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Multipartite entangled coherent states
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We propose a scheme for generating multipartite entangled coherent states via entanglement swapping, with
an example of a physical realization in ion traps. Bipartite entanglement of these multipartite states is quanti-
fied by the concurrence. We also compute multipartite entanglement for certain systems. Finally we establish
that these results for entanglement can be applied to more general multipartite entangled nonorthogonal states.
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I. INTRODUCTION

Quantum entanglement is at the heart of quantum in
mation theory and plays a key role in quantum informat
such as quantum teleportation@1#, superdense coding@2#,
quantum key distribution@3#,and telecoloning@4#. Genuine
entanglement arises when the state of a multipartite syste
nonseparable. Despite extensive efforts to quantify entan
ment @5,6#, characterization and classification of gene
mixed entangled states remains an important challenge.
tangled nonorthogonal states are even more challenging
their well-studied orthogonal counterparts, yet have not
ceived the same degree of attention despite the importanc
nonorthogonality to quantum theory and the importance
entanglement of nonorthogonal states to quantum infor
tion such as quantum key distribution@7#. The entangled
coherent state~ECS! @8–12# or multipartite superposition o
coherent states@13,14#, is the most well-known example o
entangled nonorthogonal states, along with the related
tangled squeezed states@11# and entangled SU~2! and
SU~1,1! coherent states@15#.

The bipartite ECS can exhibit various nonclassical pr
erties such as sub-Poissonian statistics, two-mode squee
and violations of the Cauchy-Schwarz inequalities@13#, as
well as violating Bell’s inequality@8,10#. Although most at-
tention has been devoted to the bipartite ECS, the multi
tite case has been studied as well@14#, but not to the extent
we undertake here, namely, generating such states, dis
ing their potential realization in ion traps, and quantifyin
the degree of entanglement. Such studies of the ECS a
interest beyond obtaining a fundamental understanding
nonorthogonal entangled states: such states can be emp
in quantum information theory, and in quantum computi
applications, in particular@16#. This particular application is
relevant to our discussion of the multipartite entangled
herent state~MECS!, as it considers qubits encoded as tw
dimensional center-of-mass~c.m.! vibrational motion of two
ions in an ion trap. These qubits are measured by swap
entanglement from the vibrational to the internal states of
ion @16#. Our analysis of the MECS could enable generali
tions of such qubits to large entangled systems.

Here we discuss the MECS and propose a scheme to
erate such states via entanglement swapping, and we c
late the degree of entanglement by employing concurre
1050-2947/2001/65~1!/012303~7!/$20.00 65 0123
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@6#. We also compute@17,18# to characterize the multipartite
entanglement of the tripartite and even-number MECS.

II. GENERATION OF MULTIPARTITE ENTANGLED
COHERENT STATES

We consider a set ofN ions in a linear trap coupled to
gether via the Coulomb interaction. The collective motion
the ions is described by the dynamics of the normal mod
with ai (ai

†) the annihilation~creation! operator for thei th
mode andn i the angular frequency of thei th mode, i
P$1,2, . . . ,N%. The fundamental mode (i 51) is the c.m.
mode with frequencyn1, and thei 52 mode is the breathing
mode with angular frequencyn25A3n1. Frequencies for
higher-order normal modes can be calculated@19#. We pro-
pose a method for generating entangled coherent states o
normal phonon modes for the trapped ions.

The ions behave as effective two-level systems, withu0&
and u1& being the lower and upper states. Unitary transf
mations that create superpositions of these two states
generated by the Pauli raising and lowering operatorss6

and the inversion operatorsz . In 9Be1, the statesu0& and
u1& exist as two hyperfine sublevels with superpositions c
ated via stimulated Raman transitions@20#.

The driving frequency between statesu0& and u1& can be
modified to excite one of the normal modes of oscillatio
The normal mode can be excited by driving any one of
atoms, and for a given atomj, an effective interaction Hamil-
tonian between thei th phonon mode and thej th ion is
@21,22#

Hi j 5gi j ai
†ais jz , ~1!

wheregi j is the coupling constant. By choosing the duratio
strength, and frequency of the Raman pulse appropria
the coupling strength can be set to the same magnitude. T
we can consider a fixed coupling strengthg. This means that
any ion can be coupled to any of the normal modes of os
lation, with the choice of mode and coupling strength det
mined by experimental parameters. Thus,gi j 5g in Eq. ~1!.
Although challenging, this coupling between ions a
normal-mode oscillations is possible.

A judicious choice of initial state will lead, by Hamil
tonian evolution, to the MECS. We begin with the cohere
state of the vibrational collective mode. If the phonon mo
is initially in the ground state, the driving field is first con
©2001 The American Physical Society03-1
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figured to impart a displacement to the chosen normal mo
We can therefore assume that thei th normal mode has bee
prepared in a coherent stateua& i , and the ioni can be pre-
pared in a superposition ofu0& i andu1& i . The initial state for
the i th ion and thei th normal mode is prepared asuc(0)& i
5221/2ua& i ^ (u0& i1u1& i). This state undergoes the Ham
tonian evolutionHii , Eq. ~1!, to yield the time-dependen
state~in the interaction picture!

uc~t!& i5221/2~ uaei t& i ^ u0& i1uae2 i t& i ^ u1& i) ~2!

with t5gt a normalized unit of time, scaled to the couplin
strengthg.

State~2! involves just one degree of freedom for the v
brational mode. We can consider two identical ions, ion
and 2, each prepared in the superposition stateu0& and u1&.
Let us also assume that the c.m. mode and the breat
mode have been prepared in identical coherent states, th
with the same amplitude and phase; the two-mode cohe
state for these two normal modes of oscillation isua&1
^ ua&2. We then couple ion 1 to the fundamental mode a
ion 2 to the breathing mode by adjusting the appropri
parameters of the two Raman beams, with beam 1 directe
ion 1 and beam 2 directed at ion 2. Moreover, the coupl
strengthg between ion 1 and the c.m. mode is equal to
coupling strength between ion 2 and the breathing mo
with both interactions occurring simultaneously, i.e., the
teraction Hamiltonian isH5g(a1

†a1s1z1a2
†a2s2z). Then

the Hamiltonian~1! applies to the coupling between ion
and normal mode 1 and the coupling between ion 2
normal mode 2 simultaneously. After a timet5gt, the prod-
uct state

uc~t!&1^ uc~t!&25221~ uaei t&1^ uaei t&2^ u0&1^ u0&2

1uae2 i t&1^ uae2 i t&2^ u1&1^ u1&2

1uaei t&1^ uae2 i t&2^ u0&1^ u1&2

1uae2 i t&1^ uaei t&2^ u1&1^ u0&2)

~3!

eventuates and is factorizable because two independent s
have each undergone independent evolutions.

The factorizable state~3! may be transformed to an en
tangled state via a suitable measurement process on the
tronic states of the two ions. Direct measurements of
electronic states will not suffice to entangle the vibratio
states, but Bell-state measurements of the electronic s
will work. This technique of Bell-state measurements to e
tangle other states is the hallmark of entanglement swap
@23#, and we apply this method to entanglement swapp
for nonorthogonal states.

Measurements must be performed with respect to
Bell-state bases for joint electronic states of both ions. T
Bell states are defined to be

uF6&125221/2~ u0&1^ u0&26u1&1^ u1&2), ~4!

uC6&125221/2~ u0&1^ u1&26u1&1^ u0&2). ~5!
01230
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These Bell-state measurements on the state~3! yield the nor-
malized ECSs

uaei t&1^ uaei t&26uae2 i t&1^ uae2 i t&2

A262 exp~24uau2sin2t!cos@2uau2sin~2t!#
~6!

and

uaei t&1^ uae2 i t&26uae2 i t&1^ uaei t&2

A262 exp~24uau2sin2t!
, ~7!

respectively. For the specific case thatt5p/2, Eqs.~6! and
~7! reduce to the even and odd ECS@13#

u ia&1^ u ia&26u2 ia&1^ u2 ia&2

A262 exp~24uau2!
. ~8!

Thus far we have considered only the single-particle a
bipartite cases. As the purpose of this paper is to develop
study the MECS, beyond the bipartite case, we wish to g
eralize the above analysis fromN52 particles, or ions, to
arbitraryN. We therefore considerN systems, each prepare
in the identical stateuc(t)& i , i.e.,

uc~t!&1^ uc~t!&2^ •••^ uc~t!&N . ~9!

By analogy with the Bell-state measurements, in the mu
particle case, measurements are performed with respe
the maximally entangled multipartite electronic states

221/2~ u i 1&1^ u i 2&2^ •••^ u i N&N6ui 1&1^ uu i 2&2^ •••^ ui N&N),

~10!

for i kP$0,1%,kP$1,2, . . . ,N%, and i k[12 i k . The result of
this measurement on the above state collapses the vibrat
state to the MECS

uaei t1&1^ uaei t2&2^ •••^ uaei tN&N6uae2 i t1&1^ uae2 i t2&2

^ •••^ uae2 i tN&N ~11!

up to a normalization constant, wheretk[t(21)i k.
Specifically, for alli k50 andt5p/2, the above state re

duces to the MECS@14#

@262e22Nuau2#21/2~ u ia&1^ u ia&2^ •••^ u ia&N6u2 ia&1

^ u2 ia&2^ •••^ u2 ia&N). ~12!

Therefore, by measuring the combined electronic states
the ions via a generalized Bell-state measurement, the
come of the electronic-state measurements is a MECS.
paring the MECS follows a natural generalization to t
entanglement-swapping method for preparing the bipar
ECS.

In order to generate the MECS, we need to perfo
a~challenging! measurement on certain maximally entang
electronic states. Here we provide a way to realize the m
surement using controlled-NOT ~denoted byC) gates@24#. A
3-2
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MULTIPARTITE ENTANGLED COHERENT STATES PHYSICAL REVIEW A65 012303
series ofC gates is applied to the electronic state~10! fol-
lowed by a Hadamard~H! gate,

G5H1C1N•••C13C12, ~13!

where the subscripts ofCi j denotes the control ioni and the
target j. Let the state~10! be the input of this gateG. The
output is the product stateu j 1& ^ u j 2& ^ •••^ u j N&( j kP$0,1%).
Local measurements on this output product state after
gateG has been applied correspond to the desired gene
ized Bell-state measurements.

One problem that can arise in creating multimode
tanglement is that, during the interaction time between io
the state of the vibrational mode may change and no lon
exist as coherent state. However, thereby exists a remedy
uses the interaction Hamiltonian for thei th ion with the c.m.
mode@21#

Hi52 i ~a ia1
†2a i* a1!~12s iz! ~14!

during C gate operations, and avoids deleterious change
the vibrational mode state@25#. The evolution operator
exp(2itHi) incorporates the unitary operators

exp@6 ikxX1~12s iz!/2#

and

exp@6 ikpP1~12s jz!/2# ~ iÞ j !,

where X15(a11a1
†)A2,P15(a12a1

†)/A2i , and kx ,ky are
real numbers. From these two unitary operato
exp@6ikpP1(12sjx)/2# can be realized by a single-qubit ro
tation. As @12s iz,12s jx#50, we can use the technique
Ref. @25# to realize

exp@2 ikxkp~12s iz!~12s j ,x!/4#

5exp@ ikxX1~12s iz!/2#exp@ ikpP1~12s j ,x!/2#

3exp@2 ikxX1~12s iz!/2#

3exp@2 ikpP1~12s jx!/2# ~15!

by an appropriate choice of Raman-laser pulse phases.
ting kxkp5p, we obtain

Ci j 5expF2 i
p

4
~12s iz!~12s jx!G . ~16!

The vibrational degree of trapped ions acts as a databus
it does not change after the gate operation, i.e., the vi
tional modes remain as coherent states.

III. QUANTIFYING THE ENTANGLEMENT

The method for preparing the MECS has been discus
now we quantify the entanglement for this state. Multipart
entanglement continues to be an important topic, and h
we choose to study entanglement by certain well-accep
measures, which suffice for the MECS.

Whereas we have shown how to generate the special
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of even and odd MECSs, in this section we consider
generalized balanced MECS for studying entanglement.
‘‘balanced,’’ we refer to the constraint that each element
the superposition of multipartite coherent states in the ME
is equally weighted with all other elements of the superpo
tion. An unbalanced ECS is more difficult to construct@9#,
and the extension of the following work to the unbalanc
MECS is straightforward; because of the greater challeng
creating unbalanced MECSs and the ready generalizatio
the analysis below to unbalanced MECSs, we do not incl
this analysis of unbalanced MECS here.

Thus far, we have considered the even and odd balan
MECS as generated by a unitary evolution in a larger Hilb
space followed by measurements on the other degree
freedom. A unitary evolution can be used to generate
bipartite ECS, on the other hand@8,12#, which does not yield
the even and odd variety of ECS. TheN-partite MECS with
an arbitrary relative phaseu is given by

ua,u,N&ECS5N~ ua&1^ ua&2^ •••^ ua&N1eiuu2a&1

^ u2a&2^ •••^ u2a&N) ~17!

with

N[@212pNcosu#21/2, ~18!

the normalization constant, and

p[e22uau25^2aua&. ~19!

The MECS satisfies the equation

a1a2 . . . aNua,u,N&ECS5aNua,u,N&ECS, ~20!

whereai( i 51,2, . . . ,N) is the annihilation operator of mod
i. Two interesting limits arise foruau→` anduau→0. In the
asymptotic limit uau→`, the two statesua& and u2a& ap-
proach orthogonality and the stateua,u,N&ECS approaches
the multipartite maximally entangled state, the Greenberg
Horner-Zeilinger~GHZ! state,

ucGHZ&N5
1

A2
~ u0&1^ u0&2^ •••^ u0&N1eiuu1&1^ u1&2

^ •••^ u1&N). ~21!

An orthogonal basis can be constructed such thatu0& i
[ua→`& i and u1& i[ua→2`& i , where we have symboli-
cally identified the large-uau limit. In the asymptotic limit
uau→0, the stateua,p,N&ECS reduces to the so-calledW
state@27#,

uW&N5N21/2~ u1& ^ 1u0&2^ •••^ u0&N1u0&1^ u1&2^ . . .

^ u0&1•••1u0&1^ u0&2^ •••^ u1&N). ~22!

Here un& i(n50,1) denote the Fock states of modei.
We employ concurrence@6# as a measure of bipartite en

tanglement for the stateua,u,N&ECS. For r12, the density
matrix for a pair of qubits 1 and 2, the concurrence is@6#
3-3
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C125max$l12l22l32l4,0% ~23!

for l1>l2>l3>l4, the square roots of the eigenvalues
the operator

%12[r12~sy^ sy!r12* ~sy^ sy!, ~24!

wheresy5( i
0

0
2 i) is a Pauli matrix.

Nonzero concurrence occurs if and only if qubits 1 and
are entangled. Moreover,C1250 only for an unentangled
state andC1251 only for a maximally entangled state. Th
concurrence measure can be extended to multipartite
tems, and we apply it to pure-state and mixed-state entan
ment for MECS below.

A. Pure-state entanglement

In this section we consider bipartite splitting of the mu
tipartite system, i.e., splitting the entire system into two s
systems, one subsystem containing anyk (1<k<N21) par-
ticles and the other containing the remainingN2k particles.
Let C(k,N2k) denote the concurrence between the two s
systems. Applying the general result for concurrence of
partite nonorthogonal states@26# to the MECS~17! yields

C(k,N2k)~u!5
A~12p2k!~12p2(N2k)!

11pNcosu
~25!

from which the condition for the maximally entangled EC
@i.e., C(k,N2k)(u)51# is given by

cosu52
12A~12p2k!~12p2(N2k)!

pN
. ~26!

Hence,

12A~12p2k!~12p2(N2k)!>pN, ~27!

with equality only for 2k5N. It follows that the condition
for C(k,N2k)(u)51 is simply

cosu521,2k5N. ~28!
01230
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Thus, for an even numberN, k5N/2, andu5p, the state
ua,u,N&ECS is maximally entangled in the sense th
C(N/2,N/2)(p)51. For other nonorthogonal (pÞ0) cases, the
state is not maximally entangled.

B. Mixed-state entanglement

Now we study the bipartite reduced-density matrixrkl ,
which is obtained by tracing out all other systems exc
systemsk and l. There areN(N21)/2 different density ma-
trices rkl . However, for our stateua,u,N&ECS, all particles
are equally entangled with each other and all the reduc
density matricesrkl are identical. Therefore, it is sufficient t
considerr12 and to generalize from this case. For conv

nience, we first make a local transformation (21)a2
†a2 on the

stateua,u,N&ECS. This local transformation does not chang
the amount of entanglement in the state. Then, by tracing
systems 3,4, . . . ,N in the transformed state, we obtain th
reduced-density matrix describing systems 1 and 2 as

r125Tr3,4, . . . ,N~ ua,u,N&ECŜ a,u,Nu!5N 2~ ua&u2a&

3^au^2au1u2a&ua&^2au^au!1eiuqu2a&ua&

3^au^2au1e2 iuqua&u2a&^2au^au ~29!

with q[pN22.
In order to diagonalize the density matrix, we choose

orthogonal basis$u0&,u1&%, distinguished from the electronic
state basis of the same notation employed earlier for
entanglement-swapping operation by using boldface s
bols. This orthogonal basis is defined as

u0&[ua&,u1&[~ u2a&2pu0&)/M, ~30!

whereM5A12p2. It then follows that

u2a&5Mu1&1pu0&. ~31!

Substituting Eqs.~30! and ~31! into Eq. ~29!, we obtain
the density matrix
r125N 2S 2p2~11q cosu! pM~11qeiu! pM~11qe2 iu! 0

pM~11qe2 iu! M 2 M 2qe2 iu 0

pM~11qeiu! M 2qeiu M 2 0

0 0 0 0

D ~32!
re
ce is
in the standard basis$u00&,u01&,u10&,u11&%. From Eqs.~23!
and ~32!, the square roots of eigenvalues of%12 in Eq. ~24!
are

l15N 2M 2~11q!, l25N 2M 2~12q!,

l35l450. ~33!
Although r12 is complicated, the expressions for the squa
roots of the eigenvalues are rather simple. The concurren
thus not complicated and follows directly from Eqs.~23! and
~33!, namely,

C125
M 2q

11pNcosu
5

pN222pN

11pNcosu
. ~34!
3-4
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This expression for concurrence must be calculated c
fully for p51 and u5p. Of course,p51 implies thata
50, which is the limit in which MECS approaches th
vacuum state. In this limit, we apply l’Hoˆpital’s rule to Eq.
~34! to obtain lim

p→1
C1252/N for N.2. This result is in

accordance with the known maximal degree of entanglem
between any pair of qubits in anN-qubit system, attained fo
qubits prepared in the pure symmetric state referred to as
W state@27,28# and presented for MECS in Eq.~22!. The
limit uau→0 yielding a nonzero concurrence can thus
understood in the context of producing a symmetric st
@26#.

The first application of this formula for concurrence is
determine when systems 1 and 2 are disentangled, i.e.C12
50. One case arises forp50, which corresponds to th
orthogonal case. As described earlier, this case is only v
in the asymptotic limit of infiniteuau. Another case of com-
plete disentanglement arises forN→` and 0,p,1, yield-
ing a concurrence ofC1250. The third case arises foru
Þp and in the limituau→0. In summary, there is no bipar
tite entanglement in three cases: the asmptotic limit
infinite-amplitude coherent states, the asymptotic limit of
infinite number of entangled systems, and the case of
MECS for which the coherent state is just the vacuum st

For N52 the concurrence~34! reduces to

C125
12p2

11p2cosu
, ~35!

which is the concurrence for the pure stateua,u,2&ECS. The
bipartite concurrence for a bipartite ECS provides arbitra
strong entanglement for appropriate parameter choi
Whenu5p, the concurrenceC1251, and the state become
the the antisymmetric stateuC2&, Eq.~5!. Bipartite entangle-
ment of multipartite systems offers reduced entanglem
however. ForNÞ2, the reduced density-matrix describes
mixed state, and the degree of entanglement is given by
~34!.

Figure 1 gives a plot of the concurrence verusu andp. As
seen from the figure, the maximum value of the concurre
occurs whenu5p for fixed values ofp and N. From Eq.
~34!, the maximum value is obtained as

FIG. 1. The concurrence versusu andp for N53.
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C125
pN222pN

12pN
. ~36!

As a short summary we give concurrences of some s
cial states in Table I. In Table I the stateuF&5221/2@ u0&
^ u0&1exp(iu)u1& ^ u1&], where u0&[ua→`& and u1&[ua→
2`&. For fixedN andu there still exist maximum values o
the concurrence~see Fig. 1!. From Eq.~34!, the value ofp at
which the maximum occurs is determined by the equatio

2pNcosu1Np25N22. ~37!

As an example, we consider the tripartite caseN53. The
above equation simplifies to

2p3cosu13p22150. ~38!

For u50 and 0,p,1, the solution isp51/2 with a corre-
sponding maximum concurrence of 1/3. Foru5p/2, the so-
lution of p is 321/2, and the maximum value ofC12 is 2A3/9.

C. Multipartite entanglement

We have thus far considered only bipartite entanglem
of a multipartite system. One type of multipartite entang
ment isN-way entanglement which involves allN particles.
We have used the concurrence as an example of bipa
entanglement. Recently Coffmanet al. @17# used concur-
rence to examine three-qubit systems, and introduced
concept of the 3-tangle,t1,2,3(uc&) as a way to quantify the
amount of three-way entanglement in three-qubit syste
Later Wong and Christensen@18# generalized the 3-tangle t
the N-tangle. TheN-tangle is the square of the multiqub
concurrence

C1,2, . . . ,N[u^cusy
^ Nuc* &u ~39!

for even qubits, withuc& being a multiqubit pure state. Thi
concurrence works only for even numbers of qubi
u^cusy

^ Nuc* &u50 for any odd-N-qubit pure states. There
fore, this quantity cannot act as a general measure ofN-way
entanglement. Next we quantify theN-way entanglment us-
ing N-tangle forN53 and evenN.

The 3-tangle can be calculated from concurren
C1(23) ,C12, andC13 because@17#

t1,2,35C1(23)
2 2C12

2 2C13
2 ~40!

holds. For our stateua,u,3&ECS, the 3-tangle is simplified as

TABLE I. A summary of concurrences for some special stat

uau p N u C State

0 1 .2 p 2/N uW&N

0 1 2 p 1 uC2&
` 0 2 any 1 uF&
` 0 .2 any 0 ucGHZ&N

0 1 >2 Þp 0 u0& ^ N

Þ0,̀ 0,p,1 ` any 0 ua,u,`&ECS
3-5
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t1,2,35C1(23)
2 22C12

2 . ~41!

From Eqs.~25! and ~34!, the 3-tangle is

t1,2,35
~12p2!3

~11p3cosu!2
, ~42!

and as expected,t1,2,351(t1,2,350) in the limit that p
→0(p→1).

Now we examineN-way entanglement for the stat
ua,u,N&ECS with N even. In the basis of Eq.~30!, the state
ua,u,N&ECS can be rewritten as

ua,u,N&ECS5N@ u0&1^ u0&2^ •••^ u0&N1eiu~Mu1&1

1pu0&1) ^ ~Mu1&21pu0&2) ^ •••^ ~Mu1&N

1pu0&N)]. ~43!

The effect of writing the MECS in this basis set is to ha
the state expressed formally as a multiqubit state. From E
~39! and ~43! the N-tangle is obtained as

t1,2, . . . ,N5
~12p2!N

~11pNcosu!2
~44!

for evenN. Although this formula is obtained for evenN, by
comparing Eqs.~42! and~44!, it is also applicable toN53.
The condition for maximal entanglement,t1,2, . . . ,N51, is

N52, cosu521 ~45!

for pÞ0. This constraint onN restricts maximal entangle
ment to the bipartite ECS.

In Fig. 2 we give a plot of theN-tangle versusp for
variousu andN. For p50 ~orthogonal case!, the multiqubit
concurrence is equal to 1, independent ofu. We already
know that the stateua,p,N&ECS becomes theW state in the
limit p→1. Now we take this limit and chooseu5p in Eq.
~44!, thereby establishing that the concurrencet1,2, . . . ,N50

FIG. 2. TheN-tangle versusp for different u and N:N53,u
50 ~cross points!, N53,u5p/2 ~circle points!, N53,u5p ~box
points!, andN56,u50 ~solid line!.
01230
s.

in this case. Thus, we observe that multipartite entanglem
as determined by theN-tangle, is indeed zero for theW state.

IV. CONCLUSION

We have considered generation and entanglement m
sures for the multipartite entangled coherent state. Gene
ing the MECS is possible by entangling vibrational degre
of freedom for trapped two-level ions with the ions’ intern
electronic states. By measuring the electronic states with
spect to a highly entangled basis, basically an extension
the ~bipartite! Bell basis, the resultant motional state is
MECS. We have quantified the entanglement of the ME
by applying the concurrence to measure bipartite entan
ment~in one case, by splitting the multipartite system in
two subsystems and, in the other case, by tracing over
degrees of freedom except for two subsystems!. We have
also employed theN-tangle to determine the overall degre
of entanglement. Each of these measures tells us some
important about the MECS, and the MECS versions of
GHZ andW states have been studied and elucidated.

Quantifying entanglement for MECSs provides a simp
measure to evaluate the inherent resource of such states
this is relevant to quantum-information applications whe
entanglement is regarded as a crucial resource. Moreover
study of MECS highlights the subtleties of applying e
tanglement measures to nonorthogonal entangled states
particular physical realization studied here is the entang
vibrational motion of ions in a trap. As the bipartite ECS h
proven to be a useful alternative construct for making qub
@16#, in contrast to the usual Fock-state qubits, this analy
could be valuable for encoding qubits as MECS in an
trap.

Finally, the analysis here for MECS is readily extened
to more general systems, including entangled squeezed s
@11#, entangled SU~2! and SU~1,1! coherent states@15#, and
so on, as follows. Essentially, Eqs.~25!,~34!, and~44! can be
applied to the general entangled state

uC,F&5N 8~ uC&1^ uC&2^ •••^ uC&N1eiu8uF&1^ uF&2

^ •••^ uF&N), ~46!

where isN 8 is the normalization constant,uC& and uF& are
arbitrary linearly independent states, and^CuF&5p8 is a
real overlap. Then the corresponding concurrence for
stateuC,F& is obtained by directly replacingp andu with p8
andu8 in Eqs.~25!,~34!, and~44!. Therefore, our results fo
quantifying entanglement provide a useful formalism with
validity well beyond that for MECS.
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