explicitly be obtained. We prove necessary and sufficient conditions
for the graph such that the resulting code corrects a certain number of errors. This allows a simple verification
of the one-error correcting property of codes of length 5 in any dimension. As examples, we construct a large
class of maximum distance separable codes, i.e. codes saturating the Singleton bound, as well as a code of
length 10 detecting three errors.
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I. INTRODUCTION As we are going to discuss in a following paper in more
detail, it turns out that the codes that can be achieved by our
From the beginning of quantum-information theory it was method arestabilizer codesThere are various efficient meth-

recognized that error-correcting codes play a crucial role. Omds for constructing stabilizer cod€3,4,12—16. However,
the one hand it was clear that without error correction, decowe think that, compared to previous stabilizer constructions,
herence effects could easily annihilate the gain in computin@ur technique has some interesting features.
time promised by the new fast quantum algorithms. On the (1) Often the condition for error correction can be proved
other hand, the no-cloning theordr| seemed to forbid at for many groups simultaneously, so that one getde fami-
least the most naive approach to classical error correction fgfes for systems of variable sizes.

noisy channels, e.g., sending each bit three times and taking (2) The geometric intuitions about graphs may become
a majority vote at the output of the channel. Clearly, thispe|pful for finding new constructions.

simple scheme reduces classical errors with small probability (3) Our codes have the property that in their natural basis

of ordere to order_sz. The cloning required for sending “the g matrix elements of the coding operator have the same
same bit” three times rules out direct quantum analogs of,,q1ys(Hadamard form This is helpful to the usual goal
this scheme. It was therefore an important step to reffike getting a compact expression for the code. Contrary to

: f
Eh{?‘t qua.ntu’r,n mechamcs had' other, more sublle, ways Oﬁmst of the existing examples, our codes have only nonvan-
distributing” quantum information over several channels to .

stabilize against errors. One problem with the known'shm.g matrix elements. Howevgr, by applying a discrete
schemes of quantum error correcti@ng.,[3,4]), however, is Fquner transform to an appropriate set of outputs, one ob-
that they tend to be subtle indeed, and the verification ofdins zero matrix elements for the resultlr@gquwalenl'
their error-correcting capabilities often requires a lengthyc0de: Moreover, the Hadamard form appears to be an inter-
computation. It is therefore desirable to find new, perhap§Sting normal form for the codes. _
simpler ways of constructing error-correcting codes, on (4) For some codes it is possible to exchange some input
which more direct intuitions might be built. vertices with some output vertices while retaining the error-
In this paper we propose a scheme for constructing quarporrection property. This kind of symmetry is much harder to
tum error-correcting codes, which has some of these advarsee in the usual stabilizer constructions, and may prove to be
tages. The ingredients of our construction are a graph and kelpful in coding problems with additional inputs and out-
finite Abelian group. The order of the group determines theputs, such as the internal state of the coding device in con-
type of systems for which errors are corrected so that, e.gyolutional codes.
the two-element group corresponds to the qubit dasen- The paper is organized as follows. We begin by describing
pare[5—8] for other constructions of nonbinary cofle€on-  the general construction of the coding operator in Sec. Il. In
cerning the graph, there are two different kinds of verticesSec. Ill we recapitulate the Knill-Laflamme condition for
The input vertices, labeling the logical systems that we wisterror correction and adapt it to our particular type of codes,
to encode, and the output vertices, labeling the physical sysesulting in a necessary and sufficient condition for a graph
tems in which the information, carried by the logical sys-to generate a quantum error-detecting code. The remaining
tems, is encoded. From the edges of the graph one can thepctions contain examples of codes constructed in this way.
read off an explicit expression for the code. However, notin Sec. IV we show that it becomes simple indeed to verify
every graph corresponds to a good code, and we will discugke fivefold quantum codes. In Sec. V we demonstrate that
the condition for the code to correct a certain number offor a given numbee of errors and numbek of inputs, there
errors. In the simplest case, the fivefold cd@-11] (for is a graph generating an infinite code family using+&k
qubits as well as higher-dimensional syst@ntscan be veri-  output systems, i.e., a family of codes saturating the single-
fied in a few lines that any two errors are detected. We alston bound. Finally, in Sec. VI we construct a code with one
give an example of a more complex tenfold code detectingnput and ten outputs, detecting three errors for arbitrary sys-
three errors. tem size.
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Il. BASIC CONSTRUCTION our construction is an explicit expression for this integral

Every code we construct is completely determined by thekgarnel: apart from an overall normalization factor, it wil!

follow ingredients. S|mply be a product of phases with each factor corresponding
(1) An undirected grapf’ with two kinds of vertices: We to a link of the graph,

distinguish the seX of input vertices and the s&tof output

vertices. The links of the graph are given by ttwncidence vr[gXUY]= |G|IX|/2 H X(gZ'gZ,)F(z,Z’), (5)

matrix of the graph, which we will denote by for short. Its {z,2'}

matrix elementI'(z,,z,) is 1 iff the vertices z;,z,

e (XUY) are linked, and 0 otherwise. More generally, we Where the product is taken all over two elementary subsets

allow weighted graphswhose incidence matrices have arbi- {z,2'}C(XUY). Allowing direct loops within the graph, i.e.,
trary integer entries, apart from the constraifitéz; ,z,) vertices connected with themselves, the incidence matrix

=I'(z,,z;) andI'(z,2)=0. =D+I"" can be split into a diagonal palt and a partl™”’
(2) A finite Abelian groupG with a nondegenerate sym- corresponding to a graph with no direct loops. However, the
metric bicharacter diagonal part can be eliminated by a local unitary transfor-

By definition, a bicharacter is a functiog:GXG—C mation to the code and we may assume without loss of gen-
such thaty(g+h,g9’)=x(9,9")x(h,g’) and a similar con- €rality that there are no direct loops within the graph. Fur-
dition holds for the second argument, which is also impliedthermore, the links between input vertices do not affect the
by the assumed symmety(g,g9’)=x(g’,g). We also as- error-correcting capabilities of the code. They can be elimi-

sume nondegeneracy in the sense that nated by a unitary transformation leaving the protected sub-
space invariant.
|G| for g’=0 Thus for an ordinary grapH™(z,z') =0,1], the right-hand

> x(9.9)=|G|8(g")= 0 for g'#0 (1) side of Eq.5) is the product of alk(g,,d,) for whichzand

9 ' z' are linked. The remarkable property of such codes is that
Note that since everge G has finite ordery(g,g’) is al- apart from the normalization factor the kernel is everywhere
ways a root of unity, angt(g9,9') = x(—g,g’). In particular, 02f modulus 1. 'WhﬁrG =th is cyclic andy is glve? by Eq.
a nondegenerate bicharactgrcorresponds to an isomor- (2), we can write the phase in a more compact form as
phism¢:G— G’ from G onto the grougs”" of characters of .
G, vyherex satisfiesx(g,g’)zqﬁ(g)(g’.). For G=.Zp,. the vr[gXUY]=|G|X’Zexp(lngUY-F-gXUY , (6)
cyclic group of ordemp, the standard bicharacter is given by p

217i where the centered dot denotes the product of integer-valued
X(g,h)=exp{Tgh), (2 matrices and vectors. Note that every term in the sum
g*VY.T"-g*YY occurs twice, which we compensated by a
where g,h are integers representing their class modplo factor 1/2.
Since every finite Abelian group is a direct product of cyclic  This completes the construction of the operatprfrom
groups, this also shows the existence of bicharacters for artyhe defining ingredients listed at the beginning of this sec-
such group. tion. Of course, in general, this will not be an error-
The input and output systems of the code are labeled by correcting code nor even an isometry. The conditions for this
andY. They are all of the same type, i.e., they are describeavill be studied in the following section.
by the same Hilbert spadé=L?(G). This is the space of all

functions ¢:G—C with scalar product (¢,y) Ill. THE CONDITION FOR ERROR CORRECTION
=|G| = 4¢(9) ¥(g). For compactness of notation we write o .
such normalized sums as integrals. Hence the scalar product A 9éneral characterization of quantum error-correcting

— . : . codes has first been worked out by Knill and Laflan{hé.
becomed dg ¢(g) #(g). The combined input system is thus : : . )
described in théx|-fold tensor produck ®*= L 2(GX). Vec- We briefly review here the main aspects and adapt the con

tors in thi ace are functions [of| ables. one variable dition in the particular case of codes constructed as in the
rs in this sp re functions G2} vari S, One varia previous section. In this theory a quantum code is an isom-
g, for everyze X. The entire collection of variables will be

denoted bya®. Th i de will b : ; etry v.:H— K from the “input Hilbert space”H to the “out-
enoted byg™. The error-correcting code will be an 1ISometry put Hilbert space’. Thus an input density operator is trans-

2/ X 2y formed by coding intovpv*, which is a density operator on
vriLA(GH)=LAGY, @ K. The output of the coding is then passed through a noisy
channel. The noise is described by a certain class of errors,
(vrzp)(gY):J dg*vr[g*V Y ]u(g%), (4)  which are represented by a linear subspaoé operators on
K. The channel is thus represented by a completely positive

wherev; under the integral denotes the integral kernel of thdinéar map of the form
operatorvy. This kernel depends on both input and output
variables, which are combined into a collection of variables *
y T(p)=2, FpF%, 7
0,, one for each vertexe XUY of the graph. The core of () % Pl a 0
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whereF , e £ and are chosen such that the output is always

normalized. The isometry is said to be an error-correcting

code for& if there is a completely positive “recovery opera-

tor” R such that
R(T(vpv*))=p 8

for all density operators oft{. By the theory of Knill and
Laflamme[17] this is equivalent to the factorization condi-
tion

(Vi1 ,FLF gvibo) = o(FLF g) (b1, 4), ©)

PHYSICAL REVIEWGS 012308
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FIG. 1. The left figure shows a graph for a code of length 5,
where the central vertex is the input vertex. The two figures on the
right side are the relevant two-error configurations.

For two subset&,L of XUY we denote b;l“f the group

where w(F* ,F,) is a factor independent of the arbitrary homomorphism fronG" to G* that can be derived from the

vectorsyq , ». As in much of the literature on codes we will

corresponding submatrix of the incidence mattixby the

consider here a specific type of errors, namely, errors hagdrescription
pening only on a small number of outputs of the code. Thus

the tensor product structurl ®Y=L2(GY) of the output
space becomes important. L&{(E) denote the set of all
operators onL?(G"), which arelocalized in ECY, i.e.,
which are the tensor product of an arbitrary operatottF
with the identity onH ®"'E. We say that a codeorrects e
errors, if F,,Fgin Eq.(9) may be chosen arbitrarily in the
linear span ofU g/ <.2A(E). Note that the operatorS,F 5
appearing in the scalar produ®) can then be localized on

FEgL:=[E (kg (14)

lelL

ke K

and the following condition is necessary and sufficient for
guantum error detection.

Theorem 1ll.1 Given a finite Abelian groupG and a
weighted grapH™ as in the basic construction. Then an error
configurationECY is detected by the quantum coug iff

arbitrary sets of 2 elements and any operator with such the system of equations
localization may be written as a linear combination of such

FiFz. Itis therefore convenient to introduce the following

terminology: we say that the codedetects the error con-
figuration ECY, if

(Vg1 ,FVihp) = o(F) (1, 4),

for all F eA(E). Then a code correceserrors, iff it detects
all error configuration€CY with |E|<2e.

We will now adapt these conditions to operateysof the
special form(3). Consider a fixed error configuratidhC Y
and letl=Y\E. Then if F is an operatof on H ®E with
integral kernelF[gE,h], the integral kernel of* Fv is

(10

viFulg*. )= | dg"ad ahuTo¥gF g

XF[gElhE]VF[hxlhElgl]' (11)

This must be a multiple of the identity for every choiceFof
Choosing, in particular, a rank-one operafor |g%)(hE| we
find that error detection for the configurati@is equivalent
to the property that the correlation function

W[F,E][QXUEahXUE]:f dg'vr[g*,g%,9'lvr[h*,hF,g']
(12
factorizes in the following manner:
wir gl g*VE W YE]=C(gF,hF)6(g"~h%), (13

wheres(g*) is defined to be 1 if,=0 for allx e X and zero
otherwise, andC(gF,hF) is a factor independent of the input
variablesg*,h*.

Iy ed*E=0 (15)
with 1 =Y\E implying that
d*=0 and I'td®=0. (16)

The proof of Theorem lIl.1 is given in the Appendix and
in view of this result we discuss some examples. Note that
the condition forvy being an isometry is equivalent to the
detection of zero errors, which can be seen from (&6) by
choosing for the error operatér=1. This means, expressed
in terms of the graph, thdtyd*=0 impliesd*=0.

IV. EXAMPLE: A CODE OF LENGTH 5

The first example of an optimal quantum error-correcting
code correctingall one-bit errors was the famous five-qubit
code by Ref[10]. The original code is not easy to verify, so
it is gratifying to see that our construction produces such a
code that can be verified in a few lines. Moreover, our con-
struction works simultaneously for all grou@sand is hence
not restricted to qubits. Codes of length 5 for higher-
dimensional systems have been constructed béfidre and
if we believe a recent result by Raifis8], the qubit code is
essentially unique anyway. Hence this section has a mainly
illustrative character.

Consider the graph in Fig. 1 where the central vertex “0”
is the input vertex and the remaining five are the output
vertices.

We will verify the condition of Theorem Ill in a particu-
larly strong form. Namely, we will show that, for every two-
element error configuratioR,
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FIXUEdXUEZO — dXUEZO.

7

It turns out that, in terms of the Knill-Laflamme condition,
Eq. (17) corresponds to E410), wherew is replaced by the
normalized trace and hence a code fulfilling EL7) is non-
degenerate.

The error configuration is a two-element subset of the

output vertices 1...,4, and for thepurpose of verifying
criterion (17) the input vertex 0 plays exactly the same role

as an error. It is clear by symmetry that only the two con-

figurations forXU E shown by filled dots in Fig. 1 need to be
considered. Now the conditiofi}, ,d*“E=0 is a set of
equations, one for each “integration vertexe |: For each
vertexy we have to sum the, for all vertices ofxe XUE
connected tg/, and equate it to zerdln a weighted graph,
we would have to sum with coefficients given by the matrix
I'). The following is a table of equations arising in this way
for the first error configurationXUE={0,1,2}:

Vertexy Equation
3 do+d,=0
4 do=0
5 d0+ d]_:O

Clearly, this impliesdg=d;=d,=0 in any Abelian group.
Similarly, for the second error configuratiofi E={0,1,3}
we get the equations

Vertexy Equation
2 do+d1+d3:0
4 d0+d3:O
5 d0+d1:O

which once again impliesly,=d;=d,=0. This concludes

PHYSICAL REVIEW A65 012308

FIG. 2. An alternative graph for a code of length 5 that corrects
one error.

niteness, let us fi as a cyclic group of prime ordet soZy
is a field, and choose an integar We then ask for symmet-
ric 2mXx 2m matricesl” with integer entriegor, equivalently,
entries inZq) with the following property: for anyn-element
subset | C{1,...,2n} the mXxXm submatrix I';; with i
el,j &l is invertible in the fieldZy. For the purpose of this
section, let us call such a matrstrongly error correctingor
the prime numbed.

What codes can we get from such matrices? Just as in the
previous section, let us specify any 3etf k<m vertices as
input vertices, and call the remainimg= (2m—k) ones out-
put vertices. Then for any configuration eEm—k errors,
the setXUE and its complemenit will have exactlym ele-
ments. By assumption, the strong form of the error-
correcting condition(17) is satisfied, hence the code detects
e errors. These parameters satisfy

n=2e+Kk, (18)

i.e., the general inequality< 2e+k, known as thesingleton
bound[17], is satisfied with equality. Within the present lit-
erature, the term MDS coddor maximum distance sepa-
rable is used.

How can one get strongly error-correcting matrices a
practical way? Here is a procedure, we found it easy to work

the verification that the code associated with the graph ifyith smallm, using a symbolic algebra program. First, we

Fig. 1, and an arbitrary finite Abelian group, detects any
two errors, and hence corrects one error.

introduce variables for each matrix elemépt with i>j and
compute the determinants of all off-diagomak m subma-

In fact, we proved a little bit more than that. The essentiakyices as symbolic expressions in these variables. As we go

part of the proof was to look at certain<3 submatrices of
the 6X6 matrix I', namely, those corresponding to an off-
diagonal block in the partition of the vertic€®,1, ...,5
into two disjoint subsetXUE andl, and to show that each

along fixing integer values for thedg;, the determinant
expressions become simpler, and in some cases factorize.
Each of these factors has to be kept nonzero by the next

choice of al';; value. Finally, we end up with an integer

such submatrix is nonsingular. Regarded in this way, it bemairix, whose off-diagonanx m submatrices all have non-
comes irrelevant to which of the two sets in the partition the, ¢ integer determinants. Then, for any pridaevhich does

input vertex “0” belongs, so we showed thany vertex,

not divide any of these integers, we have solved the problem.

even a peripheral one, may be taken as an input vertex and |+ is natural to begin this process by setting as many

we still get a one-error correcting code.

weights as possible equal to zero. It is easy to see that Theo-

This may seem like a rather strong property of the graphem |1 does not allow too many(k,1) =0 because an entire

we chose. However, there {gxactly) one other graph with
six vertices, which produces in the same way a one-erro

correcting code for arbitrary choice of the input vertex and

Abelian groupG. This is shown in Fig. 2.

V. CODES SATURATING THE SINGLETON BOUND

r

row of zeros in the matriX’} - leaves one of the difference
variables unconstrained. Similarly, in the condition for strong
error correction it is clear that no off-diagonal submatrix
should have a row of zeros, i.e., each one of thevertices
must be connected to at leastother vertices. The graph in
Fig. 3 is as sparse as possible under these constraimts (

In this section we briefly discuss one natural generaliza=4), and was the starting point for a search for nonzero
tion of the idea emerging in the previous section. For defiweights, as described above, resulting in the matrix
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FIG. 3. Graphical representation of the weighted graph in Eq.
(19). Edges without label have weight 1.

00 1 0 1 1 1 0 FIG. 4. The graph for a code of length 10.
0 0 O 1 1 1 0 1
1 0 O 0 2 0 -1 1 VI. A QUANTUM ERROR-DETECTING CODE OF
01 0 0 0 1 ) LENGTH 10

I'= 1 1 2 0 0 o -2 o | In this section we present a more complex example for a

graph, which yields for every finite Abelian gro@ a ten-

110 1 0 0 0 -1 bit code detecting three errors as given by Fig. 4. At the first
10 -1 2 -2 0 look, this graph looks rather complicated, but it can be de-
01 1 -2 0 -1 o0 scribed in a simple fashion by looking at the graph for the

code of length 5 in Fig. 1.
Namely, the graph, given by Fig. 4 can be obtained as

follows: The output vertice§l,2,3,4,53 of the graph in Fig. 1
re replaced by pairs-2{1,2}, 2—{3,4, ...,5~{9,10.

ach output vertex is connected with the following vertices:
he central input vertex 0, the vertex belonging the same
air, and all output vertices belonging to neighbored pairs.
trarily chosen inputs. The set of de.terminant_dﬂsll,—.& P The symmetfy of this graph c%ngeﬁiciengtly be usped to
—5-4,-2,-1,1,2,4,58,9, so this will work for any prime  chac that each error configuration with three errors can be
d not in the se{2,3,5,13. By fixing the choice of the input yetected. As is depicted by Fig. 5, there are only four three-
vertices, we may restrict to a smaller set of partitigtiee  grror configurations to distinguish.

input vertices always belong to the same),skénce we get (1) All errors occur within different pairs and all these
fewer constraints. For example, the code with input verticegairs are neighborefirst graph in Fig. 5.

{1,2} has no relevant subdeterminant containing a factor 3, (2) All errors occur within different pairs and only two of
so the resulting code corrects one error on arbitrary pairs ahese pairs are neighborésecond graph in Fig.)5

(19

This matrix can either be used to get codes detecting thre
errors on an arbitrarily chosen single input vertex, or as a
code detecting two error®r correcting ongon two arbi-

three-level systems. (3) One pair is totally affected by errors and the remaining
Within the above example, the number of matrix elementserror occurs within a pair that is not neighbor@hird graph

set to zero is maximal, namely;=4 for each rowi in Fig. 5).

=1,...,8.Looking at the corresponding graph =4 is just (4) One pair is totally affected by errors and the remaining

the number of lines meeting a particular vertex as one cafITor occurs within a neighbored pdfourth graph in Fig.

see from Fig. 3. 5).

Strongly error-correcting matrices exist in any dimension, Proposition VI.1For each finite Abelian grouis, the
so the code parameters saturating the singleton b¢l®d guantum code, which is associated with the graph given by
can be chosen arbitrarily, if the dimensidrof the one-site  Fig. 5, is a quantum error-detecting code, encoding one input
system is taken to avoid a certain finite set of prifesm-  System into ten output systems and detecting three errors.
pare also[5]). The argument is quite simple: consider the Proof. Suppose that each error occurs in different pairs
mX m subdeterminants of symmetriey2< 2m matrices as a and all these pairs are neighbor@idst graph in Fig. , e.g.,
family of polynomialsf,, a=1, ... ,(2'?) in (22n) variables. the error configuratiof1,3,5. Then we pro.ceed as in the
None of these vanishes identically and siticis an integral ~€xample for the code of length 5 to obtain the system of
domain, which in contrast is wrong for finite fields, the prod- €quations(15),
uct polynomialll ,f,#0 is nonzero( [19], p. 106. This
implies that there exists an integer tuplef arguments such Verticesy Equation
thatIl ,f,(I')#0. Thus we have the following statement.

Proposition V.1For each numbeg of errors, there exists a 2 do+d+d3=0
primed and a weighted graph such that the quantum code, 4 do+d;+ds+ds=0
associated with the weighted graph is a MDS quantum 6 do+dz+ds=0
error-correcting code, which encodkstlevel systems into 7 and 8 do+ds=0
4e+k plevel systems, and which correasrrors. 9 and 10 do+d;=0
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FIG. 5. A complete family of inequivalent error configurations for the graph in Fig. 3.

and we conclude thady=0 andd;+ds;+ds=0 are true. VIl. CONCLUSION AND OUTLOOK
Thus Eqgs(16) are fulfilled and the corresponding error con-

figuration is detected. struction scheme to a few examples. A more systematic in-

Analogously, one checks that each error configuration S . :
X . ) Vestigation is, of course, under way. Some of the issues in
where each error occurs in a different pair and only two of,

. . ST this investigation are the following.
gheetz(étgg"s are neighborésecond graph in Fig.)Ss also (1) We have already mentioned that all codes constructed

, ) ) _from graphs are stabilizer codes. This is verified by explicitly
We now consider an error configuration, where one pail,nsirycting a group of unitaries, composed out of shifts and

{1,2 is totally corrupted and the remaining error vertex, e.g.myltiplication by characters, leaving all vectors in the code

5 is contained within a non-neighbored péinird graph in  space invariant. The converse of this statement is not so

In this paper we had to limit the exploration of our con-

Fig. 5. We obtain for the system of equatio(ts), clear, i.e., how to embed the usual stabilizer code construc-
tions into our scheme, and to characterize the subset of codes
Verticesy Equation for which this is possible.

(2) We have seen in Sec. IV that different graphs generate

3and 4 do+dy+dy+ds=0 five-qubit codes, although such codes are presumably unique
6,7 and 8 do+ds=0 up to local transformations. It would be helpful to character-
9 and 10 do+d;+d,=0 ize the local unitary transformations taking one graph code
7 and 8 do+ds=0 into another, and to study the relationships between the re-
sulting graphs. The Rains invariaf0—22 for graph codes
can be computed relatively easily, and should help to decide
) ) such isomorphism issues.
and we conclude again thay=0 andd;+d,+ds=0 is (3) From Sec. V it is clear that the singleton bound be-
true. Equat|0n$16) are fUlfl”ed, which ImplleS that the cor- comes easier to Satisfy as the dimenstmf the Sing|e_
responding error configuration is also detected. system Hilbert space increases. This suggests the search for

Finally, it is a bit more straightforward as in the previous bounds describing the resource limitations in coding more
case to show that an error configuration, where two erroradequately, perhaps by taking into account more detailed fea-
occur within one pair and the remaining error occurs withintures of errors than just considering arbitrary errors that oc-
a neighbored paitfourth graph in Fig. § is detected. W cur at a single output system with a fixed probability. Our
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construction could be helpful for developing and testing suchAnalogously theg;-dependent part of'(g*"E,g') is the

bounds.

same expression withreplaced byg. Thus theg;-dependent

(4) Nonstabilizer quantum codes can be constructed fronpart of Eq.(A2) is

families of stabilizer codes by taking theinion[23], where

one has to require that the protected subspaces, correspond-

ing to the codes within the family, are mutually orthogonal
and that this property remains valid after error operations.

Examples of such nonstabilizer codes are givei2h25. In

I1

{z,i}:ze XU

. x(92,9) " @Vx(h,,g)" ). (Ad)

view of our construction scheme, it would be desirable toUsing the character property gf-,g;) we can simplify this
find sufficient conditions for a family of graphs such that theto a single factor of the forny(k,g;). Explicitly,

union of their corresponding graph codes yieldgassibly
more efficient nonstabilizer code.

(5) After the first submission, we realized that there is a

direct relation between our graph codes and thester

k= 2>

jeXUE

[i(hj—g;) (A5)

states which has been introduced by Briegel and Raussen- ) ) ) ) _
dorf [26]. In view of their considerations, cluster states canand this sum contains none of the variables associated! with

be used for performing a quantum computational process bpecausel N(XUE)=(J. The integral overg; then gives
a sequence of local von Neumann measurements. For storim§k), and we find
guantum information within a cluster state, graph codes can

directly be implemented for protection against decoherence.
It would be desirable to implement graph codes within the
structure of a cluster state in such a manner that the condi-

tions for fault-tolerant computation are satisfied.
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APPENDIX

Proof of Theorem IIl.1.We first compute the function
wir g, defined by Eq(12). It is convenient to introduce for
two subsetK,K’ of XUY the expression

I

{k,k'}:keK,k" eK’

x"(gK,gk'):= x(Gk, 9k KD, (AD)

X XF(hXU E, hXUE)

wir 5[ g% 5 h*E]= |G| T (g¥VE gXUE)

X 5(F|XUE(hXUE_ gXU E))
(AB)

Our task is to establish the necessary and sufficient condi-
Yions for this to be of the form

C(gF,h®)8(h*—g%), (A7)
required by Eq(13).

Now the expressionfA6) has the required property of
vanishing except fog*=h* if and only if this is already
implied by the vanishing of thé function in Eq.(A6), i.e., if
and only ifd*+0 impliesT},z(d*“E)#0. This is the first
part of the condition in Theorem Il.1.

From now on we assume, as we may, thgt,¢(d¥"F)
=0 impliesd*=0. Then the dependence of H&6) on the

where the product is taken over the complete two elementarinput variablesg® andh* can be simplified. The function
sets with one element taken fraghand the other taken from can be written as

K’. Hence the factor fofk,k’}={k’,k} only occurs once
within the product. Now we write the integrand in EG2)
as a product of two terms

vr[g%,0%,g" v [h*,hF,g']
_(G X XF(hXUE,hXUE) Xr(hXUE,gl)
=[G| )(F(QXUE,QXUE) XF(QXUE,Q').

(A2)

Here only the last factor on the right-hand side depends on

the integration variableg' associated with the sét=Y\E.
In order to carry out the integral over one variagle i |,
we select they;-dependent part out off (h*“YE g'), which is

x(h,,gp)" @D, (A3)

{z,i}:ze XUE

h¥UE— g¥UE))= 5(I'L(hE— gF))a(h*~ g%,
(A8)

(el

because the two expressions are equalhfor g*, and for
hX+gX they both vanish by assumption.

To simplify the bicharacter quotient in E¢A6), we use
Eqg. (Al) to write

XF(hXUE,hXUE) :Xr(hx,hx)XF(hE,hX)Xr(hE,hE).

(A9)
With a similar decomposition of' (g*“E,g*“E) we use the
condition that wherever thé function in Eq.(A6) is non-
zero, we haveg*=h*. Hence thex—X factors cancel, and
we can write the quotient of th&—E terms as
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YT (hE,h%) I11.1, which we have thus shown to be necessary. Conversely,
F—E,X: H X 2 Lji(hi=gi),h;|.  (A10)  itis sufficient to ensure that Eej,@_\lO) is equal to 1, and Eq.
X (g5,h7%)  jex licE (A6) has the desired fortA7) with

For Eq.(A6) to be of the desired formA7) with C(gF,hF)

independent of th& variables, this expression must be in- ¥ (hE,hE)

dependent of ah; ,j e X, whenevers(I'c(hF—gF))+0. But C(gE,hE):=|G|X ————=0(l'e(hf~gF)). (AL1)
Eq. (A10) is independent oh; if and only if 3;T';;(hj—g;) x (9%.97)

=0. Hence we must have thdtL(hf—gF)=0 implies

I'¥(hE—gF)=0. This is the second condition from Theorem [ |
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