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Quantum cloning machines for equatorial qubits
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Quantum cloning machines for equatorial qubits are studied. For the case of a one to two phase-covariant
guantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning
transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion.
The optimal one tavl phase-covariant quantum cloning transformations are given.
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[. INTRODUCTION about the input is given, the better one can clone each of its
states.

Quantum computing and quantum information have been In this paper, using the approach presented in R,
attracting a great deal of interest. They differ in many aspect#e show that the one to two optimal phase-covariant quan-
from the classical theories. One of the most fundamentalum cloning machines can be realized by networks consisting
differences between classical and quantum information is thef quantum rotation gates and controlledT gates. The cop-
no-cloning theoren{1]. It tells us that arbitrary quantum ied equatorial qubits are shown to be separable by using
information cannot be copied exactly. The no-cloning theo-Peres-Horodecki criteriofil4,15. We then present the one
rem for pure states is also extended to the case that a genet@alM phase-covariant quantum cloning transformations and
mixed state cannot be broadcgd]. However, the no- prove that the fidelity is optimal. The generdito M (M
cloning theorem does not forbid imperfect cloning, and sev=>N) optimal phase-covariant quantum cloning machines are
eral kinds of quantum cloning machiné®CM) are pro- finally proposed.
posed, the optimal fidelity and transformations of QCM's are  The paper is organized as follows: In Sec. II, we introduce
found in[3-9]. the cloning transformations for equators ¥z and x-y

In the proof of the no-cloning theorem, Wootters andplanes. In Sec. lll, phase-covariant quantum cloning can be
Zurek introduced a QCM that has the property that the qualrealized by networks consisting of quantum gates. In Sec. IV,
ity of the copy it makes depends on the input-stdidsTo  the copied qubits are shown to be separable and quantum
diminish or cancel this disadvantage, Bzand Hillery pro- triplicators are studied. In Sec. V, optimal oneNbphase-
posed a universal quantum cloning machjp€CM) for an  covariant quantum cloning machines are presented and
arbitrary pure state where the copying process is input-stateroved. In Sec. VIN to M (M >N) phase-covariant QCM is
independent. They use Hilbert-Schmidt norm to quantify disproposed. Section VIl includes a brief summary.
tances between the input density operator and the output den-
sity operators. Brufét al.[4] discussed the performance of a
UQCM by analyzing the role of the symmetry and isotropy  Il. ONE TO TWO PHASE-COVARIANT QUANTUM
conditions imposed on the system and found the optimal CLONING
UQCM and the optimal state-dependent quantum cloning.
th|mal fidelity and optimal quantum cloning tran.sforma- state that we intend to clone to be a restricted set of states. It
tions of generaN to M (M>N) case are presented in Refs. is a pure superposition state
[6-9]. The relation between quantum cloning and superlu-
minal signaling is proposed and discussed in Réf8,11]. It
was also shown that the UQCM can be realized by a network | W)= a|0)+g|1) (1)
consisting of quantum gat¢42].

In the case of UQCM, the input states are arbitrary pure
states. In this paper, we study the QCM for a restricted set ofiith o>+ 8?=1. Here, we use an assumption thaand 8
pure input states. The Bloch vector is restricted to the interare real in contrast to complex when we consider the case of
section ofx-z (x-y andy-z) plane with the Bloch sphere. UQCM. That means thg component of the Bloch vector of
These kind of qubits are the so-called equatorial qUdi8  the input qubit is zero. Because there is just one unknown
and the corresponding QCM is called phase-covariant quarparameter in the input state under consideration, we expect
tum cloning. The one to two phase-covariant quantum clonthat we can achieve a better quality in quantum cloning if we
ing was first studied by Brufét al, [13] who studied the can find an appropriate phase-covariant QCM.
optimal quantum cloning fox— z equatorial qubits by taking The case of one to two phase-covariant quantum cloning
BB84 states as input. The fidelity of quantum cloning for thetransformation has already been found by Betifal. in [13].
equatorial qubits is higher than the original Blzand Hil-  They proposed the following cloning transformation for the
lery UQCM [3]. This is expected, as the more information input (1),

Instead of arbitrary input states, we consider the input
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1 1 Sometimes, we study-y equator instead af-z equator
|0>a1|Q)a2a3—> 57 §)|00>a1a2 so that some results may be obtained easier, and the two
cases are connected by a transformation. We consider the
1 1 1 input state as
+ E_ § |11>a1a2 |T>a3+§|+>a1a2|l>a3v
1 :
2 V)= —[|0)+€'?|1)], 7
2 W) JEH ) [1)] )
1 1
[1)2|Q)aa—| |5+ \ﬁ) [11), a where ¢ €[0,27). One can check that thg component of
v 2 8 v the Bloch vector of this state is zero. The cloning transfor-
1 1 1 mation takes the form,
+ E_ \[§)|00>a1a2}|l>a3+§|+>ala2”>a3v 2(1-0)

@  10)4,/00)a,a,— Toaien |00)a,a,/0)a,

where the following notations are introduced

14\
! 1 P anrent D110 [Lay
|+>—ﬁ(|10>+|01>), |—>—E(|10>—|01>)_ 4)

2(1—X\)
L . . .. 11),.100 —|11 1
The fidelity of the phase-covariant cloning transformation is 12,100 3,0, x/6—4)\+6)\7| Jase,lDay

F=1/2+1/8, which is larger tharr=5/6, the fidelity of
one to two UQCM[3]. Also, this fidelity was proved to be

optimal for phase-covariant cloning machifs]. Actually, + 6_4)\+6}\2(|01>a1a2+|10>a1a2)|0>a3'
because we assunaeand g are real, only a single unknown
parameter is copied instead of two unknown parameters for (8)

the case of a general pure state. Thus, a higher fidelity of

quantum cloning can be achieved. The case of spin flip hasAs the case ok-y equatorA =0 corresponds to UQCM, and
similar phenomenofil6,12,17. Here, the fidelity is defined the case.=3— 242 is the optimal phase-covariant quantum
in the standard form a=(W¥|p|¥), p is the output re- cloning for input(7), which takes the following form:

duced density operator at a single qubit.

For convenience, we present the following cloning trans- 1 1
formation for pure input statél): 0)a,/00)4,2,— E|Oo>ala2|o>a3+ 5004y,
|0>a1| Q>a2a3—>(|00>a1a2+ A | 11>a1a2)q| T>a3+ (|10>a1a2 + | 10>3132) | l>a3,

+|Ol>ala2)y|l>a31 1 1
1), |00), o — —|11)5 o |1)s + = (|01
1192, |Qa 0, (11 2+ A00a 2 )l 1Yo+ (110, 112,002,055 11D agesl e + 5 (10Dase,

+102)8,0)¥! Dy (5) +]10)a,0,)0)a,- ©

where we assume is real and\# =1, we also use nota-

tions . QUANTUM CLONING NETWORKS FOR

EQUATORIAL QUBITS

[ 2 1—\ In this section, following the method proposed by Bkiz
—_— yE—— (6) et al. [12], we show that the quantum cloning transforma-
3-20+3\? V6— 4N+ 6\ tions for equatorial qubits can be realized by networks con-
. ) ) ) _sisting of quantum logic gates. Let us first introduce the
The qubit ina, is the input state, the output copies appear inmethod proposed by Bek et al.[12], and then analyze the
a;,a; qubits, andas is the ancilla state. In case=0, the  case of phase-covariant cloning. The network is constructed
cloning transformation reduces to the UQCM proposed inyy one- and two-qubit gates. The one-qubit gate is a single
[3]. When A\=3-22, we obtain the optimal phase- qubit rotation operatoR; (9), defined as
covariant quantum cloning transformation presentefilB] s
for x-z equator. Actually, we may use both Bures fidelity and
Hilbert-Schmidt norm to quantify the quality of the copies
[18]. Both of them show that transformatig8) is the opti- .
mal cloning machine for input statg). Rj(9)|1);=—sin9|0);+cosd|1);. (10

q

R;(9)]0);=cos®|0);+sin¥|1);,
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The two-qubit gate is the controlletbT gate represented by
the unitary matrix

(11)

o O O =
o O -, O
=~ O O O
S B O O

Explicitly, the controlledvoT gatePy, acts on the basis vec-
tors of the two qubits as follows:

Puil0)0)1=[0)4|0);,  Pi|0)| 1) =[0)/ 1),

Pul L0y =101y, PulL)d1y=]1)/0). (12

Due to Buzk et al, the action of the copier is expressed as

a sequence of two unitary transformations,

#4010, Oha— )41 9)E12P— [0

alaz a1a2a3 " (13)
This network may be described by a figure in Ha2]. The
preparation state is constructed as

|\p>(prep)

azag

Ro(93) PaaRs(12) PoaRo(91)] 0)4,/0)a,-
(14

The quantum copying is performed by

| >(out) _Aagelllsazr:llPala3 alaz|q,>(|n)|q,>(prep)

ajasa, azag

(19

Note that the output copies appear in thgas qubits in-
stead ofa;,a, qubits. For UQCM, we should choo$&2]

1 1/2
Tp=— arcsir( 57 ?) . (16)

n
131:19325,

. . . 1
We now consider the cloning transformations for equato-  pCU0=| —

rial qubits. The network proposed by Bekeet al. is rather
general. We only need to take a different angles j =1, 2,
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We can check that for some anglés, j=1, 2, 3, the above
preparation states can be realized. Actually we have several
choices. When. =0, we obtain the result for UQCM. Here,
we present the result for the optimal case, hez3—24/2.

For x-y equator, let

. 1 1 1/2
¥,=93=arcsin - — ——=| ,

2 2\/§
. 1 \/§ 1/2
ﬁzz—arcsw(z—T) . (19

Then, the preparation state has the form

| w)Perp) =

axag

1 1
E|Oo>azaa+ 51000 +[1000,0). (20

For x-z equator, let

1 \ﬁl/Z
191=193=ar05|r(§— 5) ., U,=0.

The preparation state is

(21)

| >(perp)

apag

1 1
\/%) 0000, 5 5100 a0, 1010

1 1
E_ § |11>a2a3-

After the preparation stage, perform the copying procedure
(15), we obtain the output state, and the output copies appear
in thea, anda; qubits. The optimal quantum cloning trans-
formations for equatorial qubits may achieve the highest fi-
delity 1/2+ /1/8. The reduced density operator of both cop-
ies at the output ira, anda; qubits may be expressed as

N IR N

+ (22

3 to realize the phase-covariant cloning. In the case of clon-

ing transformation fox-y equator(8), the preparation state
takes the form

R Gt VT
2% J6—4N+6) 27

(102)a,0,* 110)a,0,)- (17)

. 1+
VB—4N+6)\2

The preparation state corresponding to cloning transforma-

tion (5) for x-z equator may be written as

|q,>(pefp) Q|Oo>a2a3+ gA| 11>3233+ y| 10>a2a3+ y|01>a2a3-
(18)

(23
IV. SEPARABILITY OF COPIED QUBITS AND QUANTUM
TRIPLICATORS

A. Separability

For the UQCM, the density matrix for the two copies

pf.fgt) is shown to be inseparable by use of Peres-Horodecki

cr|ter|on[14 15. That means it cannot be written as the con-
vex sum,

Py = 2 WMol (24)
where the positive weighte(™ satisfy 3 w(™=1. There

are correlations between the copies, i.e., the two qubits at the
output of the quantum copier are nonclassically entangled
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[12]. We shall show in this section that, different from the states that the positivity of the partial transposition of a state
UQCM, the copied qubits are separable for the case of optiis both necessary and sufficient condition for its separability
mal phase-covariant quantum cloning by Peres-HorodecKil4,15. For x-z equator where the input state is|0)
criterion. + B|1), with @=cos#,B=sin g, the partially transposed out-
Peres-Horodecki's positive partial transposition criterionput density operator at,,a; qubits is expressed by a matrix,

2(a®+2\2B%) aB(l-\?) aBf(1-1\?) %(1—x>2

) AB1-N) SN2 2 aBi-\?)

3—2\+3\?

(out)

[payag] 2= (25

aB(1—\?) 2\ %(1—)92 aB(1—2\?)

%(1—x)2 aB(1-N\%) aB(1-\?) 2(B%*+a’\?)

Here, the cloning transformation corresponds to ). Here, we are also interested in the output statairqubit.

Note that the output of copies appeardn,a; qubits. We  According to the cloning transformations or cloning net-

have the following four eigenvalues: works for equatorial qubits, we find that the reduced density
operator of the output state ay qubit may be written as

N -

1 1
(1—6N+)\?),

2
3—2n+3\2|2 (1+2N 15, (140)2

(out) _
a

32
[p(in)]T+(:l'—)\)><1' (29

3—2\+3\2 3—2\+3\2

2. 1 J5+ 6N +5\2
Las+ 5(1 MVEHEA TN, where the superscrift means transposition. F&rz equator,
the output reduced density operator is invariant under the
action of transposition. Comparing the output reduced den-
: (26)  sity operators ira, andaz qubits(28) anda; qubit (29), in
case\ =1/3, we have a triplicator,

1
1+)\2—§(1—)\)\/5+6)\+5)\2

For optimal phase-covariant quantum clonings3—2/2,

the four eigenvalues are 2 .1
g pgciut):pg(;ut):pgc;ut): §p(ln)+ g X 1, (30)
1 3
(01 01_1 _} - (27) - . . . . . . .
4’ 4 with fidelity 5/6 [12]. Explicitly, the triplicator cloning trans-

_ ) ) ~ formation forx-z equator has the form,
We see that none of the four eigenvalues is negative. This is

different from the UQCM, where one negative eigenvalue 1

exists forh =0. According to Peres-Horodecki criterion, the |5y |90 —~ 13|00 +lo1 +110
copied qubits in phase-covariant quantum cloning are sep’c|1- 21|00 2,2, \/1—2[ 100002,2,2, 101D aj2;0, 71108250,
rable. Analyzing the four eigenvalug26), we find that the

optimal pointh =3—24/2 is the only separable point for the +|110>ala2a3]’
copied qubits. If we analyze they equator, we obtain the
same result.

1

_ o |1>a1|00>a2a3_> \/T2[3| 111>a1a2a3+ | 1oo>alaza3+ |001>alaza3
B. Optimal quantum triplicators

The networks for equatorial qubits can realize the quan- +101004,a,a,]- (31)
tum copying. The copies at the output appeaajnand a;
qubits. And the output reduced density operator is written a¥orx-y equator, by applying a transformatit®) < |1) in a,
(12 1— 2\ +5\2 qubit, and still let\ = 1/3, we find the output density operator
(out) _ ( ) (in) 4+ x1. (28 in a; (29 equals to that od, andaz (28). And the triplicator
3—2M+3\? 6— 4N+ 6\ cloning for x-y equator takes the form,
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1 1
|0>a1|00>a2a3_’ Euoobalaza:{" | 100>a1a2a3+ |010>a1a233]v F= §[1+ 77(1,M )]' (34)
1 where
|1>a1|00>a2a3_’ EH llo>a1a2a3+ |011>a1a2a3+ | 101>a1a2a3]- M-1 ci
(32 2AM)= 2 ajay == (39)
j=o VCLCM

The fidelity for quantum triplicator is 5/6. Actually, we can .
find the fidelity takes the same value 5/6 whem 0 andx V& €xamine the cases M=23. ForM=2, we haveag
=1/3 corresponding to UQCM and quantum triplicator, re- +af=1 andy(1M)=2aoa;. In casexo=a; =112, we
spectively. D'Ariano and PresfiL9] proved that the optimal have the optimal ﬂdellty and recover the previous regjlt
fidelity for one to three phase-covariant quantum cloning is=or M =3, we havea§+aj+aj=1, and

5/6, and presented the cloning transformation. The quantum
triplicators presented above achieve the bound of the fidelity

and agree with the results in R¢i.9]. (36)

2,
7(1,3 = §a1+

2
\/§a0a2 .

For ap=a,=0,a;=1, we havey(1,3)=2/3, which repro-
duces the case of quantum triplicator foy equator(32).

We present the result of the one k phase-covariant
quantum cloning transformations. Whbhis even, we have

=\2/2j=M/2—-1M/2 anda;=0, otherwise. WheM is
odd we havey;=1j=(M— 1)/2 anda;=0, otherwise. The
fidelity are F=1/2+ VM (M +2)/4M for M is even, andr
=1/2+(M+1)/4M for M is odd The explicit cloning trans-
formations have already been presented in (88).

Though the fidelity forM =2,3 are optimal, we need to
prove that for generaM, the fidelity achieve the bound as
well. We apply the same method introduced by Gisin and
Massar in Ref[6]. In order to use some results later, we
consider the generdl to M cloning transformation. Gener-

V. OPTIMAL1 TO M PHASE-COVARIANT QUANTUM
CLONING MACHINES

We have investigated the-22 and 13 optimal quan-
tum cloning for equatorial qubits. In what follows, we shall
study the general to M (M >N) phase-covariant quantum
cloning.

We first discuss &M phase-covariant quantum cloning.
We start from the cloning transformations similar to the,_
UQCM [6], then determine the parameters to give the high-
est fidelity, and finally prove that the determined cloning
transformation is the optimal QCM for equatorial qubits. For
x-y equatof W)= (|1)+e'?||))/\/2, we suppose the cloning
transformations take the following form:

M-1 ally, we write theN identical input state for equatorial qubits
Uil Y&R= 2 a|(M=D1,i1)eR;, as
i Lo
M1 - V)= 2 el\CU(N=])1.j1). (3D
Uil DOR= 2 an-1-[(M=1-DT.(+ 1) )OR;,

(33)  The most general to M QCM for equatorial qubits is ex-

pressed as
where we use the same notations as those of F&f.R

denotes the initial state of the copy machine dhd 1 blank
copies,R; are orthogonal normalized states of ancilla, and
[(M—=j)i,j), ) denotes the symmetric and normalized
state withM — ] qubits in state)y andj qubits in statey, .
For arbitrary input state, the case «;
=yJ2(M—j)/M(M+1) is the optimal =M quantum clon-
ing [6]. Here, we consider the case)afy equator instead of

M
|(N—i)T,il>®R—>k§0|(M—k)T,kl>®|R1k>, (39)

whereR still denotes theM —N blank copies and the initial
state of the QCM, an{Rj,) are unnormalized final states of
the ancilla. The unitarity relation is written as,

the arbitrary input state. The quantum cloning transforma- M

tions should satisfy the property of orientation invariance of > (RidRi)=8;; - (39)
the Bloch vector and that we have identical copies. The clon- k=0

ing transformatior(33) already ensure that we hakiden-

tical copies. The unitarity of the cloning transformation de-The fidelity of the QCM takes the form

mands the relatiorE};'a7=1. Under this condition, we

can check that the cloning transformation has the property of F=(W|poU )= D (Rine|RiA i, (40)

orientation invariance of the Bloch vector. Thus, the relation
(33) is the quantum cloning transformation fery equator.

Kk

The fidelity of the cloning transformatiof33), takes the
form

where p°U! is the reduced density operator of each output
qubit by taking partial trace over &l but one output qubits.
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We impose the condition that the output density operator has 1
the property of Bloch vector invariance, and find the follow- + —=[(N=j+L)7,(j+L+1) ]| )®R ;1. (47
ing for N=1, \/E

VIM—K)(k+1)  The corresponding fidelity is

1
A]'/k/jk:z 5j'j5k’k+(1_5j/j)|:5k’,(k+1) M

N—1
VIM=K)(K'+1) 1 T
+ i,k +1) v , (42) F=3t o 120 Jcich,
wherej,j’=0,1 for caseN=1. The optimal fidelity of the . .
QCM for equatorial qubits is related to the maximal eigen- X—N+2L+1[‘/(L+] +1)(N+L—j+1)
value .« of matrix A by F=2\ ., [6]. The matrixA (41)
is a block diagonal matrix with blocB given by +VJ(L+j+2)(N+L—])]. (48)
1 w WhenN=1, the cloning transformations and the fidelity re-
B l 42 duce to the previous results given in the last section. For case
4l J(M=K)(k+1) (42) N>1, the upper bound on the fidelity obtained by the
v E— 1 method introduced in Ref6] is too conservative because
that it is sometimes greater than unity.
Thus, we have proved that the optimal fidelty of oneMo It is proved that the optimal fidelity oN—c guantum
QCM for equatorial qubits takes the form cloning equals to the corresponding optimal fidelity of quan-
tum estimatior{7,20,13. In the limit L—~, the fidelity for
1 M(M +2) N to N+2L, N+2L+1 quantum cloning becomes
—+———— Miseven,
F=2\ ? M (43
TEtmaxT) (M4 11 'S
. _ - l~l ~]+1
E 4M 1M is odd. F= 2 + 2N+l ]ZO CNCN ’ (49)

We thus find in this section, the optimal one b phase- o ) o

covariant quantum cloning transformation. This is the mainVhich is equal to the optimal fidelity of the quantum phase-

result of this paper. estimation presented in Re{TZO]_. Th|s conﬁrr_ns that the op-

timal fidelity (45),(48) in the limit L—o gives a correct

VI. N-TO M PHASE-COVARIANT QCM result. However, we still nee_d a rigorous proof.for the case of
generalN to M phase-covariant quantum cloning.

We conjecture that the optim& to M phase-covariant
QCM for x-y equator take the following form:

Case A whenM =N+ 2L, the cloning transformation is Vil. SUMMARY

T N . In this paper, the networks consisting of quantum gates
Unnad (N=DT D @R=[(N=]+L)T,(1+ L)U@R'h’ for phase-covariant quantum cloning have been studied. The
copied qubits of phase-covariant cloning machines are

which implies that we just need one ancilla state and caghowed to be separable. We have given explicitly the 1

omit it in cloning relation. The corresponding fidelity is —M cloning transformations fox-y equator. And the opti-
1 mal fidelity has been proved by using the method by Gisin
1 1 VIL+j+1)(N+L—j) and Massaf6]. The generaN— M phase-covariant quantum
F=3+ N Jzo VLG NToL : clonings are conjectured.
(45)
Case B whenM =N+ 2L +1, the cloning transformation ACKNOWLEDGMENTS
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