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Quantum cloning machines for equatorial qubits
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Quantum cloning machines for equatorial qubits are studied. For the case of a one to two phase-covariant
quantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning
transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion.
The optimal one toM phase-covariant quantum cloning transformations are given.
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I. INTRODUCTION

Quantum computing and quantum information have b
attracting a great deal of interest. They differ in many aspe
from the classical theories. One of the most fundame
differences between classical and quantum information is
no-cloning theorem@1#. It tells us that arbitrary quantum
information cannot be copied exactly. The no-cloning the
rem for pure states is also extended to the case that a ge
mixed state cannot be broadcast@2#. However, the no-
cloning theorem does not forbid imperfect cloning, and s
eral kinds of quantum cloning machines~QCM! are pro-
posed, the optimal fidelity and transformations of QCM’s a
found in @3–9#.

In the proof of the no-cloning theorem, Wootters a
Zurek introduced a QCM that has the property that the qu
ity of the copy it makes depends on the input-states@1#. To
diminish or cancel this disadvantage, Buzˇek and Hillery pro-
posed a universal quantum cloning machine~UQCM! for an
arbitrary pure state where the copying process is input-s
independent. They use Hilbert-Schmidt norm to quantify d
tances between the input density operator and the output
sity operators. Brußet al. @4# discussed the performance of
UQCM by analyzing the role of the symmetry and isotro
conditions imposed on the system and found the opti
UQCM and the optimal state-dependent quantum clon
Optimal fidelity and optimal quantum cloning transform
tions of generalN to M (M.N) case are presented in Ref
@6–9#. The relation between quantum cloning and supe
minal signaling is proposed and discussed in Refs.@10,11#. It
was also shown that the UQCM can be realized by a netw
consisting of quantum gates@12#.

In the case of UQCM, the input states are arbitrary p
states. In this paper, we study the QCM for a restricted se
pure input states. The Bloch vector is restricted to the in
section ofx-z (x-y and y-z) plane with the Bloch sphere
These kind of qubits are the so-called equatorial qubits@13#
and the corresponding QCM is called phase-covariant qu
tum cloning. The one to two phase-covariant quantum cl
ing was first studied by Brußet al., @13# who studied the
optimal quantum cloning forx2z equatorial qubits by taking
BB84 states as input. The fidelity of quantum cloning for t
equatorial qubits is higher than the original Buzˇek and Hil-
lery UQCM @3#. This is expected, as the more informatio
1050-2947/2001/65~1!/012304~7!/$20.00 65 0123
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about the input is given, the better one can clone each o
states.

In this paper, using the approach presented in Ref.@12#,
we show that the one to two optimal phase-covariant qu
tum cloning machines can be realized by networks consis
of quantum rotation gates and controlledNOT gates. The cop-
ied equatorial qubits are shown to be separable by us
Peres-Horodecki criterion@14,15#. We then present the on
to M phase-covariant quantum cloning transformations a
prove that the fidelity is optimal. The generalN to M (M
.N) optimal phase-covariant quantum cloning machines
finally proposed.

The paper is organized as follows: In Sec. II, we introdu
the cloning transformations for equators inx-z and x-y
planes. In Sec. III, phase-covariant quantum cloning can
realized by networks consisting of quantum gates. In Sec.
the copied qubits are shown to be separable and quan
triplicators are studied. In Sec. V, optimal one toM phase-
covariant quantum cloning machines are presented
proved. In Sec. VI,N to M (M.N) phase-covariant QCM is
proposed. Section VII includes a brief summary.

II. ONE TO TWO PHASE-COVARIANT QUANTUM
CLONING

Instead of arbitrary input states, we consider the in
state that we intend to clone to be a restricted set of state
is a pure superposition state

uC&5au0&1bu1& ~1!

with a21b251. Here, we use an assumption thata andb
are real in contrast to complex when we consider the cas
UQCM. That means they component of the Bloch vector o
the input qubit is zero. Because there is just one unkno
parameter in the input state under consideration, we ex
that we can achieve a better quality in quantum cloning if
can find an appropriate phase-covariant QCM.

The case of one to two phase-covariant quantum clon
transformation has already been found by Brußet al. in @13#.
They proposed the following cloning transformation for t
input ~1!,
©2001 The American Physical Society04-1
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u0&a1
uQ&a2a3

→F S 1

2
1A1

8D u00&a1a2

1S 1

2
2A1

8D u11&a1a2
G u↑&a3

1
1

2
u1&a1a2

u↓&a3
,

~2!

u1&a1
uQ&a2a3

→F S 1

2
1A1

8D u11&a1a2

1S 1

2
2A1

8D u00&a1a2
G u↓&a3

1
1

2
u1&a1a2

u↑&a3
,

~3!

where the following notations are introduced

u1&5
1

A2
~ u10&1u01&), u2&5

1

A2
~ u10&2u01&). ~4!

The fidelity of the phase-covariant cloning transformation
F51/21A1/8, which is larger thanF55/6, the fidelity of
one to two UQCM@3#. Also, this fidelity was proved to be
optimal for phase-covariant cloning machine@13#. Actually,
because we assumea andb are real, only a single unknow
parameter is copied instead of two unknown parameters
the case of a general pure state. Thus, a higher fidelity
quantum cloning can be achieved. The case of spin flip h
similar phenomenon@16,12,17#. Here, the fidelity is defined
in the standard form asF5^CuruC&, r is the output re-
duced density operator at a single qubit.

For convenience, we present the following cloning tra
formation for pure input state~1!:

u0&a1
uQ&a2a3

→~ u00&a1a2
1lu11&a1a2

)qu↑&a3
1~ u10&a1a2

1u01&a1a2
)yu↓&a3

,

u1&a1
uQ&a2a3

→~ u11&a1a2
1lu00&a1a2

)qu↓&a3
1~ u10&a1a2

1u01&a1a2
)yu↓&a3

, ~5!

where we assumel is real andlÞ61, we also use nota
tions

q[A 2

322l13l2
, y[

12l

A624l16l2
. ~6!

The qubit ina1 is the input state, the output copies appear
a1 ,a2 qubits, anda3 is the ancilla state. In casel50, the
cloning transformation reduces to the UQCM proposed
@3#. When l5322A2, we obtain the optimal phase
covariant quantum cloning transformation presented in@13#
for x-z equator. Actually, we may use both Bures fidelity a
Hilbert-Schmidt norm to quantify the quality of the copie
@18#. Both of them show that transformation~3! is the opti-
mal cloning machine for input state~1!.
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Sometimes, we studyx-y equator instead ofx-z equator
so that some results may be obtained easier, and the
cases are connected by a transformation. We consider
input state as

uC&5
1

A2
@ u0&1eifu1&], ~7!

wherefP@0,2p). One can check that they component of
the Bloch vector of this state is zero. The cloning transf
mation takes the form,

u0&a1
u00&a2a3

→ 2~12l!

A624l16l2
u00&a1a2

u0&a3

1
11l

A624l16l2
~ u01&a1a2

1u10&a1a2
)u1&a3

,

u1&a1
u00&a2a3

→ 2~12l!

A624l16l2
u11&a1a2

u1&a3

1
11l

A624l16l2
~ u01&a1a2

1u10&a1a2
)u0&a3

.

~8!

As the case ofx-y equator,l50 corresponds to UQCM, and
the casel5322A2 is the optimal phase-covariant quantu
cloning for input~7!, which takes the following form:

u0&a1
u00&a2a3

→ 1

A2
u00&a1a2

u0&a3
1

1

2
~ u01&a1a2

1u10&a1a2
)u1&a3

,

u1&a1
u00&a2a3

→ 1

A2
u11&a1a2

u1&a3
1

1

2
~ u01&a1a2

1u10&a1a2
)u0&a3

. ~9!

III. QUANTUM CLONING NETWORKS FOR
EQUATORIAL QUBITS

In this section, following the method proposed by Buzˇek
et al. @12#, we show that the quantum cloning transform
tions for equatorial qubits can be realized by networks c
sisting of quantum logic gates. Let us first introduce t
method proposed by Buzˇek et al. @12#, and then analyze the
case of phase-covariant cloning. The network is construc
by one- and two-qubit gates. The one-qubit gate is a sin
qubit rotation operatorR̂j (q), defined as

R̂j~q!u0& j5cosqu0& j1sinqu1& j ,

R̂j~q!u1& j52sinqu0& j1cosqu1& j . ~10!
4-2
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The two-qubit gate is the controlledNOT gate represented b
the unitary matrix

P̂5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D . ~11!

Explicitly, the controlledNOT gateP̂kl acts on the basis vec
tors of the two qubits as follows:

P̂klu0&ku0& l5u0&ku0& l , P̂klu0&ku1& l5u0&ku1& l ,

P̂klu1&ku0& l5u1&ku1& l , P̂klu1&ku1& l5u1&ku0& l . ~12!

Due to Bužek et al., the action of the copier is expressed
a sequence of two unitary transformations,

uCa1

( in)u0&a2
u0&a3

→uC&a1

( in)uC&a1a2

(prep)→uC&a1a2a3

(out) . ~13!

This network may be described by a figure in Ref.@12#. The
preparation state is constructed as

uC&a2a3

(prep)5R̂2~q3!P̂32R̂3~q2!P̂23R̂2~q1!u0&a2
u0&a3

.

~14!

The quantum copying is performed by

uC&a1a2a2

(out) 5 P̂a3a1
P̂a2a1

P̂a1a3
P̂a1a2

uC&a1

( in)uC&a2a3

(prep) .

~15!

Note that the output copies appear in thea2 ,a3 qubits in-
stead ofa1 ,a2 qubits. For UQCM, we should choose@12#

q15q35
p

8
, q252arcsinS 1

2
2

A2

3 D 1/2

. ~16!

We now consider the cloning transformations for equa
rial qubits. The network proposed by Buzˇek et al. is rather
general. We only need to take a different anglesq j , j 51, 2,
3 to realize the phase-covariant cloning. In the case of c
ing transformation forx-y equator~8!, the preparation state
takes the form

uC&a2a3

(perp)5
2~12l!

A624l16l2
u00&a2a3

1
11l

A624l16l2
~ u01&a1a2

1u10&a2a3
). ~17!

The preparation state corresponding to cloning transfor
tion ~5! for x-z equator may be written as

uC&a2a3

(perp)5qu00&a2a3
1qlu11&a2a3

1yu10&a2a3
1yu01&a2a3

.

~18!
01230
-

n-

a-

We can check that for some anglesq j , j 51, 2, 3, the above
preparation states can be realized. Actually we have sev
choices. Whenl50, we obtain the result for UQCM. Here
we present the result for the optimal case, i.e.,l5322A2.

For x-y equator, let

q15q35arcsinS 1

2
2

1

2A3
D 1/2

,

q252arcsinS 1

2
2

A3

4 D 1/2

. ~19!

Then, the preparation state has the form

uC&a2a3

(perp)5
1

A2
u00&a2a3

1
1

2
~ u01&a2a3

1u10&a2a3
). ~20!

For x-z equator, let

q15q35arcsinS 1

2
2A1

8D 1/2

, q250. ~21!

The preparation state is

uC&a2a3

(perp)5S 1

2
1A1

8D u00&a2a3
1

1

2A2
~ u01&a2a3

1u10&a2a3
)

1S 1

2
2A1

8D u11&a2a3
. ~22!

After the preparation stage, perform the copying proced
~15!, we obtain the output state, and the output copies app
in the a2 anda3 qubits. The optimal quantum cloning tran
formations for equatorial qubits may achieve the highest
delity 1/21A1/8. The reduced density operator of both co
ies at the output ina2 anda3 qubits may be expressed as

r (out)5S 1

2
1A1

8D uC&^Cu1S 1

2
2A1

8D uC'&^C'u.

~23!

IV. SEPARABILITY OF COPIED QUBITS AND QUANTUM
TRIPLICATORS

A. Separability

For the UQCM, the density matrix for the two copie
ra2a3

(out) is shown to be inseparable by use of Peres-Horode

criterion @14,15#. That means it cannot be written as the co
vex sum,

ra2a3

(out)5(
m

w(m)ra2

(m)
^ ra3

(m) , ~24!

where the positive weightsw(m) satisfy (mw(m)51. There
are correlations between the copies, i.e., the two qubits a
output of the quantum copier are nonclassically entang
4-3
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@12#. We shall show in this section that, different from th
UQCM, the copied qubits are separable for the case of o
mal phase-covariant quantum cloning by Peres-Horode
criterion.

Peres-Horodecki’s positive partial transposition criteri
is
lu
e
p

e

an

a

01230
ti-
ki

states that the positivity of the partial transposition of a st
is both necessary and sufficient condition for its separab
@14,15#. For x-z equator where the input state isau0&
1bu1&, with a5cosu,b5sinu, the partially transposed out
put density operator ata2 ,a3 qubits is expressed by a matrix
@ra2a3

(out)#T25
1

322l13l2S 2~a21l2b2! ab~12l2! ab~12l2!
1

2
~12l!2

ab~12l2!
1

2
~12l!2 2l ab~12l2!

ab~12l2! 2l
1

2
~12l!2 ab~12l2!

1

2
~12l!2 ab~12l2! ab~12l2! 2~b21a2l2!

D . ~25!
t-
ity

the
en-

r

Here, the cloning transformation corresponds to Eq.~5!.
Note that the output of copies appear ina2 ,a3 qubits. We
have the following four eigenvalues:

1

322l13l2 H 1

2
~126l1l2!,

1

2
~112l1l2!,

11l21
1

2
~12l!A516l15l2,

11l22
1

2
~12l!A516l15l2J . ~26!

For optimal phase-covariant quantum cloning,l5322A2,
the four eigenvalues are

H 0, 0,
1

4
,

3

4J . ~27!

We see that none of the four eigenvalues is negative. Th
different from the UQCM, where one negative eigenva
exists forl50. According to Peres-Horodecki criterion, th
copied qubits in phase-covariant quantum cloning are se
rable. Analyzing the four eigenvalues~26!, we find that the
optimal pointl5322A2 is the only separable point for th
copied qubits. If we analyze thex-y equator, we obtain the
same result.

B. Optimal quantum triplicators

The networks for equatorial qubits can realize the qu
tum copying. The copies at the output appear ina2 and a3
qubits. And the output reduced density operator is written

r (out)5
2~12l2!

322l13l2
r ( in)1

122l15l2

624l16l2
31. ~28!
is
e

a-

-

s

Here, we are also interested in the output state ina1 qubit.
According to the cloning transformations or cloning ne
works for equatorial qubits, we find that the reduced dens
operator of the output state ina1 qubit may be written as

ra1

(out)5
~11l!2

322l13l2
@r ( in)#T1

~12l!2

322l13l2
31, ~29!

where the superscriptT means transposition. Forx-z equator,
the output reduced density operator is invariant under
action of transposition. Comparing the output reduced d
sity operators ina2 anda3 qubits ~28! anda1 qubit ~29!, in
casel51/3, we have a triplicator,

ra1

(out)5ra2

(out)5ra3

(out)5
2

3
r ( in)1

1

6
31, ~30!

with fidelity 5/6 @12#. Explicitly, the triplicator cloning trans-
formation forx-z equator has the form,

u0&a1
u00&a2a3

→ 1

A12
@3u000&a1a2a3

1u011&a1a2a3
1u101&a1a2a3

1u110&a1a2a3
],

u1&a1
u00&a2a3

→ 1

A12
@3u111&a1a2a3

1u100&a1a2a3
1u001&a1a2a3

1u010&a1a2a3
]. ~31!

For x-y equator, by applying a transformationu0&↔u1& in a1
qubit, and still letl51/3, we find the output density operato
in a1 ~29! equals to that ofa2 anda3 ~28!. And the triplicator
cloning for x-y equator takes the form,
4-4
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u0&a1
u00&a2a3

→ 1

A3
@ u001&a1a2a3

1u100&a1a2a3
1u010&a1a2a3

],

u1&a1
u00&a2a3

→ 1

A3
@ u110&a1a2a3

1u011&a1a2a3
1u101&a1a2a3

].

~32!

The fidelity for quantum triplicator is 5/6. Actually, we ca
find the fidelity takes the same value 5/6 whenl50 andl
51/3 corresponding to UQCM and quantum triplicator, r
spectively. D’Ariano and Presti@19# proved that the optima
fidelity for one to three phase-covariant quantum cloning
5/6, and presented the cloning transformation. The quan
triplicators presented above achieve the bound of the fide
and agree with the results in Ref.@19#.

V. OPTIMAL 1 TO M PHASE-COVARIANT QUANTUM
CLONING MACHINES

We have investigated the 1→2 and 1→3 optimal quan-
tum cloning for equatorial qubits. In what follows, we sha
study the generalN to M (M.N) phase-covariant quantum
cloning.

We first discuss 1→M phase-covariant quantum clonin
We start from the cloning transformations similar to t
UQCM @6#, then determine the parameters to give the hi
est fidelity, and finally prove that the determined cloni
transformation is the optimal QCM for equatorial qubits. F
x-y equatoruC&5(u↑&1eifu↓&)/A2, we suppose the clonin
transformations take the following form:

U1,Mu↑& ^ R5 (
j 50

M21

a j u~M2 j !↑, j↓& ^ Rj ,

U1,Mu↓& ^ R5 (
j 50

M21

aM212 j u~M212 j !↑,~ j 11!↓& ^ Rj ,

~33!

where we use the same notations as those of Ref.@6#, R
denotes the initial state of the copy machine andM21 blank
copies,Rj are orthogonal normalized states of ancilla, a
u(M2 j )c, j )c'& denotes the symmetric and normaliz
state withM2 j qubits in statec and j qubits in statec' .
For arbitrary input state, the case a j

5A2(M2 j )/M (M11) is the optimal 1→M quantum clon-
ing @6#. Here, we consider the case ofx-y equator instead o
the arbitrary input state. The quantum cloning transform
tions should satisfy the property of orientation invariance
the Bloch vector and that we have identical copies. The cl
ing transformation~33! already ensure that we haveM iden-
tical copies. The unitarity of the cloning transformation d
mands the relation( j 50

M21a j
251. Under this condition, we

can check that the cloning transformation has the propert
orientation invariance of the Bloch vector. Thus, the relat
~33! is the quantum cloning transformation forx-y equator.
The fidelity of the cloning transformation~33!, takes the
form
01230
-
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of
n

F5
1

2
@11h~1,M !#, ~34!

where

h~1,M !5 (
j 50

M21

a jaM212 j

CM21
j

ACM
j CM

j 11
. ~35!

We examine the cases ofM52,3. For M52, we havea0
2

1a1
251 andh(1,M )5A2a0a1. In casea05a151/A2, we

have the optimal fidelity and recover the previous result~9!.
For M53, we havea0

21a1
21a2

251, and

h~1,3!5
2

3
a1

21
2

A3
a0a2 . ~36!

For a05a250,a151, we haveh(1,3)52/3, which repro-
duces the case of quantum triplicator forx-y equator~32!.

We present the result of the one toM phase-covariant
quantum cloning transformations. WhenM is even, we have
a j5A2/2,j 5M /221,M /2 anda j50, otherwise. WhenM is
odd, we havea j51,j 5(M21)/2 anda j50, otherwise. The
fidelity are F51/21AM (M12)/4M for M is even, andF
51/21(M11)/4M for M is odd. The explicit cloning trans-
formations have already been presented in Eq.~33!.

Though the fidelity forM52,3 are optimal, we need to
prove that for generalM, the fidelity achieve the bound a
well. We apply the same method introduced by Gisin a
Massar in Ref.@6#. In order to use some results later, w
consider the generalN to M cloning transformation. Gener
ally, we write theN identical input state for equatorial qubit
as

uC& ^ N5
1

2N/2 (
j 50

N

ei j fACN
j u~N2 j !↑, j↓&. ~37!

The most generalN to M QCM for equatorial qubits is ex-
pressed as

u~N2 j !↑, j↓& ^ R→(
k50

M

u~M2k!↑,k↓& ^ uRjk&, ~38!

whereR still denotes theM2N blank copies and the initia
state of the QCM, anduRjk& are unnormalized final states o
the ancilla. The unitarity relation is written as,

(
k50

M

^Rj 8kuRjk&5d j j 8 . ~39!

The fidelity of the QCM takes the form

F5^CuroutuC&5 (
j 8,k8, j ,k

^Rj 8k8uRjk&Aj 8k8 jk , ~40!

where rout is the reduced density operator of each outp
qubit by taking partial trace over allM but one output qubits.
4-5
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We impose the condition that the output density operator
the property of Bloch vector invariance, and find the follo
ing for N51,

Aj 8k8 jk5
1

4 H d j 8 jdk8k1~12d j 8 j !Fdk8,(k11)

A~M2k!~k11!

M

1dk,(k811)

A~M2k8!~k811!

M G J , ~41!

where j , j 850,1 for caseN51. The optimal fidelity of the
QCM for equatorial qubits is related to the maximal eige
valuelmax of matrix A by F52lmax @6#. The matrixA ~41!
is a block diagonal matrix with blockB given by

B5
1

4 S 1
A~M2k!~k11!

M

A~M2k!~k11!

M
1

D . ~42!

Thus, we have proved that the optimal fidelty of one toM
QCM for equatorial qubits takes the form

F52lmax5H 1

2
1

AM ~M12!

4M
,M is even,

1

2
1

~M11!

4M
,M is odd.

~43!

We thus find in this section, the optimal one toM phase-
covariant quantum cloning transformation. This is the m
result of this paper.

VI. N TO M PHASE-COVARIANT QCM

We conjecture that the optimalN to M phase-covarian
QCM for x-y equator take the following form:

Case A, whenM5N12L, the cloning transformation is

UN,N12Lu~N2 j !↑, j↓& ^ R5u~N2 j 1L !↑,~ j 1L !↓& ^ RL ,
~44!

which implies that we just need one ancilla state and
omit it in cloning relation. The corresponding fidelity is

F5
1

2
1

1

2N (
j 50

N21

ACN
j CN

j 11
A~L1 j 11!~N1L2 j !

N12L
.

~45!

Case B, whenM5N12L11, the cloning transformation
is

UN,N12L11u~N2 j !↑, j↓& ^ R

5
1

A2
u~N2 j 1L11!↑,~ j 1L !↓& ^ RL ~46!
01230
s

-

n

n

1
1

A2
u~N2 j 1L !↑,~ j 1L11!↓& ^ RL11 . ~47!

The corresponding fidelity is

F5
1

2
1

1

2N11 (
j 50

N21

ACN
j CN

j 11

3
1

N12L11
@A~L1 j 11!~N1L2 j 11!

1A~L1 j 12!~N1L2 j !#. ~48!

WhenN51, the cloning transformations and the fidelity r
duce to the previous results given in the last section. For c
N.1, the upper bound on the fidelity obtained by t
method introduced in Ref.@6# is too conservative becaus
that it is sometimes greater than unity.

It is proved that the optimal fidelity ofN→` quantum
cloning equals to the corresponding optimal fidelity of qua
tum estimation@7,20,13#. In the limit L→`, the fidelity for
N to N12L, N12L11 quantum cloning becomes

F5
1

2
1

1

2N11 (
j 50

N21

ACN
j CN

j 11, ~49!

which is equal to the optimal fidelity of the quantum phas
estimation presented in Ref.@20#. This confirms that the op-
timal fidelity ~45!,~48! in the limit L→` gives a correct
result. However, we still need a rigorous proof for the case
generalN to M phase-covariant quantum cloning.

VII. SUMMARY

In this paper, the networks consisting of quantum ga
for phase-covariant quantum cloning have been studied.
copied qubits of phase-covariant cloning machines
showed to be separable. We have given explicitly the
→M cloning transformations forx-y equator. And the opti-
mal fidelity has been proved by using the method by Gi
and Massar@6#. The generalN→M phase-covariant quantum
clonings are conjectured.
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@12# V. Bužek, S.L. Braunstein, M. Hillery, and D. Bruß, Phys. Re
A 56, 3446~1997!.

@13# D. Bruß, M. Cinchetti, G.M. D’Ariano, and C. Macchiavello
Phys. Rev. A62, 012302~2000!.

@14# A. Peres, Phys. Rev. Lett.77, 1413~1996!.
@15# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.

223, 1 ~1996!.
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