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Multipartite entangled coherent states

Xiaoguang Wand? and Barry C. Sandets
nstitute of Physics and Astronomy, University of Aarhus, Aarhus, DK-8000, Denmark
2Institute for Scientific Interchange (ISI) Foundation, Viale Settimio Severo 65, 1-10133 Torino, Italy
3Department of Physics, Macquarie University, Sydney, New South Wales 2109, Australia
(Received 3 April 2001; published 5 December 2001

We propose a scheme for generating multipartite entangled coherent states via entanglement swapping, with
an example of a physical realization in ion traps. Bipartite entanglement of these multipartite states is quanti-
fied by the concurrence. We also compute multipartite entanglement for certain systems. Finally we establish
that these results for entanglement can be applied to more general multipartite entangled nonorthogonal states.
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I. INTRODUCTION [6]. We also computgl7,18 to characterize the multipartite
entanglement of the tripartite and even-number MECS.
Quantum entanglement is at the heart of quantum infor-
mation theory and plays a key role in quantum information Il GENERATION OF MULTIPARTITE ENTANGLED
such as quantum teleportati¢t], superdense codinf2], COHERENT STATES
quantum key di;tributiorﬁ3],and telecoloning[fl]. G_enuine _ We consider a set dfl ions in a linear trap coupled to-
entanglement arises when the state of a multipartite system iher via the Coulomb interaction. The collective motion of
nonseparable. Despite extensive efforts to quantify entangl§ne jons is described by the dynamics of the normal modes,
ment [5,6], characterization gnd classmcanon of generalyjth a, (a) the annihilation(creation operator for theith
mixed entangled states remains an important challenge. Efqode andy; the angular frequency of théth mode, i
tangled nonorthogonal states are even more challenging thanfj 2 . N}. The fundamental modei€1) is the c.m.
thgir well-studied orthogonal counterparts, yet have not remode with frequency;, and thei =2 mode is the breathing
ceived the same degree of attention despite the importance gfode with angular frequency,=\3v,. Frequencies for
nonorthogonality to quantum theory and the importance ohigher-order normal modes can be calculdieg]. We pro-
entanglement of nonorthogonal states to quantum informgyose a method for generating entangled coherent states of the
tion such as quantum key distributidid]. The entangled normal phonon modes for the trapped ions.
coherent statéECS [8—12] or multipartite superposition of ~ The ions behave as effective two-level systems, With
coherent stategl3,14], is the most well-known example of and|1) being the lower and upper states. Unitary transfor-
entangled nonorthogonal states, along with the related emmations that create superpositions of these two states are
tangled squeezed statddl] and entangled S@) and generated by the Pauli raising and lowering operaters
SU(1,1) coherent stategl5]. and the inversion operatar,. In °Be, the stateg0) and
The bipartite ECS can exhibit various nonclassical prop{1) exist as two hyperfine sublevels with superpositions cre-
erties such as sub-Poissonian statistics, two-mode squeezir@jed via stimulated Raman transitior20].
and violations of the Cauchy-Schwarz inequalitiés], as The driving frequency between stai@ and|1) can be
well as violating Bell's inequality8,10]. Although most at- Mmodified to excite one of the normal modes of oscillation.
tention has been devoted to the bipartite ECS, the multiparl he normal mode can be excited by driving any one of the
tite case has been studied as WéH], but not to the extent atoms, and for a given atojnan effective interaction Hamil-
we undertake here, namely, generating such states, discudgnian between theth phonon mode and thgth ion is
ing their potential realization in ion traps, and quantifying 21,
the degree of entanglement. Such studies of the ECS are of H.. =g~a-*a~¢r (1)
interest beyond obtaining a fundamental understanding of e s
nonorthogonal entangled states: such states can be employatiereg;; is the coupling constant. By choosing the duration,
in quantum information theory, and in quantum computingstrength, and frequency of the Raman pulse appropriately,
applications, in particulafl6]. This particular application is the coupling strength can be set to the same magnitude. Thus
relevant to our discussion of the multipartite entangled cowe can consider a fixed coupling strengthrhis means that
herent statdMECS), as it considers qubits encoded as two-any ion can be coupled to any of the normal modes of oscil-
dimensional center-of-mage.m, vibrational motion of two lation, with the choice of mode and coupling strength deter-
ions in an ion trap. These qubits are measured by swappingined by experimental parameters. Thgg=g in Eq. (1).
entanglement from the vibrational to the internal states of thé\lthough challenging, this coupling between ions and
ion [16]. Our analysis of the MECS could enable generalizanormal-mode oscillations is possible.
tions of such qubits to large entangled systems. A judicious choice of initial state will lead, by Hamil-
Here we discuss the MECS and propose a scheme to getenian evolution, to the MECS. We begin with the coherent
erate such states via entanglement swapping, and we calcstate of the vibrational collective mode. If the phonon mode
late the degree of entanglement by employing concurrencis initially in the ground state, the driving field is first con-
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figured to impart a displacement to the chosen normal modélhese Bell-state measurements on the s@tgield the nor-
We can therefore assume that flle normal mode has been malized ECSs

prepared in a coherent stdie);, and the ioni can be pre- ‘ . . .

pared in a superposition ¢®); and|1); . The initial state for |ae' ) ®|ae' ), x|ae™ ') ®|ae™'"), ®
theith ion and theith normal mode is prepared a#(0)); — Tt T
=2"Y9a);®(]0);+]|1);). This state undergoes tﬁi Ha>1mil- V22 exp(— 4|afsirtr)cog 2]a sin(2r)]

tonian evolutionH;;, Eq. (1), to yield the time-dependent gnq

state(in the interaction pictune

|a€' ) @]ae™ ), x|ae ') @] ae ),
V2+2 expd — 4| al?sirf7)

lp(7))i=2"Y4|a€);@|0)i+|ae ") @[1))  (2) , (7)

with 7=gt a normalized unit of time, scaled to the coupling

strengthg. respectively. For the specific case that 7/2, Egs.(6) and
State(2) involves just one degree of freedom for the vi- (7) reduce to the even and odd ECE3]

brational mode. We can consider two identical ions, ions 1 . ' _ .

and 2, each prepared in the superposition J@teand|1). ia)®lia), x| —ia);®]—ia),

Let us also assume that the c.m. mode and the breathing 22 exp(— 4[a]?)

mode have been prepared in identical coherent states, that is,

with the same amplitude and phase; the two-mode coherent Thus far we have considered only the single-particle and

state for these two normal modes of oscillation|is);  bipartite cases. As the purpose of this paper is to develop and

®|a),. We then couple ion 1 to the fundamental mode andstudy the MECS, beyond the bipartite case, we wish to gen-

ion 2 to the breathing mode by adjusting the appropriateralize the above analysis frod=2 particles, or ions, to

parameters of the two Raman beams, with beam 1 directed athitraryN. We therefore consideX systems, each prepared

ion 1 and beam 2 directed at ion 2. Moreover, the couplingn the identical statéy(7));, i.e.,

strengthg between ion 1 and the c.m. mode is equal to the

coupling strength between ion 2 and the breathing mode, (7)) 1@ (7))@ - - - @ | (7)) - 9

with both interactions occurring simultaneously, i.e., the in- . _ _

teraction Hamiltonian isH=g(aIalalz+aZagazz). Then By gnalogy with the Bell-state measurements, in the multi-

the Hamiltonian(1) applies to the coupling between ion 1 Particle case, measurements are performed with respect to

and normal mode 1 and the coupling between ion 2 andhe maximally entangled multipartite electronic states

normal mode 2 simultaneously. After a timre= gt, the prod- o ) ) — — —

uct state 27Y([1)18®[12)2® - - - @i ]i1)1®]]12)2® - - - @inn),

(10

®

(1))@ (1)),=2"Y(|ae'™),1®|ae'),©]0),©]0),

+|ae‘i7>1®|ae‘”>2®|1>1®|1>2 fori,e{0,1},ke{1,2,... N}, andi,=1—i,. The result of

this measurement on the above state collapses the vibrational

+|ae' ™), ®]ae”'7),®|0),®|1), state to the MECS
+]ae™'7);®]ae"),®(1),®]0)) |a€' ™), ®]ae'2),® - - @|ae! N+ |ae 1) ®]ae ' 72),
(3) Q- - - ®|ae*iTN>N (12)

eventuates and is facto_rizable because two independent staﬁa& to a normalization constant, wherg= 7(— 1),

have each undergone independent evolutions. Specifically, for alli,=0 andr= /2, the above state re-
The factorlngle st.at(aS) may be transformed to an en- §,ces to the MEC$14]

tangled state via a suitable measurement process on the elec-

tronic states of the two ions. Direct measurements of the —2N|a|?7—1/2(|; ; ; ;

electronic states will not suffice to entangle the vibrational [2=2e" 2N [la)8lia)e - oliah=| —ia)

states, but Bell-state measurements of the electronic states  ®|—ia),® - -®|—ia)y). (12

will work. This technique of Bell-state measurements to en-

tangle other states is the hallmark of entanglement swappingherefore, by measuring the combined electronic states of

[23], and we apply this method to entanglement swappinghe ions via a generalized Bell-state measurement, the out-

for nonorthogonal states. come of the electronic-state measurements is a MECS. Pre-
Measurements must be performed with respect to th@aring the MECS follows a natural generalization to the

Bell-state bases for joint electronic states of both ions. Thentanglement-swapping method for preparing the bipartite

Bell states are defined to be ECS.
In order to generate the MECS, we need to perform
|®)1,=2"Y2(]0),®]0),*]1);®]1),), (4)  a(challenging measurement on certain maximally entanged
electronic states. Here we provide a way to realize the mea-
W) ,=2"Y4|0),®|1),=]1);®]0),). (5)  surement using controlledeT (denoted byC) gates[24]. A
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series ofC gates is applied to the electronic st&id) fol-
lowed by a Hadamar¢H) gate,

PHYSICAL REVIEW 45 012303

of even and odd MECSs, in this section we consider the
generalized balanced MECS for studying entanglement. By

“balanced,” we refer to the constraint that each element of
the superposition of multipartite coherent states in the MECS
is equally weighted with all other elements of the superposi-
tion. An unbalanced ECS is more difficult to constr{i@f,

G=HCin" - - C1Lao,

where the subscripts @f; denotes the control iohand the

target]. Let the state(10) be the input of this gat&. The  4nq the extension of the following work to the unbalanced
output is the product stat¢)@|j)@ - - ®[jn)(jke{0.1).  MECS is straightforward; because of the greater challenge in
Local measurements on this output product state after thgreating unbalanced MECSs and the ready generalization of
gateG has been applied correspond to the desired generajpe analysis below to unbalanced MECSs, we do not include
ized Bell-state measurements. . . this analysis of unbalanced MECS here.

One problem that can arise in creating multimode en-  Thys far, we have considered the even and odd balanced
tanglement is that, during the interaction time between ionsyecs as generated by a unitary evolution in a larger Hilbert
the state of the vibrational mode may change and no |°”g%pace followed by measurements on the other degrees of
exist as coherent state. However, thereby exists a remedy thgbegom. A unitary evolution can be used to generate the
uses the interaction Hamiltonian for thil ion with the c.m. bipartite ECS, on the other hafi#,12], which does not yield
mode[21] the even and odd variety of ECS. Thepartite MECS with
an arbitrary relative phase is given by

(13

Hi=—i(aal—afar)(1- o) (14)

_ L. 0] _
during C gate operations, and avoids deleterious changes to |,8.N)ecs= M a)1®]a);® - - &)y + e —a),

the vibrational mode staté25]. The evolution operator ®|—a),®---®|—ay) (17)
exp(—itH;) incorporates the unitary operators
] with
exd =ik, X (1—0,)/2]
N=[2+2pNcoss] *?, (18
and
exd =ik,Py(1= /2] (%)), the normalization constant, and
t 5 p=e 2%’ =(—ala) (19
where X, = (a;+al)2,P,=(a;—al)/\2i, and k k, are :
real numbers. From these two unitary operators o .
exfd +ik,P1(1—0},)/2] can be realized by a single-qubit ro- The MECS satisfies the equation
tation. As[1—o0j,,1—0jx]=0, we can use the technique in aa, . . .ay|a, 0,N)ecs= aVa, 6,N)ecs, (20)

Ref.[25] to realize

wherea;(i=1,2, ... N) is the annihilation operator of mode

i. Two interesting limits arise fdra|— and|a|—0. In the
asymptotic limit|a|—o, the two statesa) and|—«) ap-
proach orthogonality and the state,§,N)gcs approaches
the multipartite maximally entangled state, the Greenberger-
Horner-Zeilinger(GHZ) state,

extf —ikykp(1— 0) (1= 0, ) 14]
=ex ik Xy (1— o) /2]exd ik P1(1— 0} /2]
x exf —ik,X;(1— 0i,)/2]

Xexg —ik,P1(1—0jy)/2] (15
. . 1 .
by an appropriate choice of Raman-laser pulse phases. Let- | ,cHzy, _ 0).2]0),® - -®|0u+e 1) ®|1
g e b 95 =T5101121020 - 9[O+ e 110 1),

®- - ®|1)y). (21

LT
Cij:eXF{_lz(l_Uiz)(l_UJ‘X) . (16)
An orthogonal basis can be constructed such ti@at
The vibrational degree of trapped ions acts as a databus, ardl@—=); and|1);=[a——z);, where we have symboli-
it does not change after the gate operation, i.e., the vibracally identified the largge| limit. In the asymptotic limit
tional modes remain as coherent states. |a|ﬂ[0, ]the state|a,7,N)gcs reduces to the so-called
state[27],

IIl. QUANTIFYING THE ENTANGLEMENT _
I(W)n=N""(|1)@4|0),® - - - @[0)N+]0)1®[1),® . . .

The method for preparing the MECS has been discussed; ®[0)+ -+ +]0)1®]0),® - - - ®|1)y). (22
now we quantify the entanglement for this state. Multipartite

entanglement continues to be an important topic, and herilere|n);(n=0,1) denote the Fock states of made

we choose to study entanglement by certain well-accepted We employ concurrencis] as a measure of bipartite en-
measures, which suffice for the MECS. tanglement for the statpr,d,N)gcs. For pio, the density

Whereas we have shown how to generate the special caseatrix for a pair of qubits 1 and 2, the concurrencégb
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Cro=maxA;—Ay—A3— 4,0} (23)  Thus, for an even numbeX, k=N/2, and 6=, the state
|a,0,N)ecs is maximally entangled in the sense that
for A y=N,=N\3=\,, the square roots of the eigenvalues of ¢y, /() =1. For other nonorthogonab¢0) cases, the
the operator state is not maximally entangled.

— *
012= 1A 7y @ 7y)P1A 0y D 0y ), @49 B. Mixed-state entanglement
whereoy,= (7 ) is a Pauli matrix. Now we study the bipartite reduced-density matpiy
Nonzero concurrence occurs if and only if qubits 1 and 2yhich is obtained by tracing out all other systems except
are entangled. Moreoveg;,=0 only for an unentangled systemsk andl. There areN(N—1)/2 different density ma-
state andZ;,=1 only for a maximally entangled state. This trices p,,. However, for our stat¢a,6,N)ecs, all particles
concurrence measure can be extended to multipartite sygre equally entangled with each other and all the reduced-
tems, and we apply it to pure-state and mixed-state entanglgtensity matricep,, are identical. Therefore, it is sufficient to
ment for MECS below. considerp,, and to generalize from this case. For conve-

nience, we first make a local transformation I)azaz on the

state|a, 8,N)gcs. This local transformation does not change
In this section we consider bipartite splitting of the mul- the amount of entanglement in the state. Then, by tracing out

tipartite system, i.e., splitting the entire system into two sub-systems 3,4... N in the transformed state, we obtain the

systems, one subsystem containing kiff<k<N-—1) par- reduced-density matrix describing systems 1 and 2 as

ticles and the other containing the remainig k particles. B o

Let ¢ n-k denote the concurrence between the two sub- P127 T34, n(la, 0,N)ec@, 6,N)=N*(|a)| - a)

systems. Applying the general result for concurrence of bi- X(a|(—a|+|— a)|a)— al(a]) + €| — a)| a)

partite nonorthogonal stat¢26] to the MEC$17) yields

¢ (0 V(1-p¥9(1-p* M) (25
(N=H 1+ pNcosé with q=p"~2.
In order to diagonalize the density matrix, we choose an
from which the condition for the maximally entangled ECS orthogonal basi§|0),|1)}, distinguished from the electronic-

A. Pure-state entanglement

X(al(~a|+e "qla)|—a)(—al(a| (29)

[i.e., Cun—1(0)=1] is given by state basis of the same notation employed earlier for the
entanglement-swapping operation by using boldface sym-
1-VJ(1-p?)(1-p*N79) bols. This orthogonal basis is defined as
cosf= — N . (26)
P O=la)D=(-a)-ployM, (@0
Hence,

- where M= \/1—p2. It then follows that
1-V(1-p*)(1-p*"9)=p", (27)

with equality only for Z=N. It follows that the condition
for €y n—19(0)=1 is simply

| = a)=M]1)+p|0). (31)

Substituting Eqs(30) and (31) into Eq. (29), we obtain
cosf=—1,2k=N. (28) the density matrix

|
2p%(1+qcosd) pM(1+qe?) pM(l+ge '’ 0

2 pM(1+qge") M? M?qe™" 0 @
P= N pM(1+qe?)  M2ge’ M? 0
0 0 0 0

in the standard basig00),|01),/10),|11)}. From Egs.(23)  Although p,, is complicated, the expressions for the square
and (32), the square roots of eigenvalues@f, in Eq. (24)  roots of the eigenvalues are rather simple. The concurrence is
are thus not complicated and follows directly from E¢23) and
(33), namely,
N =N2M2(1+0q), N=N?M?(1-q), e s n
q p° "—p

1+pNcosd  1+pNcoss”

12 (34
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TABLE I. A summary of concurrences for some special states.

|| p N 0 ¢ State
0 1 >2 @ 2N W)y
TR 0 1 2 77 1 )
Y - 0 2oy M
s - 0 >2 ey 0 s,
”.0‘0}}:3:2:2:25233: 0 1 =2  #m 0 |oyeN
9.%.%
' ‘%‘é&*ﬁ:’?‘i&i“' PO O<p<l  » Ay 0 fad)ecs
QAL
'I:,'t,:'tzitzzf
Untosod
SN pN-2_ pN
Co=—— (36)
1-p

FIG. 1. The concurrence versdésandp for N=3.

As a short summary we give concurrences of some spe-
This expression for concurrence must be calculated cargsig| states in Table I. In Table | the stat®)=2"Y7|0)
fully for p=1 and = . Of course,p=1 implies thata ®|0)+exp(6)|1)®|1)], where|0)=|a—=) and|1)=|a—
=0, which is the limit in which MECS approaches the ). For fixedN and 6 there still exist maximum values of
vacuum state. In this limit, we apply I'Hital’s rule to Eq.  the concurrencésee Fig. 1 From Eq.(34), the value of at
(34) to obtain lim, ,&,=2/N for N>2. This result is i hich the maximum occurs is determined by the equation

accordance with the known maximal degree of entanglement
between any pair of qubits in at-qubit system, attained for
qubits prepared in the pure symmetric state referred to as theg 4, example, we consider the tripartite case 3. The
W .state[27,28' anq presented for MECS in EQ2). The  jp,ve equation simplifies to

limit |@|—0 yielding a nonzero concurrence can thus be
understood in the context of producing a symmetric state 2p3cosf+3p?—1=0. (39
[26].

The first application of this formula for concurrence is to For =0 and 0<p<1, the solution igp=1/2 with a corre-
determine when systems 1 and 2 are disentangledgig., sponding maximum concurrence of 1/3. Ho /2, the so-
=0. One case arises fgy=0, which corresponds to the lution of pis 32 and the maximum value af,, is 24/319.
orthogonal case. As described earlier, this case is only valid
in the asymptotic limit of infinitd «|. Another case of com- C. Multipartite entanglement
plete disentanglement arises fdr— and 0<p<1, yield-
ing a concurrence of,,=0. The third case arises fof
#ar and in the limit|a| 0. In summary, there is no bipar- . icNLway entanglement which involves all particles.
tite entanglement in three cases: the asmptotic limit o

infinite-amplitude coherent states, the asymptotic limit of an' . have used the concurrence as an example of bipartite
oo P ’ ymp entanglement. Recently Coffmaet al. [17] used concur-
infinite number of entangled systems, and the case of th

; o ence to examine three-qubit systems, and introduced the
MECS for which the coherent state is just the vacuum state .
For N=2 the concurrencéd4) reduces to concept of the 3-tangler; » 5| #/)) as a way to quantify the

amount of three-way entanglement in three-qubit systems.
Later Wong and Christens¢ft8] generalized the 3-tangle to

_ 1-p? 3 the N-tangle. TheN-tangle is the square of the multiqubit
Y 1+ p2cosh’ (39 concurrence

2pNcosf+Np?=N-2. (37

We have thus far considered only bipartite entanglement
of a multipartite system. One type of multipartite entangle-

¢ =(ploy N y* 39
which is the concurrence for the pure stpdef,2)gcs. The L2 N |<l’lf|0y ) 39

bipartite concurrence for a bipartite ECS provides arbitrarilyfor even qubits, with ) being a multiqubit pure state. This
strong entanglement for appropriate parameter choicegoncurrence works only for even numbers of qubits;
When 6=, the concurrenc€;,=1, and the state becomes (| a®N|y*)|=0 for any oddN-qubit pure states. There-
the the antisymmetric staf# ~), Eq.(5). Bipartite entangle-  fore. tyhis quantity cannot act as a general measuié-why
ment of multipartite systems offers reduced entanglementanglement. Next we quantify théway entanglment us-
however. FoN#2, the reduced density-matrix describes ajng N-tangle forN=3 and everN.

mixed state, and the degree of entanglement is given by Eq. The 3-tangle can be calculated from concurrences

(34).
Figure 1 gives a plot of the concurrence veguandp. As C1(29): €1z, AN L, becaus¢ly]
seen from the figure, the maximum value of the concurrence T123= ij(zs)_ @iz_ Q:%S (40)
occurs whend= 7 for fixed values ofp and N. From Eq.
(34), the maximum value is obtained as holds. For our statér, 6,3)gcs, the 3-tangle is simplified as

012303-5
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FIG. 2. TheN-tangle versug for different & and N:N=3,0
=0 (cross points N=3,0= /2 (circle point3, N=3,6=m (box
pointy, andN=6,0=0 (solid line).

T123= c%(23)_ 2¢%,. (41
From Egs.(25) and(34), the 3-tangle is
(1-p?)°
o=, (42)
Y2371+ p3cosh)?

and as expectedr; ,3=1(7;,3=0) in the limit that p
—0(p—1).

Now we examineN-way entanglement for the state

|, 0,N)ecs with N even. In the basis of Eq30), the state
|, 0,N)ecs can be rewritten as

ler, 0,N)ecs=M|0)1®(0),® - - - @[ Oy +e'(M]1),
+p|0)1) ®(M][1),+p|0)r)® - - - @ (M]|1)y
+p[O)n)]. (43

The effect of writing the MECS in this basis set is to have

PHYSICAL REVIEW A65 012303

in this case. Thus, we observe that multipartite entanglement,
as determined by thi-tangle, is indeed zero for th# state.

IV. CONCLUSION

We have considered generation and entanglement mea-
sures for the multipartite entangled coherent state. Generat-
ing the MECS is possible by entangling vibrational degrees
of freedom for trapped two-level ions with the ions’ internal
electronic states. By measuring the electronic states with re-
spect to a highly entangled basis, basically an extension of
the (bipartite Bell basis, the resultant motional state is a
MECS. We have quantified the entanglement of the MECS
by applying the concurrence to measure bipartite entangle-
men{in one case, by splitting the multipartite system into
two subsystems and, in the other case, by tracing over all
degrees of freedom except for two subsysterifde have
also employed thé&l-tangle to determine the overall degree
of entanglement. Each of these measures tells us something
important about the MECS, and the MECS versions of the
GHZ andW states have been studied and elucidated.

Quantifying entanglement for MECSs provides a simple
measure to evaluate the inherent resource of such states, and
this is relevant to quantum-information applications where
entanglement is regarded as a crucial resource. Moreover, the
study of MECS highlights the subtleties of applying en-
tanglement measures to nonorthogonal entangled states. The
particular physical realization studied here is the entangled
vibrational motion of ions in a trap. As the bipartite ECS has
proven to be a useful alternative construct for making qubits
[16], in contrast to the usual Fock-state qubits, this analysis
could be valuable for encoding qubits as MECS in an ion
trap.

Finally, the analysis here for MECS is readily exteneded
to more general systems, including entangled squeezed states
[11], entangled S(2) and SU1,1) coherent stategl5], and
so on, as follows. Essentially, Eq25),(34), and(44) can be
applied to the general entangled state

the state expressed formally as a multiqubit state. From Egs.

(39) and (43) the N-tangle is obtained as

(1—p?)"
= 44
T1,2,...N (1+chose)2 (44)

for evenN. Although this formula is obtained for evéMy by
comparing Eqgs(42) and44), it is also applicable tiN=3.
The condition for maximal entanglement,, = y=1,is

N=2, cosf=-1 (45)

for p#0. This constraint orN restricts maximal entangle-

ment to the bipartite ECS.

In Fig. 2 we give a plot of theN-tangle versus for
variousd andN. For p=0 (orthogonal case the multiqubit
concurrence is equal to 1, independent &fWe already
know that the statéa,,N)gcs becomes th&w state in the
limit p—1. Now we take this limit and choos#= 7 in Eq.
(44), thereby establishing that the concurrengg . =0

s

|V, ®)=N"(|¥);0|¥),®- '®|‘I’>N+ei0/|¢>1®|‘b>2
®---®|D)y), (46)

where is\’ is the normalization constarjty’) and|®) are
arbitrary linearly independent states, a(it|®)=p’ is a
real overlap. Then the corresponding concurrence for the
state| ¥, ®) is obtained by directly replacingand 6 with p’

and ¢’ in Eqgs.(25),(34), and(44). Therefore, our results for
quantifying entanglement provide a useful formalism with a
validity well beyond that for MECS.
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