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Quantum computing with quantum dots on quantum linear supports
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Motivated by the recently demonstrated ability to attach quantum dots to polymers at well-defined locations,
we propose a condensed-phase analog of the ion-trap quantum computer: a scheme for quantum computation
using chemically assembled semiconductor nanocrystals attached to a linear support. The linear support is
either a molecular strin¢e.g., DNA or a nanoscale rod. The phonon modes of the linear support are used as
a quantum-information bus between the dots. Our scheme offers greater flexibility in optimizing material
parameters than the ion-trap method, but has additional complications. We discuss the relevant physical pa-
rameters, provide a detailed feasibility study, and suggest materials for which quantum computation may be
possible with this approach. We find that Si is a potentially promising quantum-dot material, already allowing
a 5—10-qubit quantum computer to operate with an error threshold of. 10
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I. INTRODUCTION rather than gas-phase implementation.
Semiconductor nanostructures are known as “quantum
The tremendous excitement following the discovery ofdots” (QDs) when their size is of the order of or less than the
fast quantum algorithmgl,2] has led to a proliferation of bulk-exciton Bohr radius. In such “zero-dimensional” QDs
guantum computer proposals, some of which have alreadthe electron-hole pairs are confined in all three dimensions
been realized in a rudimentary fashion. A representative lisand the translational symmetry that holds for bulk semicon-
includes nuclear spins in liquid8—5] and solid46], trapped  ductors is totally lost. As a result of this quantum confine-
ions[7-10], atoms in microwave cavitigd 1], atoms in op- ment the energy-level continuum of the bulk material
tical lattices[12], atoms in a photonic band-gap material changes into a discrete-level structure. This structure is very
[13—-15, quantum dots[16—24, donor atoms in silicon sensitively dependent on the QD radius and shape, crystal
[25,26 and silicon-germanium array&7], Josephson junc- symmetry, relative dielectric consta@ompared to the sur-
tions [28—-32, electrons floating on heliurfi33], electrons  rounding medium surface effects, and defects. This sensi-
transported in quantum wire$34,35, quantum optics tivity can be used to create and control a wide range of
[36,37], quantum Hall system{38], and anyon$39,40. For  optical effects[45]. In general, the term “quantum dot” is
critical reviews of some of these proposals §¢&-43. To used to refer to both “zero-dimensional” semiconductor
date, no single system has emerged as a clear leading candiructures embedded within or grown on a larger lattice, i.e.,
date. Each proposal has its relative merits and flaws withattice boundandto individual, chemically assembled semi-
respect to the goal of finding a system, which is both scalableonductor nanocrysta[g6]. QDs can be created in a larger
and fault toleran{44] and is at the same time technically crystal structure by confining a two-dimensional electron gas
feasible. In this paper we examine the possibility of makingwith electrodeqd47], or by making interface fluctuations in
a solid-state analog of a scheme originally proposed for theuantum wells[48]. A number of promising proposals for
gas phase, namely, trapped ions. One purpose of conductingantum computation have been made using the lattice-
such a study is to undertake a critical assessment of both th®und dot§16—22. We consider here instead the chemically
benefits and the disadvantages, which arise on translation assembled semiconductor nanocrystals. In the remainder of
an architecture designed for atomic states coupled byhis paper the term QD will therefore be implicitly under-
phonons to the corresponding architecture for condensedtood to refer specifically to chemically assembled nanocrys-
phase qubits. Our proposal uses quantum ¢kemiconduc- tals.
tor nanocrystalsand quantum linear supportpolymers or A large amount of theoretical and experimental informa-
nanorod$ in an ultracold environment. It relies on recent tion about nanocrystal QDs exists. Nanocrystals have been
advances in the ability to chemically attach nanocrystals tatudied for their photoluminescence properties, linear ab-
polymers in precisely defined locations. Quantum dots argorption properties, and nonlinear spectroscopy using a vari-
coupled through quantized vibrations of the linear supporety of models and techniqué49—85. For reviews see, e.g.,
that are induced by off-resonance laser pulses, and inform§86—8§. These studies clarified the roles of size-
tion is stored in the exciton states of the dots. Internal operadependence, lattice structure, surface effects, and environ-
tions on exciton states are accomplished using Raman trament on the exciton spectrum. However, little attention has
sitions. We provide here a detailed analysis that allowseen paid so far to the possibility of using nanocrystal QDs
evaluation of the merits and demerits of a condensed-phager quantum computing. One reason may be the difficulty of
coupling nanocrystals. Direct interactions between separate
dots are small and difficult to engineer, so that the route to
*Present address: Department of Chemistry, University of Torscalability is not obvious. In the only other study to date that
onto. 80 St. George Street, Toronto, Ontario M5S 3H6. proposed to use nanocrystals for quantum computing, Brun
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and Wang considered a model of nanocrystals attached to a Laser
high-Q microsphere and showed that the interaction between
QDs can be achieved by using whispering-gallery modes of

. T Quantum

the microsphere to entangle individual quih2s]. One prob- Dot N\

lem with the realization of th_is model is that only a few QD_s_ Q\\\\\\ ;\\\\ \\\\\\

can be placed on each microsphere. Therefore, scalability Linear Support

would depend on the ability to connect the microspheres by

optical wires. FIG. 1. Schematic visualization &f quantum dots attached to a

An exciting route to bypass the coupling problem for linear support composed of a nanoscale rod or molecular string.
quantum dots is suggested by the recently demonstrated abfach quantum dot is addressed by a different laser. The absorption
ity to attach QDs to polymers by chemical methods at wel|-0f the dots can be tuned by varying their sizes, allowing selective
defined location§89]. We show below that at sufficiently addressibility with lasers of different wavelengths.
low temperatures, the QD-polymer system has quantized vi- . . . . .

3 QD-poly y q ndertaking quantum logic, with a detailed analysis of the

brational modes that can be used to couple electronic excita traints. | d by decoh d phvsical
tions in quantum dots in a controlled and coherent mannef£ONStraints IMposed by deconherence and pnysical param-

This “quantum-information bus” concept derives from the eters. Quantitative estimates are made for several specific

ion-trap implementation of quantum computation proposec?‘?nd'da.te systems in Sec. Vi, followed by conclusions and

by Cirac and Zollef7]. lon-trap schemes take advantage OdeSCUSSIOI’] in Sec. VII.

addressable multilevel ions that are trapped in harmonic

wells. The ions are then coupled through interaction with Il. THEORETICAL OVERVIEW

their collective vibrational mode7].* This scheme can be We outline here the basic elements of the quantum-dot—

extended to any system of multilevel quantum objects boung,antum-linear-support scheme for quantum computation.

by coupled quantum harmonic oscillators. We apply this apThe proposed system consists of semiconductor nanocrystal

proach here to a series of nanocrystal QDs attached 10 @pg attached at spacings of several tens of nanometers to a
linear support. The excitonic states of the QD act as carrier§ antum linear suppof& string or rogl. Each QD supports

of quantum information, which are coupled to the vibrationalgne qubit through a certain choice of excitonic states. Single-
states of the linear support. A linear support is a oneq it operations are executed by optical transitions between
dimensional materigle.g., a stretched polymer or a clamped hese states. QDs are coupled by the linear support in anal-
nanoscale rodthat is connected at each end to a wall. TheOgy to the ion-trap scheni@]. Thus, one uses detuned laser
support is contained in _either a vacuum or a.noninteractin(ibmSes to excite a phonon of the quantum linear support,
condensed-phase matrix such as liquid helium. Althoughyhich can then be used to cause conditional interactions be-
quantized acoustic-phonon modes have not yet been detectgfloen gifferent dots. The system is depicted schematically in
in nanoscale supports, Iow-ter_nperature studies have startqg;ig_ 1. The distance between the quantum dots is assumed to
to probe the quantum properties of such systems, €.g., gy |arge relative to their sizesee also Secs. 1l B and 11l €.
quantum of thermal conductanfe09)]. For identical QDs, the QDs need to be separated by a dis-
~ The main advantage of using quantum dots rather thapynce |arger than the laser-beam waist to guarantee that the
ions is the ablllty to cqntrol the optical properties ofquantquDS can be individually addressed. For typical QD excita-
dots by varying the size, shape, and composition of the dojon energies, the diffraction-limited-beam waist will be of
On the other hand, a disadvantage is that the analysis fqhe order of microns, so the separtion between the QDs will
quantum dots is complicated by the fact that they are COMpg |arger than this. In the presence of external driving fields,

plex composite objects and are not naturally “clean.” Forhe | Hamiltonian can be written as the sum of three con-
example, defects and surface effects can influence the elegiputions

tronic propertie$90]. Our model presupposes that nanocrys-
tals that are sufficiently “clean” will ultimately be available, H=Hy+Hc+H,,
so this puts some severe demands on the experimentalist.

Section Il gives an outline of the proposal, describing thewhereHy is the free Hamiltonian ¢ is the coupling Hamil-
basic physics and the formal similarities with the ion-traptonian, andH, is the Hamiltonian describing the interaction
scheme. Section Il describes the physics of the qubitshetween the system and the applied laser fields.
namely, the electronic states of quantum dots and the quan- The free HamiltoniarH, is given by
tum linear support that provides the information bus between
gubits. A summary of the necessary requirements of the qubit
states is given here. In Sec. IV we then show how one-qubit
and two-qubit operations can be performed in this system of
coupled quantum dots. Section V discussesf#asibility of

N N
Ho= 2 2 hof| W) (W j[+ 2 > fiwfblba
n=1 | n=1 k
+> hoSalant > holclc. 1)
m |

Yn the original Cirac-Zoller proposdl7] the ions are coupled These four terms represent the energies of the excitons, QD

using the motional ground state, but it was shown later that thiphonons, linear-support phonons, and external electromag-
requirement can be relax¢dO]. netic field, respectively. Here is the QD indexJ\Iﬁ)n is an
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exciton eigenstate in theth QD, b, is an annihilation op- k=K Crnlom<1. (5
erator of thekth phonon mode of theth QD, a,, is an
annihilation operator of thenth linear-support phonon mode, Therefore, we can expand, to first order in the Lamb-
and ¢, is an annihilation operator of theth mode of the Dicke parametet,
guantized external electromagnetic field. The phonon fre-
guencies of the support are denoteddsy and those of the H, :2}12 gun|‘1’i>n<‘1’j|005( vt— o)
quantum dot byw?. kijn

The coupling Hamiltoniar - is given by

sin gy

+§ nmnk(alf"am)COSd’x . (6)
_ t t
Hc—mzkl Bkl ) n{Wilc +nj2k| Ynjikl ¥ i) nl ¥ilbhy Here
. ek
+nj2k| ankibnic] +H.c. (2 o= n<‘l'i ﬁfk'(rg_rﬂ) ‘l’j> (7)
n

The first term is responsible for radiative decay of excitoniS the resulting coupling parameter between the carrier states
states. The most important radiative-decay pathway is th# thenth QD. The second term in E6) transfers momen-
recombination of the electron and the hole. The second terftim from the laser field to the QD, thereby exciting phonon
describes the exciton-phonon interaction and gives rise tg1odes of the linear support. This term allows us to perform
both pure dephasing and nonradiative transitions between ef&0-qubit operations as described below. Manipulation of the
citon states. The third term is a coupling between the QrPPatial phasep, allows us to selectively excite either the
phonons and the e|ectromagnetic f|e|d Carrier transition, i.e., a Change in the intema| degl’eeS Of
The interaction Hamiltoniahi, describes the coupling of freedom of the QD without changing the vibrational state of
the excitons to single-mode plane-wave lasers in a standingbe support @,=7/2), or asideband transition in which the
wave configuration. Standing-wave lasers are not requisitéternal degrees of freedom of both the QD and the vibra-
for our proposal, but they allow for both faster and moretional mode of the support are changebl,0), depending
reliable operations as discussed in Sec. V B. We treat then Whether our QD is located at the antinode or node of the
laser fields semiclassically. In the dipole limit, we can write laser, respectivelj9]. _ _
Now, letQ) =2/ 7,, be the Rabi frequency of our desired
guantum operationgsee Sec. IYand letT be the tempera-
Hi=D-E= >, [(Wile(ra—ri| W) Vi)n(¥;|]-[eEx ture. Our system must then satisfy the following set of basic
kijn requirements.
xsin(k-r + ¢, )cod met— ¢y ]. (3) (1) Top<Trec, Wherer,is the time scale for exciton re-
combination. Typicallyr,e.=10"3—10"® s[60,91].
Herer? andr}! are the position vectors of the electron and (2 @<w], wherew? is the first harmonic of the linear-
hole in thenth QD, respectivelys” is the center of mass SUPPOTt spectrum. This requirement must be met in order to
location of this QD:e,, E., and v, are, respectively, the '€Solve the |nd|SV|dua! support modes.
polarization, electric-field amplitude, and frequency associ- (3 KpT<fiw;. This ensures that only the ground-state
ated with the field modé; ¢, and ¢, are the spatial and phonon mod_e is occupied. This requirement comes from the
temporal phases of the field. The dipole limit is valid hereCirac-Zoller ion-trap schemig’], where the motional ground
since a typical energy scale for single-particle electronic exState is used as the information bus. _
citations in QDs is 0.+1 eV, corresponding to wave-  (4) Dephasing and population transfer due to exciton-
lengths 1k~0.1-1 um. For a typical dot radiusR phonon coupling must be minimized, or preferably avoided
<5 nm, the electric field is then almost homogeneous ovefliogether. _ .
the dot. In analogy to ion-trap schemgd, the center of We now discuss the details of our system in light of these
mass of thenth QD, rg,,, is decomposed into its constituent requirements.
phonon modes, IIl. QUBIT AND LINEAR SUPPORT DEFINITIONS

A. Definition of qubits

rh=2,¢ =D, cC al +an), 4
= 22 Cnelin= 2, Cnelon( @+ am) @ In analogy to the Cirac-Zoller ion-trap schetfif, three

excitonic states will be used, denotf®),,|1),,, and|2),.
whereq, are normal modes angy,, is the zero-point dis- Advances in ion-trap methodology have allowed this require-
placement for themth normal mode;|qom|=VA/2Mw,,  ment to be reduced to only two staf&?,93,1Q. However,
whereM is the mass of the mode anal, is the mode fre- for our purposes it suffices to use the more familiar three-
quency. For low-phonon occupation numbers, where the mastate scheme. The staté®), and |1), are the qubit logic
tion of the center of mass of the QD is small compared to th&tates, and2), is an auxiliary state that is used when per-
wavelength of the light, the Lamb-Dicke regime is obtained,forming two-qubit operations. These three-exciton states
ie., must possess the following properties.
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(1) The states should be dark for optical recombination: F,=mg+mg, (8)
This is required so that we will have long recombination
lifetimes. wheremy=*+1/2,+3/2,+5/2, . . . refers to the projection of
(2) The states should be dark for radiative relaxation tothe hole total angular momentudy, andmg=*+1/2,+ 3/2,
other exciton states: This is required to prevent leakage td-5/2, ... is theprojection of the electron total angular mo-
other exciton states. mentumJ,. State multiplets are classified gL ey NyLp,,,

(3) The states should be degenerate: The energy separe.g., 1S;,,1P3,, and states within the multiplet are labeled
tion is required to be smaller than the lowest-energy internaby F,. For a II-VI semiconductor such as CdSe, the Bloch
phonon, in order to suppress nonradiative transitions bestates for the valence-band hole states possess total angular
tween states. We wish to make transitions between vibronimomentumS,,=3/2,1/2, derived from coupling of the local
eigenstates, rather than creating oscillating wave packetsybital angular momentum 1 iporbitals with hole spin 1/2.
which would dephase as they move on different potentiatrhe corresponding Bloch states for the conduction-band
surfaces. Obtaining a large amplitude for moving betweerelectron states have total angular moment8gs1/2, de-
vibrational eigenstates of two surfaces depends on the exigived from coupling of the local orbital angular momentum 0
tence of two featured|i) large Frank-Condon overla®4]  in s orbitals, with electron spin 1/2. We consider here only
between these eigenstates, which will be the case for degestates within the band-edge multiplet, for which=L,=0
erate exciton potential-energy surfaces) very narrow  andS,=1/2,S,=3/2. Hence the total electron and hole an-
bandwidth laser pulses, which can selectively address thgylar momenta are given by.=1/2J,,=3/2, respectively,
required states. These transitions are described in Sec. IV And there are a total of eight states within this multiplet. It
The degeneracy will need to be broken in order to perfornyoliows from Eq. (8) that there is ond=,=2 state, twoF,
certain operations. =1 states, twoF,=0 states, twoF,=—1 states, and one

In order to choose states that satisfy the above requirqEZ: —2 state in this $,,1S,, multiplet. States within a
ments, detailed calculation of the exciton wave functions angioyplet are distinguished by a superscript ¢r U). The

fine structure of the quantum dots is essential. We emplogigenfunctions, linear absorption spectrum, and selection
here the multiband effective-mass model that has been emgles for dipole transitions from the ground state to this

ployed by a number of groups for calculation of the band-jowest-lying EMA multiplet are calculated in Rei60]. For
edge exciton fine structure in semiconductor QDs made ofpherical QDs the following results were found.
direct-band-gap _semiconducto[r§2,6(]. For larger nanoc- (1) Hexagonal crystal structure: THe,= =2 states con-
rystals, possessing radi>20 A, the multiband effective- stitute degenerate exciton ground states. FFhe = 2 states

mass theory is generally in reasonably good agreement withq one of the=,=0 statesdenoted 8) are optically dark
experiment as far as energetics are concef@l It has i, the dipole approximation.

been used extensively for CdSe nanocrystals by Efros and () cubic crystal structure: The,=0b,+ 1L, +2 states

co-workers [61]. While the effective-mass approximation ¢onstitute degenerate exciton ground states and are all opti-
(EMA) has known serious limitationg87], and has been cally dark.

shown not to provide quantitative results for smaller nanoc- \\ie consider here explicitly a nanocrystal made from a

rystals [73], it nevertheless provides a convenient, analyti-gjrect-hand-gap material with cubic crystal structure. An ex-
cally tractable description, with well-defined quantum num-ciion wave function of the $,/,1S,, multiplet, W (re,rp),

bers for individual states, and will allow us to perform an can be expanded in terms of products of sinale-particle wave
order-of-magnitude assessment of the feasibility of our P P gie-p

cheme. functions:,bf,zyms(re) and ¢35,y (rr) [52,60. In order to sat-
To explain the exciton-state classification resulting fromisfy the requirement of optically dark qubitsecall condition

the multiband EMA, it is necessary to consider a hierarchy of1) abovd, we construct our qubit from thé&,=—2,0-

physical effects leading to an assignment of appropriat&tates,

guantum numbers. These effects are, in decreasing order of

importance,(i) quantum confinementdot of finite radius, 1

typically smaller than the bulk-exciton radiygii) discrete |0)=[Wou(re,rn))= \/§[|¢f,2,_1,2(re) Ui 1dTh))
lattice structure(iii) spin-orbit coupling,(iv) nonspherical

nanocrystal geometry and facetting of surfaces, lattice — |31 1T Wao— 1T,

anisotropy(e.g., hexagonal lattigeand (vi) exchange cou-

pling between electron and hole spin. The electron-hole Cou- |1)=|W _,(re,rp))=| ‘/’?/2,71/2“6) ‘/’%/2,—3/2(rh)>- 9

lomb interaction is neglected: detailed calculations show that

this may be treated perturbatively over the range of nanoThe auxiliary level for cycling transitions is taken to be the
crystal sizes for which the EMA is accurdfé7,95. These F,=2 state,

effects lead to the following set of quantum numbansg:

(np) the principle electrorthole) quantum number), (J,) 12)=|V  o(re,th) =43 1T W34 3 Th)).  (10)

the total electrorthole) angular momentunt, . (L},) the low-

est angular momentum of the electr@role) envelope wave Explicit expressions for the electron and hole wave functions
function, S, (S;,) the electron(hole) Bloch total angular mo- are given in the Appendix. The statgh,|1),|2) are degen-
mentum, and the total angular momentum projection erate and have equal pariigetermined by £ 1)%z].
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band-gap materials, other states may be more appropriate. It 0=

is only essential that they satisfy the requirements above. In
this paper we shall use primarily the EMA states describeq,herel is the linear mass density afg, is the wave num-

above for cubic nanocrystals of direct gap materials, becausgs; The normalized solution to the transverse wave equation
they illuminate in an intuitive and quantifiable manner the iih fixed ends is given by

difficulties associated with our proposal. However, in the dis-
cussion of feasibility(Sec. V), we will also present results 2l
Cm(X)= r5|n(kmx),

k
)\ m»

obtained with qubit states obtained from tight-binding calcu-
lations for nanocrystals constructed from an indirect-band-

gap materialsilicon). wherek,=mm/L, | is the unit length, and. is the string
length.
B. Quantum linear support

. . . 2. Rod
In order to determine whether quantum computation is 0ds

possible on such a system we need to examine also the prop- In a rod, the resistance to transverse motion results from
erties of the linear support. The support is made oukof internal forces. This leads to a different dispersion relation
small units, e.g., unit cells or monomers. We can write theand, consequently, to a different solutiop(x). The trans-
displacement of each unit as a sum of normal modes, verse modes of a rod can be defined in terms of the lelngth
density p, Young’s modulusY, cross-sectional ared, and

the second moment & (or the massless moment of inertia
of a slice of the rog andl. As shown by Nishiguchet al.
[96], the long-wavelength phonon modes=1000 A) are

The zero-point displacements for a homogeneous support ay¢ell described by the classical dispersion equation

ATC IO Y Yl

A’

Xk:% Emkqm:% Emqum(a:n+am)- (11

where\ is the linear mass density ahds the length of the
unit. The lowest-energy modes will be long-wavelength
transverse modes. Since the wavelengths of the modes El;]
interest are large compared to the separation between neigh-
tk?oring units, we can approximate the support as being CONg (%) =N, [sin(kyL)— sinh(k,L)][cos kx) — coshk,x)]
inuous.

In many cases, a sparse number of attached QDs will have —[cogk,x)—coshk,x) ][ sin(k,L)—sinh(k,L)].
only a small effect on the normal modes of the support. The
validity of this assumption depends on the materials chosehiere Ny, is a normalization constant proportional /L.
and will be discussed more thoroughly below. For now weThe values ofk;, are not known analytically, but can be
will calculate all of the relevant properties assuming point-shown to be proportional to [/
like, massless quantum dots consistent with our assumption
that the spacing between the dots is larger relative to their C. Approximations
intrinsic size. For thath pointlike QD attached to unit cefl
with one dot per unit cell, we can identify the dot and cell
normal-mode expansion coefficients. We then hayg,

=Cp, Wherec,, andc,,, are, respectively, the coefficients Shm= Cnm%om - (13
relating the displacement of theh unit cell andnth QD to
the displacement of theith normal moddEqgs.(4) and(11),  This product is the quantum-dot displacement resulting from

respectively. For a continuous support, the set@f, be- the zero-point motion of moden of the support. We shall
comes a functiolt(x) that is the normalized solution to the r?fer to it as _thejo_t-modal displacemerThe above discus-
wave equation on the support. Any specific valuegf, can sion of vibrations in the support assumed massless QDs, mo-

) . o tivated by the assumption that they have negligible spatial

gogv be writtencn(x,), wherex, is the position of thenth extent relative to the distance between them. To investigate
: . . the effect of the finite mass of the quantum dots, we com-
The two most common types of linear continuous systems : ! o .
are strings and rods. puted_numencal solutloqs of_the Couple_d vibration equations
for strings and rods having finite-mass increments located at

discrete points, simulating the attachment of finite mass
quantum dots. These numerical calculations show that for
In a string, the resistance to transverse motion comes froraparsely spaced dots of mass small enough that the total
an applied tension}. The dispersion relation for the fre- weight is of the same order of magnitude as the weight of the

guency of a string in modm is support alone, the resulting value $f,, remains unaffected

wherel, is the moment in the direction of the displacement.
The transverse normal modes for a clamped rod are well
own [97], resulting in the solution

The important parameters characterizing the support are
o], the frequency of its first harmonic, and the product

1. Strings
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1 - T T IV. QUBIT OPERATIONS
—e— Average
| -a-- Exact
0.95 A. One-qubit operations: Coupling of dots to light
0.9} 1. Derivation of the interaction Hamiltonian in the rotating-
wave approximation
%3 0.85 While dipole transitions in QDs are similar, in principle,
o to dipole transitions in atomic systems, the strong coupling
0.8t . o )
to internal phonon modes adds an additional complexity.
0.75 D Consider the modifications of Eq&l)—(3) for a single QD
' unattachedo a linear support, interacting with a single laser
0.7t "--m field with the QD located at the antinode of the field, i.e.,
with the sink-rg ,+ ¢,) term in Eq.(3) vanishing. Thus,
. . - . . omitting the linear support term,
085 0.5 1 1.5 2 25 3 g PP
Iogw(xdlks)
2. iti _ d
_ FIG. 2. The addmon_of a sparse number of quantum do_ts to the H= E ﬁwﬂ\lfj><qu|+ 2 hwkblbk
linear support has relatively little effect on the dot modal displace- ] K

mentS,,,. Here we present results f&;;, the dot displacement

resulting from the first harmonic of the support, for a system with t

two QDs attached to a string of length=2000 nm. The QDs are + ”Ek hyji W)Wl (Bt b
centered at 499 and 1501 nm. Each QD is represented as an in-

creased density that is distributed over a length of 2 nm, e.g., 499 i

+2 nm. Each dot experiences a displacement, which is affected by + ; 2 gy |\Pi><q’i |cogmt— ).
the addition of the second dot on the support. The dot displacement

measured relative to the value obtained from a homogeneous string,

Sy, is plotted as a function of lag(A\y/\g), where)y is the linear-
density increment due to the dot akd is the linear density of the
string. The solid line guides the eye through the exact solution, the

dotted line through the solutions obtained for a homogenous density

equal to the average density. One sees that the val8g changes Ho= E ﬁwﬂ\[fj)(\]fj |+ E ﬁw‘k’blbk
by less than a factor of 2 over a three orders of magnitude change in ] 3

g for a fixed A

We separate this Hamiltonian into two parts; andH,,

- . + 2 By Uil (b +by), (15
to within a factor of 2 by the presence of the d¢ése Fig. ik

2). A simple way to approximate the presence of the QDs
and retain an analytic solution is then to replace the linear
density of the support by the average combined linear den- _ t
sity of QD and support. Hl_igk Ay W (W] (b +by)
Since we are interested here in order-of-magnitude esti- '
mates of feasibility, we will approximate,(x,) by v2I/L. ij
This approximation corresponds to the maximum value of +; 2hgy [ Vi)V j[cosmt = ). (16
Cm(X,) for a string and to approximately the maximum value
of ¢h(X,) for a rod. Since the larger the dot displacement,

the larger the coupling between dots, this means that ourhe “free” Hamiltonian H, may be diagonalized by a dis-

estimations of number of operations will be an upper boundgp|acement transformation. LeD,(a) be the unitary dis-
These approximations combined with E@®) yield the  placement operator,

following equation for the Lamb-Dicke parameter:

h — abl—a*b, _ _ T
77m’nk2:k2'31m: K2ShmCoso=k; \/ Mo cosé, (14) Di(a)=ex *=Du(—a)".
m

whered is the angle between the modal displacement and th&he displaced phonon operaity; is defined as
direction of the laser beam, amd is the total support mass,

M=LN\. Note the inverse power dependence Mnin Eg.

(14). We shall see in Sec. V B that the massive nature of the djk=Dy(— aji) b D (@ji) = by + e,

linear support and the resulting small value of the Lamb-

Dicke parameter provides the major limitation for our sys-

tem. and satisfies standard boson commutation relations
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T ~ . s
[dik. ] 1= S H,=elHot/ipy g~ iHotlh

dy .d dt df :i;jl By Wi (Wi t®k¢l;n F o mid M) My
[ jks j’k']z[ ik j/k/]zo- , \

ol i Yiil
xelan-mig, > Fl [—Llnﬁ)(mﬁl

n'm’l d
Note that for realaj, we havea;(bf+by)=dfdj— a;? n’,m’ @)
—bjby. Letting a; =y /of and inserting a complete set X expi wl(n’ —m' )]+ + Tjng)((m’ + 1),

of exciton states into Eq15), we find
Xex;{iw?(n’—m’—l)t]]vLiEj RO (|

Ho=$ ﬁwf|‘1’j><‘1’j|+§k: ﬁw‘@ (W)W )
XeXF{_i(th—wﬁ+t_¢t)]®kn2m FamdNik)
X[biby— ajc(bf+Dby)] '

. x(mjk|ei‘”g(“*m)t+ H.c., (17

2
t Yiik
Wy

wherewf = wf" —of"

While this expression appears very complicated, it can be
drastically simplified under certain reasonable assumptions.
First, note that for single-qubit operations we need to con-
sider only two exciton statd¥’,) and|W¥,). The first term in
H, essentially describes nonradiative transitions between ex-
The eigenstates ofd,-de,-k are labeled [ny), where citon states due to phonon emission. Under the assumption
dJdejk|njk>:n|njk> and<njk|mj’k’>:6kk’FHr;1k-2 The |:J;1J'n’1k that the phonon modes are initially unoccupied, we can
are Franck-Condon factof®4], describing the overlap of choose the statdd’,) and|V¥},) such that they have a neg-
vibrational eigenstates between different excitonic states ligible propensity for nonradiative transitions, i.e., they are
andj’. We can then rewritéi, as protected against single-phonon emissfoecall condition

(3). for “good” qubits in Sec. Il A]. This means that we can

effectively set ally;; to zero, thus eliminating the first term

in H,. This important simplification is treated in detail in
Ho=§j: hw?+|q’j><qu|+% fiog[ W) (Wjld]dj, Sec. V A below. Thus we are left with

X (W]

Hi=hg@’ W a)(Wolexdi ¢ —it(n—wfp)]
where of" = 0®—3,(yjj/w})? is the renormalized elec- X o
tronic energy level. D12, Famdnad(mpde k™ ™ty He,
We transform to the interaction picture defined Hy: nm

H, =exp(Hot/A)H exp(~iHct/A). To do so, it is useful to in-  \we then tune our laser on resonance such thatwS; , and
sert into this expression two complete sets of displaced osnake sure that the laser spectral width is much smaller than
cillator states belonging to different excitonic statesd], the lowest quantum-dot phonon frequenoﬂ,. This allows
us to make the rotating-wave approximatiGRWA), i.e.,
eliminate all terms that rotate faster thafi, which leads to

IiXIJZ@k; |”ik><nik|><@k'% [mje (M| B _
H|:ﬁgﬁb|‘1’a><‘l’b|e'¢t®k; FandNa) (Nl +H.c.

:@k%:n [ My F e (18)

This RWA interaction Hamiltonian, Eq18), is very similar

to the familiar two-level system Hamiltonian used exten-
Changing variables fronb, to d in Eqg. (16), and trans- ~ sively in atomic opticg98]. However, the strength of the
forming to the interaction picture now vyields, after someinteraction is modulated here by the Franck-Condon factors,
standard algebra, Fab,. To allow the simplification of the Hamiltonian from

Eqg. (17) to Eqg. (18) requires a judicious choice of laser in-

tensities and states. In our scheme the occupatiah all

°Note thatn refers here to the occupation quantum number of thephonon modes will be initially zero. Using E€}), it is use-

internal phonon modes, not to the quantum-dot index. ful to then introduce the factor
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to use the=,=1 andF,= —1 states of the $;,,1 Pg;, mul-
tiplet as the intermediate state. An exciton wave function of
the 1S;,1 P5,», multiplet \I",’:Z(re,rh) can be expanded in
terms of products of single-particle wave functions
U3om(re) and g (1) [62,60. The intermediateF,=

+1 virtual states can be written as

S \ | ; 1
0> > —x b |‘P11(re’rh)>:_ﬁ“‘/fflz,:llz(re)l/’SP/Z,tB/Z(rh»

FIG. 3. Energy-level scheme for a quantum dot showing the
laser fields and transitions necessary for one-qubit operations.

o o it e meiany 1oviD) o ot mebtved in those wan. The Raman-Rabi ffequendy zana,can then be adjusted by
qubt Y increasing the electric-field intensity and by reducing the de-

" X . . i
sitions and is not shown. The linear support modes are not mvolvegl . . . . LS .
either. Two antinodal laserk, andk,, allow us to perform a Ra- UNNg from the intermediate level. We will describe in detail

man transition via a virtual statp). Transitions occur without in Sec. VB what range of values of intensity and detuning

changing internal phonon number, since the laser’s frequencﬁlre allowed.
widths are smaller than the internal phonon frequeaa@y

+ \/§| 'ﬂf/z: 1ATe) 505/2: vl

B. Two-qubit operations: Coupling quantum dots, quantum
supports, and light
Qab:gﬁbﬂ Fg& . . .
K Our two-qubit operations are equivalent to those of the
Cirac-Zoller schemég7]. The use of optical Raman transi-
2maly ab tions to implement this scheme has been extensively ex-
= 7 l_k[ FoadWal e (re=rn)|Wo), (19 piored(8]. In our case, we apply the Hamiltonian of H6)

with two lasersk; andk, of frequencyr,; and v,, respec-
which corresponds to the Rabi frequency for an on-resonaritvely. For two-qubit operations, the quantum dot is centered

transition between exciton statasandb. I, is the laser in- at an antinode ok; and at a node ok,. Switching to the
tensity anda=e?/(4meyhic) is the fine-structure constant. interaction picture and calculating second-order transition

probabilities to first order iny, one obtains the following

2. Raman transitions effective Hamiltonian:

Since we wish to use near-degenerate states of equal par-
ity for our qubits, we cannot employ dipole transitions. HM = -7 nmnkz(ajne—iwmt+ameiwmt)
Hence we use Raman transitions. These connect states of m
equal parity via a virtual transition to a state with opposite
parity. Recall that parity is determined by-()"z Suppose
we start in the|1)=|¢ 3 _1lre) lﬁg/z,—a/g(fh)) state, for Xexp[—i[(vi—vo)t+do—d1]}+H.c. (21
which F,=—2. We can then make transitions through a vir-
tual level|v) that has opposite parite.g.,F,= +1), to the  Note that the nodal and antinodal lasers result in an effective
state|0) havingF,=0. Figure 3a) provides a schematic of Hamiltonian in whichz depends only on the nodal lader.
the coupled QD-laser-field system, showing the ley@)s  This differs from the effective Hamiltonian derived for Ra-
|1), and|v) together with the fields required to cause a Ra-man transitions when traveling waves are ufgd The la-
man transition. Under the assumptions that only two lasersers are chosen to have a net red detuning,; w;— v, + v,
field modesk; andk, are applied, and in the rotating-wave = — w,, . In the RWA(i.e., eliminating all terms rotating at
approximation, the standard theory of Raman transiie8%  2w,,), with ¢,— ¢, =, this yields
leads to the following expression for the Raman-Rabi fre-

X Qa2 W ) oW €l (o1t

Ramal

quency between an initial stale and a final statéf): HQ{fi:Q::fkllllan(\I'ilam,+H.c., (22)
i 12 L0L) where
fikok 2 Ky
Qraman- — 3 - (20 4 _
Qflkzk]_: Qflkzkl (23)
nm’ 77mnk2 Raman

Here k; and k, are chosen such that the detuniag- ;

— Wi~ v, =0~ i vy, | is the index of an intermediate This combined QD-linear-support operation transfersritie

exciton state chosen to provide a minimum valuedofand QD from statei to f, with an accompanying change of one

Ol is defined in Eq(19). For single-qubit transitions, both guantum in the phonon mode’ of the support. A schematic

lasers are aligned such that the QD is positioned at antinode&epresentation of this operation for the qubit stafes)
For QDs possessing cubic crystal structure and composed |0) and|#)=|1) is shown in Fig. 4. Choosing interaction

of direct-band-gap materials, we have found it advantageouimes such thatt=km/(2() ' 2k1), where k is an integer

nm’
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le~— Frequency [Hz] A
10" + |aux>
Raman detuning 10"
=)
Single qubit :.-"':
operations
03] I} ..: Two qubit
0>s,> \ operations
0>]s>——F  [islsm_ N P
0> — £ |I>sp—% SI s Dot phonons ; 10° T
1> — $o) oo
FIG. 4. Energy-level scheme for a quantum dot on the linear
support showing laser fields necessary for implementation of two- .
qubit operations. As described in the text, the use of nodal and Sori h ] 8 i
antinodal lasers allows us to selectively transfer population from pring phonons 10 R i 105,[1>,]2>

|0) to the lowest-energy phonon sideband|bf (labeled|1)|s;))

via a Raman transition, without transferring population to the car- FIG. 5. Summary of energy scales involved in our proposal for

rier. The minimum phonon frequency is denoteyl. Nonresonant  single- and two-qubit operations. The std@y |1), and|2) appear

transitions to higher-energy phonon sidebanids|6,)) constitute  degenerate on the scale of this figure.

the main source of error in the proposed gates. For very high laser

intensities, nonresonant quadrupolar transitions to higher-level . fikok . )

states(represented by the stajig)) also become important. Calculation of() 7 was described above in Sec. IV[Aq.
(20)]. We can obtain the Lamb14-Dicke parametgf nk,,

specifying the pulse duration, we can write the unitary opfrom the decomposition in Eq414). This now allows specific

erator exp(-[i/h]Hg 1) =U""(t) as evaluation of the contribution from the linear support to the
K Lamb-Dicke parametet;. As described in Sec. llI C, we
i K . L .
up =9XF{ —i—(|¥n(Pila+tH.c)|. (24) approximatezn as being independent of the specific dot and
2 from now on will drop the dot index.

In order for the Cirac-Zoller scheme to be successful, the
phonon mode of interest), must start with zero occupation.

The applied operations take advantage of the fact that the
zero-occupation phonon state is annihilated by the lowering
operator a|0)=0. The sequence of unitary operations

C. Input and output

Since the qubit states do not include the ground state of
16 ' 20, n10 _ the quantum dot, initialization will generally require a trans-
Uc.pnase=U1 U “U7p ™ then results na controlled-phase ¢5mation from the ground state of no exciton to the defined
operation bgtvyeen quantum detsandn’, i.e., it causes the g it state. This can be accomplished by applying magnetic
second qubin” to gain & phase of 1 if the first qubitnis fie|4g that will mix dark and light states allowing for optical
|nthe|1>. staFe, and no additional phase if the first qubit is Ntransitions. If the magnetic field is then adiabatically re-
|_0>2 1Th'i°' IS 1eq$|val$ﬂt tt‘_) the m_atr:jx toperat]?r moved, one is left with population in the dark exciton state

| >“’. P (Ln(1]. € tme required to [{)e_r orm only. Qubit measurements can be made by using a cycling
Uc-phaseiS then 2<(#r/2) for ionn plus 1X 7 forionn’, i.e., transition, in analogy to ion tragi§].

QM) 1= o Tkekey—1 o fikakey -1 We conclude this sgction by. summarizing in Fig. 5 the
Tc-phasé (227 T Q) () 25 relative energy scales involved in our proposal.

. . , . . . .
Since the ions andn’ are identical we will use the approxi- V. FEASIBILITY OF QUANTUM LOGIC

mation thatﬂ:nt?klwﬂg,k;'fl in the remainder of this work,
hence In this section we address in detail the question of the
limitations imposed on our system by various physical con-
’ 1 fikok 1 . . . .
Q" ~ 2_9 261 2_92, (26) straints. We start by considering the issue of decoherence due
T T

to coupling of excitons to the internal nanocrystal phonon

. o modes, and propose a solution to this problem. We then
The inverse of the average refE)” can then be taken as a g,y the issues of scaling arising from the trade-off between
measure of the gate time, i.e., of the time for the two-qubity,ssiveness of the support, laser intensity, and the need to
controlled-phase operation. We defiflk, as the sideband mgajntain a large ratio of operations to exciton-recombination

interaction strength time. We find that the allowed size of our proposed quantum
computer depends on the assumed threshold for fault-tolerant

B fikok
Q2= ke, L Ramar 27 computation.

Ramart
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A. Decoherence ist, because there will always be a phonon mode that will
distinguish between these states due to nonline@tifp].

According to current analysis of experiments on nano X - S
However, in the linear approximation we have

crystal quantum dotf100], exciton dephasing derives pre-
dominantly from the diagonal phonon-exciton coupling term

of Eq. (2), Vi = vdrn) + 7dre)li)- (30)
The deformation potential coupling operatai(r) is a func-
Ek [1)(] I(y’k‘jler YkjbK)- (28 tion of the phonon modes and is expressed as
N
k(M= Ynim(N) =EgV - Unim(r), (31

Here v, is the self-coupling of an exciton stateia phonon

k, andb, is the lowering operator for thith phonon mode in  where E, is the deformation potential and,(r) is the

the ground electronic state. In the ground state the couplingoordinate representation of the normalized spheroidal pho-
is zero, and all excited electronic states have potential-energyon mode of leveh with angular momentunh and projec-

surfaces that are shifted with respect to this ground state. Wgon m. Following Takagahar#100], the spheroidal modes
desire to eliminate dephasing due to the first-order phonorcan be written as

exciton interaction. In the typical experimental situations in

which dephasing has been studied in the past, dephasing oc- i
curs on a time scale of nanoseconds for small da€o). Unim(1) =\ 5 [PniLim(hnr) 4 dn Nim(Kair) 1,
; ; ; ; POnim
This rate is extremely rapid compared to the experimental (32)

recombination time of dark states-(L0"® s for direct-band-

gap materials such as Cd$&0]). The reason for such fast \herep is the nanocrystal density,, is the frequency of
dephasing is twofold. First, the vibrational stationary state okhe spherical phononnim, Ljy,(hr)=(1h)V¥,.(hr),
the first electronic level becomes a moving vibrational wavey (kr)=(1/k)V XV xr¥,,(kr), and W (kr)
packet on the upper electronic surface, because the SpeCt@Ij,(kr)Ylm(Q). j,(r) is anlth-order spherical Bessel func-

width of the pulse is too broad to distinguish vibrational tion, Y™(Q) is a spherical harmonit,, andh,, satisfy stress-
eigenstates. Second, the QD is embedded in a solid-state ée’ b(ljundary conditions at the surface a?md q,, are de-
dium where the vibrations of the nanocrystal are ther}ermined by normalization. One can the,n wri,tenl

coupled to vibrations of the larger lattice. The phonons of the

QD can be treated as analogous to damped cavity modes in 7
atomic opt|gs[98]._ In the_ case of strong couplmg, one finds Yaim(F)=—Eqg\ lz—pmhmjl(hnlf)YP(Q)- (33
from numerical simulation that the dephasing between any P®@nim
two statesj and |’ is related to the rate of phonon-mode o
excitation. The latter is proportional tg;— yy;-|? for each For a cubic, direct-gap nanocrystal, the §t¢t§e3re states of
modek [100]. This conclusion of fast dephasing agrees withWell-defined angular momentum projection. Since Yjein
the analogous result for a leaky optical ca\i®g] as well as  Ed. (33) connects states with equal projection, the only pho-
with the results of experiment&101] and theoretica]100] ~ Non modes that can have nonzero matrix elements irf3®y.
analysis for embedded semiconductor nanocrystals. are those withm=0 [106]. The resulting matrix elements
The dephasing can be reduced in three ways. First, th#ill be independent of the sign of the exciton angular mo-
coupling of the QD phonon modes to external phonon andnentum projectionF, [Eq. (8)], i.e., the m=0 phonon
photon modes can be reduced by a judicious choice of nandnhodes cannot distinguish between exciton states haiving
crystal geometry and material. In our case the QD can dissof —F. Therefore, in the linear approximation, the states
pate phonon modes only to the support. In the limit of nolW —2(re.rn)) and|Wy(re,rp,)) will not dephase with respect
coupling to external modes, there will be no dephasing buto each other. Recall that we took these states as our qubit
the time required for recurrences could limit our gate-state|1) and auxilary stat¢2) [Eqs.(9) and(10)].
repetition rate. Although the oscillations will be fast, the os-  Third, and most importantly, one can change the way in
cillations for different phonon energies will be incommensu-Which transitions are made. In the above two situations, the
rate with one another. This could introduce a slow quantuninotional wave packet of one electronic surface is transferred
beating between ground and excited electronic states, whidi@ another electronic surface without changing shape, i.e., the
would have the undesirable consequence of requiring gateranck-Condon approximation holds. However, such a tran-
durations to equal a full beat cycle. sition requires either a broad laser or a fast excitation. This is
Second, one can find a set of electronic sthitesuch that ~ not actually the regime of relevance here. The scheme out-
lined in this work requires selective excitations of sidebands
Y~ =0 V j,j’ andV k. (290  whose energy separation is orders of magnitude smaller than
the quantum-dot phonon energiaee Fig. 5 Therefore, we
Physically this condition represents a set of electronic statewill be performing transitions from one vibrational eigen-
that create the same potential-energy surface for nuclear mestate to another vibrational eigenstate. Such transitions were
tion. This elimination of decoherence by degeneracy is amlescribed in Sec. IV with respect to the ground vibrational
example of a decoherence-free subsppb@2-104. The state. Consequently, the scheme proposed in this work is not
Jahn-Teller effect implies that no two such states should exaffected by fast phonon dephasing.

012307-10



QUANTUM COMPUTING WITH QUANTUM DOTS ON .. .. PHYSICAL REVIEW AG5 012307

Exciton states recombine and thus decay to the grounthe fidelity of a sideband operation on an arrajNajuantum
state by both spontaneous emission of photons and phonordots. First, we note thaf is limited by the recombination
We denote the recombination lifetime by,. Nanocrystals time of the qubit statess,.= 1/I". Naturally, the recombina-
are known to have dark-state recombination times rangingon time ., must be larger than the sideband operation time,
from 10°° s to 103 s, depending on the material chosen r,=7/(2(),), if the operation is to be successful. One can
[60,73,91,9% In our system;,. will be the fastest decoher- then define an upper limit on the fidelity that takes into ac-
ence time for individual qubits. One could potentially sup-count the statistically independent recombination of the ex-
press radiative recombination by placing the whole system iriton states of alN quantum dots. This background fidelity
a cavity [107]. Classical calculations of Roukes and co-assumes that,. is the same for alN quantum dots and it
worker show that nanoscale rods at low temperature havedoes not account for errors deriving from the interactions
high Q values:Q=10'[108]. This implies that the rods are with the driving laser field. The background fidelity is then
only very weakly coupled to their environments and we can
therefore assume that in the quantum regime, the Qig¥ill Pl TA_ - NI (34
lead to favorably long decoherence times. Another possible Tre 20,
source of decoherence is laser scattering from the sufgmort
opposed to the QDsThe magnitude of scattering is depen-
dent on the difference between the spectra of the quanturf is also limited by the spectral resolution. We assume that
dots and the electronic and vibrational modes of the supporthe difference in frequency between the lasers is tuned to be
A detailed analysis of this potentially important decoherencgesonant with the energy difference between the two states of
mechanism is beyond the scope of this paper, due to th@terest, Fig. 4. The energy difference between the states in-
many possible materials available for both linear supportgludes the relative ac Stark shift induced by the lasers. Omit-
and quantum dots. Ideally, one would like to choose a supting the adjustment of the laser frequency for the ac Stark
port that has an optical window at the frequencies of theshift will lead to gates of reduced fidelity110,113. The
lasers used to perform the qubit operations. Estimationgrimary concern is that the phonon modes should be spec-
based on the Raman transitions proposed above suggest tlﬁ@”y resolvable. As described in Sec. Il, the use of nodal and
this optical window needs to be between 0.1-1 eV and posantinodal lasers allows us to transfer population to the vibra-
sess a minimal width of 0.1 meV. Conversely, one can takdional sideband and at the same time forbid population trans-
advantage of the optical tunability of the QDs via their sizefer to the carrier, i.e., to the excitonic states of the QD. This
to construct a QD of such size that its transitions are comconstrains the operation frequenQy to be smaller than the
patible with a specific optical window suggested by the ma-separation between phonon modésy = wy,, ;— w;,. For
terial properties of the support. smallm, and forAw~ w3, we can then write this constraint

as

B. Parameter space

We now explore for what range of physical parameters 0,< ). (35
guantum computation is possible within our proposed
scheme by estimating the two-qubit gate fidelify, This
fidelity is defined as the trace overlap between the desiredhe population transfer to the off-resonant state will be of
and the achieved final stat&= min, Tr ApoATB(po), where  the order of 42/[4g®+(5)?], the result for a two-level sys-

A is the exact unitary operator for the gaBjs a superop- f[em interacting with a periodic p(_arturbation of strengttiat
erator describing the actual evolution of the system that takel§ Off-resonant by a frequency differenég98]. In our case,
the initial density matrixp, to a final density matrip;, and 9=, and =Aw~w]. However, numerical calculations
po ranges over all possible input states. For our two-qubif110] have shown that the population transfer to the off-
operations described in Sec. IV B, the fundamental operatioféSonant state for an ion-trap system is more accurately esti-
is the population transfer to the red sidebaad; UM° [Eq.  mated by Z%/[4g*+ (8)?]. Note that in Ref[110] g=0/2,
(24)]. B describes both the unitary evolution caused by apihe coupling to the carrier transition, ade- w,, the ion-trap
plication of the lasers and the decoherence due to loss dfode vibrational frequency. The advantage of the standing-
guantum information to the environment. Note that evenVave laser Confl_guratl_on is now apparent. For the traveling-
without decoherence and unknown laser naiBean still be ~ Wave laser configuration, the population transfer to the off-
less than unity due to deviations from the approximationgesonant — state is  2Xp/7)*/[4(Qz/7)*+ (w)?]
used to deriveA. Most importantly, deviations from the =~2(Q,/nw3)? [or, in the notation of Ref.[110],
rotating-wave approximation can lead to unwanted populaz(Q/w,)?]. However, in the standing-wave configuration,
tion in spectator states. one finds that the population transfer is(RA)?/[4(Q,)?

The resulting value of is determined by two constraints: + (w3)?]~2(Q,/w3)?. Sincen<1 the off-resonant popula-
the decoherence time of the system and the spectral resoltion transfer is significantly reduced when one uses the
tion of the gate. As a result of the use of the phonon bus irstanding-wave configuration. We can now write down a fi-
the two-qubit gate construction, both this proposal and thelelity that takes into account both the background fidelity,
ion-trap proposal7,10] have gate times that are dependentEg.(34), and the population loss to the most significant spec-
on the number of qubits. Therefore the quantity of interest idator state. The fidelity per sideband operatfors then
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aNT Q, 2 unwanted coupling to both the internal phonons and the
F~1—- T (36 linear-support phonons. In addition, we require that both
2 w1 |0} | and no]k2|Q|f(12| are smaller thar\, in order to avoid

in the standing-wave configuration. We emphasize again th&topulating the intermediate leveW';). Hence, the internal

if the laser fields are used in a traveling-wave configurationPhonon energies define an energy scale, which also con-

the fidelity is significantly decreased due to transitions to the$trains our systentsee Fig. 5.

carrier state, resulting itF=1—7NI'/2Q,—4(Q,/ pws)?. _ Furthermore, combining Eq$20), (27), and (37), one
One can now maximize the fidelity with respect to the INds that

coupling strengti}, for a sideband operation made on an

N-qubit array. Since

7(w3)’NI' |

5 (39

|24, 7o, | = A

F max__
QZ -

37

m(w3) NI |
8 ’

Analysis of three level systems has shown that in order to

. S ) o ) maximize Raman population transfer between stdtes

for givenI” and w7, the maximum fidelity can be written as and| W), the coupling strength betwedi,;) and|\lf]-> and

23 |W¢) and|¥;) should be equdl99]. In the atomic case this

(39) usually implies that the respective Rabi frequencies between
electronic stateg(); | and|ka12|, are equal. However, in our

case, with the use of nodal and antinodal lasers and coupling
to the support phonons, the equivalent condition is that

NI’
2\/511)?

Evaluation of the optimal operation frequency depends the
only on the factors in Eq(37). Inspection of the contribu-
tions to Q, [EqQ. (27)] shows that the underlying adjustable
parameters controlling the fidelity, in general, E§6), are
the intensitied ;, |,, the detuningA, and the Lamb-Dicke
parameter. However, the schematic shown in Fig. 4 showsTherefore, manipulation of Eq$19), (39), and(40) allows
that there are some additional constraints. Thus, it is essentiak to determine the intensity valuegs,andl,, necessary for
that the inequalityw$ <A < w$ be satisfied in order to avoid maximum-fidelity operations,

Fna=1—3

|k 1= 7o, | QK. (40)

AA [m(w3)?NI ]2 1
L Yo 8 e (4D
’<‘I’j|€1'(re—rh)|‘1’i>l_|[ Fbo
AA [m(0$)?ND]YE 1 1
2" o ra 8 2 2
7otz (Wil e (re=r) LT Fol
ANL[ 7(03)NT ] 1 1
- 27« 8 |k2|2 f 2 (42)
<‘I’f|€2'(re—rh)|‘1’j>l_|[ Fooa

Equationg38), (41), and(42) summarize the limits to imple- fore the magnitude ob] is restricted and thereby imposes a
mentation of this quantum-dot—quantum-linear-supporconstraint on the phonon spectrum of the linear support. Fur-
scheme. To maximize the fidelity we need to increase thenermore, scalability is also limited by the additional un-
frequency of the phonon busy;. However, as this fre- wanted evolutions, since the required intensity to achieve
guency increases, the increased intensity necessary to reagfaximum fidelity also increases witk.

the maximum fidelity will lead to unwanted evolutions not  There are also physical constraints on the density and
considered in our simple fidelity equation, E§8). These length of the support. We choose a minimal density
unwanted evolutions include quadrupolar excitation to=10 amu/A * that corresponds approximately to a chain of
higher electronic states. Such transitions will not be removegure carbon atoms with bond length 1.5 A. The length of the
by the use of nodal and antinodal lasg% Consequently, it support,L, is determined by the number of QDY, and by

is useful to define maximal laser intensitié$;* and 15, the spatial width of the lasef, Thus for identical dots, we
such that Eq(38) is valid for 1, <17 andl,<15%. There- haveL=IN. One could use QDs having no spectral overlap,
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obtained by making the dots of sufficiently different sizes, inoperation fidelity. Similar arguments may be made to derive

order to achieve more qubits per unit length. the full C-phase gate fidelity, resulting in the expression
Notice that when one rewritels in terms of N that the

intensity of the nodal laset,, has a strongeN dependence 2aNT Q, 2

than the intensity of the antinodal lasky, Physically, this is Fephase1— a. (—S (45)

due to the increased inertia of the system and is quantified by 2 w1

the Lamb-Dicke parametey. From Eq.(5) and Sec(lll B), o ) ] o
<M~ Y2 where M is the total mass of the suppor This is lower than the sideband operation fidelity, both be-

=\L, so thatl,«M [Eq. (42)]. This coupled with our ex- cause of the effect of.multiple coupling.s to spec_tator states
pression for the maximal gate fidelity, E¢89), yields |, and because of an increased operation duratiffase
«N*3. Note that we have used the Lamb-Dicke parameter_—4TA). In the presentation of numerical results in the next
consistent with the definition made in REL10], which has ~ Section we shall refer only to the prototypical sideband op-
an inverseN dependence_ eration f|de||ty,]: of Eq (36)
To determine the scalability of our system, we examine
the maximum number of QDs that can be sustained by a VI. NUMERICAL ESTIMATES FOR SPECIFIC
support having given values af; and\/\ ,,, and provide NANOCRYSTAL SYSTEMS
an acceptable level of fidelity for the sideband operatidn,
=UM°. We do this by requiring the following three con-
straints to be simultaneously satisfigd) F= Fpax, (i) |5 CdTe nanocrystals are an example of direct-band-gap cu-
<I17% and (i) Fnac>1—¢, wheree can be thought of as bic crystal semiconductor QDs. Using parameters found in
the error rate per gate frequency. The first condition stateRef.[112], we have performed the calculations summarized
that maximum gate fidelity, E¢(38), is achieved given the in the previous sections, using previous results of Eéitoal.
support and quantum-dot parametes$,andl’, respectively. [60] and Takagaharpl00] for the EMA analysis. Although
The second condition states that the laser frequency the dark states have infinite lifetimes in the EMA approxi-
should not exceed the maximum allowed valsee above  Mation, both experimentdll13] and tight-binding calcula-
Equation(42) together with the considerations in the previ- tions for the analogous CdSe syst¢n8] yield radiative re-
ous paragraph shows that is dependent on the number of combination rate"~10° Hz.
quantum dotsN. For the range of parameters considered We analyze here nanocrystals wiR—=20 A. For this
here, 1, is always smaller that™. Hence the maximum Size, the frequency of the lowest internal phononci$
number of qubits will be determined by the intensity thresh-=2.45x 10 Hz. Assuming a minimal separation of a single
old of the system at a node of the laser field. The thirdorder of magnitude between the energy spacingsndA,
condition ensures that one is able to perform an operatiowe setA=10" Hz. The energy separation between the
with success greater than a certain threshold védgeal to 1Syl Sy, and 18,1P;, multiplets is ~0.4 eV in the
1—¢). Combining these inequalities leads to limits on theEMA, which leads to required wave vectork;=Kk;
number of qubits for a given system. Conditigiisand (i) ~ =2.1 um™* for the irradiating lasers in the two-qubit gates.
can be manipulated to yield the following constraintién ~ For the specific CdTe states introduced abgSec. Ill A),
we calculate the dipole moments to H&*{(re,ry)| e,
N<ws(2_s>3’2i 1]0)=0.11R, (¥2{(re,rp)|e;-r|1)=—0.01R, where e,
N3 AT =(12)(x+iy) and e;=(1//2)(x—iy). Furthermore, we

have calculated the Frank-Condon overlap to Th&3g<°

On the other hand, conditior(§) and (ii) yield a constraint =0.98 andll,F2%=0.98. We assume that the spatial width

. . . 0o —
with an inverse power dependence @h. One finds that of our lasers is diffraction limited. A reasonable estimate of

this width is thenl=3um. At constant frequency, an in-

crease in the number of qubits requires an increase in the

laser intensity in order to maintain maximume-fidelity opera-

2)3/4 tions. We estimate thaf'®=10'2 W/cn? is the intensity at
(44)

A. CdTe

(43

1/4
27w
S\ —5/4, | max, 3/4 2

which the nonresonant quadrupole interactions begin to rise
in CdTe quantum dots. However, the intensity could poten-
) tially have stricter limitations depending on the spectra of the
One can then analyZ8,,, the maximum allowed value of specific support chosen. As mentioned above for the range of
N, as a function of the linear-support frequen@y. The  parameters we have examined, the intensity of the antinodal
combination of Eqs(43) and (44) results in a cusped func- |aser is weak enough so as not to lead to unwanted time
tion for N,ax @and is discussed in detail in Sec. VI for both a evolutions.
direct-band-gap semiconduct@dTe and an indirect-band- In Fig. 6, Nya is plotted as a function ofs$ for two
gap semiconducta(Si). o linear-support densities and for a modest threshold of one
~ The above discussion has fo%;sed on the fidelity for &rror for every ten operations: €0.1). At low frequencies,
single-companent operatioA=U7"", of the C-phase gate, Eq. (43) limits Ny, and increasing the values of leads to
Ucphase= U705 2UT'%. We have termed this a sideband larger values oN for a fixed Fpax. In contrast, higher fre-

X (Wil ey- (re_rh)|‘l’j>1_|[ Fob
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1 one must allows >0.02, or approximately one error for ev-

100 ery 50 operations. Even at the modest threshold vadue,
=0.1, one can only support seven qubits. Clearly, CdTe ex-
citons are thus not good candidates for scalable qubits within
this scheme. The underlying reason is that the recombination
time of the dark states, while longer than the operation time,
is not sufficiently long to provide high-fidelity operations.

B. Si

Si and other indirect-band-gap bulk materials exhibit
longer exciton-recombination lifetimes than direct-band-gap
materials such as CdTe. Although EMA descriptions of Si
8 9 10 11 nanocrystals exist, many subtleties are required to obtain ac-
log, o(@}) curate excitonic statd$2]. These have also been calculated
_ in semiempirical tight-binding approachgd5], as well as

FIG. 6. Dependence of the maximum number of 20-A CdTeyiz pseudopotential method37]. The advantage of tight-
nanocrystal quantum-dot qubits for which quantum computation isy;n4ing descriptions is that the optical properties of the nano-
sustainable, subject to the three conditions determined by analysigysta| can be determined with inclusion of realistic surface
QT the tWO'qU'b't gate(seg text .(') the f,fif_“ty Per gates=Fma; effects[114]. We estimate the feasibility of using Si nanoc-
(i) the antinodal laser intensityp=I >™; and (i) Fmac>1-e, gystals here using the detailed Si excitonic band structure
wheree can be thought of as the error rate per gate frequency. Th . - . . S
figure shows a plot oN,,,, as a function of the frequency of the previously calculated within a Sem!enjplrlcal description
linear-support phonon mode; , for two values of the linear sup- [95]. In order to Suppress phonon emission we choose staFes
port densitiesho=10 amu/A, \=10n,, ands=0.1. The extre- th_at_correqun_d to either the exciton ground.state, or lie
mum of the functions corresponds to the maximum possible scal\-"”thln the mlnlmal phonon energy of the exciton ground
ability achievable for 20-A CdTe nanocrystal qubits. For largerState. The minimal phonon energie§ are taken from EMA
values ofw$, the larger values off ™ that are possible, in prin- calculations made by Takagahara00], and are approxi-
ciple, are offset by the need for higher-intensity lasers. In this situmately equal to 5 meV for a nanocrystal of 20 A radius.
ation it is possible to support more qubits than are shown here bfone disadvantage of the tight-binding description is that the
relaxing the first constraint. However, one thereby loses the advarstates are no longer describable as states with well-defined
tage of the increase iff,a as o] is increased. angular momentum, and the calculation of electron-phonon

coupling is not straightforward. Therefore, we employ the
quencies require stronger laser intensifieg. (42)] so that EMA analysis of Takagahara for this. The Franck-Condon
eventually the limits on the intensity given in conditi6in) ~ factors are estimated to be0.9 between electronic states
begin to reduce the maximum possible number of quantunderived from the same multiplet. Calculations and experi-
dots, leading to the turnover in Fig. 6. Figure 6 also showsnents on Si reveal dark states with recombination times of
that the optimal value oN,,,, which we denote b\N., is  microsecondq95]. Tight-binding states lack well-defined
reduced for larger support densities. In Fig. 7, we now ploiquantum numbers. However, for spherical dots of 20 A
N, as a function of the error threshadd for a range of linear there are multiple dark states that satisfy our phonon-
densities\. We see that even for two-qubit quantum devicesemission criterig95]. States from these multiplets can be
used to form our logic and auxiliary states. Calculated Ra-

max
n (] B [5)] [o2] ~ o © o

—_

»

8 . . . man transitions between these states have quantitatively
— X similar values to those obtained for CdTe above.
:gga 1 Given an assumed radiative-re_combipation ralte
------ 0 =10° Hz [95], we perform an analysis similar to the one

above for CdTe. In Fig. 81, is plotted as a function ab3
for a variety of densitiea and a threshold of one error every
10 gates £=0.1). Fig. 8 implies that one could construct a
quantum computer composed of 700 quantum dotg if
=0.1. In Fig. 9, the extremum value b, .., N. is plotted as
a function ofe for a range of\ values. The results are also
summarized in Table I. One sees that, unlike CdTe, for Si
there now exists the possibility of building a quantum pro-
cessor that possesses an appreciably lower error ratelof
_|o%1 © 2° 3 error every thousand gates. Most encouragingly, it seems
0 possible to construct a small quantum-information processor
FIG. 7. Dependence of the optimal number of CdTe nanocrys{5—10 qubit$ with a larger linear-support density 19 and
tals,N, (peaks in Fig. on the error threshold plotted for various ~an error rate ofe<10"3. Naturally, from an experimental
linear-support densities.,=10 amu/A. perspective it would probably be more realistic to use a sup-
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800 ~ TABLE |. For a given error threshold and support density,
— 1%}\ the table shows the optimal value Bbff,,, N for CdTe and Si
700 --- 0 nanocrystalsi =10 amu/A .
600f i
—log;q(€) NNo N, (CdTe N, (Si)
5001
% 1 1 7 731
=E 4001 10 3 339
ook \ 100 1 158
y 2 1 1 107
2001 Y 10 0 50
100 ‘\\ 100 0 23
o 3 1 0 16
% 7 8 5 10 11 . 0 7

S
log ) 0((;1)1)

FIG. 8. Dependence of the maximum number of 20-A Si nano-trap proposal and have explored the feasibility of implement-
crystal quantum-dot qubits for which quantum computation is susing this scheme with semiconductor quantum dots coupled
tainable, subject to the three conditions determined by analysis dby a quantum linear support consisting of a string or rod. We
the two-qubit gatdsee text (i) the fidelity per gateF= F ., (ii) have found that the Cirac-Zoller scheme of qubits coupled by
the antinodal laser intensity, <15, and(iii ) Fac>1—¢, wheres a quantum-phonon-information bus is also applicable in the
can be thought of as the error rate per gate frequency. The figureolid state, and that there exist some advantages to a
shows a plot ofN,5 as a function of the frequency of the linear- condensed-phase implementation. One such advantage is that
support phonon moday}, for two values of the linear support there is a potential for significantly less noise in the informa-
densities A in=10 amu/A and\ =10\, ande=0.1. The extre-  tion bus than in the corresponding gas-phase scheme. Calcu-
mum of the functions corresponds to the maximum possible scalations by Roukes and co-work§t08] suggest that much
ability achievable for 20-A Si nanocrystal qubits. The degree thigherQ factors may be found for nanorods than are cur-
scalability is greater for the indirect band-gap material than for therently obtainable in ion traps. Clearly the extent of the use-
direct-band-gap CdTe nanocrystals shown in Fig. 6, and shows Iesfﬁlness of our proposal will be very dependent on the choice

dependence on the finear-support denity of materials. To that end we have analyzed the fidelity for

port having a density at least ten times greater than our pr wo-qubit operations for several candidate systems, including

posed minimal density, that was estimated for a pure car- oth direct- and indirect-gap semiconduptor quantum dots.
bon chain (e.g., DNA [45], carbon nanotubes, etched We have presented the results of numerical calculations for

supports, etg. implementation of the scheme with CdTe and Si quantum
’ dots, coupled via either quantum strings or rods. While nei-
ther of these prototypical direct- and indirect-band-gap ma-
terials reach the level of fidelity and size required for large-
We have developed a condensed-phase scheme forsgale quantum computation, the indirect-gap quantum dots
quantum computer that is analogous to the gas-phase iofSi) dOdehOW a reasonably high fidelity with an array of a few
tens of dots.

VIl. CONCLUSIONS

800.0 ' - - One very revealing result of these explicit calculations of
— % fidelity for one- and two-qubit gates is the limited scalability.
20.0 T o ;:" The scheme initially appears highly scalable in concept due
600.0 F 15.0 . = to the solid-state-based architecture. However, the detailed
= 100 i analysis given here showed that the dependence of the
Lamb-Dicke parameter; on the mass of the support is a
50 ] basic problem that essentially limits the scalability to a few
= 4000 | 0.0 L= -

3.0 35 4.0 45 5.0
-log,,(®)

3.0 4.0
_|°g1o(£)

5.0

tens of qubits even in the more favorable indirect-gap mate-
rials. The main drawback of this condensed-phase scheme
over the ion-trap scheme is therefore the large reductiop in
deriving from the introduction of massive supports. Such a
reduction has two important consequences. First, the laser
intensities need to be increasingly large to perform opera-
tions faster than the decoherence time. Second, such large
laser intensities necessitate the use of nodal and antinodal
laserq9,110. Without these features, the probability of gate
error is extremely high due to transitions to the carrier. This

FIG. 9. Dependence of the optimal number of Si nanocrystalsmeans that several of the alternative schemes proposed for

N, (peaks in Fig. 8 on the error threshol@ plotted for various

linear-support densities.,=10 amu/A.

ion-trap computatior{10,111 would not provide feasible
condensed-phase analof@lthough the recent scheme of
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Childs and Chuand92], which allows computation with ploy a slightly different phase convention. Efresal. when

two-level ions(or quantum dotsby using both the blue and  calculating the exchange HamiltoniapS,- S., between the
red sidebands could also be feasible in the condensed]pha3ﬁole and electron spinéh and & use the convention
e )

Additional sources of decoherence that have been nes - ) o .

glected herdscattering off the support, vibrational and elec- >h" Se™ SﬁSé-tl/Za(S:Se —$, ;). We instead use the con-
tronic transitions in the supporwill also act to limit the ~ vention thatS,-S.=S(S;+3(S;S; +S,Ss)]. For conve-
number of operations. However, one source of decoherendéence, we repeat the definitions of our qubit stéfes. (9)]
that can be eliminated or at least reduced is dephasing froii slightly more detailed notation,

the coupling to phonon modes of the support. This is a con-

sequence of the requirement of extremely narrow bandwidth 0) =W 1A r WS 34Th),
lasers, and therefore implies that a similar lack of dephasing

will hold for other optical experiments on quantum dots that |1)= |\Iff,2,_1,2(re))|\If§,2’_3,2(rh)>,
use narrow bandwidths. One such example is the proposal to

couple quantum dots via whispering-gallery modes of glass 1

microsphere$23]. More generally, this result offers a route 12)=—[|V3s 12t V50 14h)
to avoid dephasing for other spectral measurements on quan- 2

tum dots[ 115, - |‘I’§/2,1/z(re)>|q’§/2,— Al

An interesting additional application for this proposal is

the laser cooling of nanorods. A single QD could be place%ge electron states are simply the solutions to a free spin-1/2

or even etched on a nanostructure. A laser tuned to the red 1o in 4 spherical hard-wall box,

support phonon sideband of a QD-excited electronic stat

would excite the energy of the nanocrystal, and at the same 2 sin(wt/R) 1
time lower the average phonon occupation of the support. |§e>z|lll§/2il/2(r)>: — Yg(g,(p) S,i—>,
When the unstable state relaxes, the most probable transition R r 2

is the carrier transition. The net result is that the emitted (A1)

phonon is blueshifted compared to the excitation pulse. The
extra energy carried away by the emitted photon is thereb
removed from the motional energy of the QD.

The essential physical problem encountered in thi
condensed-phase realization of the qubits coupled by phonon 1 1
modes is the recombination lifetime of the qubit states, i.e., ‘S,t—> =|L=0m =0)ms= i_>_ (A2)
the exciton radiative lifetime. In principle, this could be ame- 2 2
liorated by using hyperfine states of a doped nanocrystal. ] o
Recent experimental results demonstrating electronic dopinghe holes states can be written explicitly as
of semiconductor quantum dots offer a potential route to 5
controlled access of these staf@46]. The feasibility study s _ 0 \/> +2
presented in this paper does indicate that although the de|-q'3/2,+1/2(r)>__Ro(r)Yo|U+1/z>—R2(r)( 572 |usan)
tailed physics of the qubits and their coupling is considerably

more complicated in the condensed phase than in the gas 2 _ 1
b P g + \[ng l|Ui3/2>_ \/;Yg|u+1/2>)

hereR is the radius of the dot an¥" are spherical har-
onics.Sis a conduction-band Bloch function ands is the
Z projection of the electron spin,

phase, limited quantum computation may be possible with
phonon-coupled solid-state qubits. Further analysis and de- s
velopment of suitable nanoscale architectures and materials X|W3p231))

is therefore warranted. 5
= —Ro(r)Yo|Usg) — Rz(r)( \/;Y2+2| Us1/2)
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Al jo(d) '
R,(r)=—— rIR)+ ———— r/R
A1)~ e 12($1/R) jo((b\@)lz(d’\/ﬁ )|

APPENDIX: COORDINATE REPRESENTATION OF
ELECTRON AND HOLE STATES

io(d)
mLL N
ioom ¢

We give here the coordinate representation of the electron R (r)= A jio(#r/R)—
and hole states. These states were derive®h [We em- R32|

JBIIR)
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wherej, are spherical Bessel function8=my,/my, is the 3 .
ratio of the light to heavy hole masses, apds the first root + > 7Y§3|U:3/2) ,
of the equation
jo(#)ia(VBS) +ia(h)jo(\Bb)=0. - -
P _ *1 0
The constanA is defined by the normalization condition |‘1’5/2,¢1/2(f)>—R1(r)( \/;)Yl U 372) \[ngluﬂ/z)
R o2 2 2 3
fo [Ro(r)+R(r)]redr=1. + \E)Yﬁu:m) +Rs(r)
The valence-band Bloch functions are given by 3 6
x| 3 %Y§1|U:3/z>_ 3_5Yg|U¢1/2>
|Urgp)=|L=1m ==1)|mg==*1/2),
1 \Fv*ll z>+\FY*2| 2>)
~\V7a73 1Us Y3 Uz )
U1 = S [V2IL=1m = O)lme= = 112 (G KA

+[L=1m ==1)[ms=F1/2)]. where R are the envelope functions arfdy,) are the

For our Raman-transition scheme, we have used staté@lence-band Bloch functions given above.
that were not analyzed if60]. In particular, these states are  1he radial functions are
from the 1S, 1P, exciton multiplet. To find these we used
techniques developed j117], and then calculated the eigen-

states of the exchange coupling using the methob6f A _ Bl 2j.(¢") .,
Raman transition connects states of equal parity through a Re(1) R32 Ja(é r/R)+3jl(¢,\/E)13(¢ VBrIR) |,
state of opposite parity. Therefore, the states of interest to us
are theF,= =1 states,
B |. ja(e')
o 1 Ry(r)=—> 'TIR)— ————=1(¢'VBrIR) |,
|We)=— ﬁ[|\Irf/2;|1/2(re)>|\I,E/2,t3/2(rh)> 1l R3’2{Jl(¢ jl(qs’\/E)Jl(d) AriR)

+2|wS, . P, .
V2 i1 ) Wiz A1) where ¢’ is the first root of the equation

The electron state is as above. The hole state can be written

explicitly as )
> 3 J1(D)is(VBd) + 311()ia(VBH) =0  (A3)
| W a1)) =Ru(r) §Y2| Usg) §Y1t1|U:1/2>
1, andB is defined by the normalization condition
+Ra(r)| 3 3_5Y3|U3:/2>
1 /7,1 1,+2 R[Rz(r)+R2(r)]r2dr=1 (A4)
~5V5's Us12)+ \/ Y3 Uz 12) o1 3 :
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