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Sufficient conditions for three-particle entanglement and their tests in recent experiments
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We point out a loophole problem in some recent experimental claims to produce three-particle entanglement.
The problem consists in the question whether mixtures of two-particle entangled states might suffice to explain
the experimental data. In an attempt to close this loophole, we review two sufficient conditions that distinguish
betweenN-particle states in which allN particles are entangled to each other and states in which onlyM
particles are entangled~with M,N). It is shown that three recent experiments to obtain three-particle en-
tangled states@Bouwmeesteret al., Phys. Rev. Lett.82, 1345~1999!; Panet al., Nature403, 515 ~2000!; and
Rauschenbeutelet al., Science288, 2024,~2000!# do not meet these conditions. We conclude that the question
whether these experiments provide confirmation of three-particle entanglement remains unresolved. We also
propose modifications of the experiments that would make such confirmation feasible.
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I. INTRODUCTION

The experimental production and detection of multip
ticle entanglement have seen much progress during the
years. Manipulation of such highly entangledN-particle
states is of great interest for implementing quantum inform
tion techniques, such as quantum computing and quan
cryptography, as well as for fundamental tests of quant
mechanics. Extended efforts have resulted in recent claim
experimental confirmation of both three- and four-parti
entanglement using photons and atom-cavity techniq
@1–5#. In this paper, we examine a possible loophole in su
claims.

N-particle entanglement differs from the more we
known two-particle entanglement, not only because the c
sification of different types of this form of entanglement
still an open problem@6,7#, but also because it requires di
ferent conditions for actual experimental confirmation. In t
case of two-particle entangled states, it suffices to show
the observed data cannot be explained by a ‘‘local real
model. That is, it is sufficient for the correlations between
observed data to violate a certain Bell inequality. In fact,
pure states, this condition is also necessary, because all
two-particle entangled states can be made to violate su
Bell inequality by an appropriate choice of the observab
@8,9#.

For N-particle systems, generalized Bell inequalities ha
been reported by Mermin@10# and Ardehali @11#. These
N-particle inequalities are likewise derived under the
sumption of local realism. More explicitly, it is assumed th
each particle may be assigned independent elements of
ity corresponding to certain measurement outcomes. A bo
on the expected correlations is then obtained and show
be violated by the corresponding quantum mechanical ex

*Email address: michielp@sci.kun.nl
†Email address: uffink@phys.uu.nl
1050-2947/2001/65~1!/012107~7!/$20.00 65 0121
-
st

-
m

m
of

es
h

s-

e
at
t’’
e
r
ure

a
s

e

-
t
al-

nd
to
c-

tation values by a maximal factor that grows exponentia
with N @10,11#. N-particle experiments that violate these i
equalities are then, again, disproofs of the assumption
local realism.

However, the violation of local realism is not sufficien
for confirmation of the entanglement of allN particles. For
this purpose, one must also address the question of whe
the data admit a model in which less thanN particles are
entangled. The standard generalized Bell inequalities m
tioned above are not designed to deal with this issue,
thus, leave the loophole open that the data might be
plained by mixtures of states in which less thanN particles
are entangled. In fact, as shown in more detail below,
data of some experiments aimed to produce three-par
entanglement may be approximated surprisingly closely b
mixture of two-particle entangled states. This forms the m
tivation for a closer investigation of conditions needed
close this particular loophole.

Some conditions of this kind have been formulated in
recent literature@7# in terms of partial transpositions of th
N-particle density matrix. Unfortunately, it is not clear
present how these conditions may be tested experiment
In this paper, we review two experimentally accessible c
ditions, presented in Sec. II as conditionsA and B. In Sec.
III, we analyze some recent experiments@1,2,4# to produce
three-particle entanglement, in order to see whether th
conditions are met. It is shown that this is not the case. T
of course, does not prove that there is no three-particle
tanglement in these experiments. Rather, we conclude tha
the basis of the conditions reviewed here, the above looph
problem remains unresolved. However, we propose mod
cations of the experimental procedure that would allow fo
more definite confirmation of three-particle entanglement

II. SUFFICIENT CONDITIONS FOR N-PARTICLE
ENTANGLEMENT

We start with the definition of the basic concept. Consid
an arbitraryN-particles system described by a Hilbert spa
©2001 The American Physical Society07-1
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H5H1^ •••^ HN . A general mixed stater of this system is
called N-particles entangled if no convex decomposition
the form

r5(
i

pir i with pi>0, (
i

pi51 ~1!

exists in which all the statesr i are factorizable into product
of states of less thanN particles. Of course, since each fa
torizable mixed state is a mixture of factorizable pure sta
one may equivalently assume that factorizable statesr i are
pure, so that the decomposition~1! takes the form

r5(
i

pi u c i&^ c i u. ~2!

In order to extend the above terminology, letK be any
subsetK,$1, . . . ,N% and letrK denote a state of the sub
system composed of the particles labeled byK. We will call
anN-particle stateM particle entangled (M,N) if a decom-
position exists of the form

r5(
i

pir i

K1
( i )

^ •••^ r
i

Kr i

( i )

, ~3!

where, for each i, K1
( i ) , . . . ,Kr i

( i ) is some partition of

$1, . . . ,N% into r i disjoint subsets, each subsetK j
( i ) contain-

ing at mostM elements; but no such decomposition is po
sible when these subsets are required to contain less thaM
elements.

An example of anN-particle state that isN particle en-
tangled is the Greenberger-Horne-Zeilinger~GHZ! state

ucGHZ&5
1

A2
~ u ↑↑•••↑&1u ↓↓•••↓&), ~4!

whereu ↑& and u ↓& denote the eigenstates of some dicho
mic observable~e.g., spin or polarization! which we will
take, by convention, as oriented along thez axis. On the
other hand, the three-particle state

r5
1

2
~ P̂↑

(1)
^ P̂S

(23)1 P̂↓
(1)

^ P̂T
(23)! ~5!

is only two-particle entangled. Here,P̂T
(23) and P̂S

(23) denote
projectors on the triplet state 1/A2(u ↑↓&1u ↓↑&) and singlet
state 1/A2(u ↑↓&2u ↓↑&), respectively, for particles 2 and 3
and P̂(1)↓5u ↓&^ ↓u and P̂↑

(1)5u ↑&^ ↑u are the ‘‘down’’ and
‘‘up’’ states for particle 1. Note that, as the state~5! exem-
plifies, anN-particle state can beM particle entangled even i
it has no M particle subsystem whose~reduced! state is
M-particles entangled. In the remainder of this section,
review two inequalities that allow for a test betwe
N-particle andM-particle entangled states, focusing main
on N53 andM52.

Condition A. The following condition has been derived b
Gisin and Bechmann-Pasquinucci@12# for a system ofN
two-level particles (q bits!. As a start, consider the well
01210
f
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-

-

e

known Bell inequality of Clauser, Horne, Shimony, and Ho
~CHSH! @13# for two particles. LetA andA8 be dichotomous
observables on the first particle, with possible outcomes61,
and similarly for observablesB and B8 on the second par
ticle. Consider the expression

F2ªAB1A8B1AB82A8B85~A1A8!B1~A2A8!B8<2.
~6!

Assuming local realism, the pairA and B are conditionally
independent

pAB
lr ~a,b!5E

L
pA~aul!pB~bul!r~l!dl ~7!

and similarly for the pairsA8,B, A,B8, and A8,B8, where
pA and pB are probabilities conditional on the hidden va
ablelPL. If we denote the expected correlations as

Elr~AB!5(
ab

ab pAB
lr ~a,b!,

we obtain the standard two-particle Bell-CHSH inequal
@13#

uElr~F2!u5u~Elr~AB!1Elr~A8B!1Elr~AB8!2Elr~A8B8!u

<2. ~8!

In quantum mechanics, the observableA is represented by
the spin operatorÂ5a¢•sW with unit three-dimensional vecto
a¢, and similarly for the other three observables. The expec
correlation in a stater is given by Er(AB)5Tr (ra¢•s¢

^ b¢•sW ). In terms of these expectation values, the Bell-CHS
inequality may be violated by entangled quantum states.
largest violation of this inequality by a quantum state is 2A2
@14#.

The Bell-CHSH inequality is generalized by Gisin an
Bechmann-Pasquinucci toN particles through a recursiv
definition. LetAj andAj8 denote dichotomous observables
the j th particle, (j 51,2, . . . ,N), and define

FNª
1

2
~AN1AN8 !FN211

1

2
~AN2AN8 !FN218 <2, ~9!

whereFN218 is the same expression asFN21 but with all Aj

andAj8 interchanged. Here, the upper bound onFN follows
by natural induction from the bound~6! on F2. One now
obtains the so-called Bell-Klyshko inequality@12#,

uElr~FN!u<2. ~10!

This Bell-Klyshko inequality is also violated in quantum m
chanics. That is to say, the expectation value of the co
sponding operator

F̂Nª
1

2
~ÂN1ÂN8 ! ^ F̂N211

1

2
~ÂN2ÂN8 ! ^ F̂N218 <2

~11!
7-2
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may violate the bound~10! for entangled quantum states. A
shown in reference@12#, the maximal value is

uEr~ F̂N!u<2(N11)/2, ~12!

i.e., a violation by a factor of 2(N21)/2.
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a

ut
-
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s
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The inequality~10! may now be extended into a test o
N21 entanglement. Consider a state in which one part
~say theNth) is independent from the others; i.e.,r5r$N%

^ r$1, . . . ,N21% . One then obtains
uEr~ F̂N!u5UTr rS 1

2
~ÂN1ÂN8 ! ^ F̂N211

1

2
~ÂN2ÂN8 ! ^ F̂N218 D U

5
1

2
u~^ÂN&r1^ÂN8 &r!Tr rF̂N211~^ÂN&r2^ÂN8 &r!Tr rF̂N218 u

5
1

2
u^ÂN&r„Er~ F̂N21!1Er~ F̂N218 !…1^ÂN8 &r„Er~ F̂N21!2Er~ F̂N218 !…u

<
1

2
uEr~ F̂N21!1Er~ F̂N218 !u1

1

2
uEr~ F̂N21!2Er~ F̂N218 !u

5max~ uEr~ F̂N21!u,uEr~ F̂N218 !u!<2N/2, ~13!
-

tate

ct

for

lac-
where we have usedu^ÂN&u<1,u^ÂN8 &u<1 and the bound
~12!.

Since F̂N is invariant under a permutation of theN par-
ticles, this bound holds also for a state in which anot
particle than theNth factorizes, and, sinceEr(FN) is convex
as a function ofr, it holds also for mixtures of such state
Hence, for every (N21)-particle entangled state we have

uEr~ F̂N!u<2N/2. ~14!

Thus, a sufficient condition forN-particle entanglement is
violation of Eq.~14!, i.e., inequality~10! should be violated
by a factor larger than 2(N/221).

Specializing now to the case whereN53, inequality~14!
may be written more conveniently as

uE~ABC8!1E~AB8C!1E~A8BC!2E~A8B8C8!u<23/2,
~15!

where we have putA15A, A25B, andA35C.
For example, for a choice of spin directionsaW 5aW 8 along

the z axis, andbW , bW 8, cW , cW8 in the xy plane with angles
b50, b85p/2, g5p/4, andg852p/4 from thex axis,
the mixed state~5! gives Er(F3)52A2. This violates in-
equality ~10!, thus indicating two-particle entanglement, b
does not violate inequality~15!, and thus shows no three
particle entanglement.

Condition B. Another condition forN-particle entangle-
ment follows from the fact that the internal correlations o
quantum state are encoded in the off-diagonal element
the density matrix that represents the state in a product b
We summarize here the derivation presented by Sackettet al.
@3#. Consider the so-called state preparation fidelityF of a
N-particle stater defined as
r

of
is.

F~r!ª^cGHZurucGHZ&5
1

2
~P↑1P↓!1Rer↑↓ , ~16!

whereu cGHZ& is given by~4!, P↑ª^ ↑•••↑uru ↑•••↑&, P↓
ª^ ↓↓•••↓uru ↓↓•••↓& and r↑↓ª^ ↑↑•••↑uru ↓↓•••↓& is
the far off-diagonal matrix element in thez basis. Now, par-
tition the set ofN particles into two disjoint subsetsK andK8
and consider a pure state of the form

u f&5~au ↑↑•••↑&K1•••1bu ↓↓•••↓&K) ^ ~cu ↑↑•••↑&K8

1•••1du ↓↓•••↓&K8), ~17!

whereu ↑↑•••↑&K is the state with all particles in subsetK in
the ‘‘up’’ state and similarly for the other terms. Normaliza
tion of u f& leads touau21ubu2<1 anducu21udu2<1. It then
follows that

2F~ u f&^ fu!5uacu21ubdu212 Re~ab* cd* !

<~ uau21ubu2!~ ucu21udu2!<1. ~18!

Thus, the state preparation fidelity is at most 1/2 for any s
of the form~17!. From the convexity ofF(r) it follows that
this inequality also holds for any mixture of such produ
states, i.e., for any stater as defined in Eq.~2!.

We have thus found a second sufficient condition
N-particle entanglement, namely,

F~r!.1/2. ~19!

Of course, analogous conditions may be obtained by rep
ing the special stateu cGHZ& in definition ~16! by another
maximally entangled state, such as 1/A2(u ↑ . . . ↑↓&
6u ↓ . . . ↓↑&), etc. An experimental test of conditionB re-
7-3
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MICHAEL SEEVINCK AND JOS UFFINK PHYSICAL REVIEW A65 012107
quires the determination of the real part of the far o
diagonal matrix elementr↑↓ . Now, obviously, Rer↑↓ is not
the expectation value of a product observable, and infor
tion about this quantity may only be obtained indirectly.
the next section, we discuss several experimental proced
by which this information may be obtained. As we shall s
it is important that such procedures make sure that no
wanted matrix elements contribute to the determination
this quantity.

III. ANALYSIS OF EXPERIMENTS

Using the conditionsA and B discussed above, we now
turn to the analysis of three recent experimental tests
three-particle entangled states.

~I ! In the experiment of Bouwmeesteret al. @1#, the three-
photon entangled stateu cB&51/A2(u HHV&1u VVH&) is
claimed to be experimentally observed. Here,u H& and u V&
are the horizontal and vertical polarization states of the p
tons. We represent this state in thez basis usingu H&5u ↑&
and u V&5u ↓& as

u cB&5
1

A2
~ u ↑↑↓&1u ↓↓↑&). ~20!

The experiment consisted, first, of a set of threefold coin
dence measurements in thezzzdirections, in which the frac-
tion of the desired outcomes, i.e., the componentsu ↑↑↓& and
u ↓↓↑& out of the 23 possible outcomes was determined a
found to be in a ratio of 12:1. Furthermore, to show coher
superposition of these components, a second set of mea
ments was performed in thexxx directions. For a large frac
tion of the observed data, this second set of measurem
shows correlations as expected from the desired stateu cB&.
A third series of measurements performed in thezxx direc-
tions showed no such correlations, again, as expected
the stateu cB&. Bouwmeesteret al. concluded that: ‘‘The
data clearly indicate the absence of two-photon correlati
and thereby confirm our claim of the observation of GH
entanglement between three spatially separated photons@1#.’’
However, no quantitative analysis was made to determ
whether two-particle entangled states may account for
contribute to the observed data. In order to show that suc
analysis is not superfluous, it is shown in Appendix A ho
most of the salient results of this experiment may in fact
reproduced by a simple two-particle entangled state. Th
we are presented with the loophole problem whether or
the observed data may be regarded as hard evidence for
three-particle entanglement.

The experiment of Panet al. @4#, performed by the same
group, aimed to produce the GHZ stateu cGHZ&
51/A2(u ↑↑↑&1u ↓↓↓&) by a procedure similar to the prev
ous experiment. Although their main goal was to show
conflict with local realism, Panet al. also claim to have pro-
vided evidence for three-particle entanglement. For this p
pose, they performed four series of measurements, in
xxx, xyy, yxy, and yyx directions, and tested a three
particle Bell inequality of the form derived by Mermin@10#.
This inequality is presented in@15# and reads
01210
a-

res
,

n-
f

r

-

i-

t
re-

nts

m

s

e
r

an

e
s,
ot
rue

a

r-
he

u^xyy&1^yxy&1^yyx&2^xxx&u<2, ~21!

where ^xyy& is the expectation value ofsx
(1)

^ sy
(2)

^ sy
(3) ,

etc. The reported experimental data are

u^xyy&1^yxy&1^yyx&2^xxx&u52.8360.09, ~22!

in clear violation of Eq.~21!. However, as mentioned in th
Introduction, violating a generalized Bell inequality of th
type is not sufficient to confirm three-particle entangleme
Thus, again, the question remains whether the reported
may be regarded as confirmation of three-particle entan
ment. In particular, one might ask, do these experime
meet either of the conditionsA or B?

Upon further analysis, we may answer this question. Fi
we note that the procedure followed by Bouwmeesteret al.
does not allow for a test of conditionA even in the ideal case
where the desired state is actually produced. This is beca
measurements were performed only in various directions
the xz plane. However, for any observablea¢•sW ^ b¢•sW

^ c¢•sW with a¢,b¢ ,c¢ unit vectors in thexz plane, we obtain

^ cBua¢•sW ^ b¢•sW ^ c¢•sW u cB&5cosa cosb cosg, with a, b,
and g the angles these vectors span from thex axis. These
expectation values are factorizable, and measurement
spin observables in thexz plane cannot lead to a violation o
conditionA, i.e., the inequality~15!. Neither does the choice
of measurements in this experiment allow for a test of c
dition B. For such a test, one would have to determine
relevant state preparation fidelity, i.e.,^ cBuru cB& of the ex-
perimentally produced stater. But the reported data do no
allow for an estimate of the relevant off-diagonal eleme
Rê ↑↑↓uru ↓↓↑&. Indeed, the only measurements that a
sensitive to the value of this matrix element, namely, those
the xxx directions, are also sensitive to all other matrix e
ments on the cross diagonal in thezzzeigenbasis.

The experiment by Panet al. is more rewarding in this
respect. The inequality~21! tested in this experiment is iden
tical to a Bell-Klyshko inequality~10! for N53. Since the
inequality is violated, the experiment is indeed a violation
local realism. However, within experimental errors, the me
sured valueE(F3)52.83'23/2 does not violate inequality
~15! that would be sufficient for evidence of three-partic
entanglement. Thus, although the experimental procedur
lowed for a test of conditionA, it did not violate it. Further,
the experiment of Panet al. did not attempt to test condition
B either.

However, both experiments may be simply adjust
to test both conditions. If, in the experiment of Bouw
meesteret al., one measures spin observables in directio
a¢, b¢ , and c¢ in the xy plane, rather than thexz plane, one
obtains Eu cB&(ABC)5^ cBua¢•sW ^ b¢•sW ^ c¢•sW u cB&5cos(a

1b2g) wherea, b, andg again denote the angles from th
x axis. For the choice:a5p/2, a850, b5p/4, b85
2p/4, g5p/4, andg853p/4, the inequality~15! will be
violated maximally by the value four.

For the stateu cGHZ&51/A2(u ↑↑↑&1u ↓↓↓&), used in
the experiment of Pan et al., it follows likewise
that EGHZ(ABC)5^ cGHZua¢•sW ^ b¢•sW ^ c¢•sW u cGHZ&5cos(a
7-4
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SUFFICIENT CONDITIONS FOR THREE-PARTICLE . . . PHYSICAL REVIEW A 65 012107
1b1g) when the vectors are chosen in thexy plane. Then,
inequality~15! will be violated maximally by the value fou
for the choice:a5p/2, a850, b5p/2, b850, g5p/2,
and g850. Using these angles in future experiments w
thus allow for tests of three-particle entanglement.

Finally, we discuss how the experiments can be adjus
in order to test conditionB. Determining the populationsP↑
andP↓ in Eq. ~16! is rather trivial and will not be discussed
Here, we mention two possible procedures to determ
Rer↑↓ . The first is to use a three-particle analogue of
method used by Sackettet al. @3#. Consider the observabl
Ŝ6(f)ªn¢f•sW ^ nW f•sW ^ nW 6f•sW where n¢f5(cosf,sinf,0).
The expectation values ^ cGHZuŜ1(f)u cGHZ& and

^ cBuŜ2(f)u cB&, considered as functions off, oscillate as
A cos(3f1a0)1Bcos(f1b)1const., where A52 Rer↑↓ .
~That is, A52 Rê ↑↑↑uru ↓↓↓& in the first, and A
52 Rê ↑↑↓uru ↓↓↑& in the second case.! Hence, by measur
ing S1(f) for the GHZ state~4!, or S2(f) for the state~20!,
for a variety of anglesf, and by filtering out the amplitude
that oscillates as cos 3f, one obtains an estimate of the re
evant off-diagonal elementuRer↑↓u needed to test condition
B.

However, a simpler way to determine this off-diagon
matrix element is to take advantage of the simple oper
identity:

sx^ sy^ sy1sy^ sx^ sy1sy^ sy^ sx2sx^ sx^ sx

524~ u ↓↓↓&^ ↑↑↑u1u ↑↑↑&^ ↓↓↓u!, ~23!

so that for all statesr

^xyy1yxy1yyx2xxx&r528 Rê ↑↑↑uru ↓↓↓&.
~24!

Since the expectation value in the left-hand side of Eq.~24!
has already been measured in the experiment of Panet al.,
one may infer from their reported result~22! that

uRe~r↑↓!u5
2.8360.09

8
50.3560.01.

Thus, only one additional measurement in thezzzdirections
would have been sufficient for a full test of conditionB. If
the ratio reported in the experiment of Bouwmeesteret al. of
12:1 ~corresponding to populations of 0.40! is a feasible re-
sult for the setup of Panet al. too, one should expect to
obtain an experimental value ofF(r)'0.75, well above the
threshold value of 1/2.

~II !. The experiment of Rauschenbeutelet al. @2# was set
up to measure three-particle entanglement for three spin
systems~two atoms and a single-photon cavity field mod!.
The state of the cavity field is not directly observable, a
was therefore copied onto a third atom, so that the ac
measurement was carried out on a three-atom system. L
first adapt the notation of@2# to the notation of this paper
Their target three-atom stateu C triplet&51/A2(u e1 ,i 2 ,g3&
1u g1 ,g2 ,e3&) is represented here asu cB&51/A2(u ↑↑↓&
1u ↓↓↑&).
01210
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Condition B was used to test for three-particle entang
ment. The measured fidelity is claimed to beF50.54
60.03 and this is, within experimental accuracy, only ju
greater than the sufficient value of 1/2. However, we w
argue that upon a ‘‘worst-case’’ analysis of the data, t
result may no longer be claimed to hold, since one can
exclude that other off-diagonal density-matrix elements c
tribute to their determination of Rer↑↓ .

In the experiment, first the individual populations
eigenstates in thezzz directions was determined. Thes
populations are the so-called longitudinal correlations in F
3 of @2# and give the following results:~all numbers60.01)

P↑↑↑ P↑↑↓ P↑↓↑ P↑↓↓ P↓↑↑ P↓↑↓ P↓↓↑ P↓↓↓
0.1 0.22 0.06 0.04 0.1 0.09 0.36 0.0

~25!

This gives 1/2(P↑↑↓1P↓↓↑)50.29. Next, the off-diagona
matrix element Rê↑↑↓uru ↑↑↓& is determined by first pro-
jecting particle 2 onto eitheru 1&x or u 2&x , and measuring
the so-called ‘‘Bell signals’’B̂6(f)ªsx

(1)
^ n¢f•s (3) on the

remaining pair. Here, again,n¢f5(cosf,sinf,0).
Thus, the expectation of these Bell signals is given

^B̂6(f)&5Tr (rsx
(1)

^ P̂6
(2)

^ n¢f•sW (3)). The Bell signal

^B̂1(f)& is predicted to oscillate asA cosf. The other Bell
signal^B̂2(f)& has a phase shift ofp and thus oscillates a
2A cosf. In the case of the desired three-particle state~20!,
the amplitudeA of the oscillatory Bell signals is equal toA
52u^ ↑↑↓uru ↓↓↑&u. The experimental data give a value
A50.2860.04, leading to the resultF51/2(P↑↑↓1P↓↓↑
1A)50.5460.03.

However, if one assumes a general unknown state, it tu
out that not only the matrix element^ ↑↑↓uru ↓↓↑& ~and its
complex conjugate!, but also the elements
^ ↑↑↑uru ↓↓↓&, ^ ↑↓↓uru ↓↑↑& and ^ ↑↓↑uru ↓↑↓& and their
respective complex conjugates contribute to the measu
amplitude A. In a ‘‘worst-case’’ analysis, these unwante
density-matrix elements should be assigned the highest
sible value compatible with the values of the measured po
lations in table~25!. Suppose these contributions sum up
the maximal valuew in the amplitudeA, then we may con-
clude that 2 Rer↑↓ has the ‘‘worst-case’’ value ofA2w.

Using the data from@2#, such an analysis has been pe
formed from which we obtainw50.2660.04 ~see Appendix
B for details!. 2 Rer↑↓ then has the approximate value
0.0260.05 instead of the value 0.2860.04 reported by Rau-
schenbeutelet al. This value gives an approximate fidelit
F50.3160.05, which no longer meets the inequalityF
>1/2 of ConditionB.

One might object to our worst case analysis becaus
assumes a maximal contribution from other three-particle
tangled states. This is not only physically implausible, b
would also give rise to the hope that at leastsomethree-
particle entangled state has been observed. The prospec
this hope are difficult to assess. Of course, one has to
into account that a mixture of different three-particle e
tangled states is not necessarily a three-particle entan
7-5
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state. But it is difficult to say whether or not this holds f
the worst-case mixture discussed in Appendix B.

However this may be, it is straightforward to show th
the unwanted matrix elements may contaminate the d
from this experiment, even for two-particle entangled sta
For example, consider the incoherent mixture of two p
Bell signal states

rmix5
1

2
~ P̂1

(2)
^ P̂S

(13)1 P̂2
(2)

^ P̂T
(13)!, ~26!

where P̂T
(13) and P̂S

(13) denote projectors on the triplet sta
1/A2(u ↑↓&1u ↓↑&) and singlet state 1/A2(u ↑↓&2u ↓↑&), re-
spectively, for the particles 1 and 3, andP̂6

(2) are the eigen-
projectors in thex direction for particle 2. For this state, th
expected values ofP↑↑↓ and P↓↓↑ are 0.25, andA

ªmaxfuTr rmixB̂6(f)u51, while ^ ↑↑↓urmixu ↓↓↑&51/4.
In the experimental procedure of Rauschenbeutelet al., this
would lead one to conclude that the state preparation fide
is F51/2(P↑1P↓1A)50.75, even though its actual valu
is only 0.5. This shows clearly how the contribution by u
wanted matrix elements may corrupt the data for two-part
entangled states.

We conclude that this experiment does not provide e
dence of three-particle entanglement. In order to exclude
contribution by undesired matrix density elements in the
perimental determination of Rer↑↓ , another experimenta
procedure is needed, e.g., an analog of the methods discu
above, or a test of conditionsA and/orB is needed to warran
such a claim.

IV. CONCLUSION

Experimental evidence forN-particle entanglement fo
N-particle states requires stronger conditions than a m
violation of local realism.M-particle entangled states, wit
M,N, have to be excluded as well. This leaves a looph
in recent experimental claims of evidence for multipartic
entangled states. We have reviewed two experimentally t
able conditions that are sufficient to close this loophole, a
analyzed three recent experiments to see whether they
these conditions. Unfortunately, this is not the case. Hen
we conclude that the question remains unresolved whe
these experiments provide confirmation of three-particle
tanglement. However, we have proposed modifications of
experimental procedure that would make such confirma
possible. We hope that further experimental tests
N-particle entanglement~e.g., the recently published@5#!,
will take account of the specific requirements needed to
conditions such asA andB discussed above.
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APPENDIX A

The data obtained in the experiment of Bouwmees
et al. may be summarized as follows:~i! The measurement
in thezzzbasis give a value of 12:1 for the ratio between t
desired outcomes and the remainder. This means that

^ ↑↑↓uru ↑↑↓&5^ ↓↑↑uru ↓↑↑&50.4 ~A1!

and

^ ↑↑↑uru ↑↑↑&5•••5^ ↓↓↓uru ↓↓↓&50.033 ~A2!

for the remaining six outcomes.
~ii ! The measurements performed in thexxx directions

determined the probability ofP̂1
(1)

^ P̂(2)
^ P̂6

(3) . The experi-
mental results are depicted in Fig. 2 of Ref.@1#, and show a
difference between the6 settings which is about 75% of th
expected difference in the desired stateu cB&. Hence,

Tr r P̂1
(1)

^ P̂2
(2)

^ sx
(3)5Tr r P̂1

(1)
^ P̂2

(2)
^ ~ P̂1

(3)2 P̂2
(3)!

5
3

4
^ cBuP̂1

(1)
^ P̂2

(2)
^ sx

(3)u cB&

52
3

16
. ~A3!

~iii ! In a control measurement, the setting of the polari
for the first particle was rotated to the1z direction. This
measurement thus determines the value ofP̂↑

(1)
^ P̂(2)

^ P̂6
(3) . In this case, no interference~i.e., no difference be-

tween the6 setting for particle three! was observed. This
gives the constraint

Tr r P̂↑
(1)

^ P̂(2)
^ sx

(3)50. ~A4!

We now show how most of these results may be reprodu
by a simple two-particle entangled state. Consider the st

W5a P̂2
(2)

^ P̂S
(13)1

12a

2
~ P̂u ↑↑↓&1 P̂u ↓↓↑&!, ~A5!

where P̂S
(13) is the projector on the singlet state 1/A2(u ↑↓&

2u ↓↑&)51/A2(u 12&2u 21&).
Using this state~A5!, one finds

Tr WP̂↑
(1)

^ P̂2
(2)

^ sx
(3)50 ~A6!

in agreement with Eq.~A4!. Moreover,

Tr WP̂1
(1)

^ P̂(2)
^ sx

(3)52
a

2
, ~A7!

which gives agreement with Eq.~A3! for a53/8. Finally,
using this choice fora we find

^ ↑↑↓uWu ↑↑↓&5^ ↓↑↑uWu ↓↑↑&5
13

32
'0.41, ~A8!

which is sufficiently close to Eq.~A1!.
7-6
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The only aspect in which the state~A5! fails to reproduce
the experimental data is in the constraint~A2!. Instead, the
stateW gives

^ ↑↓↓uWu ↑↓↓&5^ ↓↑↑uWu ↓↑↑&5
3

32
'0.09, ~A9!

^ ↑↑↑uWu ↑↑↑&5^ ↑↓↑uWu ↑↓↑&

5^ ↓↑↑uWu ↓↑↑&

5^ ↓↓↓uWu ↓↓↓&50. ~A10!

Of course, the fit of the experimental data might be improv
by varying some parameters of the state~A5! or utilizing the
margins offered by the finite measurement accuracies. H
ever, the purpose of this calculation is not to claim that
these data may consistently be reproduced by two-par
entangled state. Rather, we wish to point out that one m
approximate the data unexpectedly closely, so that a ser
quantitative test is needed before one may claim that th
data confirm three-particle entanglement.

APPENDIX B

The two ‘‘Bell signals’’ measured in the experiment
Rauschenbeutelet al. correspond to^B̂1(f)&5Tr rsx

(1)

^ P̂1
(2)

^ sf
(3) and ^B̂2(f)&5Tr rsx

(1)
^ P̂2

(2)
^ sf

(3) where

P̂6
(2) are projectors on the ‘‘up’’ and ‘‘down’’ states for spi

in the x direction for particle 2. It is, however, more conv
nient to deal with their difference, i.e.,^B̂1(f)&2^B̂2(f)&
5Tr rsx

(1)
^ sx

(2)
^ sf

(3) . Let us label the eight basis vecto
u ↑↑↑&, u ↑↑↓&, u ↑↓↑&, u ↑↓↓&, u ↓↑↑&, u ↓↑↓&, u ↓↓↑&,
A

M

r,
J.

A

A

ys

01210
d

-
ll
le
y
us
se

u ↓↓↓&, consecutively by 1, . . . ,8. A straightforward calcu-
lation yields

^B̂1~f!2B̂2~f!&52ur72ucos~f1w72!

12ur54ucos~f1w54!

12ur36ucos~f1w36!

12ur18ucos~f1w18!,

where r725r27
! 5ur72uexp(iw72) and similarly for the other

matrix elements.
In a worst-case analysis, all the phase factors such asw72

are chosen equal to 0 andur54u, ur36u and ur18u should be
given their maximal values compatible with the measu
populations given in Eq.~25!. These maximal values are ob
tained from the following worst-case decomposition of t
unknown density matrix:r5as1bt1gy1dv with s, t,
and y the density matrices of the entangled sta
1/A2(u ↑↑↑&1u ↓↓↓&), 1/A2(u ↑↓↓&1u ↓↑↑&), and
1/A2(u ↓↑↓&1u ↑↓↑&), respectively.v is an arbitrary density
matrix, whose off-diagonal matrix elements, however, a
assumed to have zero entries where any of the three o
statess, t, andy has nonzero entries. Using this decomp
sition, it follows thatur18u5a/2, ur54u5b/2 andur36u5g/2.

However, sinces185s115s88, and similar relations for
t and y, the fractionsa, b, and g also contribute to the
populationsr i i of the total state, whose measured values
collected above in table~25!. The maximal values compat
ible with these measured populationsr i i are: a/250.03
60.01,b/250.0460.01,g/250.0660.01 and the maxima
value of w is thusw5a1b1g50.2660.04, and 2r725A
2w50.2860.0420.2660.0350.0260.05.
s.
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