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Quantum error-correcting codes associated with graphs
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We present a construction for quantum error correcting codes. The basic ingredients are a graph and a finite
Abelian group, from which the code can explicitly be obtained. We prove necessary and sufficient conditions
for the graph such that the resulting code corrects a certain number of errors. This allows a simple verification
of the one-error correcting property of codes of length 5 in any dimension. As examples, we construct a large
class of maximum distance separable codes, i.e. codes saturating the Singleton bound, as well as a code of
length 10 detecting three errors.
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I. INTRODUCTION

From the beginning of quantum-information theory it w
recognized that error-correcting codes play a crucial role.
the one hand it was clear that without error correction, de
herence effects could easily annihilate the gain in compu
time promised by the new fast quantum algorithms. On
other hand, the no-cloning theorem@1# seemed to forbid a
least the most naive approach to classical error correction
noisy channels, e.g., sending each bit three times and ta
a majority vote at the output of the channel. Clearly, t
simple scheme reduces classical errors with small probab
of order« to order«2. The cloning required for sending ‘‘the
same bit’’ three times rules out direct quantum analogs
this scheme. It was therefore an important step to realize@2#
that quantum mechanics had other, more subtle, way
‘‘distributing’’ quantum information over several channels
stabilize against errors. One problem with the kno
schemes of quantum error correction~e.g.,@3,4#!, however, is
that they tend to be subtle indeed, and the verification
their error-correcting capabilities often requires a leng
computation. It is therefore desirable to find new, perh
simpler ways of constructing error-correcting codes,
which more direct intuitions might be built.

In this paper we propose a scheme for constructing qu
tum error-correcting codes, which has some of these ad
tages. The ingredients of our construction are a graph a
finite Abelian group. The order of the group determines
type of systems for which errors are corrected so that, e
the two-element group corresponds to the qubit case~com-
pare@5–8# for other constructions of nonbinary codes!. Con-
cerning the graph, there are two different kinds of vertic
The input vertices, labeling the logical systems that we w
to encode, and the output vertices, labeling the physical
tems in which the information, carried by the logical sy
tems, is encoded. From the edges of the graph one can
read off an explicit expression for the code. However,
every graph corresponds to a good code, and we will disc
the condition for the code to correct a certain number
errors. In the simplest case, the fivefold code@9–11# ~for
qubits as well as higher-dimensional systems!, it can be veri-
fied in a few lines that any two errors are detected. We a
give an example of a more complex tenfold code detec
three errors.
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As we are going to discuss in a following paper in mo
detail, it turns out that the codes that can be achieved by
method arestabilizer codes. There are various efficient meth
ods for constructing stabilizer codes@3,4,12–16#. However,
we think that, compared to previous stabilizer constructio
our technique has some interesting features.

~1! Often the condition for error correction can be prov
for many groups simultaneously, so that one getscode fami-
lies for systems of variable sizes.

~2! The geometric intuitions about graphs may beco
helpful for finding new constructions.

~3! Our codes have the property that in their natural ba
all matrix elements of the coding operator have the sa
modulus~Hadamard form!. This is helpful to the usual goa
of getting a compact expression for the code. Contrary
most of the existing examples, our codes have only nonv
ishing matrix elements. However, by applying a discre
Fourier transform to an appropriate set of outputs, one
tains zero matrix elements for the resulting~equivalent!
code. Moreover, the Hadamard form appears to be an in
esting normal form for the codes.

~4! For some codes it is possible to exchange some in
vertices with some output vertices while retaining the err
correction property. This kind of symmetry is much harder
see in the usual stabilizer constructions, and may prove to
helpful in coding problems with additional inputs and ou
puts, such as the internal state of the coding device in c
volutional codes.

The paper is organized as follows. We begin by describ
the general construction of the coding operator in Sec. II
Sec. III we recapitulate the Knill-Laflamme condition fo
error correction and adapt it to our particular type of cod
resulting in a necessary and sufficient condition for a gra
to generate a quantum error-detecting code. The remai
sections contain examples of codes constructed in this w
In Sec. IV we show that it becomes simple indeed to ver
the fivefold quantum codes. In Sec. V we demonstrate
for a given numbere of errors and numberk of inputs, there
is a graph generating an infinite code family using 4e1k
output systems, i.e., a family of codes saturating the sin
ton bound. Finally, in Sec. VI we construct a code with o
input and ten outputs, detecting three errors for arbitrary s
tem size.
©2001 The American Physical Society08-1
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II. BASIC CONSTRUCTION

Every code we construct is completely determined by
follow ingredients.

~1! An undirected graphG with two kinds of vertices: We
distinguish the setX of input vertices and the setY of output
vertices. The links of the graph are given by thecoincidence
matrix of the graph, which we will denote byG for short. Its
matrix element G(z1 ,z2) is 1 iff the vertices z1 ,z2
P(XøY) are linked, and 0 otherwise. More generally, w
allow weighted graphs, whose incidence matrices have arb
trary integer entries, apart from the constraintsG(z1 ,z2)
5G(z2 ,z1) andG(z,z)50.

~2! A finite Abelian groupG with a nondegenerate sym
metric bicharacter.

By definition, a bicharacter is a functionx:G3G→C
such thatx(g1h,g8)5x(g,g8)x(h,g8) and a similar con-
dition holds for the second argument, which is also impl
by the assumed symmetryx(g,g8)5x(g8,g). We also as-
sume nondegeneracy in the sense that

(
g

x~g,g8!5uGud~g8![H uGu for g850

0 for g8Þ0.
~1!

Note that since everygPG has finite order,x(g,g8) is al-
ways a root of unity, andx(g,g8)5x(2g,g8). In particular,
a nondegenerate bicharacterx corresponds to an isomor
phismf:G→G` from G onto the groupG` of characters of
G, wherex satisfiesx(g,g8)5f(g)(g8). For G5Zp , the
cyclic group of orderp, the standard bicharacter is given b

x~g,h!5expS 2p i

p
ghD , ~2!

where g,h are integers representing their class modulop.
Since every finite Abelian group is a direct product of cyc
groups, this also shows the existence of bicharacters for
such group.

The input and output systems of the code are labeled bX
andY. They are all of the same type, i.e., they are descri
by the same Hilbert spaceH5L2(G). This is the space of al
functions c:G→C with scalar product ^f,c&
5uGu21(gf̄(g)c(g). For compactness of notation we wri
such normalized sums as integrals. Hence the scalar pro
becomes*dg f̄(g)c(g). The combined input system is thu
described in theuXu-fold tensor productH ^ X5L2(GX). Vec-
tors in this space are functions ofuXu variables, one variable
gz for everyzPX. The entire collection of variables will be
denoted bygX. The error-correcting code will be an isomet

vG :L2~GX!→L2~GY!, ~3!

~vGc!~gY!5E dgXvG@gXøY#c~gX!, ~4!

wherevG under the integral denotes the integral kernel of
operatorvG . This kernel depends on both input and outp
variables, which are combined into a collection of variab
gz , one for each vertexzPXøY of the graph. The core o
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our construction is an explicit expression for this integ
kernel: apart from an overall normalization factor, it w
simply be a product of phases with each factor correspond
to a link of the graph,

vG@gXøY#5uGu uXu/2 )
$z,z8%

x~gz ,gz8!
G(z,z8), ~5!

where the product is taken all over two elementary subs
$z,z8%,(XøY). Allowing direct loops within the graph, i.e.
vertices connected with themselves, the incidence matriG
5D1G8 can be split into a diagonal partD and a partG8
corresponding to a graph with no direct loops. However,
diagonal part can be eliminated by a local unitary transf
mation to the code and we may assume without loss of g
erality that there are no direct loops within the graph. F
thermore, the links between input vertices do not affect
error-correcting capabilities of the code. They can be elim
nated by a unitary transformation leaving the protected s
space invariant.

Thus for an ordinary graph@G(z,z8)50,1#, the right-hand
side of Eq.~5! is the product of allx(gz ,gz8) for which z and
z8 are linked. The remarkable property of such codes is t
apart from the normalization factor the kernel is everywh
of modulus 1. WhenG5Zp is cyclic andx is given by Eq.
~2!, we can write the phase in a more compact form as

vG@gXøY#5uGu uXu/2expS p i

p
gXøY

•G•gXøYD , ~6!

where the centered dot denotes the product of integer-va
matrices and vectors. Note that every term in the s
gXøY

•G•gXøY occurs twice, which we compensated by
factor 1/2.

This completes the construction of the operatorvG from
the defining ingredients listed at the beginning of this s
tion. Of course, in general, this will not be an erro
correcting code nor even an isometry. The conditions for t
will be studied in the following section.

III. THE CONDITION FOR ERROR CORRECTION

A general characterization of quantum error-correct
codes has first been worked out by Knill and Laflamme@17#.
We briefly review here the main aspects and adapt the c
dition in the particular case of codes constructed as in
previous section. In this theory a quantum code is an iso
etry v:H→K from the ‘‘input Hilbert space’’H to the ‘‘out-
put Hilbert space’’K. Thus an input density operator is tran
formed by coding intovrv* , which is a density operator on
K. The output of the coding is then passed through a no
channel. The noise is described by a certain class of err
which are represented by a linear subspaceE of operators on
K. The channel is thus represented by a completely posi
linear map of the form

T~r!5(
a

FarFa* , ~7!
8-2
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whereFaPE and are chosen such that the output is alw
normalized. The isometryv is said to be an error-correctin
code forE if there is a completely positive ‘‘recovery opera
tor’’ R such that

R„T~vrv* !…5r ~8!

for all density operators onH. By the theory of Knill and
Laflamme@17# this is equivalent to the factorization cond
tion

^vc1 ,Fa* Fbvc2&5v~Fa* Fb!^c1 ,c2&, ~9!

where v(Fa* ,Fb) is a factor independent of the arbitra
vectorsc1 ,c2. As in much of the literature on codes we w
consider here a specific type of errors, namely, errors h
pening only on a small number of outputs of the code. Th
the tensor product structureH ^ Y5L2(GY) of the output
space becomes important. LetA(E) denote the set of al
operators onL2(GY), which are localized in E,Y, i.e.,
which are the tensor product of an arbitrary operator onH ^ E

with the identity onH ^ Y\E. We say that a codecorrects e
errors, if Fa ,Fb in Eq. ~9! may be chosen arbitrarily in th
linear span ofø uEu<eA(E). Note that the operatorsFa* Fb

appearing in the scalar product~9! can then be localized on
arbitrary sets of 2e elements and any operator with su
localization may be written as a linear combination of su
Fa* Fb . It is therefore convenient to introduce the followin
terminology: we say that the codev detects the error con-
figuration E,Y, if

^vc1 ,Fvc2&5v~F !^c1 ,c2&, ~10!

for all FPA(E). Then a code correctse errors, iff it detects
all error configurationsE,Y with uEu<2e.

We will now adapt these conditions to operatorsvG of the
special form~3!. Consider a fixed error configurationE,Y
and let I 5Y\E. Then if F is an operatorF on H ^ E with
integral kernelF@gE,hE#, the integral kernel ofv* Fv is

vG* FvG@gX,hX#5E dgEdgIdhEvG@gX,gE,gI #

3F@gE,hE#vG@hX,hE,gI #. ~11!

This must be a multiple of the identity for every choice ofF.
Choosing, in particular, a rank-one operatorF5ugE&^hEu we
find that error detection for the configurationE is equivalent
to the property that the correlation function

w[G,E]@gXøE,hXøE#ªE dgIvG@gX,gE,gI #vG@hX,hE,gI #

~12!

factorizes in the following manner:

w[G,E]@gXøE,hXøE#5C~gE,hE!d~gX2hX!, ~13!

whered(gX) is defined to be 1 ifgx50 for all xPX and zero
otherwise, andC(gE,hE) is a factor independent of the inpu
variablesgX,hX.
01230
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For two subsetsK,L of XøY we denote byGL
K the group

homomorphism fromGL to GK that can be derived from the
corresponding submatrix of the incidence matrixG by the
prescription

GL
KgL:5F(

l PL
G~k,l !gl G

kPK

~14!

and the following condition is necessary and sufficient
quantum error detection.

Theorem III.1. Given a finite Abelian groupG and a
weighted graphG as in the basic construction. Then an err
configurationE,Y is detected by the quantum codevG iff
the system of equations

GXøE
I dXøE50 ~15!

with I 5Y\E implying that

dX50 and GE
XdE50. ~16!

The proof of Theorem III.1 is given in the Appendix an
in view of this result we discuss some examples. Note t
the condition forvG being an isometry is equivalent to th
detection of zero errors, which can be seen from Eq.~10! by
choosing for the error operatorF51. This means, expresse
in terms of the graph, thatGX

YdX50 impliesdX50.

IV. EXAMPLE: A CODE OF LENGTH 5

The first example of an optimal quantum error-correcti
code correctingall one-bit errors was the famous five-qub
code by Ref.@10#. The original code is not easy to verify, s
it is gratifying to see that our construction produces suc
code that can be verified in a few lines. Moreover, our co
struction works simultaneously for all groupsG and is hence
not restricted to qubits. Codes of length 5 for highe
dimensional systems have been constructed before@11#, and
if we believe a recent result by Rains@18#, the qubit code is
essentially unique anyway. Hence this section has a ma
illustrative character.

Consider the graph in Fig. 1 where the central vertex ‘‘
is the input vertex and the remaining five are the out
vertices.

We will verify the condition of Theorem III in a particu
larly strong form. Namely, we will show that, for every two
element error configurationE,

FIG. 1. The left figure shows a graph for a code of length
where the central vertex is the input vertex. The two figures on
right side are the relevant two-error configurations.
8-3
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GXøE
I dXøE50 ⇒ dXøE50. ~17!

It turns out that, in terms of the Knill-Laflamme conditio
Eq. ~17! corresponds to Eq.~10!, wherev is replaced by the
normalized trace and hence a code fulfilling Eq.~17! is non-
degenerate.

The error configuration is a two-element subset of
output vertices 1, . . . ,4, and for thepurpose of verifying
criterion ~17! the input vertex 0 plays exactly the same ro
as an error. It is clear by symmetry that only the two co
figurations forXøE shown by filled dots in Fig. 1 need to b
considered. Now the conditionGXøE

I dXøE50 is a set of
equations, one for each ‘‘integration vertex’’yPI : For each
vertexy we have to sum thedx for all vertices ofxPXøE
connected toy, and equate it to zero.~In a weighted graph,
we would have to sum with coefficients given by the mat
G). The following is a table of equations arising in this wa
for the first error configuration,XøE5$0,1,2%:

Vertex y Equation

3 d01d250
4 d050
5 d01d150

Clearly, this impliesd05d15d250 in any Abelian group.
Similarly, for the second error configurationXøE5$0,1,3%
we get the equations

Vertex y Equation

2 d01d11d350
4 d01d350
5 d01d150

which once again impliesd05d15d250. This concludes
the verification that the code associated with the graph
Fig. 1, and an arbitrary finite Abelian groupG, detects any
two errors, and hence corrects one error.

In fact, we proved a little bit more than that. The essen
part of the proof was to look at certain 333 submatrices of
the 636 matrix G, namely, those corresponding to an o
diagonal block in the partition of the vertices$0,1, . . . ,5%
into two disjoint subsetsXøE and I, and to show that each
such submatrix is nonsingular. Regarded in this way, it
comes irrelevant to which of the two sets in the partition
input vertex ‘‘0’’ belongs, so we showed thatany vertex,
even a peripheral one, may be taken as an input vertex
we still get a one-error correcting code.

This may seem like a rather strong property of the gra
we chose. However, there is~exactly! one other graph with
six vertices, which produces in the same way a one-er
correcting code for arbitrary choice of the input vertex a
Abelian groupG. This is shown in Fig. 2.

V. CODES SATURATING THE SINGLETON BOUND

In this section we briefly discuss one natural generali
tion of the idea emerging in the previous section. For d
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niteness, let us fixG as a cyclic group of prime orderd, soZd
is a field, and choose an integerm. We then ask for symmet
ric 2m32m matricesG with integer entries~or, equivalently,
entries inZd) with the following property: for anym-element
subset I ,$1, . . . ,2m% the m3m submatrix G i j with i
PI , j ¹I is invertible in the fieldZd . For the purpose of this
section, let us call such a matrixstrongly error correctingfor
the prime numberd.

What codes can we get from such matrices? Just as in
previous section, let us specify any setX of k,m vertices as
input vertices, and call the remainingn5(2m2k) ones out-
put vertices. Then for any configuration ofe5m2k errors,
the setXøE and its complementI will have exactlym ele-
ments. By assumption, the strong form of the err
correcting condition~17! is satisfied, hence the code detec
e errors. These parameters satisfy

n52e1k, ~18!

i.e., the general inequalityn<2e1k, known as thesingleton
bound@17#, is satisfied with equality. Within the present li
erature, the term MDS code~for maximum distance sepa
rable! is used.

How can one get strongly error-correcting matricesG in a
practical way? Here is a procedure, we found it easy to w
with small m, using a symbolic algebra program. First, w
introduce variables for each matrix elementG i j with i . j and
compute the determinants of all off-diagonalm3m subma-
trices as symbolic expressions in these variables. As we
along fixing integer values for theseG i j , the determinant
expressions become simpler, and in some cases facto
Each of these factors has to be kept nonzero by the n
choice of aG i j value. Finally, we end up with an intege
matrix, whose off-diagonalm3m submatrices all have non
zero integer determinants. Then, for any primed, which does
not divide any of these integers, we have solved the probl

It is natural to begin this process by setting as ma
weights as possible equal to zero. It is easy to see that T
rem III does not allow too manyG(k,l )50 because an entire
row of zeros in the matrixGXøE

I leaves one of the differenc
variables unconstrained. Similarly, in the condition for stro
error correction it is clear that no off-diagonal submat
should have a row of zeros, i.e., each one of the 2m vertices
must be connected to at leastm other vertices. The graph in
Fig. 3 is as sparse as possible under these constraintsm
54), and was the starting point for a search for nonz
weights, as described above, resulting in the matrix

FIG. 2. An alternative graph for a code of length 5 that corre
one error.
8-4
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G51
0 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1

1 0 0 0 2 0 21 1

0 1 0 0 0 1 2 22

1 1 2 0 0 0 22 0

1 1 0 1 0 0 0 21

1 0 21 2 22 0 0 0

0 1 1 22 0 21 0 0

2 .

~19!

This matrix can either be used to get codes detecting th
errors on an arbitrarily chosen single input vertex, or a
code detecting two errors~or correcting one! on two arbi-
trarily chosen inputs. The set of determinants is$211,28,
25,24,22,21,1,2,4,5,8,9%, so this will work for any prime
d not in the set$2,3,5,11%. By fixing the choice of the input
vertices, we may restrict to a smaller set of partitions~the
input vertices always belong to the same set!, hence we get
fewer constraints. For example, the code with input verti
$1,2% has no relevant subdeterminant containing a facto
so the resulting code corrects one error on arbitrary pair
three-level systems.

Within the above example, the number of matrix eleme
set to zero is maximal, namely,n i54 for each row i
51, . . . ,8.Looking at the corresponding graph,n i54 is just
the number of lines meeting a particular vertex as one
see from Fig. 3.

Strongly error-correcting matrices exist in any dimensio
so the code parameters saturating the singleton bound~18!
can be chosen arbitrarily, if the dimensiond of the one-site
system is taken to avoid a certain finite set of primes~com-
pare also@5#!. The argument is quite simple: consider t
m3m subdeterminants of symmetric 2m32m matrices as a
family of polynomialsf a , a51, . . . ,(n

2n) in ( 2
2n) variables.

None of these vanishes identically and sinceZ is an integral
domain, which in contrast is wrong for finite fields, the pro
uct polynomial )a f aÞ0 is nonzero~ @19#, p. 106!. This
implies that there exists an integer tupleG of arguments such
that )a f a(G)Þ0. Thus we have the following statement.

Proposition V.1For each numbere of errors, there exists a
primed and a weighted graphG such that the quantum code
associated with the weighted graphG, is a MDS quantum
error-correcting code, which encodesk d-level systems into
4e1k p-level systems, and which correctse errors.

FIG. 3. Graphical representation of the weighted graph in
~19!. Edges without label have weight 1.
01230
ee
a

s
,

of

s

n

,

VI. A QUANTUM ERROR-DETECTING CODE OF
LENGTH 10

In this section we present a more complex example fo
graph, which yields for every finite Abelian groupG, a ten-
bit code detecting three errors as given by Fig. 4. At the fi
look, this graph looks rather complicated, but it can be
scribed in a simple fashion by looking at the graph for t
code of length 5 in Fig. 1.

Namely, the graph, given by Fig. 4 can be obtained
follows: The output vertices$1,2,3,4,5% of the graph in Fig. 1
are replaced by pairs 1°$1,2%, 2°$3,4%, . . . ,5°$9,10%.
Each output vertex is connected with the following vertice
The central input vertex 0, the vertex belonging the sa
pair, and all output vertices belonging to neighbored pair

The symmetry of this graph can efficiently be used
check that each error configuration with three errors can
detected. As is depicted by Fig. 5, there are only four thr
error configurations to distinguish.

~1! All errors occur within different pairs and all thes
pairs are neighbored~first graph in Fig. 5!.

~2! All errors occur within different pairs and only two o
these pairs are neighbored~second graph in Fig. 5!.

~3! One pair is totally affected by errors and the remaini
error occurs within a pair that is not neighbored~third graph
in Fig. 5!.

~4! One pair is totally affected by errors and the remaini
error occurs within a neighbored pair~fourth graph in Fig.
5!.

Proposition VI.1 For each finite Abelian groupG, the
quantum code, which is associated with the graph given
Fig. 5, is a quantum error-detecting code, encoding one in
system into ten output systems and detecting three error

Proof. Suppose that each error occurs in different pa
and all these pairs are neighbored~first graph in Fig. 5!, e.g.,
the error configuration$1,3,5%. Then we proceed as in th
example for the code of length 5 to obtain the system
equations~15!,

Verticesy Equation

2 d01d11d350
4 d01d11d31d550
6 d01d31d550

7 and 8 d01d550
9 and 10 d01d150

.

FIG. 4. The graph for a code of length 10.
8-5
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FIG. 5. A complete family of inequivalent error configurations for the graph in Fig. 3.
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and we conclude thatd050 and d11d31d550 are true.
Thus Eqs.~16! are fulfilled and the corresponding error co
figuration is detected.

Analogously, one checks that each error configurati
where each error occurs in a different pair and only two
these pairs are neighbored~second graph in Fig. 5! is also
detected.

We now consider an error configuration, where one p
$1,2% is totally corrupted and the remaining error vertex, e
5 is contained within a non-neighbored pair~third graph in
Fig. 5!. We obtain for the system of equations~15!,

Verticesy Equation

3 and 4 d01d11d21d550
6, 7 and 8 d01d550
9 and 10 d01d11d250
7 and 8 d01d550

and we conclude again thatd050 and d11d21d550 is
true. Equations~16! are fulfilled, which implies that the cor
responding error configuration is also detected.

Finally, it is a bit more straightforward as in the previo
case to show that an error configuration, where two err
occur within one pair and the remaining error occurs with
a neighbored pair~fourth graph in Fig. 5!, is detected. j
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VII. CONCLUSION AND OUTLOOK

In this paper we had to limit the exploration of our co
struction scheme to a few examples. A more systematic
vestigation is, of course, under way. Some of the issue
this investigation are the following.

~1! We have already mentioned that all codes construc
from graphs are stabilizer codes. This is verified by explici
constructing a group of unitaries, composed out of shifts a
multiplication by characters, leaving all vectors in the co
space invariant. The converse of this statement is not
clear, i.e., how to embed the usual stabilizer code const
tions into our scheme, and to characterize the subset of c
for which this is possible.

~2! We have seen in Sec. IV that different graphs gener
five-qubit codes, although such codes are presumably un
up to local transformations. It would be helpful to charact
ize the local unitary transformations taking one graph co
into another, and to study the relationships between the
sulting graphs. The Rains invariants@20–22# for graph codes
can be computed relatively easily, and should help to dec
such isomorphism issues.

~3! From Sec. V it is clear that the singleton bound b
comes easier to satisfy as the dimensiond of the single-
system Hilbert space increases. This suggests the searc
bounds describing the resource limitations in coding m
adequately, perhaps by taking into account more detailed
tures of errors than just considering arbitrary errors that
cur at a single output system with a fixed probability. O
8-6
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construction could be helpful for developing and testing su
bounds.

~4! Nonstabilizer quantum codes can be constructed fr
families of stabilizer codes by taking theirunion @23#, where
one has to require that the protected subspaces, corresp
ing to the codes within the family, are mutually orthogon
and that this property remains valid after error operatio
Examples of such nonstabilizer codes are given in@24,25#. In
view of our construction scheme, it would be desirable
find sufficient conditions for a family of graphs such that t
union of their corresponding graph codes yields a~possibly
more efficient! nonstabilizer code.

~5! After the first submission, we realized that there is
direct relation between our graph codes and thecluster
states, which has been introduced by Briegel and Rauss
dorf @26#. In view of their considerations, cluster states c
be used for performing a quantum computational process
a sequence of local von Neumann measurements. For sto
quantum information within a cluster state, graph codes
directly be implemented for protection against decoheren
It would be desirable to implement graph codes within
structure of a cluster state in such a manner that the co
tions for fault-tolerant computation are satisfied.
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APPENDIX

Proof of Theorem III.1.We first compute the function
w[G,E] , defined by Eq.~12!. It is convenient to introduce fo
two subsetsK,K8 of XøY the expression

xG~gK,gK8!:5 )
$k,k8%:kPK,k8PK8

x~gk ,gk8!
G(k,k8), ~A1!

where the product is taken over the complete two elemen
sets with one element taken fromK and the other taken from
K8. Hence the factor for$k,k8%5$k8,k% only occurs once
within the product. Now we write the integrand in Eq.~12!
as a product of two terms

vG@gX,gE,gI #vG@hX,hE,gI #

5uGu uXu x
G~hXøE,hXøE!

xG~gXøE,gXøE!

xG~hXøE,gI !

xG~gXøE,gI !
. ~A2!

Here only the last factor on the right-hand side depends
the integration variablesgI associated with the setI 5Y\E.
In order to carry out the integral over one variablegi , i PI ,
we select thegi-dependent part out ofxG(hXøE,gI), which is

)
$z,i %:zPXøE

x~hz ,gi !
G(z,i ). ~A3!
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Analogously thegi-dependent part ofxG(gXøE,gI) is the
same expression withh replaced byg. Thus thegi-dependent
part of Eq.~A2! is

)
$z,i %:zPXøE

x~gz ,gi !
2G(z,i )x~hz ,gi !

G(z,i ). ~A4!

Using the character property ofx(•,gi) we can simplify this
to a single factor of the formx(k,gi). Explicitly,

k5 (
j PXøE

G i j ~hj2gj ! ~A5!

and this sum contains none of the variables associated wI
becauseI ù(XøE)5B. The integral overgi then gives
d(k), and we find

w[G,E]@gXøE,hXøE#5uGu uXu x
G~hXøE,hXøE!

xG~gXøE,gXøE!

3d„GXøE
I ~hXøE2gXøE!….

~A6!

Our task is to establish the necessary and sufficient co
tions for this to be of the form

C~gE,hE!d~hX2gX!, ~A7!

required by Eq.~13!.
Now the expression~A6! has the required property o

vanishing except forgX5hX if and only if this is already
implied by the vanishing of thed function in Eq.~A6!, i.e., if
and only if dXÞ0 impliesGXøE

I (dXøE)Þ0. This is the first
part of the condition in Theorem III.1.

From now on we assume, as we may, thatGXøE
I (dXøE)

50 impliesdX50. Then the dependence of Eq.~A6! on the
input variablesgX andhX can be simplified. Thed function
can be written as

d„GXøE
I ~hXøE2gXøE!…5d„GE

I ~hE2gE!…d~hX2gX!,
~A8!

because the two expressions are equal forhX5gX, and for
hXÞgX they both vanish by assumption.

To simplify the bicharacter quotient in Eq.~A6!, we use
Eq. ~A1! to write

xG~hXøE,hXøE!5xG~hX,hX!xG~hE,hX!xG~hE,hE!.
~A9!

With a similar decomposition ofxG(gXøE,gXøE) we use the
condition that wherever thed function in Eq.~A6! is non-
zero, we havegX5hX. Hence theX2X factors cancel, and
we can write the quotient of theX2E terms as
8-7
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xG~hE,hX!

xG~gE,hX!
5)

j PX
xS (

i PE
G j i ~hi2gi !,hj D . ~A10!

For Eq.~A6! to be of the desired form~A7! with C(gE,hE)
independent of theX variables, this expression must be i
dependent of allhj , j PX, wheneverd„GE

I (hE2gE)…Þ0. But
Eq. ~A10! is independent ofhj if and only if ( iG j i (hi2gi)
50. Hence we must have thatGE

I (hE2gE)50 implies
GE

X(hE2gE)50. This is the second condition from Theore
ne

ne

-

ta

rs

ev

gy
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III.1, which we have thus shown to be necessary. Convers
it is sufficient to ensure that Eq.~A10! is equal to 1, and Eq
~A6! has the desired form~A7! with

C~gE,hE!ªuGu uXu x
G~hE,hE!

xG~gE,gE!
d„GE

I ~hE2gE!…. ~A11!
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