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Heating and decoherence suppression using decoupling techniques

D. Vitali and P. Tombesi
Dipartimento di Matematica e Fisica and Unita` INFM, Universitàdi Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy

~Received 1 August 2001; published 10 December 2001!

We study the application of decoupling techniques to the case of a damped vibrational mode of a chain of
trapped ions, which can be used as aquantum busin linear ion trap quantum computers. We show that
vibrational heating could be efficiently suppressed using appropriate ‘‘parity kicks.’’ We also show that vibra-
tional decoherence can be suppressed by this decoupling procedure, even though this is generally more difficult
because the rate at which the parity kicks have to applied increases with the effective bath temperature.
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I. INTRODUCTION

Real-world quantum systems interact with their enviro
ment to a greater or lesser extent. No matter how weak
coupling with such an environment, the evolution of an op
quantum system is eventually affected by nonunitary featu
such as decoherence, dissipation, and heating. Decoher
in particular, is a serious obstacle to all applications expl
ing quantum coherence, such as the bourgeoning field
quantum information processing.

Recently, considerable effort has been devoted to des
ing strategies able to counteract the undesired effects o
coupling with an external environment. Notable examples
these strategies in the field of quantum information are qu
tum error-correction codes@1# and error-avoiding codes@2#,
both based on encoding the state to be protected into c
fully selected subspaces of the joint Hilbert space of the s
tem and a number of ancillary systems. The main differe
between the two encoding strategies is that error avoid
codes ~also called decoherence-free subspaces! provide a
passive strategy relying on the occurrence of specific s
metries in the interaction with the environment, which gu
antees the existence of state space regions inaccessib
noise. Quantum error correction is instead an active stra
in which the encoding is performed in such a way that
various errors are mapped onto orthogonal subspaces so
they can be diagnosed and reversed.

A simple example of decoherence-free subspace has
recently demonstrated with two trapped ions@3#, while error-
correction codes for single-qubit errors has been dem
strated only in NMR quantum information processors@4#.
The main limitation for the efficient implementation of the
encoding strategies for combatting decoherence is the l
amount of extra space resources required@5#. Correcting all
the possible one-qubit errors requires at least five qubits@6#
and if fault tolerant error correction is also considered,
number of ancillary qubits rapidly increases. For this reas
other alternative approaches that do not require any anci
resources have been pursued, and that may be divided
two main categories: closed-loop~quantum feedback! @7,8#,
and open-loop@9–14# decoherence control strategies.
closed-loop techniques, the system to be protected is su
to appropriate measurements and the classical informa
obtained from this measurement is used for real-time cor
tion of the system dynamics. This technique shares there
1050-2947/2001/65~1!/012305~9!/$20.00 65 0123
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some similarities with quantum error correction, which al
checks which error has taken place and eventually correc
However, the main limiting aspect of feedback schemes
the need of a measurement, which is always inevitably s
ject to the limitations due to nonunit detection efficiency.
fact, only under specific cases~see@8#!, is it possible to au-
tomatically correct the error without a measurement, as
quantum error-correction codes. In open-loop control stra
gies instead, the system is subject to external, suitably
lored, time-dependent drivings that are independent of
system dynamics and do not require any measurement,
only a limited, a priori, knowledge of the system
environment dynamics. These external control Hamiltonia
are chosen in order to realize an effective dynamical dec
pling of the system from the environment. In this way, a
undesired effect of the environment, such as dissipation,
coherence, heating, may be eliminated in principle. The
sential physical idea behind these open-loop schemes co
from refocusing techniques in NMR spectroscopy, now ro
tinely used to eliminate unwanted interactions@15#. Nonethe-
less, these decoupling methods have recently attracte
large interest and they have been applied in many differ
situations, such as the inhibition of the decay of an unsta
atomic state@13#, or the suppression of magnetic state dec
herence@14#. The general applicability of decoupling meth
ods has been discussed in@12#, while the possibility to com-
bine decoupling techniques together with weak-strength
slow-switching controls has been analyzed in@16#, where the
conditions under which noise-tolerant, universal quant
control of a system may be performed with no extra sp
resources, have been determined. The general alge
structure behind decoupling strategies has been also ana
in Ref. @17#, where it is shown how decoupling can be al
considered as a dynamicalsymmetrizationwith respect to a
group. This more general algebraic framework has also p
vided a unifying picture for coding and decoupling nois
control strategies@18,19#. In fact, when decoupling open
loop controls are combined together with encoding in
larger Hilbert spaces, fault-tolerant universal control of qua
tum systems becomes possible even with limited control
sources. For example, it has been shown that the Heisen
exchange interaction is sufficient to perform universal qu
tum computation if appropriately encoded qubits are u
@20#; these encoded subspaces may actually be made d
©2001 The American Physical Society05-1
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D. VITALI AND P. TOMBESI PHYSICAL REVIEW A 65 012305
herence free if appropriate decoupling controls are applie
parallel @19,21#.

The main drawback of open-loop decoupling procedu
is that the timing constraints are particularly stringent.
fact, the decoupling interactions have to be turned on and
at extremely short time scales, even faster than typical e
ronmental time scales~full-strength/fast-switchingor quan-
tum bang-bangcontrols @12#!. In fact, perfect decoupling
from the environment is obtained only in the infinitely fa
control limit ~see Sec. II! and it is therefore important to
establish in a quantitative way how effective these dec
pling schemes are in a realistic situation with control pul
with finite strength and time duration. A detailed analysis
decoupling time scales has been performed only in@9# for
the case of a single qubit in the presence of a purely dep
ing environment, and in@11#, in the case of a linearly
damped vibrational degree of freedom. In this latter ca
Ref. @11# proved that perfect decoupling may be achiev
using extremely fast ‘‘parity kicks,’’ and that significant su
pression of dissipation and decoherence due to the coup
with a zero-temperature bath is obtained as soon as the
quency of parity kicks becomes larger than the freque
cutoff of the environment. In the present paper, we sh
reconsider the model of Ref.@11# and extend the analysis t
the case of afinite-temperatureenvironment. The motivation
for this study is twofold. First of all, it will allow us to
establish if and how thermal effects influence the decoup
strategy, that is, if temperature introduces a timescale t
together with the environmental frequency cutoff, determin
the effectiveness of the parity kick decoupling strategy. S
ond, the damped harmonic oscillator in a finite-temperat
bath studied in this paper well describes a collective vib
tional mode of a chain of trapped ions, which is used a
quantum bus in linear ion trap quantum computers@22#. One
of the main experimental problems for quantum informat
processing with linear ion traps is just the heating of th
vibrational modes@23#, and it is therefore extremely impor
tant to establish if the parity kick decoupling method of R
@11# is able to suppress heating and decoherence in this c

The paper is organized as follows: In Sec. II, decoupl
strategies in general, and the parity kick method of Ref.@11#
as a particular example, are presented. In Sec. III, the dyn
ics of the vibrational mode in the presence of a nonze
temperature bath and parity kicks is analyzed in detail an
Sec. IV the numerical results for both heating and decoh
ence rates are presented. Section V is for concluding
marks.

II. DYNAMICAL DECOUPLING VIA PARITY KICKS

The starting point of decoupling techniques is the obs
vation that even though one does not have access to the
number of uncontrollable degrees of freedom of the envir
ment, it is still possible to interfere with its dynamics b
inducing motions into thesystem, which are at least as fast a
the environment dynamics. This indirect influence of the
vironment is obtained through the application of suita
time-dependent perturbations acting on the system varia
only. Let us now review the main points of the decoupli
01230
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technique following the lines of Ref.@12#.
We consider a quantum systemS coupled to an arbitrary

bathB, whose overall Hamiltonian may be written as

H05HS^ 1B11S^ HB1HSB5(
a

Sa ^ Ba . ~1!

A decoupling strategy consists of trying to protect the ev
lution of Sagainst the effect of the interactionHSB, by seek-
ing a perturbationH1(t) ^ 1B to be added toH0 so that the
total Hamiltonian becomesH(t)5H01H1(t) ^ 1B . One usu-
ally restricts to situations where the control field iscyclic,
i.e., associated to a decoupling operatorU1(t) that is peri-
odic over some cycle timeTc

U1~ t ![T expH 2~ i /\!E
0

t

duH1~u!J 5U1~ t1Tc!, ~2!

whereT denotes time ordering. In this case, one need o
focus on thestroboscopicevolution at timesTN5NTc , and
it is possible to see that in this case, the evolution is driv
by an effectiveaverageHamiltonian@24#

Utot~TN!5e2( i /\)H̄TN. ~3!

The calculation of the average HamiltonianH̄ is performed
on the basis of a standard Magnus expansion of the ti
ordered exponential defining the cycle propagator@25#,

Utot~Tc!5exp~2 iH̄ Tc /\!

5T expH 2~ i /\!E
0

Tc
duH̃~u!J

5e2 i [ H̄(0)1H̄(1)1, . . . ,]Tc /\, ~4!

where

H̃~ t !5U1
†~ t !H0U1~ t !5(

a
@U1

†~ t !SaU1~ t !# ^ Ba . ~5!

The various contributions in the right-hand side of Eq.~4!

collect terms of equal order inH̃(t). In particular,

H̄ (0)5
1

Tc
E

0

Tc
duH̃~u!, ~6!

H̄ (1)52
i

2Tc
E

0

Tc
dvE

0

v
du@H̃~v !,H̃~u!#. ~7!

One says thatkth-order decoupling is achieved if the contr
field H1(t) can be devised so that contributions mixingSand
B degrees of freedom are no longer present inH̄ (0) and the
first nonvanishing correction arises fromH̄ (k), k>1. One
then considers the infinitely fast control limit, which, for
finite evolution timeT, requires consideringTc5T/N in the
limit Tc→0 andN→`. In this limit, first-order decoupling is
sufficient, contributions higher than zeroth-order are ne
gible in Eq.~4!, and one can focus on the problem of desig
5-2
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HEATING AND DECOHERENCE SUPPRESSION USING . . . PHYSICAL REVIEW A65 012305
ing the effective HamiltonianH̄ (0) of Eq. ~6! in such a way
that there is no residual system-environment coupling.

The more general way to engineer the average Ha
tonianH̄ (0) is throughsymmetrizationwith respect to a finite
group G @12,17#. In fact, if we consider a finite group o
unitary operatorsG5$gj%, j 51, . . . ,uGu, symmetrization is
the map~acting on system operator only!

S°PC~S!5
1

uGu (
gj PG

gj
†Sgj , ~8!

which is also the projection on the so-calledcentralizerof G,
composed of operators commuting with every elementgj of
the groupG @12,17#. The map~8! may be dynamically imple-
mented through a simple piecewise constant decoupling
erator

U1~ t ![gj , j Dt<t,~ j 11!Dt, ~9!

corresponding to a partition of the cycle timeTc into uGu
intervals of equal lengthDt[Tc /uGu. Then, by Eq.~5!,

H̄ (0)5PC~H0!5(
a

PC~Sa! ^ Ba , ~10!

showing that the average HamiltonianH̄ (0), generating time
evolution in the infinitely fast control limit, has been sym
metrized, i.e., has become invariant with respect to the gr
G. Perfect decoupling from the environment is achiev
when

PC~HSB!50, ~11!

and in this case, the effective open-system evolution for
reduced density operator of the systemrS over time T is
governed by

lim
N→`

rS~T5NTc!5e2 iH̄ ST/\rS~0! e1 iH̄ ST/\, ~12!

whereH̄S5PC(HS). This means that the system is no mo
interacting with the environment and the residual time e
lution is driven by a projected system Hamiltonian, invaria
with respect toG.

A number of examples of decoupling groupsG has now
appeared in the literature, expecially for the case of ma
qubits dissipative registers with various kinds of interact
with the environment@9,10,12,17#. Another important ex-
ample for applications in quantum computing is the case
linearly dissipative vibrational degree of freedom, which c
be used as aquantum busin linear ion trap quantum com
puters@22#, and which has been shown in Ref.@11# to be
decoupled by the groupZ2, composed by the identity and th
parity operatorP. In fact, it is straightforward to check tha
the decoupling condition~11! is equivalent to the condition
of Eq. ~7! of Ref. @11#.

As it can be expected, implementing the above gen
decoupling strategy is by no means trivial. First of all, for
given HSB, the identification of a minimal groupG able to
01230
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produce decoupling is nontrivial. Second, the decoupl
prescription ~9! requires the capability of instantaneous
changing the evolution operator fromgj to gj 11 over suc-
cessive subintervals. This means assuming the capabilit
implementing arbitrarily strong and extremely fast cont
operations. Such impulsive full-power control configuratio
correspond to so-calledquantum bang-bang controlsas in-
troduced in@9#. As it has been already shown in@9,11#, the
most stringent condition is not on the strength but rather
the extremely high speed of the control operations: one
to be faster than the typicalenvironmentaltime scale, which
is usually fixed by the frequency cutoff of the bath spectru
vc . However, the identification of the frequency cutoffvc as
the only relevant parameter determining the threshold for
decoupling cycle frequency 1/Tc above which the decoupling
procedure becomes effective, has been done in Refs.@9,11#
only on the basis of two specific examples. In Ref.@11#, the
case of a harmonic oscillator coupled to a zero-tempera
bath, able to induce only system dissipation~and the associ-
ated decoherence! has been considered. The case of nonz
temperature has been discussed in Ref.@9# but only in the
particular case of a single qubit subject to a purely deph
ing, energy-conserving, environment. It is therefore imp
tant to establish the effectiveness of decoupling technique
the general case of anonzero-temperature, dissipative bat.
From now on we shall specialize to the case of the linea
damped harmonic oscillator of Ref.@11#, which is of rel-
evance for linear ion trap quantum computation. In fact,
shall demonstrate that decoupling techniques may be
cessfully used to efficiently suppress heating of the vib
tional center-of-mass motion of the ion chain.

III. PARITY KICKS FOR A DAMPED HARMONIC
OSCILLATOR

We choose a harmonic oscillator as system of interes

HS5\v0a†a, ~13!

describing a collective vibrational mode of a linear chain
trapped ions with frequencyv0. It has been already exper
mentally verified@23,26# that the nonunitary features of th
vibrational dynamics~heating and decoherence! are well de-
scribed by modeling the environment as a collection of in
pendent bosonic modes@27#

HB5(
k

\vkbk
†bk , ~14!

interacting with the vibrational mode via the following bilin
ear interaction Hamiltonian in which the ‘‘counter-rotating
terms are dropped

HSB5(
k

\gk~abk
†1a†bk!. ~15!

The symmetrization with respect to the groupZ2 is per-
formed by periodically pulsing the oscillation frequency, th
is, by changing the potential so thatv0 is changed tov0
1dv for a time intervalt and with a time periodTc ~see
5-3
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D. VITALI AND P. TOMBESI PHYSICAL REVIEW A 65 012305
Fig. 1!. The pulse realizes the ‘‘parity kick’’ of Ref.@11#
when the conditiondvt5p is satisfied. In this way, the
cyclic time-dependent control Hamiltonian is given by

H1~ t !5\dva†a(
n51

`

u~ t2nTc1t!u~nTc2t !, ~16!

so that the cyclic decoupling operatorU1(t) is equal to
U1(t)51S for 0,t,Tc2t and U1(t)5exp$ipa†a%5P, for
Tc2t,t,Tc .

To determine the effects of a nonzero-temperature bath
the efficiency of the decoupling scheme, we shall conside
initially factorized state in which the vibrational mode
prepared in a given pure stateuc(0)& and the environment is
at the thermal equilibrium state at temperatureT, rB

T . To be
more specific, we want to establish if decoupling via par
kicks is able to suppress efficiently both heating~which is
important for quantum information processing! and quantum
decoherence of the vibrational mode. To study heating,
shall assume that the collective vibrational mode has b
initially cooled to its ground state@28#, that is,uc(0)&5u0&.
The study of decoherence instead will be performed, a
Ref. @11#, by considering an initial linear superposition
two coherent states with opposite phases, that is, the w
known Schro¨dinger cat state

uc~0!&5ucw&5Nw~ ua~0!&1eiwu2a~0!&), ~17!

whereNw5(212e22ua(0)u2 cosw)21/2. The dynamics of the
system in the presence of parity kicks will be exactly solv
for both initial conditions of the vibrational mode, by ex
ploiting the fact that a tensor product of coherent states
tains its form at all times when the evolution is generated
the Hamiltonian of Eqs.~13!, ~14!, and~15! @29#, that is

ua~0!& ^)
k

ubk~0!&→ua~ t !& ^)
k

ubk~ t !&, ~18!

where the time-dependent coherent state amplitudes a
linear combination of the initial amplitudes

a~ t !5L00~ t !a~0!1(
k

L0k~ t !bk~0!, ~19!

bk~ t !5Lk0~ t !a~0!1(
k8

Lkk8~ t !bk8~0!. ~20!

FIG. 1. Sketch of the implementation of the parity kick deco
pling procedure by pulsing the oscillation frequency.
01230
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Equation~18! is useful also in the nonzero-temperature ca
In fact, using the expression of the thermal staterB

T in the
Glauber-SudarshanP-representation@30#

rB
T5)

k
E d2bk

pNk
expH 2

ubku2

Nk
J ubk&^bku, ~21!

whered2bk5d Rebkd Im bk andNk5(exp$\vk /kBT%21)21

is the mean thermal excitation number of thekth bath mode,
one has always to evaluate the time evolution of terms s
as ua&^a8uubk&^bku, and then perform the average over t
thermal Gaussian weight exp$2ubku2/Nk%/pNk . Therefore, the
essential dynamics is contained in the expression of the
tary matrixLi j (t) of Eqs.~19! and~20!, which has the same
structure both with and without parity kicks, because the t
situations differ only by the value of the oscillation fre
quency. The matrix elementL00(t) is given in terms of its
Laplace transform, and, in the interaction picture with
spect toHS of Eq. ~13!, one has

L00~ t,dv!5L21F 1

z1K~z,dv!G , ~22!

where

K~z,dv!5(
k

gk
2

z1 i ~vk2v0!2 idv
. ~23!

This expression refers to the evolution during the par
kicks, that is, fornTc2t,t,nTc , n>1. The evolution in
the absence of kicks is simply obtained puttingdv50 in
Eqs. ~22! and ~23!. All the other matrix elements may b
expressed in terms of the matrix elementL00(t,dv) in the
following way:

L0k~ t,dv!5Lk0~ t,dv!52 igkE
0

t

dse2 i (vk2v02dv)s

3L00~ t2s,dv!, ~24!

Lkk8~ t,dv!5dkk8e
2 i (vk2v0)t

2gkgk8E
0

t

dse2 i (vk2v02dv)(t2s)

3E
0

s

ds8e2 i (vk82v02dv)(s2s8)L00~s8,dv!.

~25!

It is evident that a decoupling cycle of durationTc
will be described by the product of unitary matrice
L(t,dv)•L(Tc2t,0) applied to the vector formed by th
coherent amplitudes@a(t), . . . ,bk(t), . . . ,#. As a conse-
quence, the stroboscopic dynamics of the whole system
ing the decoupling procedure, in the case of an initial ten
product of coherent states, may be described exactly as

-

5-4
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HEATING AND DECOHERENCE SUPPRESSION USING . . . PHYSICAL REVIEW A65 012305
S a~NTc!

A

bk~NTc!

A
D 5@L~t,dv!L~Tc2t,0!#NS a~0!

A

bk~0!

A
D . ~26!

IV. NUMERICAL RESULTS

In the standard description of dissipation, one always c
siders a continuum distribution of oscillator frequencies
order to obtain an irreversible transfer of energy from
system of interest into the reservoir. Moreover, most oft
also the Markovian assumption is made, which means
suming an infinitely fast bath with an infinite frequency cu
off vc . This case of a standard vacuum bath in the Mark
ian limit is characterized by an infinite, continuous, and fl
distribution of couplings@30#,

g~v!25
g

2p
; v, ~27!

where g is the energy damping rate. As shown in Re
@9,11#, decoupling strategies become efficient when the
ternal controls are characterized by time scales faster
those of the environment. It is therefore evident that, in
presence of parity kicks, we cannot make any Markov
approximation. We have to solve numerically the proble
by simulating the continuous distribution of bath oscillato
with a large but finite number of oscillators with close
spaced frequencies. As in Ref.@11#, we have considered
bath of 201 oscillators, with equally spaced frequenc
symmetrically distributed around the resonance freque
v0, i.e.,

vk5v01kD, ~28!

D5
v0

100
, ~29!

kmax5
v0

D
5100⇒vk

max52v0 , ~30!

kmin52kmax52100⇒vk
min50, ~31!

and we have considered a constant distribution of coupli
similar to that associated with the Markovian limit

gk
25

gD

2p
; k. ~32!

Approximating a continuous Markovian bath with a fini
number of bath oscillators has two main effects. First of
the discrete frequency distribution with a fixed spacingD
makes all the dynamical quantities periodic with peri
Trev52p/D @31#. Therefore, our numerical solution wi
correctly describe the interaction with the environment p
vided that we consider not too large times, sayt<p/D. Sec-
ond, the introduction of a finite cutoff (vc52v0 in our case!
implies a modification of the coupling spectrumg(v) at
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very high frequency with respect to the infinitely flat distr
bution of the Markovian treatment@see Eq.~27!#. This fact
manifests itself in a slight modification of the dynamics
very short times (t.vc

21) @31#. We have verified both short
and long-time deviations from the standard Markovian b
dynamics in our numerical calculations. However, we ha
checked that our model environment with a finite number
oscillators faithfully reproduces the standard Markovian b
dynamics within the time interval of interest, 0.1/g,t
,3/g, say.

A. Effect of parity kicks on heating

To check if decoupling via parity kicks is able to suppre
the heating of the vibrational mode, we consider the follo
ing initial state for the whole system:

u0&^0u ^)
k
E d2bk~0!

pNk
expH 2

ubk~0!u2

Nk
J ubk~0!&^bk~0!u,

~33!

where u0& is the ground state of the collective vibration
mode@28#.

Using the property~18!, and tracing over the environ
ment, the evolved state of the vibrational mode afterN de-
coupling cycles may be written as

rS~NTc!5E )
k

d2bk~0!

pNk
expH 2

ubk~0!u2

Nk
J

3ua~NTc!&^a~NTc!u, ~34!

where the coherent state amplitudea(NTc) is the following
linear combination of the complex variablesbk(0):

a~NTc!5(
k

C0k~NTc!bk~0!, ~35!

where we have defined C0k(NTc)5$@L(t,dv)L(Tc
2t,0)#N%0k @see Eqs.~19! and ~26!#. The Gaussian averag
of Eq. ~34! may be performed by first considering the no
mally ordered characteristic functionx(l,NTc) @30# of the
state, and then performing the integration. One gets

x~l,NTc!5expH 2ulu2(
k

NkuC0k~NTc!u2J , ~36!

showing that, in the presence of parity kicks, the vibratio
state is a thermal state, with mean vibrational numbe
n(NTc),

n~NTc!5(
k

NkuC0k~NTc!u2. ~37!

The stroboscopic time evolution of this mean vibration
number is plotted in Fig. 2 both in the presence~full circles!
and in the absence~crosses! of parity kicks. The capability of
the parity kick decoupling strategy to avoid vibrational he
ing is clearly visible in this figure. In Fig. 2, and in the rest
the paper, we consider a vibrational mode with frequen
5-5



-

e

l
a

ve

rs

br

m

-
e

a
e

s
d

, t
re
r
tin
e
ng

e
l-
o

co

ng

-

q.

m

e

D. VITALI AND P. TOMBESI PHYSICAL REVIEW A 65 012305
v0510 MHz, damping rateg50.1 MHz, and environmen
tal frequency cutoffvc520 MHz. The curve referring to the
situation without parity kicks in Fig. 2 well reproduces th
standard Markovian result@30# n(t)5N(v0)(12e2gt),
whereN(v0)5(exp$\v0 /kBT%21)21 is the mean vibrationa
number of the oscillator at thermal equilibrium in the usu
Born-Markov approximation. Figure 2 refers to an effecti
reservoir temperatureT510 mK @corresponding toN(v0)
.130#, and to the following decoupling cycle paramete
Tc5157 ns, parity kick durationt5Tc/7.22.4 ns, implying
dv5140 MHz.

The influence of the environmental temperatureT on heat-
ing suppression is analyzed in Fig. 3, where the mean vi
tional number after one relaxation timet51/g, n(1/g), is
plotted as a function of the rescaled decoupling cycle ti
vcTc/2p for three different bath temperatures,T510 mK
~a!, T5100 mK ~b!, andT51 K ~c!. For each value ofTc ,
we have always chosen the kick durationt5Tc/7, as in Fig.
2, and the frequency shiftdv is always correspondingly ad
justed so thatdv5p/t. We can see that a well-visibl
threshold for the decoupling cycle timeTc exists and that as
soon as the parity kicks are sufficiently fast,Tc,2p/vc ,
heating suppression becomes significant. This is a ph
transitionlike behavior analogous to that found for decoh
ence suppression in the zero-temperature case@11#. What is
more important is thatbath temperature has no effecton the
effectiveness of the decoupling scheme: the results are es
tially identical for the three different temperatures studie
and this means that, at least for what concerns heating
only relevant environmental timescale is given by the f
quency cutoffvc . This result is particularly important fo
the application of the parity kick strategy to suppress hea
in linear ion trap quantum computers, where heating is du
some technical imperfections originating from fluctuati
patch fields@23#. Determining the effective temperatureT of
the thermal bath modeling these fluctuating fields is gen
ally very difficult, but our results shows that this is not re
evant, and that parity kick decoupling is very promising f
eliminating vibrational heating.

B. Effect of parity kicks on decoherence

Let us now consider the possibility of suppressing de
herence. We assume an initially prepared Schro¨dinger cat

FIG. 2. Time evolution of the mean vibrational number of E
~37! with ~full circles! and without~crosses! parity kicks. The ca-
pability of parity kicks to suppress heating is clearly visible. Para
eters are:v0510 MHz, g50.1 MHz, vc520 MHz, effective
reservoir temperatureT510 mK @corresponding toN(v0).130#,
Tc5157 ns, parity kick durationt5Tc/7.22.4 ns, implyingdv
5140 MHz.
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state of the vibrational mode, and therefore, the followi
initial state for the whole system:

ucw&^cwu ^)
k
E d2bk~0!

pNk
expH 2

ubk~0!u2

Nk
J

3ubk~0!&^bk~0!u, ~38!

whereucw& is given by Eq.~17!.
Using the property~18!, and tracing over the environ

ment, the evolved state of the vibrational mode afterN de-
coupling cycles may be written as

rS~NTc!5Nw
2E )

k

d2bk~0!

pNk
expH 2

ubk~0!u2

Nk
J $ua1~NTc!&

3^a1~NTc!u1ua2~NTc!&^a2~NTc!u

1eiw^bk
1~NTc!ubk

2~NTc!&ua2~NTc!&

3^a1~NTc!u1e2 iw^bk
2~NTc!ubk

1~NTc!&

3ua1~NTc!&^a2~NTc!u%. ~39!

-

FIG. 3. Mean vibrational number after one relaxation-timet
51/g, n(1/g), as a function of the rescaled decoupling cycle tim
vcTc/2p, for three different bath temperatures:T510 mK @corre-
sponding to N(v0).130# ~a!, T5100 mK @corresponding to
N(v0).1302# ~b!, andT51 K @corresponding toN(v0).13144#
~c!. For each value ofTc , we have always chosent5Tc/7, and,
correspondingly,dv5p/t. The other parameters are as in Fig. 2
5-6
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The coherent-state amplitudesa6(NTc) and bk
6(NTc) are

now given by the following linear combinations of the initi
amplitudes@see Eqs.~19!–~20!#:

a6~NTc!56a0C00~NTc!1(
k

C0k~NTc!bk~0!, ~40!

bk
6~NTc!56a0Ck0~NTc!1(

k8
Ckk8~NTc!bk8~0!.

~41!

The Gaussian average of Eq.~39! may be performed, as in
the preceding subsection, by first considering the norm
ordered characteristic function of the state and then perfo
ing the integration. The integration is straightforward b
lengthy, and the resulting reduced vibrational state may
better expressed in terms of its Wigner functionWS(a,NTc),

WS~a,NTc!5
2Nw

2

p@112n~NTc!#

3H expF2
2ua2a0C00~NTc!u2

112n~NTc!
G

1expF2
2ua1a0C00~NTc!u2

112n~NTc!
G

12 exp$22ua0
2uh~NTc!%

3expF2
2uau2

112n~NTc!
G

3cosFw1
4 Im@aa0C00~NTc!#

112n~NTc!
G J , ~42!

wheren(NTc) is again the mean vibrational number of th
cat state of Eq.~37!, the matrix elementC00(NTc) describes
the amplitude decay, andh(NTc) is thefringe visibility func-
tion @32#, determining the relative strength of the quantu
interference term in the cat state, and which may be
pressed as

h~NTc!512
uC00~NTc!u2

112n~NTc!
. ~43!

FIG. 4. Time evolution of the fringe visibility function of Eq
~43! with ~full circles! and without~crosses! parity kicks. The ca-
pability of parity kicks to suppress decoherence is clearly visib
Parameters are the same as in Fig. 2, except that the decou
cycle parameters now are:Tc578.5 ns, parity kick durationt
5Tc/7.11.2 ns, implyingdv5280 MHz.
01230
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This fringe visibility is always contained in the interval@0,1#
and provides a good quantitative description of dynami
decoherence processes. For this reason, we shall stud
stroboscopic evolution of this quantity, as in Ref.@11#, to
quantify the eventual decoherence suppression caused b
decoupling.

The time evolution of the fringe visibility is plotted in
Fig. 4, both with~full circles! and without~crosses! parity
kicks. The possibility to suppress decoherence using pa
kicks is clearly demonstrated in this figure. Parameters
the same as in Fig. 2, except that the decoupling cycle
rameters now are:Tc578.5 ns, parity kick durationt
5Tc/7.11.2 ns, implyingdv5280 Mhz. The curve refer-
ring to the situation without parity kicks in Fig. 4~crosses!
well reproduces the Markovian result@32#

h~ t !512
e2gt

112N~v0!~12e2gt!
. ~44!

The influence of temperature on decoherence suppres
is studied in Fig. 5, where the fringe visibility function afte

.
ing

FIG. 5. Fringe visibility function after one relaxation timet
51/g, h(1/g), as a function of the rescaled decoupling cycle tim
vcTc/2p, for three different bath temperatures:T510 mK @corre-
sponding to N(v0).130# ~a!, T5100 mK @corresponding to
N(v0).1302# ~b!, andT51 K @corresponding toN(v0).13144#
~c!. For each value ofTc , we have always chosent5Tc/7, and,
correspondingly,dv5p/t. The other parameters are as in Fig.
The quality of decoherence suppression degrades with increa
temperature.
5-7
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one relaxation-timet51/g, h(1/g), is plotted as a function
of the rescaled decoupling cycle timevcTc/2p for three dif-
ferent bath temperatures,T510 mK ~a!, T5100 mK ~b!,
and T51 K ~c!. For each value ofTc , we have always
chosen the kick durationt5Tc/7, as in Figs. 2 and 3, and th
frequency shiftdv is always correspondingly adjusted s
that dv5p/t.

We can see from Fig. 5 that the situation is rather differ
from that with heating suppression. In fact, decoherence s
pression by parity kicksstrongly depends on the bath tem
perature, and it is significant only in the lower-temperatu
case@Fig. 5~a!#, which is the only case in which a thresho
for the decoupling cycle timeTc at aboutTc.2p/vc , as in
the zero-temperature case@11#, is visible. In the other cases
decoherence suppression worsens for increasing bath
perature. This result shows that eliminating decoherence
decoupling techniques is generally more difficult than elim
nating heating. This may be easily explained in terms of
so-called thermal acceleration of decoherence@32,33#, that
is, the fact that in the case of a thermal bath at temperaturT,
the decoherence process is accelerated roughly by a fa
@112N(v0)# with respect to the zero-temperature case. T
thermal effect on the decoherence rate may be also e
checked from the Markovian limit expression of Eq.~44!. In
fact, the fringe visibility functionh(t) reaches its asymptoti
value in a time of the order oftdec.$g@112N(v0)#%21,
and it is evident that decoherence suppression with pa
kicks is possible only if the cycle timeTc is smaller than this
decoherence timetdec, and not only smaller than 2p/vc , as
in the zero-temperature case. This means that, in a nonz
temperature bath, one has a new,temperature-dependen,
threshold for decoherence suppression, given by

Tc,minˆ2p/vc ,$g@112N~v0!#%21
‰, ~45!

and this generalized expression easily explains the resul
Fig. 5.

V. CONCLUSIONS

We have studied the application of open-loop decoupl
schemes in an experimentally realistic scenario. In fact,
coupling strategies have been proven to provide perfect
e
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lation of a system from its environment in the infinitely fa
control limit, i.e., in the case of very intense and very fa
control pulses@12#. The efficiency of decoupling strategies
concrete situations involving finite strength and finite du
tion control pulses has been analyzed only in the spec
cases of a single qubit in a nondissipative environment in@9#,
and for a damped harmonic oscillator in a zero-tempera
bath in@11#. Here, we have extended these studies to the c
of a dissipative and nonzero-temperature reservoir. We h
specialized to the case of a collective vibrational mode o
linear ion chain, which is used as a quantum bus in linear
trap quantum computers@22#. We have shown that the parit
kick decoupling strategy introduced in@11# may be success
fully applied to suppress vibrational heating, which is o
important limitation for quantum information processing
linear ion traps@23#. In fact, heating is suppressed as soon
the decoupling cycle timeTc becomes smaller than 2p/vc ,
wherevc is the bath frequency cutoff, and more important
the efficiency of this suppression is not affected by the te
perature of the bath. The parity kick method may be appl
using present technologies and its experimental impleme
tion in the case of trapped ions would be the first example
the application of decoupling techniques outside the field
NMR, where the so-called ‘‘refocusing’’ techniques@15# are
easier to use because the involved magnetic environme
usually very slow~see, however, Ref.@34# for a proof-of-
principle demonstration of quantum bang-bang control in
photon polarization qubit!.

We have also shown that, different from heating, the s
pression of vibrational decoherence is more difficult, beca
in a nonzero-temperature bath, the threshold for the dec
pling cycle frequency is determined not only by the ba
frequency cutoff, but also by the decoherence rate, wh
increases for increasing temperatures. The parity kick cy
frequency has to be larger thanboth rates and this make
suppression of vibrational decoherence more difficult
higher temperatures.

ACKNOWLEDGMENT

This work has been partially supported by the Europe
Union through the IHP program ‘‘QUEST.’’
s.
@1# P.W. Shor, Phys. Rev. A52, 2493 ~1995!; A.M. Steane, Proc.
R. Soc. London, Ser. A452, 2551 ~1995!; E. Knill and R.
Laflamme, Phys. Rev. A55, 900 ~1997!.

@2# P. Zanardi and M. Rasetti, Phys. Rev. Lett.79, 3306 ~1997!;
L.M. Duan and G.C. Guo,ibid. 79, 1953 ~1997!; D.A. Lidar,
I.L. Chuang, and K.B. Whaley,ibid. 81, 2594~1998!.

@3# D. Kielpinski et al., Science291, 1013~2001!.
@4# D.G. Coryet al., Phys. Rev. Lett.81, 2152~1998!; E. Knill, R.

Laflamme, R. Martinez, and C. Negrevergne,ibid. 86, 5811
~2001!.

@5# A.M. Steane, Nature~London! 399, 124 ~1999!.
@6# R. Laflamme, C. Miquel, J.-P. Paz, and W.H. Zurek, Phys. R

Lett. 77, 198 ~1996!.

v.

@7# P. Tombesi and D. Vitali, Phys. Rev. A51, 4913 ~1995!; P.
Goetsch, P. Tombesi, and D. Vitali,ibid. 54, 4519 ~1996!; D.
Vitali, P. Tombesi, and G.J. Milburn, Phys. Rev. Lett.79, 2442
~1997!; Phys. Rev. A57, 4930~1998!.

@8# M. Fortunato, J.M. Raimond, P. Tombesi, and D. Vitali, Phy
Rev. A60, 1687~1999!.

@9# L. Viola and S. Lloyd, Phys. Rev. A58, 2733~1998!.
@10# M. Ban, J. Mod. Opt.45, 2513 ~1998!; L.M. Duan and G.C.

Guo, Phys. Lett. A261, 139 ~1999!.
@11# D. Vitali and P. Tombesi, Phys. Rev. A59, 4178~1999!.
@12# L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett.82, 2417

~1999!.
@13# G.S. Agarwal, Phys. Rev. A61, 013809~2000!; G.S. Agarwal,
5-8



.

on

ev

um

i-

.
ol
.

e-

.

.
re

-
v.

o,

ssic.

HEATING AND DECOHERENCE SUPPRESSION USING . . . PHYSICAL REVIEW A65 012305
M.O. Scully, and H. Walther, Phys. Rev. Lett.86, 4271~2001!;
Phys. Rev. A63, 044101~2001!; J. Gea-Banacloche, J. Mod
Opt. 48, 927 ~2001!; A.G. Kofman and G. Kurizki, e-print
quant-ph/0107076.

@14# C. Search and P.R. Berman, Phys. Rev. Lett.85, 2272~2000!;
Phys. Rev. A62, 053405~2000!.

@15# R.R. Ernst, G. Bodenhausen, and A. Wokaun,Principles of
Nuclear Magnetic Resonance in One and Two Dimensi
~Clarendon Press, Oxford, 1987!.

@16# L. Viola, S. Lloyd, and E. Knill, Phys. Rev. Lett.83, 4888
~1999!.

@17# P. Zanardi, Phys. Lett. A258, 77 ~1999!.
@18# P. Zanardi, Phys. Rev. A63, 012301~2001!.
@19# L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett.85, 3520

~2000!.
@20# D. Bacon, J. Kempe, D.A. Lidar, and K.B. Whaley, Phys. R

Lett. 85, 1758 ~2000!; J. Kempe, D. Bacon, D.A. Lidar, and
K.B. Whaley, Phys. Rev. A63, 042307~2001!; see D.P. DiVin-
cenzoet al., Nature~London! 408, 339 ~2000! for an explicit
construction with encoded three-qubits states and a finite n
ber of gates.

@21# L.-A. Wu and D.A. Lidar, e-print quant-ph/0103039; D.A. L
dar and L.-A. Wu, e-print quant-ph/0109021.

@22# J.I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091~1995!.
@23# D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E

King, and D.M. Meekhof, J. Res. Natl. Inst. Stand. Techn
103, 259 ~1998!; Q.A. Turchette, C.J. Myatt, B.E. King, C.A
01230
s

.

-

.

Sackett, D. Kielpinski, W.M. Itano, C. Monroe, and D.J. Win
land, Phys. Rev. A62, 053807 ~2000!; Q.A. Turchette, D.
Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J.
Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C
Monroe, and D.J. Wineland,ibid. 61, 063418~2000!.

@24# U. Haeberlen and J.S. Waugh, Phys. Rev.175, 453 ~1968!.
@25# R.M. Wilcox, J. Math. Phys.8, 962 ~1967!.
@26# C.J. Myatt, B.E. King, Q.A. Turchette, C.A. Sackett, D

Kielpinski, W.M. Itano, C. Monroe, and D.J. Wineland, Natu
~London! 403, 269 ~2000!.

@27# A.O. Caldeira and A.J. Leggett, Ann. Phys.~N.Y.! 149, 374
~1983!.

@28# B.E. King, C.S. Wood, C.J. Myatt, Q.A. Turchette, D. Leib
fried, W.M. Itano, C. Monroe, and D.J. Wineland, Phys. Re
Lett. 81, 1525 ~1998!; C.F. Roos, D. Leibfried, A. Mundt, F.
Schmidt-Kaler, J. Eschner, and R. Blatt,ibid. 85, 5547~2000!.

@29# D.F. Walls and G.J. Milburn,Quantum Optics~Springer, Ber-
lin, 1994!, p. 90.

@30# C.W. Gardiner and P. Zoller,Quantum Noise, 2nd ed.
~Springer, Berlin, 1999!.

@31# R.I. Cukier, K.E. Shuler, and J.D. Weeks, J. Stat. Phys.5, 99
~1972!; J.L. Gruver, J. Aliaga, H.A. Cerdeira, and A.N. Prot
Phys. Rev. E51, 6263~1995!.

@32# T.A.B. Kennedy and D.F. Walls, Phys. Rev. A37, 152 ~1988!.
@33# P. Goetsch, R. Graham, and F. Haake, Quantum Semicla

Opt. 8, 157 ~1996!.
@34# A.J. Berglund, e-print quant-ph/0010001.
5-9


