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Quantum computing with quantum dots on quantum linear supports
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Motivated by the recently demonstrated ability to attach quantum dots to polymers at well-defined locations,
we propose a condensed-phase analog of the ion-trap quantum computer: a scheme for quantum computation
using chemically assembled semiconductor nanocrystals attached to a linear support. The linear support is
either a molecular string~e.g., DNA! or a nanoscale rod. The phonon modes of the linear support are used as
a quantum-information bus between the dots. Our scheme offers greater flexibility in optimizing material
parameters than the ion-trap method, but has additional complications. We discuss the relevant physical pa-
rameters, provide a detailed feasibility study, and suggest materials for which quantum computation may be
possible with this approach. We find that Si is a potentially promising quantum-dot material, already allowing
a 5–10-qubit quantum computer to operate with an error threshold of 1023.
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I. INTRODUCTION

The tremendous excitement following the discovery
fast quantum algorithms@1,2# has led to a proliferation o
quantum computer proposals, some of which have alre
been realized in a rudimentary fashion. A representative
includes nuclear spins in liquids@3–5# and solids@6#, trapped
ions @7–10#, atoms in microwave cavities@11#, atoms in op-
tical lattices @12#, atoms in a photonic band-gap mater
@13–15#, quantum dots@16–24#, donor atoms in silicon
@25,26# and silicon-germanium arrays@27#, Josephson junc
tions @28–32#, electrons floating on helium@33#, electrons
transported in quantum wires@34,35#, quantum optics
@36,37#, quantum Hall systems@38#, and anyons@39,40#. For
critical reviews of some of these proposals see@41–43#. To
date, no single system has emerged as a clear leading c
date. Each proposal has its relative merits and flaws w
respect to the goal of finding a system, which is both scala
and fault tolerant@44# and is at the same time technical
feasible. In this paper we examine the possibility of mak
a solid-state analog of a scheme originally proposed for
gas phase, namely, trapped ions. One purpose of condu
such a study is to undertake a critical assessment of both
benefits and the disadvantages, which arise on translatio
an architecture designed for atomic states coupled
phonons to the corresponding architecture for conden
phase qubits. Our proposal uses quantum dots~semiconduc-
tor nanocrystals! and quantum linear supports~polymers or
nanorods! in an ultracold environment. It relies on rece
advances in the ability to chemically attach nanocrystals
polymers in precisely defined locations. Quantum dots
coupled through quantized vibrations of the linear supp
that are induced by off-resonance laser pulses, and infor
tion is stored in the exciton states of the dots. Internal ope
tions on exciton states are accomplished using Raman
sitions. We provide here a detailed analysis that allo
evaluation of the merits and demerits of a condensed-ph
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rather than gas-phase implementation.
Semiconductor nanostructures are known as ‘‘quant

dots’’ ~QDs! when their size is of the order of or less than t
bulk-exciton Bohr radius. In such ‘‘zero-dimensional’’ QD
the electron-hole pairs are confined in all three dimensi
and the translational symmetry that holds for bulk semic
ductors is totally lost. As a result of this quantum confin
ment the energy-level continuum of the bulk mater
changes into a discrete-level structure. This structure is v
sensitively dependent on the QD radius and shape, cry
symmetry, relative dielectric constant~compared to the sur
rounding medium!, surface effects, and defects. This sen
tivity can be used to create and control a wide range
optical effects@45#. In general, the term ‘‘quantum dot’’ is
used to refer to both ‘‘zero-dimensional’’ semiconduct
structures embedded within or grown on a larger lattice, i
lattice bound,and to individual, chemically assembled sem
conductor nanocrystals@46#. QDs can be created in a large
crystal structure by confining a two-dimensional electron g
with electrodes@47#, or by making interface fluctuations in
quantum wells@48#. A number of promising proposals fo
quantum computation have been made using the latt
bound dots@16–22#. We consider here instead the chemica
assembled semiconductor nanocrystals. In the remainde
this paper the term QD will therefore be implicitly unde
stood to refer specifically to chemically assembled nanoc
tals.

A large amount of theoretical and experimental inform
tion about nanocrystal QDs exists. Nanocrystals have b
studied for their photoluminescence properties, linear
sorption properties, and nonlinear spectroscopy using a v
ety of models and techniques@49–85#. For reviews see, e.g.
@86–88#. These studies clarified the roles of siz
dependence, lattice structure, surface effects, and envi
ment on the exciton spectrum. However, little attention h
been paid so far to the possibility of using nanocrystal Q
for quantum computing. One reason may be the difficulty
coupling nanocrystals. Direct interactions between sepa
dots are small and difficult to engineer, so that the route
scalability is not obvious. In the only other study to date th
proposed to use nanocrystals for quantum computing, B

r-
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and Wang considered a model of nanocrystals attached
high-Q microsphere and showed that the interaction betw
QDs can be achieved by using whispering-gallery mode
the microsphere to entangle individual qubits@23#. One prob-
lem with the realization of this model is that only a few QD
can be placed on each microsphere. Therefore, scalab
would depend on the ability to connect the microspheres
optical wires.

An exciting route to bypass the coupling problem f
quantum dots is suggested by the recently demonstrated
ity to attach QDs to polymers by chemical methods at w
defined locations@89#. We show below that at sufficiently
low temperatures, the QD-polymer system has quantized
brational modes that can be used to couple electronic ex
tions in quantum dots in a controlled and coherent man
This ‘‘quantum-information bus’’ concept derives from th
ion-trap implementation of quantum computation propos
by Cirac and Zoller@7#. Ion-trap schemes take advantage
addressable multilevel ions that are trapped in harmo
wells. The ions are then coupled through interaction w
their collective vibrational modes@7#.1 This scheme can be
extended to any system of multilevel quantum objects bo
by coupled quantum harmonic oscillators. We apply this
proach here to a series of nanocrystal QDs attached
linear support. The excitonic states of the QD act as carr
of quantum information, which are coupled to the vibration
states of the linear support. A linear support is a o
dimensional material~e.g., a stretched polymer or a clamp
nanoscale rod! that is connected at each end to a wall. T
support is contained in either a vacuum or a noninterac
condensed-phase matrix such as liquid helium. Althou
quantized acoustic-phonon modes have not yet been dete
in nanoscale supports, low-temperature studies have sta
to probe the quantum properties of such systems, e.g.,
quantum of thermal conductance@109#.

The main advantage of using quantum dots rather t
ions is the ability to control the optical properties of quantu
dots by varying the size, shape, and composition of the
On the other hand, a disadvantage is that the analysis
quantum dots is complicated by the fact that they are co
plex composite objects and are not naturally ‘‘clean.’’ F
example, defects and surface effects can influence the e
tronic properties@90#. Our model presupposes that nanocry
tals that are sufficiently ‘‘clean’’ will ultimately be available
so this puts some severe demands on the experimentali

Section II gives an outline of the proposal, describing
basic physics and the formal similarities with the ion-tr
scheme. Section III describes the physics of the qub
namely, the electronic states of quantum dots and the q
tum linear support that provides the information bus betw
qubits. A summary of the necessary requirements of the q
states is given here. In Sec. IV we then show how one-q
and two-qubit operations can be performed in this system
coupled quantum dots. Section V discusses thefeasibility of

1In the original Cirac-Zoller proposal@7# the ions are coupled
using the motional ground state, but it was shown later that
requirement can be relaxed@10#.
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undertaking quantum logic, with a detailed analysis of t
constraints imposed by decoherence and physical par
eters. Quantitative estimates are made for several spe
candidate systems in Sec. VI, followed by conclusions a
discussion in Sec. VII.

II. THEORETICAL OVERVIEW

We outline here the basic elements of the quantum-d
quantum-linear-support scheme for quantum computat
The proposed system consists of semiconductor nanocr
QDs attached at spacings of several tens of nanometers
quantum linear support~a string or rod!. Each QD supports
one qubit through a certain choice of excitonic states. Sing
qubit operations are executed by optical transitions betw
these states. QDs are coupled by the linear support in a
ogy to the ion-trap scheme@7#. Thus, one uses detuned las
pulses to excite a phonon of the quantum linear supp
which can then be used to cause conditional interactions
tween different dots. The system is depicted schematicall
Fig. 1. The distance between the quantum dots is assume
be large relative to their size~see also Secs. III B and III C.!
For identical QDs, the QDs need to be separated by a
tance larger than the laser-beam waist to guarantee tha
QDs can be individually addressed. For typical QD exci
tion energies, the diffraction-limited-beam waist will be
the order of microns, so the separtion between the QDs
be larger than this. In the presence of external driving fie
the full Hamiltonian can be written as the sum of three co
tributions

H5H01HC1HI ,

whereH0 is the free Hamiltonian,HC is the coupling Hamil-
tonian, andHI is the Hamiltonian describing the interactio
between the system and the applied laser fields.

The free HamiltonianH0 is given by

H05 (
n51

N

(
j

\vn j
e uC j&n^C j u1 (

n51

N

(
k

\vnk
d bnk

† bnk

1(
m

\vm
s am

† am1(
l

\v l
fcl

†cl . ~1!

These four terms represent the energies of the excitons,
phonons, linear-support phonons, and external electrom
netic field, respectively. Heren is the QD index,uC j&n is an

is

FIG. 1. Schematic visualization ofN quantum dots attached to
linear support composed of a nanoscale rod or molecular str
Each quantum dot is addressed by a different laser. The absor
of the dots can be tuned by varying their sizes, allowing selec
addressibility with lasers of different wavelengths.
7-2



,

fre

on
th
er

e
Q

f
in
isi
re
th

ite

nd

c

re
ex
-

ve

nt

m
th
d

ates

on
rm
the
e

of
of

ra-

the

d

sic

-

-
r to

te
the

n-
ed

se

ire-

ee-

r-
tes
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exciton eigenstate in thenth QD, bnk is an annihilation op-
erator of thekth phonon mode of thenth QD, am is an
annihilation operator of themth linear-support phonon mode
and cl is an annihilation operator of thel th mode of the
quantized external electromagnetic field. The phonon
quencies of the support are denoted byvs, and those of the
quantum dot byvd.

The coupling HamiltonianHC is given by

HC5(
n jkl

bn jkluC j&n^Ckucl
†1(

n jkl
gn jikuC j&n^C i ubnk

†

1(
n jkl

anklbnkcl
†1H.c. ~2!

The first term is responsible for radiative decay of excit
states. The most important radiative-decay pathway is
recombination of the electron and the hole. The second t
describes the exciton-phonon interaction and gives rise
both pure dephasing and nonradiative transitions between
citon states. The third term is a coupling between the
phonons and the electromagnetic field.

The interaction HamiltonianHI describes the coupling o
the excitons to single-mode plane-wave lasers in a stand
wave configuration. Standing-wave lasers are not requ
for our proposal, but they allow for both faster and mo
reliable operations as discussed in Sec. V B. We treat
laser fields semiclassically. In the dipole limit, we can wr

HI5D•E5(
ki jn

@ n^C i ue~re
n2rh

n!uC j&nuC i&n^C j u#•@ekEk

3sin~k•r cm
n 1fx!cos~nkt2f t!#. ~3!

Here re
n and rh

n are the position vectors of the electron a
hole in thenth QD, respectively;r cm

n is the center of mass
location of this QD;ek , Ek , and nk are, respectively, the
polarization, electric-field amplitude, and frequency asso
ated with the field modek; fx and f t are the spatial and
temporal phases of the field. The dipole limit is valid he
since a typical energy scale for single-particle electronic
citations in QDs is 0.121 eV, corresponding to wave
lengths 1/k;0.121 mm. For a typical dot radiusR
<5 nm, the electric field is then almost homogeneous o
the dot. In analogy to ion-trap schemes@7#, the center of
mass of thenth QD, r cm

n , is decomposed into its constitue
phonon modes,

r cm
n 5( cmnqm5( cmnq0m~am

† 1am!, ~4!

whereqm are normal modes andq0m is the zero-point dis-
placement for themth normal mode;uq0mu5A\/2Mvm,
whereM is the mass of the mode andvm is the mode fre-
quency. For low-phonon occupation numbers, where the
tion of the center of mass of the QD is small compared to
wavelength of the light, the Lamb-Dicke regime is obtaine
i.e.,
01230
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hmnk5k•cmnq0m!1. ~5!

Therefore, we can expandHI to first order in the Lamb-
Dicke parameterh,

HI52\(
ki jn

gk
i jn uC i&n^C j ucos~nkt2f t!Fsinfx

1(
m

hmnk~am
† 1am!cosfxG . ~6!

Here

gk
i jn5 nK C iU eEk

2\
ek•~re

n2rh
n!UC j L

n

~7!

is the resulting coupling parameter between the carrier st
in thenth QD. The second term in Eq.~6! transfers momen-
tum from the laser field to the QD, thereby exciting phon
modes of the linear support. This term allows us to perfo
two-qubit operations as described below. Manipulation of
spatial phasefx allows us to selectively excite either th
carrier transition, i.e., a change in the internal degrees
freedom of the QD without changing the vibrational state
the support (Fx5p/2), or asideband transition in which the
internal degrees of freedom of both the QD and the vib
tional mode of the support are changed (Fx50), depending
on whether our QD is located at the antinode or node of
laser, respectively@9#.

Now, letV52p/top be the Rabi frequency of our desire
quantum operations@see Sec. IV# and letT be the tempera-
ture. Our system must then satisfy the following set of ba
requirements.

~1! top,t rec, wheret rec is the time scale for exciton re
combination. Typicallyt rec5102321026 s @60,91#.

~2! V,v1
s , wherev1

s is the first harmonic of the linear
support spectrum. This requirement must be met in orde
resolve the individual support modes.

~3! kbT,\v1
s . This ensures that only the ground-sta

phonon mode is occupied. This requirement comes from
Cirac-Zoller ion-trap scheme@7#, where the motional ground
state is used as the information bus.

~4! Dephasing and population transfer due to excito
phonon coupling must be minimized, or preferably avoid
altogether.

We now discuss the details of our system in light of the
requirements.

III. QUBIT AND LINEAR SUPPORT DEFINITIONS

A. Definition of qubits

In analogy to the Cirac-Zoller ion-trap scheme@7#, three
excitonic states will be used, denotedu0&n ,u1&n , and u2&n .
Advances in ion-trap methodology have allowed this requ
ment to be reduced to only two states@92,93,10#. However,
for our purposes it suffices to use the more familiar thr
state scheme. The statesu0&n and u1&n are the qubit logic
states, andu2&n is an auxiliary state that is used when pe
forming two-qubit operations. These three-exciton sta
must possess the following properties.
7-3
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~1! The states should be dark for optical recombinati
This is required so that we will have long recombinati
lifetimes.

~2! The states should be dark for radiative relaxation
other exciton states: This is required to prevent leakage
other exciton states.

~3! The states should be degenerate: The energy sep
tion is required to be smaller than the lowest-energy inter
phonon, in order to suppress nonradiative transitions
tween states. We wish to make transitions between vibro
eigenstates, rather than creating oscillating wave pack
which would dephase as they move on different poten
surfaces. Obtaining a large amplitude for moving betwe
vibrational eigenstates of two surfaces depends on the e
tence of two features,~i! large Frank-Condon overlap@94#
between these eigenstates, which will be the case for de
erate exciton potential-energy surfaces;~ii ! very narrow
bandwidth laser pulses, which can selectively address
required states. These transitions are described in Sec. I
The degeneracy will need to be broken in order to perfo
certain operations.

In order to choose states that satisfy the above requ
ments, detailed calculation of the exciton wave functions a
fine structure of the quantum dots is essential. We emp
here the multiband effective-mass model that has been
ployed by a number of groups for calculation of the ban
edge exciton fine structure in semiconductor QDs made
direct-band-gap semiconductors@52,60#. For larger nanoc-
rystals, possessing radiiR.20 Å, the multiband effective-
mass theory is generally in reasonably good agreement
experiment as far as energetics are concerned@73#. It has
been used extensively for CdSe nanocrystals by Efros
co-workers @61#. While the effective-mass approximatio
~EMA! has known serious limitations@87#, and has been
shown not to provide quantitative results for smaller nan
rystals @73#, it nevertheless provides a convenient, analy
cally tractable description, with well-defined quantum nu
bers for individual states, and will allow us to perform a
order-of-magnitude assessment of the feasibility of
scheme.

To explain the exciton-state classification resulting fro
the multiband EMA, it is necessary to consider a hierarchy
physical effects leading to an assignment of appropr
quantum numbers. These effects are, in decreasing ord
importance,~i! quantum confinement~dot of finite radius,
typically smaller than the bulk-exciton radius!, ~ii ! discrete
lattice structure~iii ! spin-orbit coupling,~iv! nonspherical
nanocrystal geometry and facetting of surfaces,~v! lattice
anisotropy~e.g., hexagonal lattice!, and ~vi! exchange cou-
pling between electron and hole spin. The electron-hole C
lomb interaction is neglected: detailed calculations show
this may be treated perturbatively over the range of na
crystal sizes for which the EMA is accurate@77,95#. These
effects lead to the following set of quantum numbers:ne
(nh) the principle electron~hole! quantum number,Je (Jh)
the total electron~hole! angular momentum,Le (Lh) the low-
est angular momentum of the electron~hole! envelope wave
function,Se (Sh) the electron~hole! Bloch total angular mo-
mentum, and the total angular momentum projection
01230
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Fz5mK1ms , ~8!

wheremK561/2,63/2,65/2, . . . refers to the projection of
the hole total angular momentumJh , andms561/2,63/2,
65/2, . . . is theprojection of the electron total angular mo
mentumJe . State multiplets are classified byneLeJe

nhLhJh
,

e.g., 1S1/21P3/2, and states within the multiplet are labele
by Fz . For a II-VI semiconductor such as CdSe, the Blo
states for the valence-band hole states possess total an
momentumSh53/2,1/2, derived from coupling of the loca
orbital angular momentum 1 inp orbitals with hole spin 1/2.
The corresponding Bloch states for the conduction-ba
electron states have total angular momentumSe51/2, de-
rived from coupling of the local orbital angular momentum
in s orbitals, with electron spin 1/2. We consider here on
states within the band-edge multiplet, for whichLe5Lh50
and Se51/2,Sh53/2. Hence the total electron and hole a
gular momenta are given byJe51/2,Jh53/2, respectively,
and there are a total of eight states within this multiplet.
follows from Eq. ~8! that there is oneFz52 state, twoFz
51 states, twoFz50 states, twoFz521 states, and one
Fz522 state in this 1S1/21S3/2 multiplet. States within a
doublet are distinguished by a superscript (L or U). The
eigenfunctions, linear absorption spectrum, and selec
rules for dipole transitions from the ground state to th
lowest-lying EMA multiplet are calculated in Ref.@60#. For
spherical QDs the following results were found.

~1! Hexagonal crystal structure: TheFz562 states con-
stitute degenerate exciton ground states. TheFz562 states
and one of theFz50 states~denoted 0L) are optically dark
in the dipole approximation.

~2! Cubic crystal structure: TheFz50L,61L,62 states
constitute degenerate exciton ground states and are all
cally dark.

We consider here explicitly a nanocrystal made from
direct-band-gap material with cubic crystal structure. An e
citon wave function of the 1S1/21S3/2 multiplet, CFz

(re ,rh),
can be expanded in terms of products of single-particle w
functionsc1/2,ms

S (re) andc3/2,mK

S (rh) @52,60#. In order to sat-

isfy the requirement of optically dark qubits@recall condition
~1! above#, we construct our qubit from theFz522,0L

states,

u0&[uC0L~re ,rh!&5
1

A2
@ uc1/2,21/2

S ~re!c1/2,11/2
S ~rh!&

2uc1/2,11/2
S ~re!c3/2,21/2

S ~rh!&],

u1&[uC22~re ,rh!&5uc1/2,21/2
S ~re!c3/2,23/2

S ~rh!&. ~9!

The auxiliary level for cycling transitions is taken to be th
Fz52 state,

u2&[uC12~re ,rh!&5uc1/2,11/2
S ~re!c3/2,13/2

S ~rh!&. ~10!

Explicit expressions for the electron and hole wave functio
are given in the Appendix. The statesu0&,u1&,u2& are degen-
erate and have equal parity@determined by (21)Fz#.
7-4
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Naturally, for nonspherical, noncubic, and/or indirec
band-gap materials, other states may be more appropria
is only essential that they satisfy the requirements above
this paper we shall use primarily the EMA states describ
above for cubic nanocrystals of direct gap materials, beca
they illuminate in an intuitive and quantifiable manner t
difficulties associated with our proposal. However, in the d
cussion of feasibility~Sec. V!, we will also present results
obtained with qubit states obtained from tight-binding calc
lations for nanocrystals constructed from an indirect-ba
gap material~silicon!.

B. Quantum linear support

In order to determine whether quantum computation
possible on such a system we need to examine also the p
erties of the linear support. The support is made out oK
small units, e.g., unit cells or monomers. We can write
displacement of each unit as a sum of normal modes,

xk5(
m

c̃mkqm5(
m

c̃mkq0m~am
† 1am!. ~11!

The zero-point displacements for a homogeneous suppor

uq0mu5A\/~2l lvm!, ~12!

wherel is the linear mass density andl is the length of the
unit. The lowest-energy modes will be long-waveleng
transverse modes. Since the wavelengths of the mode
interest are large compared to the separation between n
boring units, we can approximate the support as being c
tinuous.

In many cases, a sparse number of attached QDs will h
only a small effect on the normal modes of the support. T
validity of this assumption depends on the materials cho
and will be discussed more thoroughly below. For now
will calculate all of the relevant properties assuming poi
like, massless quantum dots consistent with our assump
that the spacing between the dots is larger relative to t
intrinsic size. For thenth pointlike QD attached to unit cellk,
with one dot per unit cell, we can identify the dot and c
normal-mode expansion coefficients. We then havecmn

[ c̃mk , wherec̃mk andcmn are, respectively, the coefficien
relating the displacement of thekth unit cell andnth QD to
the displacement of themth normal mode@Eqs.~4! and~11!,
respectively#. For a continuous support, the set ofc̃mk be-
comes a functionc̃m(x) that is the normalized solution to th
wave equation on the support. Any specific value ofcmn can
now be writtencm(xn), wherexn is the position of thenth
QD.

The two most common types of linear continuous syste
are strings and rods.

1. Strings

In a string, the resistance to transverse motion comes f
an applied tensionq. The dispersion relation for the fre
quency of a string in modem is
01230
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wherel is the linear mass density andkm is the wave num-
ber. The normalized solution to the transverse wave equa
with fixed ends is given by

cm~x!5A2l

L
sin~kmx!,

where km5mp/L, l is the unit length, andL is the string
length.

2. Rods

In a rod, the resistance to transverse motion results fr
internal forces. This leads to a different dispersion relat
and, consequently, to a different solutioncm(x). The trans-
verse modes of a rod can be defined in terms of the lengtL,
density r, Young’s modulusY, cross-sectional areaA, and
the second moment ofA ~or the massless moment of inert
of a slice of the rod!, and I . As shown by Nishiguchiet al.
@96#, the long-wavelength phonon modes (l>1000 Å) are
well described by the classical dispersion equation

vm
s 5km

2AYIz
lA

,

whereI z is the moment in the direction of the displaceme
The transverse normal modes for a clamped rod are w

known @97#, resulting in the solution

cm~x!5Nm@sin~kmL !2sinh~kmL !#@cos~kmx!2cosh~kmx!#

2@cos~kmx!2cosh~kmx!#@sin~kmL !2sinh~kmL !#.

Here Nm is a normalization constant proportional toA1/L.
The values ofkm are not known analytically, but can b
shown to be proportional to 1/L.

C. Approximations

The important parameters characterizing the support
v1

s , the frequency of its first harmonic, and the product

Snm[cnmq0m . ~13!

This product is the quantum-dot displacement resulting fr
the zero-point motion of modem of the support. We shal
refer to it as thedot-modal displacement. The above discus-
sion of vibrations in the support assumed massless QDs,
tivated by the assumption that they have negligible spa
extent relative to the distance between them. To investig
the effect of the finite mass of the quantum dots, we co
puted numerical solutions of the coupled vibration equatio
for strings and rods having finite-mass increments locate
discrete points, simulating the attachment of finite ma
quantum dots. These numerical calculations show that
sparsely spaced dots of mass small enough that the
weight is of the same order of magnitude as the weight of
support alone, the resulting value ofSnm remains unaffected
7-5
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to within a factor of 2 by the presence of the dots~see Fig.
2!. A simple way to approximate the presence of the Q
and retain an analytic solution is then to replace the lin
density of the support by the average combined linear d
sity of QD and support.

Since we are interested here in order-of-magnitude e
mates of feasibility, we will approximatecm(xn) by A2l /L.
This approximation corresponds to the maximum value
cm(xn) for a string and to approximately the maximum val
of cm(xn) for a rod. Since the larger the dot displaceme
the larger the coupling between dots, this means that
estimations of number of operations will be an upper bou

These approximations combined with Eq.~5! yield the
following equation for the Lamb-Dicke parameter:

hm8nk2
5k2•Snm5k2Snmcosu5k2A \

Mvm
cosu, ~14!

whereu is the angle between the modal displacement and
direction of the laser beam, andM is the total support mass
M5Ll. Note the inverse power dependence onM in Eq.
~14!. We shall see in Sec. V B that the massive nature of
linear support and the resulting small value of the Lam
Dicke parameter provides the major limitation for our sy
tem.

FIG. 2. The addition of a sparse number of quantum dots to
linear support has relatively little effect on the dot modal displa
ment Snm . Here we present results forS11, the dot displacemen
resulting from the first harmonic of the support, for a system w
two QDs attached to a string of lengthL52000 nm. The QDs are
centered at 499 and 1501 nm. Each QD is represented as a
creased density that is distributed over a length of 2 nm, e.g.,
62 nm. Each dot experiences a displacement, which is affecte
the addition of the second dot on the support. The dot displacem
measured relative to the value obtained from a homogeneous s
S0, is plotted as a function of log10(ld /ls), whereld is the linear-
density increment due to the dot andls is the linear density of the
string. The solid line guides the eye through the exact solution,
dotted line through the solutions obtained for a homogenous den
equal to the average density. One sees that the value ofS11 changes
by less than a factor of 2 over a three orders of magnitude chang
ld for a fixedls.
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IV. QUBIT OPERATIONS

A. One-qubit operations: Coupling of dots to light

1. Derivation of the interaction Hamiltonian in the rotating-
wave approximation

While dipole transitions in QDs are similar, in principle
to dipole transitions in atomic systems, the strong coupl
to internal phonon modes adds an additional complex
Consider the modifications of Eqs.~1!–~3! for a single QD
unattachedto a linear support, interacting with a single las
field with the QD located at the antinode of the field, i.
with the sin(k•r c.m.

n 1fx) term in Eq. ~3! vanishing. Thus,
omitting the linear support term,

H5(
j

\v j
euC j&^C j u1(

k
\vk

dbk
†bk

1(
i jk

\g j ik uC j&^C i u~bk
†1bk!

1(
i j

2\gk
i j uC i&^C j ucos~nkt2f t!.

We separate this Hamiltonian into two parts,H0 andHI ,

H05(
j

\v j
euC j&^C j u1(

k
\vk

dbk
†bk

1(
jk

\g j jk uC j&^C j u~bk
†1bk!, ~15!

HI5 (
iÞ j ,k

\g j ik uC j&^C i u~bk
†1bk!

1(
i j

2\gk
i j uC i&^C j ucos~nkt2f t!. ~16!

The ‘‘free’’ Hamiltonian H0 may be diagonalized by a dis
placement transformation. LetDk(a) be the unitary dis-
placement operator,

Dk~a![eabk
†
2a* bk5Dk~2a!†.

The displaced phonon operatordjk is defined as

djk[Dk~2a jk!bkDk~a jk!5bk1a jk ,

and satisfies standard boson commutation relations
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-
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@djk ,dj 8k8
†

#5dkk8 ,

@djk ,dj 8k8#5@djk
† ,dj 8k8

†
#50.

Note that for reala jk we havea jk(bk
†1bk)5djk

† djk2a jk
2

2bk
†bk . Letting a jk[g j jk /vk

d and inserting a complete se
of exciton states into Eq.~15!, we find

H05(
j

\v j
euC j&^C j u1(

k
\vk

d(
j

uC j&^C j u

3@bk
†bk2a jk~bk

†1bk!#

5(
j

\v j
euC j&^C j u1(

jk
\vk

duC j&

3^C j uFdjk
† djk2S g j jk

vk
d D 2G .

The eigenstates ofdjk
† djk are labeled unjk&, where

djk
† djkunjk&5nunjk& and ^njkumj 8k8&5dkk8Fnmk

j j 8 .2 The Fnmk
j j 8

are Franck-Condon factors@94#, describing the overlap o
vibrational eigenstates between different excitonic statej
and j 8. We can then rewriteH0 as

H05(
j

\v j
e1uC j&^C j u1(

jk
\vk

duC j&^C j udjk
† djk ,

where v j
e15v j

e2(k(g j jk /vk
d)2 is the renormalized elec

tronic energy level.
We transform to the interaction picture defined byH0 :

H̃I5exp(iH0t/\)HIexp(2iH0t/\). To do so, it is useful to in-
sert into this expression two complete sets of displaced
cillator states belonging to different excitonic statesi and j,

I i3I j5 % k(
n

unik&^niku3 % k8(
m

umjk8&^mjk8u

5 % k(
nm

unik&^mjkuFnmk
i j .

Changing variables frombk to djk in Eq. ~16!, and trans-
forming to the interaction picture now yields, after som
standard algebra,

2Note thatn refers here to the occupation quantum number of
internal phonon modes, not to the quantum-dot index.
01230
s-

H̃I5eiH 0t/\HIe
2 iH 0t/\

5 (
iÞ j ,l

\g j ik uC i&^C j ueiv i j
e1t

^ kÞ l(
n,m

Fnmk
i j unik&^mjku

3eivk
d(n2m)t

^ l (
n8,m8

Fn8m8 l
i j H 2

g j j l

v l
d

unil8 &^mjl8 u

3exp@ iv l
d~n82m8!t#1Am811unil8 &^~m811! j l u

3exp@ iv l
d~n82m821!t#J 1(

i j
\gk

i j uC i&^C j u

3exp@2 i ~nkt2v i j
e1t2f t!# ^ k(

n,m
Fnmk

i j unik&

3^mjkueivk
d(n2m)t1H.c., ~17!

wherev i j
e1[v i

e12v j
e1 .

While this expression appears very complicated, it can
drastically simplified under certain reasonable assumptio
First, note that for single-qubit operations we need to c
sider only two exciton statesuCa& anduCb&. The first term in
H̃I essentially describes nonradiative transitions between
citon states due to phonon emission. Under the assump
that the phonon modes are initially unoccupied, we c
choose the statesuCa& and uCb& such that they have a neg
ligible propensity for nonradiative transitions, i.e., they a
protected against single-phonon emission@recall condition
~3!. for ‘‘good’’ qubits in Sec. III A#. This means that we can
effectively set allg j ik to zero, thus eliminating the first term
in H̃I . This important simplification is treated in detail i
Sec. V A below. Thus we are left with

H̃I5\gk
abuCa&^Cbuexp@ if t2 i t ~nk2vab

e1!#

^ k(
n,m

Fnmk
ab unak&^mbkueivk

d(n2m)t1H.c.

We then tune our laser on resonance such thatnk5vab
e1 , and

make sure that the laser spectral width is much smaller t
the lowest quantum-dot phonon frequency,v1

d . This allows
us to make the rotating-wave approximation~RWA!, i.e.,
eliminate all terms that rotate faster thanv1

d , which leads to

H̃I5\gk
abuCa&^Cbueif t ^ k(

n
Fnnk

ab unak&^nbku1H.c.

~18!

This RWA interaction Hamiltonian, Eq.~18!, is very similar
to the familiar two-level system Hamiltonian used exte
sively in atomic optics@98#. However, the strength of the
interaction is modulated here by the Franck-Condon fact
Fnnk

ab . To allow the simplification of the Hamiltonian from
Eq. ~17! to Eq. ~18! requires a judicious choice of laser in
tensities and states. In our scheme the occupationn of all
phonon modes will be initially zero. Using Eq.~7!, it is use-
ful to then introduce the factor

e

7-7
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Vk
ab5gk

ab)
k

F00k
ab

5A2paI k

\ )
k

F00k
ab ^Cauek•~re2rh!uCb&, ~19!

which corresponds to the Rabi frequency for an on-reson
transition between exciton statesa andb. I k is the laser in-
tensity anda5e2/(4p«0\c) is the fine-structure constant.

2. Raman transitions

Since we wish to use near-degenerate states of equal
ity for our qubits, we cannot employ dipole transition
Hence we use Raman transitions. These connect state
equal parity via a virtual transition to a state with oppos
parity. Recall that parity is determined by (21)Fz. Suppose
we start in the u1&5uc1/2,21/2

S (re)c3/2,23/2
S (rh)& state, for

which Fz522. We can then make transitions through a v
tual level uv& that has opposite parity~e.g.,Fz561), to the
stateu0& havingFz50. Figure 3~a! provides a schematic o
the coupled QD–laser-field system, showing the levelsu0&,
u1&, anduv& together with the fields required to cause a R
man transition. Under the assumptions that only two las
field modesk1 andk2 are applied, and in the rotating-wav
approximation, the standard theory of Raman transitions@99#
leads to the following expression for the Raman-Rabi f
quency between an initial stateu i & and a final stateu f &:

VRaman
f ik2k15

uVk2

f j Vk1

j i u

D
. ~20!

Here k1 and k2 are chosen such that the detuningD5v j
2v i2nk1

5v j2v f2nk2
, j is the index of an intermediat

exciton state chosen to provide a minimum value ofD, and
Vk

i j is defined in Eq.~19!. For single-qubit transitions, bot
lasers are aligned such that the QD is positioned at antino

For QDs possessing cubic crystal structure and compo
of direct-band-gap materials, we have found it advantage

FIG. 3. Energy-level scheme for a quantum dot showing
laser fields and transitions necessary for one-qubit operati
~Energy-level spacings are not to scale.! Levels u0& and u1& consti-
tute the qubit. The auxiliary levelu2& is not involved in these tran
sitions and is not shown. The linear support modes are not invo
either. Two antinodal lasers,k1 andk2, allow us to perform a Ra-
man transition via a virtual stateuv&. Transitions occur without
changing internal phonon number, since the laser’s freque
widths are smaller than the internal phonon frequencyv1

d .
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to use theFz51 andFz521 states of the 1S1/21 P5/2 mul-
tiplet as the intermediate state. An exciton wave function
the 1S1/21 P5/2 multiplet CFz

v (r e ,r h) can be expanded in

terms of products of single-particle wave functio
c3/2,ms

S (r e) and c5/2,mK

P (r h) @52,60#. The intermediateFz5

61 virtual states can be written as

uC61
v ~re ,rh!&52

1

A3
@ uc1/2,71/2

S ~re!c5/2,63/2
P ~rh!&

1A2uc1/2,61/2
S ~re!c5/2,61/2

P ~rh!&].

The Raman-Rabi frequencyVRamancan then be adjusted b
increasing the electric-field intensity and by reducing the
tuning from the intermediate level. We will describe in det
in Sec. V B what range of values of intensity and detuni
are allowed.

B. Two-qubit operations: Coupling quantum dots, quantum
supports, and light

Our two-qubit operations are equivalent to those of
Cirac-Zoller scheme@7#. The use of optical Raman trans
tions to implement this scheme has been extensively
plored@8#. In our case, we apply the Hamiltonian of Eq.~6!
with two lasersk1 and k2 of frequencyn1 and n2, respec-
tively. For two-qubit operations, the quantum dot is cente
at an antinode ofk1 and at a node ofk2. Switching to the
interaction picture and calculating second-order transit
probabilities to first order inh, one obtains the following
effective Hamiltonian:

Heff
n f i52\(

m
hmnk2

~am
† e2 ivmt1ameivmt!

3VRaman
f ik2k1uC f&n^C i uei (v f2v i )t

3exp$2 i @~n12n2!t1f22f1#%1H.c. ~21!

Note that the nodal and antinodal lasers result in an effec
Hamiltonian in whichh depends only on the nodal laserk2.
This differs from the effective Hamiltonian derived for Ra
man transitions when traveling waves are used@8#. The la-
sers are chosen to have a net red detuning,v f2v i2y11y2
52vm8 . In the RWA~i.e., eliminating all terms rotating a
2vm!, with f22f15p, this yields

Heff
n f i5V

nm8

f ik2k1uC f&n^C i uam81H.c., ~22!

where

V
nm8

f ik2k15hmnk2
VRaman

f ik2k1. ~23!

This combined QD-linear-support operation transfers thenth
QD from statei to f, with an accompanying change of on
quantum in the phonon modem8 of the support. A schematic
representation of this operation for the qubit statesuc i&
5u0& anduc f&5u1& is shown in Fig. 4. Choosing interactio
times such thatt5kp/(2V

nm8

f ik2k1), where k is an integer

e
s.

d

y
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specifying the pulse duration, we can write the unitary o
erator exp(2@i/\#Heff

n f it)5Un f i(t) as

Uk
n f i5expF2 i

kp

2
~ uC f&n^C i ua1H.c.!G . ~24!

In order for the Cirac-Zoller scheme to be successful,
phonon mode of interest,m, must start with zero occupation
The applied operations take advantage of the fact that
zero-occupation phonon state is annihilated by the lowe
operator au0&50. The sequence of unitary operatio

UC-phase[U1
n10U2

n820U1
n10 then results in a controlled-phas

operation between quantum dotsn andn8, i.e., it causes the
second qubitn8 to gain a phase of21 if the first qubitn is
in the u1& state, and no additional phase if the first qubit is
u0&. This is equivalent to the matrix operatorI
22u1&n8u1&n n8^1un^1u. The time required to perform
UC-phaseis then 23(p/2) for ion n plus 13p for ion n8, i.e.,

tC-phase[~V2
nn8!215p~V

nm8

f ik2k1!211p~V
n8m8

f ik2k1!21.
~25!

Since the ionsn andn8 are identical we will use the approx
mation thatV

nm8

f ik2k1'V
n8m8

f ik2k1 in the remainder of this work
hence

V2
nn8'

1

2p
V

nm8

f ik2k15
1

2p
V2 . ~26!

The inverse of the average rateV2
nn8 can then be taken as

measure of the gate time, i.e., of the time for the two-qu
controlled-phase operation. We defineV2 as the sideband
interaction strength

V2.hmnk2
VRaman

f ik2k1. ~27!

FIG. 4. Energy-level scheme for a quantum dot on the lin
support showing laser fields necessary for implementation of t
qubit operations. As described in the text, the use of nodal
antinodal lasers allows us to selectively transfer population fr
u0& to the lowest-energy phonon sideband ofu1& ~labeledu1&us1&)
via a Raman transition, without transferring population to the c
rier. The minimum phonon frequency is denotedv1

s . Nonresonant
transitions to higher-energy phonon sidebands (u1&us2&) constitute
the main source of error in the proposed gates. For very high l
intensities, nonresonant quadrupolar transitions to higher-le
states~represented by the stateuq&) also become important.
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Calculation ofVRaman
f ik2k1 was described above in Sec. IV A@Eq.

~20!#. We can obtain the Lamb14-Dicke parameterhm8nk2

from the decomposition in Eq.~14!. This now allows specific
evaluation of the contribution from the linear support to t
Lamb-Dicke parameterh. As described in Sec. III C, we
approximateh as being independent of the specific dot a
from now on will drop the dot indexn.

C. Input and output

Since the qubit states do not include the ground state
the quantum dot, initialization will generally require a tran
formation from the ground state of no exciton to the defin
qubit state. This can be accomplished by applying magn
fields that will mix dark and light states allowing for optica
transitions. If the magnetic field is then adiabatically r
moved, one is left with population in the dark exciton sta
only. Qubit measurements can be made by using a cyc
transition, in analogy to ion traps@8#.

We conclude this section by summarizing in Fig. 5 t
relative energy scales involved in our proposal.

V. FEASIBILITY OF QUANTUM LOGIC

In this section we address in detail the question of
limitations imposed on our system by various physical co
straints. We start by considering the issue of decoherence
to coupling of excitons to the internal nanocrystal phon
modes, and propose a solution to this problem. We t
study the issues of scaling arising from the trade-off betw
massiveness of the support, laser intensity, and the nee
maintain a large ratio of operations to exciton-recombinat
time. We find that the allowed size of our proposed quant
computer depends on the assumed threshold for fault-tole
computation.

r
-
d

r-

er
el

FIG. 5. Summary of energy scales involved in our proposal
single- and two-qubit operations. The statesu0&, u1&, andu2& appear
degenerate on the scale of this figure.
7-9



o
-

rm

lin
er
. W
o
in

g

nt

t
o
v
c
a
m

e
th
s
s

an
e

ith

th
n
n

ss
no
bu
te
s
u
um
hi
ga

at
m
a

e

will

ho-

-

o-

s
o-

es
t
ubit

in
the
red
the

an-
s is
out-
ds

than

n-
ere
al
not

K. R. BROWN, D. A. LIDAR, AND K. B. WHALEY PHYSICAL REVIEW A 65 012307
A. Decoherence

According to current analysis of experiments on nan
crystal quantum dots@100#, exciton dephasing derives pre
dominantly from the diagonal phonon-exciton coupling te
of Eq. ~2!,

(
j ,k

u j &^ j u~gk j* bk
†1gk jbk!. ~28!

Heregk j is the self-coupling of an exciton statej via phonon
k, andbk is the lowering operator for thekth phonon mode in
the ground electronic state. In the ground state the coup
is zero, and all excited electronic states have potential-en
surfaces that are shifted with respect to this ground state
desire to eliminate dephasing due to the first-order phon
exciton interaction. In the typical experimental situations
which dephasing has been studied in the past, dephasin
curs on a time scale of nanoseconds for small dots@100#.
This rate is extremely rapid compared to the experime
recombination time of dark states (;1026 s for direct-band-
gap materials such as CdSe@60#!. The reason for such fas
dephasing is twofold. First, the vibrational stationary state
the first electronic level becomes a moving vibrational wa
packet on the upper electronic surface, because the spe
width of the pulse is too broad to distinguish vibration
eigenstates. Second, the QD is embedded in a solid-state
dium where the vibrations of the nanocrystal are th
coupled to vibrations of the larger lattice. The phonons of
QD can be treated as analogous to damped cavity mode
atomic optics@98#. In the case of strong coupling, one find
from numerical simulation that the dephasing between
two statesj and j 8 is related to the rate of phonon-mod
excitation. The latter is proportional tougk j2gk j8u

2 for each
modek @100#. This conclusion of fast dephasing agrees w
the analogous result for a leaky optical cavity@98# as well as
with the results of experimental@101# and theoretical@100#
analysis for embedded semiconductor nanocrystals.

The dephasing can be reduced in three ways. First,
coupling of the QD phonon modes to external phonon a
photon modes can be reduced by a judicious choice of na
crystal geometry and material. In our case the QD can di
pate phonon modes only to the support. In the limit of
coupling to external modes, there will be no dephasing
the time required for recurrences could limit our ga
repetition rate. Although the oscillations will be fast, the o
cillations for different phonon energies will be incommens
rate with one another. This could introduce a slow quant
beating between ground and excited electronic states, w
would have the undesirable consequence of requiring
durations to equal a full beat cycle.

Second, one can find a set of electronic statesu j & such that

gk j2gk j850 ; j , j 8 and ; k. ~29!

Physically this condition represents a set of electronic st
that create the same potential-energy surface for nuclear
tion. This elimination of decoherence by degeneracy is
example of a decoherence-free subspace@102–104#. The
Jahn-Teller effect implies that no two such states should
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ist, because there will always be a phonon mode that
distinguish between these states due to nonlinearity@105#.
However, in the linear approximation we have

gk j5^ j ugk~rh!1gk~re!u j &. ~30!

The deformation potential coupling operatorgk(r ) is a func-
tion of the phonon modes and is expressed as

gk~r ![gnlm~r !5Ed“•unlm„r …, ~31!

where Ed is the deformation potential andunlm(r ) is the
coordinate representation of the normalized spheroidal p
non mode of leveln with angular momentuml and projec-
tion m. Following Takagahara@100#, the spheroidal modes
can be written as

unlm~r !5A \

2rvnlm
@pnlL lm~hnlr !1qnlNlm~knlr !#,

~32!

wherer is the nanocrystal density,vnlm is the frequency of
the spherical phononnlm, Llm(hr)5(1/h)“C lm(hr),
Nlm(kr)5(1/k)“3“3rC lm(kr), and C(kr)
5 j l(kr)Yl

m(V). j l(r ) is an l th-order spherical Bessel func
tion, Yl

m(V) is a spherical harmonic,kn andhn satisfy stress-
free boundary conditions at the surface, andpnl ,qnl are de-
termined by normalization. One can then write

gnlm~r !52EdA \

2rvnlm
pnlhnl j l~hnlr !Yl

m~V!. ~33!

For a cubic, direct-gap nanocrystal, the statesu j & are states of
well-defined angular momentum projection. Since theYl

m in
Eq. ~33! connects states with equal projection, the only ph
non modes that can have nonzero matrix elements in Eq.~30!
are those withm50 @106#. The resulting matrix element
will be independent of the sign of the exciton angular m
mentum projectionFz @Eq. ~8!#, i.e., the m50 phonon
modes cannot distinguish between exciton states havingFz
or 2Fz . Therefore, in the linear approximation, the stat
uC22(r e ,r h)& anduC2(r e ,r h)& will not dephase with respec
to each other. Recall that we took these states as our q
stateu1& and auxilary stateu2& @Eqs.~9! and ~10!#.

Third, and most importantly, one can change the way
which transitions are made. In the above two situations,
motional wave packet of one electronic surface is transfer
to another electronic surface without changing shape, i.e.,
Franck-Condon approximation holds. However, such a tr
sition requires either a broad laser or a fast excitation. Thi
not actually the regime of relevance here. The scheme
lined in this work requires selective excitations of sideban
whose energy separation is orders of magnitude smaller
the quantum-dot phonon energies~see Fig. 5!. Therefore, we
will be performing transitions from one vibrational eige
state to another vibrational eigenstate. Such transitions w
described in Sec. IV with respect to the ground vibration
state. Consequently, the scheme proposed in this work is
affected by fast phonon dephasing.
7-10



un
o

in
en
-
p

o-
a
e
a

ib
t
n-
tu
o
c
t
r
up
th
on
t
o

ak
ize
m
a

er
e

ire

k

b
tio

ap
s
e

n

la

:
so

th
n
t

e,
an
c-

ex-
y

ns
n

hat
be

s of
in-
it-

ark

ec-
nd
ra-
ns-
his

t

of
-

s
ff-
esti-

ing-
ng-
ff-

n,

-
the
fi-
ity,
ec-

QUANTUM COMPUTING WITH QUANTUM DOTS ON . . . PHYSICAL REVIEW A65 012307
Exciton states recombine and thus decay to the gro
state by both spontaneous emission of photons and phon
We denote the recombination lifetime byt re. Nanocrystals
are known to have dark-state recombination times rang
from 1026 s to 1023 s, depending on the material chos
@60,73,91,95#. In our system,t re will be the fastest decoher
ence time for individual qubits. One could potentially su
press radiative recombination by placing the whole system
a cavity @107#. Classical calculations of Roukes and c
worker show that nanoscale rods at low temperature h
high Q values:Q>1010 @108#. This implies that the rods ar
only very weakly coupled to their environments and we c
therefore assume that in the quantum regime, the highQ will
lead to favorably long decoherence times. Another poss
source of decoherence is laser scattering from the suppor~as
opposed to the QDs!. The magnitude of scattering is depe
dent on the difference between the spectra of the quan
dots and the electronic and vibrational modes of the supp
A detailed analysis of this potentially important decoheren
mechanism is beyond the scope of this paper, due to
many possible materials available for both linear suppo
and quantum dots. Ideally, one would like to choose a s
port that has an optical window at the frequencies of
lasers used to perform the qubit operations. Estimati
based on the Raman transitions proposed above sugges
this optical window needs to be between 0.1–1 eV and p
sess a minimal width of 0.1 meV. Conversely, one can t
advantage of the optical tunability of the QDs via their s
to construct a QD of such size that its transitions are co
patible with a specific optical window suggested by the m
terial properties of the support.

B. Parameter space

We now explore for what range of physical paramet
quantum computation is possible within our propos
scheme by estimating the two-qubit gate fidelity,F. This
fidelity is defined as the trace overlap between the des
and the achieved final state:F5minr0

Tr Ar0A†B(r0), where
A is the exact unitary operator for the gate,B is a superop-
erator describing the actual evolution of the system that ta
the initial density matrixr0 to a final density matrixr f , and
r0 ranges over all possible input states. For our two-qu
operations described in Sec. IV B, the fundamental opera
is the population transfer to the red sideband,A5U1

n10 @Eq.
~24!#. B describes both the unitary evolution caused by
plication of the lasers and the decoherence due to los
quantum information to the environment. Note that ev
without decoherence and unknown laser noise,F can still be
less than unity due to deviations from the approximatio
used to deriveA. Most importantly, deviations from the
rotating-wave approximation can lead to unwanted popu
tion in spectator states.

The resulting value ofF is determined by two constraints
the decoherence time of the system and the spectral re
tion of the gate. As a result of the use of the phonon bus
the two-qubit gate construction, both this proposal and
ion-trap proposal@7,10# have gate times that are depende
on the number of qubits. Therefore the quantity of interes
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the fidelity of a sideband operation on an array ofN quantum
dots. First, we note thatF is limited by the recombination
time of the qubit states,t re51/G. Naturally, the recombina-
tion timet re must be larger than the sideband operation tim
tA5p/(2V2), if the operation is to be successful. One c
then define an upper limit on the fidelity that takes into a
count the statistically independent recombination of the
citon states of allN quantum dots. This background fidelit
assumes thatt re is the same for allN quantum dots and it
does not account for errors deriving from the interactio
with the driving laser field. The background fidelity is the

F'12
tA

t re
512

pNG

2V2
. ~34!

F is also limited by the spectral resolution. We assume t
the difference in frequency between the lasers is tuned to
resonant with the energy difference between the two state
interest, Fig. 4. The energy difference between the states
cludes the relative ac Stark shift induced by the lasers. Om
ting the adjustment of the laser frequency for the ac St
shift will lead to gates of reduced fidelity@110,111#. The
primary concern is that the phonon modes should be sp
trally resolvable. As described in Sec. II, the use of nodal a
antinodal lasers allows us to transfer population to the vib
tional sideband and at the same time forbid population tra
fer to the carrier, i.e., to the excitonic states of the QD. T
constrains the operation frequencyV2 to be smaller than the
separation between phonon modes,Dv5vm11

s 2vm
s . For

small m, and forDv'v1
s , we can then write this constrain

as

V2,v1
s . ~35!

The population transfer to the off-resonant state will be
the order of 4g2/@4g21(d)2#, the result for a two-level sys
tem interacting with a periodic perturbation of strengthg that
is off-resonant by a frequency differenced @98#. In our case,
g5V2 and d5Dv'v1

s . However, numerical calculation
@110# have shown that the population transfer to the o
resonant state for an ion-trap system is more accurately
mated by 2g2/@4g21(d)2#. Note that in Ref.@110# g5V/2,
the coupling to the carrier transition, andd5vz , the ion-trap
mode vibrational frequency. The advantage of the stand
wave laser configuration is now apparent. For the traveli
wave laser configuration, the population transfer to the o
resonant state is 2(V2 /h)2/@4(V2 /h)21(v1

s)2#
'2(V2 /hv1

s)2 @or, in the notation of Ref. @110#,
1
2 (V/vz)

2]. However, in the standing-wave configuratio
one finds that the population transfer is 2(V2)2/@4(V2)2

1(v1
s)2#'2(V2 /v1

s)2. Sinceh!1 the off-resonant popula
tion transfer is significantly reduced when one uses
standing-wave configuration. We can now write down a
delity that takes into account both the background fidel
Eq. ~34!, and the population loss to the most significant sp
tator state. The fidelity per sideband operationA is then
7-11
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F'12
pNG

2V2
22S V2

v1
s D 2

~36!

in the standing-wave configuration. We emphasize again
if the laser fields are used in a traveling-wave configurati
the fidelity is significantly decreased due to transitions to
carrier state, resulting inF.12pNG/2V224(V2 /hv1

s)2.
One can now maximize the fidelity with respect to t

coupling strengthV2 for a sideband operation made on
N-qubit array. Since

V2
F max5Fp~v1

s!2NG

8 G1/3

, ~37!

for givenG andv1
s , the maximum fidelity can be written a

Fmax5123S pNG

2A2v1
sD 2/3

. ~38!

Evaluation of the optimal operation frequency depends t
only on the factors in Eq.~37!. Inspection of the contribu-
tions to V2 @Eq. ~27!# shows that the underlying adjustab
parameters controlling the fidelity, in general, Eq.~36!, are
the intensitiesI 1 , I 2, the detuningD, and the Lamb-Dicke
parameterh. However, the schematic shown in Fig. 4 sho
that there are some additional constraints. Thus, it is esse
that the inequalityv1

s,D,v1
d be satisfied in order to avoid
-
o
th

e
ot

to
ve

01230
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,
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ial

unwanted coupling to both the internal phonons and
linear-support phonons. In addition, we require that b
uVk1

j i u and h01k2
uVk2

f j u are smaller thanD, in order to avoid

populating the intermediate level,uC j&. Hence, the interna
phonon energies define an energy scale, which also c
strains our system~see Fig. 5!.

Furthermore, combining Eqs.~20!, ~27!, and ~37!, one
finds that

uVk1

j i h01k2
Vk2

f j u5DFp~v1
s!2NG

8 G1/3

. ~39!

Analysis of three level systems has shown that in order
maximize Raman population transfer between statesuC i&
and uC f&, the coupling strength betweenuC i& and uC j& and
uC f& and uC j& should be equal@99#. In the atomic case this
usually implies that the respective Rabi frequencies betw
electronic states,uVk1

j i u anduVk2

f j u, are equal. However, in ou

case, with the use of nodal and antinodal lasers and coup
to the support phonons, the equivalent condition is that

uVk1

j i u5h01k2
uVk2

f j u. ~40!

Therefore, manipulation of Eqs.~19!, ~39!, and ~40! allows
us to determine the intensity values,I 1 and I 2, necessary for
maximum-fidelity operations,
I 15
\D

2pa Fp~v1
s!2NG

8 G1/3 1

U^C j ue1•~re2rh!uC i&)
l

F00l
j i U2 , ~41!

I 25
\D

2pa Fp~v1
s!2NG

8 G1/3 1

h01k2

2

1

U^C f ue2•~re2rh!uC j&)
l

F00l
f j U2

5
DlL

2pa Fp~v1
s!5NG

8 G1/3 1

uk2z2
1

U^C f ue2•~re2rh!uC j&)
l

F00l
f j U2 . ~42!
a
ur-

n-
ve

and

of
the

p,
Equations~38!, ~41!, and~42! summarize the limits to imple
mentation of this quantum-dot–quantum-linear-supp
scheme. To maximize the fidelity we need to increase
frequency of the phonon bus,v1

s . However, as this fre-
quency increases, the increased intensity necessary to r
the maximum fidelity will lead to unwanted evolutions n
considered in our simple fidelity equation, Eq.~38!. These
unwanted evolutions include quadrupolar excitation
higher electronic states. Such transitions will not be remo
by the use of nodal and antinodal lasers@9#. Consequently, it
is useful to define maximal laser intensities,I 1

max and I 2
max,

such that Eq.~38! is valid for I 1,I 1
max and I 2,I 2

max. There-
rt
e

ach

d

fore the magnitude ofv1
s is restricted and thereby imposes

constraint on the phonon spectrum of the linear support. F
thermore, scalability is also limited by the additional u
wanted evolutions, since the required intensity to achie
maximum fidelity also increases withN.

There are also physical constraints on the density
length of the support. We choose a minimal densityl0
510 amu /Å21 that corresponds approximately to a chain
pure carbon atoms with bond length 1.5 Å. The length of
support,L, is determined by the number of QDs,N, and by
the spatial width of the laser,l. Thus for identical dots, we
haveL5 lN. One could use QDs having no spectral overla
7-12
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obtained by making the dots of sufficiently different sizes,
order to achieve more qubits per unit length.

Notice that when one rewritesL in terms of N that the
intensity of the nodal laser,I 2, has a strongerN dependence
than the intensity of the antinodal laser,I 1. Physically, this is
due to the increased inertia of the system and is quantifie
the Lamb-Dicke parameterh. From Eq.~5! and Sec.~III B !,
h}M 21/2, where M is the total mass of the support,M
5lL, so thatI 2}M @Eq. ~42!#. This coupled with our ex-
pression for the maximal gate fidelity, Eq.~38!, yields I 2
}N4/3. Note that we have used the Lamb-Dicke parame
consistent with the definition made in Ref.@110#, which has
an inverseN dependence.

To determine the scalability of our system, we exam
the maximum number of QDs that can be sustained b
support having given values ofv1

s andl/lmin , and provide
an acceptable level of fidelity for the sideband operationA
5U1

n10. We do this by requiring the following three con
straints to be simultaneously satisfied:~i! F5Fmax, ~ii ! I 2

<I 2
max, and ~iii ! Fmax.12«, where« can be thought of as

the error rate per gate frequency. The first condition sta
that maximum gate fidelity, Eq.~38!, is achieved given the
support and quantum-dot parameters,v1

s andG, respectively.
The second condition states that the laser frequencyI 2
should not exceed the maximum allowed value~see above!.
Equation~42! together with the considerations in the prev
ous paragraph shows thatI 2 is dependent on the number o
quantum dotsN. For the range of parameters consider
here, I 1 is always smaller thatI 1

max. Hence the maximum
number of qubits will be determined by the intensity thres
old of the system at a node of the laser field. The th
condition ensures that one is able to perform an opera
with success greater than a certain threshold value~equal to
12«). Combining these inequalities leads to limits on t
number of qubits for a given system. Conditions~i! and~iii !
can be manipulated to yield the following constraint onN:

N<v1
sS 2«

3 D 3/2 1

pG
. ~43!

On the other hand, conditions~i! and ~ii ! yield a constraint
with an inverse power dependence onv1

s . One finds that

N<~v1
s!25/4~ I 2

max!3/4S 8

pG D 1/4S 2pa

Dl l
uk2u2U

3^C f ue2•~re2rh!uC j&)
l

F00l
f j U2D 3/4

. ~44!

One can then analyzeNmax, the maximum allowed value o
N, as a function of the linear-support frequencyv1

s . The
combination of Eqs.~43! and ~44! results in a cusped func
tion for Nmax and is discussed in detail in Sec. VI for both
direct-band-gap semiconductor~CdTe! and an indirect-band
gap semiconductor~Si!.

The above discussion has focused on the fidelity fo
single-component operation,A5U1

n10, of the C-phase gate,

UC-phase[U1
n10U2

n820U1
n10. We have termed this a sideban
01230
by

r

e
a

s

d

-
d
n

a

operation fidelity. Similar arguments may be made to der
the full C-phase gate fidelity, resulting in the expression

FC-phase'12
2pNG

V2
24S V2

v1
s D 2

. ~45!

This is lower than the sideband operation fidelity, both b
cause of the effect of multiple couplings to spectator sta
and because of an increased operation duration (tC-phase
54tA). In the presentation of numerical results in the ne
section we shall refer only to the prototypical sideband o
eration fidelity,F of Eq. ~36!.

VI. NUMERICAL ESTIMATES FOR SPECIFIC
NANOCRYSTAL SYSTEMS

A. CdTe

CdTe nanocrystals are an example of direct-band-gap
bic crystal semiconductor QDs. Using parameters found
Ref. @112#, we have performed the calculations summariz
in the previous sections, using previous results of Efroset al.
@60# and Takagahara@100# for the EMA analysis. Although
the dark states have infinite lifetimes in the EMA appro
mation, both experimental@113# and tight-binding calcula-
tions for the analogous CdSe system@73# yield radiative re-
combination ratesG;106 Hz.

We analyze here nanocrystals withR520 Å. For this
size, the frequency of the lowest internal phonon isv1

d

52.4531012 Hz. Assuming a minimal separation of a sing
order of magnitude between the energy spacingsvd andD,
we set D51011 Hz. The energy separation between t
1S1/21 S3/2 and 1S1/21P5/2 multiplets is ;0.4 eV in the
EMA, which leads to required wave vectorsk1.k2
.2.1 mm21 for the irradiating lasers in the two-qubit gate
For the specific CdTe states introduced above~Sec. III A!,
we calculate the dipole moments to be^C21

aux(re ,rh)ue2

•r u0&50.11R, ^C21
aux(re ,rh)ue1•r u1&520.013R, where e2

5(1/A2)(x̂1 i ŷ) and e15(1/A2)(x̂2 i ŷ). Furthermore, we
have calculated the Frank-Condon overlap to be) lF00l

aux0

50.98 and) lF00l
aux150.98. We assume that the spatial wid

of our lasers is diffraction limited. A reasonable estimate
this width is thenl 53mm. At constant frequency, an in
crease in the number of qubits requires an increase in
laser intensity in order to maintain maximum-fidelity oper
tions. We estimate thatI 2

max51012 W/cm2 is the intensity at
which the nonresonant quadrupole interactions begin to
in CdTe quantum dots. However, the intensity could pot
tially have stricter limitations depending on the spectra of
specific support chosen. As mentioned above for the rang
parameters we have examined, the intensity of the antino
laser is weak enough so as not to lead to unwanted t
evolutions.

In Fig. 6, Nmax is plotted as a function ofv1
s for two

linear-support densities and for a modest threshold of
error for every ten operations («50.1). At low frequencies,
Eq. ~43! limits Nmax and increasing the values ofv1

s leads to
larger values ofN for a fixedFmax. In contrast, higher fre-
7-13
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quencies require stronger laser intensities@Eq. ~42!# so that
eventually the limits on the intensity given in condition~ii !
begin to reduce the maximum possible number of quan
dots, leading to the turnover in Fig. 6. Figure 6 also sho
that the optimal value ofNmax, which we denote byNc , is
reduced for larger support densities. In Fig. 7, we now p
Nc as a function of the error threshold«, for a range of linear
densitiesl. We see that even for two-qubit quantum devic

FIG. 6. Dependence of the maximum number of 20-Å Cd
nanocrystal quantum-dot qubits for which quantum computatio
sustainable, subject to the three conditions determined by ana
of the two-qubit gate~see text!: ~i! the fidelity per gate,F5Fmax;
~ii ! the antinodal laser intensity,I 2<I 2

max; and ~iii ! Fmax.12«,
where« can be thought of as the error rate per gate frequency.
figure shows a plot ofNmax as a function of the frequency of th
linear-support phonon mode,v1

s , for two values of the linear sup
port densities,l0510 amu/Å, l510l0, and «50.1. The extre-
mum of the functions corresponds to the maximum possible s
ability achievable for 20-Å CdTe nanocrystal qubits. For larg
values ofv1

s , the larger values ofF max that are possible, in prin-
ciple, are offset by the need for higher-intensity lasers. In this s
ation it is possible to support more qubits than are shown here
relaxing the first constraint. However, one thereby loses the ad
tage of the increase inFmax asv1

s is increased.

FIG. 7. Dependence of the optimal number of CdTe nanoc
tals,Nc ~peaks in Fig. 6! on the error thresholde plotted for various
linear-support densities.l0510 amu/Å.
01230
m
s

t

s

one must allow«.0.02, or approximately one error for ev
ery 50 operations. Even at the modest threshold value«
50.1, one can only support seven qubits. Clearly, CdTe
citons are thus not good candidates for scalable qubits wi
this scheme. The underlying reason is that the recombina
time of the dark states, while longer than the operation tim
is not sufficiently long to provide high-fidelity operations.

B. Si

Si and other indirect-band-gap bulk materials exhi
longer exciton-recombination lifetimes than direct-band-g
materials such as CdTe. Although EMA descriptions of
nanocrystals exist, many subtleties are required to obtain
curate excitonic states@62#. These have also been calculat
in semiempirical tight-binding approaches@95#, as well as
via pseudopotential methods@77#. The advantage of tight-
binding descriptions is that the optical properties of the na
crystal can be determined with inclusion of realistic surfa
effects@114#. We estimate the feasibility of using Si nano
rystals here using the detailed Si excitonic band struct
previously calculated within a semiempirical descripti
@95#. In order to suppress phonon emission we choose st
that correspond to either the exciton ground state, or
within the minimal phonon energy of the exciton groun
state. The minimal phonon energiesv0

d are taken from EMA
calculations made by Takagahara@100#, and are approxi-
mately equal to 5 meV for a nanocrystal of 20 Å radiu
One disadvantage of the tight-binding description is that
states are no longer describable as states with well-defi
angular momentum, and the calculation of electron-phon
coupling is not straightforward. Therefore, we employ t
EMA analysis of Takagahara for this. The Franck-Cond
factors are estimated to be;0.9 between electronic state
derived from the same multiplet. Calculations and expe
ments on Si reveal dark states with recombination times
microseconds@95#. Tight-binding states lack well-define
quantum numbers. However, for spherical dots of 20
there are multiple dark states that satisfy our phon
emission criteria@95#. States from these multiplets can b
used to form our logic and auxiliary states. Calculated R
man transitions between these states have quantitati
similar values to those obtained for CdTe above.

Given an assumed radiative-recombination rateG
5103 Hz @95#, we perform an analysis similar to the on
above for CdTe. In Fig. 8Nmax is plotted as a function ofv1

s

for a variety of densitiesl and a threshold of one error ever
10 gates («50.1). Fig. 8 implies that one could construct
quantum computer composed of 700 quantum dots i«
50.1. In Fig. 9, the extremum value ofNmax, Nc is plotted as
a function of« for a range ofl values. The results are als
summarized in Table I. One sees that, unlike CdTe, for
there now exists the possibility of building a quantum pr
cessor that possesses an appreciably lower error rate of;1
error every thousand gates. Most encouragingly, it see
possible to construct a small quantum-information proces
~5–10 qubits! with a larger linear-support density 10l0 and
an error rate of«<1023. Naturally, from an experimenta
perspective it would probably be more realistic to use a s
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port having a density at least ten times greater than our
posed minimal densityl0 that was estimated for a pure ca
bon chain ~e.g., DNA @45#, carbon nanotubes, etche
supports, etc.!.

VII. CONCLUSIONS

We have developed a condensed-phase scheme f
quantum computer that is analogous to the gas-phase

FIG. 8. Dependence of the maximum number of 20-Å Si na
crystal quantum-dot qubits for which quantum computation is s
tainable, subject to the three conditions determined by analys
the two-qubit gate~see text!: ~i! the fidelity per gate,F5Fmax; ~ii !
the antinodal laser intensity,I 2<I 2

max, and~iii ! Fmax.12«, where«
can be thought of as the error rate per gate frequency. The fi
shows a plot ofNmax as a function of the frequency of the linea
support phonon mode,v1

s , for two values of the linear suppor
densities,lmin510 amu/Å andl510lmin and «50.1. The extre-
mum of the functions corresponds to the maximum possible s
ability achievable for 20-Å Si nanocrystal qubits. The degree
scalability is greater for the indirect band-gap material than for
direct-band-gap CdTe nanocrystals shown in Fig. 6, and shows
dependence on the linear-support densityl.

FIG. 9. Dependence of the optimal number of Si nanocryst
Nc ~peaks in Fig. 8! on the error thresholde plotted for various
linear-support densities.l0510 amu/Å.
01230
o-

a
n-

trap proposal and have explored the feasibility of impleme
ing this scheme with semiconductor quantum dots coup
by a quantum linear support consisting of a string or rod.
have found that the Cirac-Zoller scheme of qubits coupled
a quantum-phonon-information bus is also applicable in
solid state, and that there exist some advantages t
condensed-phase implementation. One such advantage i
there is a potential for significantly less noise in the inform
tion bus than in the corresponding gas-phase scheme. C
lations by Roukes and co-worker@108# suggest that much
higher Q factors may be found for nanorods than are c
rently obtainable in ion traps. Clearly the extent of the u
fulness of our proposal will be very dependent on the cho
of materials. To that end we have analyzed the fidelity
two-qubit operations for several candidate systems, includ
both direct- and indirect-gap semiconductor quantum d
We have presented the results of numerical calculations
implementation of the scheme with CdTe and Si quant
dots, coupled via either quantum strings or rods. While n
ther of these prototypical direct- and indirect-band-gap m
terials reach the level of fidelity and size required for larg
scale quantum computation, the indirect-gap quantum d
~Si! do show a reasonably high fidelity with an array of a fe
tens of dots.

One very revealing result of these explicit calculations
fidelity for one- and two-qubit gates is the limited scalabilit
The scheme initially appears highly scalable in concept
to the solid-state-based architecture. However, the deta
analysis given here showed that the dependence of
Lamb-Dicke parameterh on the mass of the support is
basic problem that essentially limits the scalability to a fe
tens of qubits even in the more favorable indirect-gap ma
rials. The main drawback of this condensed-phase sch
over the ion-trap scheme is therefore the large reduction ih
deriving from the introduction of massive supports. Such
reduction has two important consequences. First, the l
intensities need to be increasingly large to perform ope
tions faster than the decoherence time. Second, such l
laser intensities necessitate the use of nodal and antin
lasers@9,110#. Without these features, the probability of ga
error is extremely high due to transitions to the carrier. T
means that several of the alternative schemes propose
ion-trap computation@10,111# would not provide feasible
condensed-phase analogs@although the recent scheme o

TABLE I. For a given error threshold« and support densityl,
the table shows the optimal value ofNmax, Nc for CdTe and Si
nanocrystals.l0510 amu/Å .

2 log10(«) l/l0 Nc ~CdTe! Nc ~Si!

1 1 7 731
10 3 339
100 1 158

2 1 1 107
10 0 50
100 0 23

3 1 0 16
10 0 7

-
-
of

re

l-
f
e
ss

s,
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Childs and Chuang@92#, which allows computation with
two-level ions~or quantum dots! by using both the blue and
red sidebands could also be feasible in the condensed ph#.

Additional sources of decoherence that have been
glected here~scattering off the support, vibrational and ele
tronic transitions in the support! will also act to limit the
number of operations. However, one source of decohere
that can be eliminated or at least reduced is dephasing f
the coupling to phonon modes of the support. This is a c
sequence of the requirement of extremely narrow bandw
lasers, and therefore implies that a similar lack of dephas
will hold for other optical experiments on quantum dots th
use narrow bandwidths. One such example is the propos
couple quantum dots via whispering-gallery modes of gl
microspheres@23#. More generally, this result offers a rou
to avoid dephasing for other spectral measurements on q
tum dots@115#.

An interesting additional application for this proposal
the laser cooling of nanorods. A single QD could be plac
or even etched on a nanostructure. A laser tuned to the
support phonon sideband of a QD-excited electronic s
would excite the energy of the nanocrystal, and at the sa
time lower the average phonon occupation of the supp
When the unstable state relaxes, the most probable trans
is the carrier transition. The net result is that the emit
phonon is blueshifted compared to the excitation pulse.
extra energy carried away by the emitted photon is ther
removed from the motional energy of the QD.

The essential physical problem encountered in t
condensed-phase realization of the qubits coupled by pho
modes is the recombination lifetime of the qubit states, i
the exciton radiative lifetime. In principle, this could be am
liorated by using hyperfine states of a doped nanocrys
Recent experimental results demonstrating electronic do
of semiconductor quantum dots offer a potential route
controlled access of these states@116#. The feasibility study
presented in this paper does indicate that although the
tailed physics of the qubits and their coupling is considera
more complicated in the condensed phase than in the
phase, limited quantum computation may be possible w
phonon-coupled solid-state qubits. Further analysis and
velopment of suitable nanoscale architectures and mate
is therefore warranted.
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APPENDIX: COORDINATE REPRESENTATION OF
ELECTRON AND HOLE STATES

We give here the coordinate representation of the elec
and hole states. These states were derived in@60# @We em-
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ploy a slightly different phase convention. Efroset al. when
calculating the exchange Hamiltonian,gSW h•SW e , between the
hole and electron spin,SW h and SW e , use the convention
SW h•SW e5Sh

zSe
z1 i /2(Sh

1Se
22Sh

2Se
1). We instead use the con

vention thatSW h•SW e5Sh
zSe

z1 1
2 (Sh

1Se
21Sh

2Se
1)#. For conve-

nience, we repeat the definitions of our qubit states@Eq. ~9!#
in slightly more detailed notation,

u0&5uC1/2,1/2
S ~re!&uC3/2,3/2

S ~rh!&,

u1&5uC1/2,21/2
S ~re!&uC3/2,23/2

S ~rh!&,

u2&5
1

A2
@ uC1/2,21/2

S ~re!&uC3/2,1/2
S ~rh!&

2uC1/2,1/2
S ~re!&uC3/2,21/2

S ~rh!&].

The electron states are simply the solutions to a free spin
particle in a spherical hard-wall box,

uSW e&[uC1/2,61/2
S ~r !&5A2

R

sin~pr /R!

r
Y0

0~u,w!US,6
1

2L ,

~A1!

whereR is the radius of the dot andYl
m are spherical har-

monics.S is a conduction-band Bloch function and6 1
2 is the

z projection of the electron spin,

US,6
1

2L 5uL50,mL50&Ums56
1

2L . ~A2!

The holes states can be written explicitly as

uC3/2,61/2
S ~r !&52R0~r !Y0

0uu61/2&2R2~r !SA2

5
Y2

62uu73/2&

1A2

5
Y2

71uu63/2&2A1

5
Y2

0uu61/2& D
3uC3/2,63/2

S ~r !&

52R0~r !Y0
0uu63/2&2R2~r !SA2

5
Y2

62uu71/2&

2A2

5
Y2

61uu61/2&1A1

5
Y2

0uu63/2& D ,

where Rl are the envelope functions anduumJ
& are the

valence-band Bloch functions.
The radial functions are

R2~r !5
A

R3/2F j 2~fr /R!1
j 0~f!

j 0~fAb!
j 2~fAbr /R!G ,

R0~r !5
A

R3/2F j 0~fr /R!2
j 0~f!

j 0~fAb!
j 0~fAbr /R!G ,
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where j l are spherical Bessel functions,b5mlh /mhh is the
ratio of the light to heavy hole masses, andf is the first root
of the equation

j 0~f! j 2~Abf!1 j 2~f! j 0~Abf!50.

The constantA is defined by the normalization condition

E
0

R

@R0
2~r !1R2

2~r !#r 2dr51.

The valence-band Bloch functions are given by

uu63/2&5uL51,mL561&ums561/2&,

uu61/2&5
1

A3
@A2uL51,mL50&ums561/2&

1uL51,mL561&ums571/2&].

For our Raman-transition scheme, we have used st
that were not analyzed in@60#. In particular, these states a
from the 1Se 1P5/2 exciton multiplet. To find these we use
techniques developed in@117#, and then calculated the eigen
states of the exchange coupling using the method of@60#. A
Raman transition connects states of equal parity throug
state of opposite parity. Therefore, the states of interest t
are theFz561 states,

uC61
v &52

1

A3
@ uC1/2,7u1/2

S ~re!&uC5/2,63/2
P ~rh!&

1A2uC1/2,61/2
S ~re!&uC5/2,61/2

P ~rh!&].

The electron state is as above. The hole state can be wr
explicitly as

uC5/2,63/2
P ~r !&5R1~r !SA2

5
Y1

0uu63/2&1A3

5
Y1

61uu61/2& D
1R3~r !S 3A 1

35
Y3

0uu36/2&

2
1

2
A7

5
Y3

61uu61/2&1A 1

14
Y3

62uu71/2&
ci

.
C.
.S

ci.

01230
es

a
us

en

1
3

2
A1

7
Y3

63uu73/2& D ,

uC5/2,61/2
P ~r !&5R1~r !SA 1

10
Y1

71uu63/2&A3

5
Y1

0uu61/2&

1A 3

10
Y1

61uu71/2& D 1R3~r !

3S 3A 3

70
Y3

71uu63/2&2A 6

35
Y3

0uu61/2&

2A 1

70
Y3

61uu71/2&1A3

7
Y3

62uu73/2& D ,

where Rl are the envelope functions anduumJ
& are the

valence-band Bloch functions given above.
The radial functions are

R3~r !5
B

R3/2F j 3~f8r /R!1
2 j 1~f8!

3 j 1~f8Ab!
j 3~f8Abr /R!G ,

R1~r !5
B

R3/2F j 1~f8r /R!2
j 1~f8!

j 1~f8Ab!
j 1~f8Abr /R!G ,

wheref8 is the first root of the equation

j 1~f! j 3~Abf!1
2

3
j 1~f! j 3~Abf!50 ~A3!

andB is defined by the normalization condition

E
0

R

@R1
2~r !1R3

2~r !#r 2dr51. ~A4!
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