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Heating and decoherence suppression using decoupling techniques
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We study the application of decoupling techniques to the case of a damped vibrational mode of a chain of
trapped ions, which can be used agj@antum busn linear ion trap quantum computers. We show that
vibrational heating could be efficiently suppressed using appropriate “parity kicks.” We also show that vibra-
tional decoherence can be suppressed by this decoupling procedure, even though this is generally more difficult
because the rate at which the parity kicks have to applied increases with the effective bath temperature.
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[. INTRODUCTION some similarities with quantum error correction, which also
checks which error has taken place and eventually corrects it.
Real-world quantum systems interact with their environ-However, the main limiting aspect of feedback schemes is
ment to a greater or lesser extent. No matter how weak ththe need of a measurement, which is always inevitably sub-
coupling with such an environment, the evolution of an operject to the limitations due to nonunit detection efficiency. In
guantum system is eventually affected by nonunitary featurefact, only under specific casésee[8]), is it possible to au-
such as decoherence, dissipation, and heating. Decoherent@natically correct the error without a measurement, as in
in particular, is a serious obstacle to all applications exploitquantum error-correction codes. In open-loop control strate-
ing quantum coherence, such as the bourgeoning field ajies instead, the system is subject to external, suitably tai-
quantum information processing. lored, time-dependent drivings that are independent of the
Recently, considerable effort has been devoted to desigrgystem dynamics and do not require any measurement, but
ing st_rateg!es able to counteract the undesired effects of th@my a limited, a priori, knowledge of the system-
coupling with an external environment. Notable examples ofpyironment dynamics. These external control Hamiltonians
these strategies in the field of quantum information are quans;a chosen in order to realize an effective dynamical decou-
tum error-correction codesl] and error-avoiding codég], Eling of the system from the environment. In this way, any

fbutilth sbeallsgtde gguigczoé'gg ;??hzt%%tt%iﬁgeeﬁrgtea(ggdof":;% (;ars_hdesired effect of the environment, such as dissipation, de-
y P ; J pace ot y coherence, heating, may be eliminated in principle. The es-
tem and a number of ancillary systems. The main difference

between the two encoding strategies is that error avoidinir(:"m'aI physical idea behind these open-loop schemes comes

codes (also called decoherence-free subsppga®vide a om refocusing techniques in NMR spectroscopy, now rou-

passive strategy relying on the occurrence of specific Symt_lnely used to eliminate unwanted interactit§]. Nonethe-

metries in the interaction with the environment, which guar-€SS: these decoupling methods have recently attracted a
antees the existence of state space regions inaccessible [§§9€ interest and they have been applied in many different
noise. Quantum error correction is instead an active strateg§ituations, such as the inhibition of the decay of an unstable
in which the encoding is performed in such a way that theatomic statg13], or the suppression of magnetic state deco-
various errors are mapped onto orthogonal subspaces so tHgrence 14]. The general applicability of decoupling meth-
they can be diagnosed and reversed. ods has been discussed 2], while the possibility to com-

A simple example of decoherence-free subspace has bedine decoupling techniques together with weak-strength and
recently demonstrated with two trapped igB3% while error-  slow-switching controls has been analyzed16], where the
correction codes for single-qubit errors has been demonzonditions under which noise-tolerant, universal quantum
strated only in NMR quantum information processo#s. control of a system may be performed with no extra space
The main limitation for the efficient implementation of these resources, have been determined. The general algebraic
encoding strategies for combatting decoherence is the larggructure behind decoupling strategies has been also analyzed
amount of extra space resources requifgld Correcting all  in Ref.[17], where it is shown how decoupling can be also
the possible one-qubit errors requires at least five qiibits considered as a dynamicgymmetrizatiorwith respect to a
and if fault tolerant error correction is also considered, thegroup. This more general algebraic framework has also pro-
number of ancillary qubits rapidly increases. For this reasonyided a unifying picture for coding and decoupling noise-
other alternative approaches that do not require any ancillargontrol strategie§18,19. In fact, when decoupling open-
resources have been pursued, and that may be divided intoop controls are combined together with encoding into
two main categories: closed-logguantum feedbagK7,8], larger Hilbert spaces, fault-tolerant universal control of quan-
and open-loop[9-14] decoherence control strategies. Intum systems becomes possible even with limited control re-
closed-loop techniques, the system to be protected is subjesburces. For example, it has been shown that the Heisenberg
to appropriate measurements and the classical informatioexchange interaction is sufficient to perform universal quan-
obtained from this measurement is used for real-time corredum computation if appropriately encoded qubits are used
tion of the system dynamics. This technique shares therefol@0]; these encoded subspaces may actually be made deco-
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herence free if appropriate decoupling controls are applied itechnique following the lines of Ref12].

parallel[19,21]. We consider a quantum syste®rtoupled to an arbitrary
The main drawback of open-loop decoupling proceduredath B, whose overall Hamiltonian may be written as

is that the timing constraints are particularly stringent. In

fact, the decoupling interactions have to be turned on and off _ _

at extremely short time scales, even faster than typical envi- Ho=Hs®lp+ls®Hp+Hse= % Sa®Ba. @

ronmental time scalefull-strength/fast-switchingr quan-

tum bang-bangcontrols [12]). In fact, perfect decoupling A decoupling strategy consists of trying to protect the evo-

from the environment is obtained only in the infinitely fast lution of Sagainst the effect of the interactiéfsg, by seek-

control limit (see Sec. )l and it is therefore important to ing a perturbatiorH,(t)®1lg to be added td1, so that the

establish in a quantitative way how effective these decoutotal Hamiltonian becomed(t)=Hg+H,(t)®1g. One usu-

pling schemes are in a realistic situation with control pulseslly restricts to situations where the control fieldagclic,

with finite strength and time duration. A detailed analysis ofi.e., associated to a decoupling operathi(t) that is peri-

decoupling time scales has been performed onl{Qihfor  odic over some cycle tim&,

the case of a single qubit in the presence of a purely dephas- .

ing environment, and if11], in the case of a linearly — (i f _

damped vibrational degree of freedom. In this latter case, Va(t) Texp‘ (i7#) 0 dqu(u)] Valt+To). (2

Ref. [11] proved that perfect decoupling may be achieved

using extremely fast “parity kicks,” and that significant sup- WhereT denotes time ordering. In this case, one need only

pression of dissipation and decoherence due to the coupliff§cus on thestroboscopicevolution at timesTy=NT,, and

with a zero-temperature bath is obtained as soon as the fréis possible to see that in this case, the evolution is driven

quency of parity kicks becomes larger than the frequencyy an effectiveaverageHamiltonian[24]

cutoff of the environment. In the present paper, we shall =

reconsider the model of Ref11] and extend the analysis to Uior Ty) =~ (/MM 3)

the case of dinite-temperatureenvironment. The motivation . R
for this study is twofold. First of all, it will allow us to The calculation of the average Hamiltoniahis performed

establish if and how thermal effects influence the decouplingn the basis of a standard Magnus expansion of the time-
strategy, that is, if temperature introduces a timescale thafrdered exponential defining the cycle propagaRs,
together with the environmental frequency cutoff, determines

the effectiveness of the parity kick decoupling strategy. Sec- Uior(Te) =exp(—iHT: /%)

ond, the damped harmonic oscillator in a finite-temperature T,

bath studied in this paper well describes a collective vibra- =TexW’ —(i/h)f duﬁ(u)}
tional mode of a chain of trapped ions, which is used as a 0

quantum bus in linear ion trap quantum compuf@. One — o IHO+HD T/ 4)

of the main experimental problems for quantum information '

processing with linear ion traps is just the heating of thesg,nare

vibrational modeg$23], and it is therefore extremely impor-

tant to establish if the parity kick decoupling method of Ref. -

[11] is able to suppress heating and decoherence in this case. H(t)=Ul(hHoU. () =2 [UI(1)S,Ui(D)]2B,. (5)
The paper is organized as follows: In Sec. Il, decoupling “

strategies in general, and the parity kick method of REf]  The various contributions in the right-hand side of E4).

asa partlcul_ar e’Famp'e’ are presented. In Sec. lll, the dynan?:bllect terms of equal order iH(t). In particular,
ics of the vibrational mode in the presence of a nonzero-

temperature bath and parity kicks is analyzed in detail and in . 1 (T .
Sec. IV the numerical results for both heating and decoher- H(°)=T—f duH(u), (6)
ence rates are presented. Section V is for concluding re- /0
marks. - ,
HO=— — Cduf du[A(v),A(u)]. @
2Tc 0 0

II. DYNAMICAL DECOUPLING VIA PARITY KICKS

One says thatth-order decoupling is achieved if the control

The starting point of decoupling techniques is the obser:: : - .
vation that even though one does not have access to the lar Sld Hy(t) can be devised so that contributions mixiRignd

number of uncontrollable degrees of freedom of the environB degrees of freedom are no longer pre_serit-IFH) and the
ment, it is still possible to interfere with its dynamics by first nonvanishing correction arises from®, k=1. One
inducing motions into theystemwhich are at least as fast as then considers the infinitely fast control limit, which, for a
the environment dynamics. This indirect influence of the en{inite evolution timeT, requires considerin@.=T/N in the
vironment is obtained through the application of suitablelimit T.—0 andN—<o. In this limit, first-order decoupling is
time-dependent perturbations acting on the system variablesifficient, contributions higher than zeroth-order are negli-
only. Let us now review the main points of the decouplinggible in Eq.(4), and one can focus on the problem of design-
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ing the effective Hamiltoniami(®) of Eq. (6) in such a way Produce decoupling is nontrivial. Second, the decoupling
that there is no residual system-environment coupling.  Prescription(9) requires the capability of instantaneously
The more general way to engineer the average Hamilchanging the evolution operator frog) to g;., over suc-
tonianH© is throughsymmetrizatiomwith respect to a finite cessive su_bmtervgls. .Th's means assuming the capability of
group G [12,17,. In fact, if we consider a finite group of |mplement|ng arb_ltranly_strong and extremely fa;t control
unitary operatorsG={g;},j=1, ... 1G], symmetrization is operations. Such impulsive full-power control conflgur_atmns
the map(acting on system operator ojly correspond to so-callequantum bang-bang controbs in-
troduced in[9]. As it has been already shown [ii,11], the
1 most stringent condition is not on the strength but rather on
S=I(S)= 1= 2 ngng , (8)  the extremely high speed of the control operations: one has
|l 99 to be faster than the typicahvironmentatime scale, which
is usually fixed by the frequency cutoff of the bath spectrum,
.. However, the identification of the frequency cutoeff as
the only relevant parameter determining the threshold for the
decoupling cycle frequency T above which the decoupling
procedure becomes effective, has been done in Refsl]
only on the basis of two specific examples. In Réfl], the
— At ; case of a harmonic oscillator coupled to a zero-temperature
V=g, JAtst=(+DAt © bath, able to induce only system dissipatiand the associ-
corresponding to a partition of the cycle tinfe into || ~ ated decoherengéas been considered. The case of nonzero
intervals of equal lengtiht=T./|G|. Then, by Eq.(5), temperature has been discussed in Ref.but only in the
particular case of a single qubit subject to a purely dephas-
—0) ing, energy-conserving, environment. It is therefore impor-
HO=TI(Ho) =2 T(S,)®B,, (10 tant to establish the effectiveness of decoupling techniques in
¢ the general case of monzero-temperature, dissipative bath
From now on we shall specialize to the case of the linearly
damped harmonic oscillator of Ref11], which is of rel-
vance for linear ion trap quantum computation. In fact, we
hall demonstrate that decoupling techniques may be suc-
cessfully used to efficiently suppress heating of the vibra-
tional center-of-mass motion of the ion chain.

which is also the projection on the so-calleehtralizerof g,
composed of operators commuting with every elenggraf
the groupg [12,17]. The map(8) may be dynamically imple-
mented through a simple piecewise constant decoupling o
erator

showing that the average Hamiltoniaf®), generating time
evolution in the infinitely fast control limit, has been sym-
metrized, i.e., has become invariant with respect to the grou
G. Perfect decoupling from the environment is achieve
when

e(Hsp) =0, (11)
I1l. PARITY KICKS FOR A DAMPED HARMONIC
and in this case, the effective open-system evolution for the OSCILLATOR
reduced density operator of the systerg over timeT is

governed by We choose a harmonic oscillator as system of interest

_ t
lim PS(T: NTC) :efiHST/hpS(o) e+iH5T/h, (12) HS ﬁwoa a, (13)

N—o0 describing a collective vibrational mode of a linear chain of

trapped ions with frequency,. It has been already experi-

whereHg=1I,(Hg). This means that the system is no morementally verified[23,26 that the nonunitary features of the
interacting with the environment and the residual time evowibrational dynamicgheating and decoherencare well de-
lution is driven by a projected system Hamiltonian, invariantscribed by modeling the environment as a collection of inde-
with respect tag. pendent bosonic mod¢g&7]

A number of examples of decoupling grougshas now
appeared in the literature, expecially for the case of many-
qubits dissipative registers with various kinds of interaction
with the environmen{9,10,12,17. Another important ex-
ample for applications in quantum computing is the case of énteracting with the vibrational mode via the following bilin-
linearly dissipative vibrational degree of freedom, which canear interaction Hamiltonian in which the “counter-rotating”
be used as guantum busn linear ion trap quantum com- terms are dropped
puters[22], and which has been shown in R¢L1] to be
decoupled by the groug,, composed by the identity and the
parity operatoiP. In fact, it is straightforward to check that
the decoupling conditiorill) is equivalent to the condition
of Eq. (7) of Ref. [11]. The symmetrization with respect to the grouf is per-

As it can be expected, implementing the above generdiormed by periodically pulsing the oscillation frequency, that
decoupling strategy is by no means trivial. First of all, for ais, by changing the potential so thaf, is changed towq
given Hgg, the identification of a minimal groug able to  + dw for a time intervalr and with a time periodr. (see

Hg=>, fawbiby, (14)
k

Hse= 2 fin(abi+a'by). (15)
k
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Wy + 60 Equation(18) is useful also in the nonzero-temperature case.
In fact, using the expression of the thermal stafein the
n Glauber-SudarshaR-representatiofi30]
0o 2 2
DI E— d” By | Bl
T T_ ~
T < PB rk[ J' 7TNk eXp[ Nk |Bk><18k|v (21)

FIG. 1. Sketch of the implementation of the parity kick decou-

pling procedure by pulsing the oscillation frequency. whered?B,=d ReB,d Im B, andN,= (expl{fia /kgT}— 1)1
is the mean thermal excitation number of #ih bath mode,
Fig. 1. The pulse realizes the “parity kick” of Ref1l]  one has always to evaluate the time evolution of terms such
when the conditiondw 7= 7 is satisfied. In this way, the as|a><a’,||,8k><ﬁk|a and then perform the average over the
cyclic time-dependent control Hamiltonian is given by thermal Gaussian weight ekp|BJ%NJ/7N,. Therefore, the
essential dynamics is contained in the expression of the uni-
” tary matrixL;;(t) of Egs.(19) and(20), which has the same
Hy(t)=fidwa'a 21 6(t—nTc+7)0(nTc—t), (16)  structure both with and without parity kicks, because the two
" situations differ only by the value of the oscillation fre-
guency. The matrix elementyy(t) is given in terms of its
Laplace transform, and, in the interaction picture with re-
spect toHg of Eq. (13), one has

so that the cyclic decoupling operattt,(t) is equal to
U,(t)=1g for 0<t<T.— 7 and U,(t)=explima'a}=P, for
To—r<t<T..

To determine the effects of a nonzero-temperature bath on
the efficiency of the decoupling scheme, we shall consider an Loo(t,dw)=L"1
initially factorized state in which the vibrational mode is
prepared in a given pure stdi@(0)) and the environment is
at the thermal equilibrium state at temperatﬂire)g. To be where
more specific, we want to establish if decoupling via parity
kicks is able to suppress efficiently both heatiwghich is yﬁ
important for quantum information processjrand quantum K(z, 50’):2 i (or—wg) =100 (23)
decoherence of the vibrational mode. To study heating, we ke o
shall assume that the collective vibrational mode has beeIP _ _ . . .
initially cooled to its ground stat28], that is, | :(0))=|0). -h|s expression refers to the evolution during the parlty
The study of decoherence instead will be performed, as iﬁfks’ that is, forn_TC— _T<t_<nTC' n>_1. The e_volut|on_ n
Ref. [11], by considering an initial linear superposition of e absence of kicks is simply obtained puttiag=0 in

two coherent states with opposite phases, that is, the welF9s: (22) aqd (23). All the other_ matrix elements may be
known Schrdinger cat state expressed in terms of the matrix eleméngt(t, Sw) in the

following way:

: (22)

Z+K(z,6w)

[4(0))=[1,) =Ny(|a(0)) + €| - a(0))),  (17) .
Low(t, 80)=L(t,6w)=—i ykf dse (k@ dw)s
whereN,,=(2+2e 2O cosg) 12 The dynamics of the 0
system in the presence of parity kicks will be exactly solved X Log(t—S$, dw), (24)
for both initial conditions of the vibrational mode, by ex-
ploiting the fact that a tensor product of coherent states re-
tains its form at all times when the evolution is generated by
the Hamiltonian of Eqs(13), (14), and(15) [29], that is

ka’(ty 5(1)) = 5kk/eii(wk7w0)t
t .
- ?’kvfﬁf dse (@ wo—dw)(t—s)
0

o) ]] [B0)y—|at)e]] |B(t), (18 .
|a > y | k > |a > . | k > XfdS’e_i(‘”k’_“’O_5"’)(5_5/)L00(S',5w).
0

where the time-dependent coherent state amplitudes are a (25)
linear combination of the initial amplitudes

It is evident that a decoupling cycle of duratioh.
will be described by the product of unitary matrices
L(7,dw)-L(T.—7,0) applied to the vector formed by the
coherent amplitude§a(t), ... ,Bk(t), ...,]. As a conse-
qguence, the stroboscopic dynamics of the whole system dur-
Bk(t):Lko(t)a(o)+2 Ly (1) Bir (0). (20) ing the decoupling procedure, in the case of an initial tensor
K/ product of coherent states, may be described exactly as

c«<t>=Loo<t)oz<0>+Ek Lok(t) Bi(0), (19)

012305-4



HEATING AND DECOHERENCE SUPPRESSION USING. .. PHYSICAL REVIEWGA 012305

a(NT,) «(0) very high frequency with respect to the infinitely flat distri-
: . bution of the Markovian treatmemfsee Eq.(27)]. This fact
’ =[L(7,80)L(T.— 7,0 ’ (26 manifests itself in a slight modification of the dynamics at
Br(NT,) [Lr )l (Te= 0] B«(0) @8 very short timest=w_ *) [31]. We have verified both short-

and long-time deviations from the standard Markovian bath

dynamics in our numerical calculations. However, we have

checked that our model environment with a finite number of

oscillators faithfully reproduces the standard Markovian bath
In the standard description of dissipation, one always condynamics within the time interval of interest, Oyt

siders a continuum distribution of oscillator frequencies in<3/y, say.

order to obtain an irreversible transfer of energy from the

system of interest into the reservoir. Moreover, most often, A. Effect of parity kicks on heating

also the Markovian assumption is made, which means as- To check if decoupling via parity kicks is able to suppress

suming an infinitely fast bath with an infinite frequency cut- : e :
. . the heating of the vibrational mode, we consider the follow-
off w.. This case of a standard vacuum bath in the Markov- 9

ian limit is characterized by an infinite, continuous, and flatIng initial state for the whole system:
distribution of couplingg30], d2B,(0) | Bk(0)]2
o0l ]] [ “EaDergd - PP 5, 01)¢6,00)

y
Nw)?=5- Vo, (27 (33

. . _ where |0) is the ground state of the collective vibrational
where y is the energy damping rate. As shown in Refs'mode[28].

[9,11], decoupling strategies become efficient when the ex- Using the property(18), and tracing over the environ-

ternal controls are characterized by time scales faster th%ent the evolved state of the vibrational mode alede-
those of the environment. It is therefore evident that, in th%ouplying cycles may be written as

presence of parity kicks, we cannot make any Markovian
approximation. We have to solve numerically the problem, d?B,(0) |Bc(0)|?
by simulating the continuous distribution of bath oscillators Ps(NTc)If H N exp{ TN ]
with a large but finite number of oscillators with closely ko Tk K
spaced frequencies. As in Ré¢fl1], we have considered a X|a(NTe)){a(NTy)l, (34
bath of 201 oscillators, with equally spaced frequencies,

symmetrically distributed around the resonance frequencwhere the coherent state amplitudéNT,) is the following

IV. NUMERICAL RESULTS

wg, 1.e., linear combination of the complex variablgg(0):
o= wyt+ KA, (28
’ a(NTo)= 2 CodNTe)B(0), (35
o
A= —| (29 .
100 where we have definedCy (NT.)={[L(7,dw)L(T,

—7,0)]N}ox [see Eqs(19) and (26)]. The Gaussian average
of Eqg. (34) may be performed by first considering the nor-
mally ordered characteristic functiop(\,NT.) [30] of the
state, and then performing the integration. One gets

w
kmaX=X0 —100= 0= 2w, (30)

Kmin= — Kmax=— 100= 0""=0, (31)
= —I\2 2
and we have considered a constant distribution of couplings X(\NT) exp( A ; N Cor(NTo)[*r,  (36)
similar to that associated with the Markovian limit
showing that, in the presence of parity kicks, the vibrational
, YA state is athermal state, with mean vibrational number
k

"oy VK B2 T,

Approximating a continuous Markovian bath with a finite _

number of bath oscillators has two main effects. First of all, V(NTC)_EK N Cor(NTe) . (37

the discrete frequency distribution with a fixed spacilg

makes all the dynamical quantities periodic with periodThe stroboscopic time evolution of this mean vibrational
Tie,=2m/A [31]. Therefore, our numerical solution will number is plotted in Fig. 2 both in the presertfidl circles)
correctly describe the interaction with the environment pro-and in the absenderossepof parity kicks. The capability of
vided that we consider not too large times, $aym/A. Sec-  the parity kick decoupling strategy to avoid vibrational heat-
ond, the introduction of a finite cutoff.=2wq in our cas¢  ing is clearly visible in this figure. In Fig. 2, and in the rest of
implies a modification of the coupling spectruy{w) at  the paper, we consider a vibrational mode with frequency
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FIG. 2. Time evolution of the mean vibrational number of Eq.
(37) with (full circles) and without(crosses parity kicks. The ca-
pability of parity kicks to suppress heating is clearly visible. Param- 10° * s e M
eters are:wg=10 MHz, y=0.1 MHz, 0.,=20 MHz, effective
reservoir temperaturé€=10 mK [corresponding tdN(wg) =130,
T.=157 ns, parity kick durationr=T//7=22.4 ns, implyingéw 10!

=140 MHz. 10° .

v(t=1/y)
SN

wo=10 MHz, damping ratey=0.1 MHz, and environmen- o T : : !
tal frequency cutofto.=20 MHz. The curve referring to the
situation without parity kicks in Fig. 2 well reproduces the
standard Markovian resulf30] »(t)=N(wy)(1—e "),
whereN(wg) = (exp{fiwy/ksTt—1) 1 is the mean vibrational =
number of the oscillator at thermal equilibrium in the usual 1 10°
Born-Markov approximation. Figure 2 refers to an effective H
reservoir temperatur& =10 mK [corresponding tdN(w)
=130], and to the following decoupling cycle parameters: 10
T.=157 ns, parity kick duratiom=T./7=22.4 ns, implying >
Sw=140 MHz. 2‘4 2‘3 2'2 i 20 2! 22 23
The influence of the environmental temperatlien heat- ocT/2n
ing suppression is analyzed in Fig. 3, where the mean vibra- o o
FIG. 3. Mean vibrational number after one relaxation-time

tional number after one relaxation time=1/y, v(1/y), is ) . .
plotted as a function of the rescaled decoupling cycle time /?; »(1/%), as afunction of the rescaled decoupling cycle time

. T /2, for three different bath temperaturés=10 mK [corre-
T./2m for three different bath temperaturéb=10 mK ¢’ X
E‘;; 'T'=100 mK(b), andT=1 K (c) Fgr each value Gf sponding to N(wq)=130] (a), T=100 mK [corresponding to
) ) . (o}

. . - c N(wg)=1302 (b), andT=1 K [corresponding tiN(w,)=13144
we have always chosen the kick duratiea T./7, as in Fig. ©. Eor each value off,, we have always chosen=oTC/7, and,

,2' and the frequency shifiw is always correspondingly _ad- correspondinglydw= 7/ 7. The other parameters are as in Fig. 2
justed so thatéw=m/7. We can see that a well-visible

threshold for the decoupling cycle tinTg exists and that as

soon as the parity kicks are sufficiently fa3i,<2#/w,,

heating suppression becomes significant. This is a pha

transitionlike behavior analogous to that found for decoher- 2 2
e . d<B(0) |Bk(0)]

ence suppression in the zero-temperature £ake What is |<//¢,)(z,/;‘p|®]_[ f N, P T TN

more important is thabbath temperature has no effeah the K Tk k

e_ffect@vene;s of the decoupling scheme: the results are essen- X | B(0))(Bi(0)], (38)

tially identical for the three different temperatures studied,

and this means that, at least for what concerns heating, the

only relevant environmental timescale is given by the fre-where|y,) is given by Eq.(17).

quency cutoffw,. This result is particularly important for ~ Using the property(18), and tracing over the environ-

the application of the parity kick strategy to suppress heatingnent, the evolved state of the vibrational mode aNede-

in linear ion trap quantum computers, where heating is due téoupling cycles may be written as

some technical imperfections originating from fluctuating

patch fieldg23]. Determining the effective temperatuFeof d28,(0) | B(0)]2

the thermal bath modeling these fluctuating fields is gener-pS(NTc):Nif IT —exp{ - —]{|a+(NTC)>

ally very difficult, but our results shows that this is not rel- kN Ni

evant, and that parity kick decoupling is very promising for

eliminating vibrational heating. (e (NTo)| +a-(NTe)){a-(NTo)|

state of the vibrational mode, and therefore, the following
ggitial state for the whole system:

+e'( B (NTY)| B (NTe)) a—(NT,))

. . . X(a (NTo)|+e7'%(By (NTo)| B (NTo))
Let us now consider the possibility of suppressing deco-
herence. We assume an initially prepared Sdimger cat X|a (NT)Wa_ (NTY)|}. (39

B. Effect of parity kicks on decoherence
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FIG. 4. Time evolution of the fringe visibility function of Eq. e Tien
(43) with (full circles) and without(crosses parity kicks. The ca-
pability of parity kicks to suppress decoherence is clearly visible. ,}\_1-0 a4 44 a
Parameters are the same as in Fig. 2, except that the decoupling ﬁ 0.8 ‘
cycle parameters now ar&.=78.5 ns, parity kick durationr \‘,:=0.6 .
=TJ7=11.2 ns, implyingdw=280 MHz. - (b)
A
. + 0.2
The coherent-state amplitudes.(NT;) and B, (NT.) are ol
now given by the following linear combinations of the initial ’ L & & L oL L1
amplitudeg see Eqs(19)—(20)]: 27 2z 27 2 2 2 2 2
plitudes(see Eqs(19)~(20)] "a
@+ (NTo)=+ aoCodNTe) + % Car(NTe) Bil(0), (40 104, . a4 4 a o
%‘0.8 o
. =06 ©
Bic (NTo) == agCro(NTe) + X Crao (NT) B (0). 04
kl
(41) 0.2
0.0

T T T T 1

The Gaussian average of E§9) may be performed, as in 4 93 2',2 2',1 20 o 2'2 2

the preceding sut_)sectlon, _by first considering the normally o T/2n

ordered characteristic function of the state and then perform-

ing the integration. The integration is straightforward but FIG. 5. Fringe visibility function after one relaxation tinte

lengthy, and the resulting reduced vibrational state may be 1/y, 7(1/), as a function of the rescaled decoupling cycle time

better expressed in terms of its Wigner functidia(a,NT,), T /2, for three different bath temperaturés=10 mK [corre-
sponding to N(wg)=130] (a), T=100 mK [corresponding to

2Ni N(wg)=1302 (b), andT=1 K [corresponding tdN(wq)=13144

Wsq(a,NT,)= (c). For each value ofr., we have always chosern=T./7, and,

7 1+2v(NTo)] correspondinglydw = 7r/ 7. The other parameters are as in Fig. 2.
;{ 2|a—a0C00(NTC)|2} The quality of decoherence suppression degrades with increasing
Xyexpg — temperature.
1+2v(NT,)
2| a+ agCod(NT,)|2 This fringe visibility is always contained in the interjd, 1]
+ex;{— } and provides a good quantitative description of dynamical
1+2v(NT,) decoherence processes. For this reason, we shall study the
o2 stroboscopic evolution of this quantity, as in Rgf1], to
T2 ex —2lagl n(NTe)} quantify the eventual decoherence suppression caused by the
2|al? decoupling.
XeXF{_ m} The time evolution of the fringe visibility is plotted in

Fig. 4, both with(full circles) and without(crossey parity
41mlaagCoy(NT,)] kicks. The possibility to suppress decoherence using parity
XCOﬁ{‘P 1+2v(NT,) H 42 kicks is clearly demonstrated in this figure. Parameters are
the same as in Fig. 2, except that the decoupling cycle pa-
where »(NT,) is again the mean vibrational number of the rameters now areT.=78.5 ns, parity kick durationr
cat state of Eq(37), the matrix elemen€y(NT,) describes =T/7=11.2 ns, implyingdw=280 Mhz. The curve refer-
the amplitude decay, ang(NT,) is thefringe visibility func- ~ ring to the situation without parity kicks in Fig. érosses
tion [32], determining the relative strength of the quantumwell reproduces the Markovian res({ig2]
interference term in the cat state, and which may be ex-

ressed as e
g n(t)=1- — (44
ICooNT,)|? 1+2N(wg)(1—e )
NT.)=1— 20" ¢/l 43 The influence of temperature on decoherence suppression
7(NT) (43)
1+2v(NTo) is studied in Fig. 5, where the fringe visibility function after
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lation of a system from its environment in the infinitely fast
control limit, i.e., in the case of very intense and very fast
control pulse$12]. The efficiency of decoupling strategies in
and T=1 K (c). For each value off,, we have always concrete situations involving finite strength and finite dura-
chosen the kick duration=T_/7, as in Figs. 2 and 3, and the tion control pulses has been analyzed only in the specific
frequency shiftdw is always correspondingly adjusted so cases of a single qubit in a nondissipative environmef@jn
that Sw= 7/ 1. and for a damped harmonic oscillator in a zero-temperature
We can see from Fig. 5 that the situation is rather differenbath in[11]. Here, we have extended these studies to the case
from that with heating suppression. In fact, decoherence suf a dissipative and nonzero-temperature reservoir. We have
pression by parity kickstrongly depends on the bath tem- specialized to the case of a collective vibrational mode of a
perature and it is significant only in the lower-temperature linear ion chain, which is used as a quantum bus in linear ion
case[Fig. 5a)], which is the only case in which a threshold trap quantum computef&2]. We have shown that the parity
for the decoupling cycle tim@&, at aboutT,=27/w,, asin  kick decoupling strategy introduced iti1] may be success-
the zero-temperature cagkl], is visible. In the other cases, fully applied to suppress vibrational heating, which is one
decoherence suppression worsens for increasing bath tedfiaportant limitation for quantum information processing in
perature. This result shows that eliminating decoherence vilinear ion trapg23]. In fact, heating is suppressed as soon as
decoupling techniques is generally more difficult than elimi-the decoupling cycle tim&_ becomes smaller thand .,
nating heating. This may be easily explained in terms of thevherew, is the bath frequency cutoff, and more importantly,
so-called thermal acceleration of decoheref@2,33, that the efficiency of this suppression is not affected by the tem-
is, the fact that in the case of a thermal bath at temperdiure perature of the bath. The parity kick method may be applied
the decoherence process is accelerated roughly by a factusing present technologies and its experimental implementa-
[ 1+ 2N(wy)] with respect to the zero-temperature case. Thigion in the case of trapped ions would be the first example of
thermal effect on the decoherence rate may be also easiti?e application of decoupling techniques outside the field of
checked from the Markovian limit expression of E44). In  NMR, where the so-called “refocusing” techniqugks] are
fact, the fringe visibility functiony(t) reaches its asymptotic easier to use because the involved magnetic environment is

one relaxation-time=1/y, n(1/y), is plotted as a function
of the rescaled decoupling cycle tinag T /27 for three dif-
ferent bath temperature3,=10 mK (a), T=100 mK (b),

value in a time of the order ofgec={y[1+2N(wg)]} 1,

usually very slow(see, however, Ref.34] for a proof-of-

and it is evident that decoherence suppression with paritprinciple demonstration of quantum bang-bang control in a

kicks is possible only if the cycle tim&; is smaller than this
decoherence timg.., and not only smaller than? w., as

photon polarization qubjit
We have also shown that, different from heating, the sup-

in the zero-temperature case. This means that, in a nonzerpression of vibrational decoherence is more difficult, because

temperature bath, one has a neemperature-dependent
threshold for decoherence suppression, given by

Te<min27/ ws {y[1+2N(wo)]} 1}, (45)

in a nonzero-temperature bath, the threshold for the decou-
pling cycle frequency is determined not only by the bath
frequency cutoff, but also by the decoherence rate, which
increases for increasing temperatures. The parity kick cycle
frequency has to be larger thdooth rates and this makes

and this generalized expression easily explains the results @{,pnression of vibrational decoherence more difficult for

Fig. 5.

V. CONCLUSIONS

higher temperatures.
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