PHYSICAL REVIEW A, VOLUME 65, 012106

Correlated many-body treatment of the Breit interaction with application
to cesium atomic properties and parity violation

Andrei Derevianko
Department of Physics, University of Nevada, Reno, Nevada 89557
(Received 7 August 2001; published 12 December 2001

Corrections from the Breit interaction to basic properties of atolfi€s are determined in the framework
of third-order relativistic many-body perturbation theory. The corrections to energies, hyperfine-structure con-
stants, off-diagonal hyperfineSs7S amplitude, and electric-dipole matrix elements are tabulated. It is dem-
onstrated that the Breit corrections to correlations are comparable to the Breit corrections at the Hartree-Fock
level. Modification of the parity-nonconserviilBNC) 6S-7S amplitude due to Breit interaction is also evalu-
ated; the resulting weak charge BfCs shows no significant deviation from the prediction of the standard
model of elementary particles. The neutron skin correction to the PNC amplitude is also estimatedt@%e
with an error bound of 30% based on the analysis of recent experiments with antiprotonic atoms. The present
work supplements publicatiopA. Derevianko, Phys. Rev. Let85, 1618 (2000] with a discussion of the
formalism and provides additional numerical results and updated discussion of parity violation.
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I. INTRODUCTION order BCHF corrections for almost all considered atomic

d h f oari rE)roperties.
To date, the most accurate measurement of parity NONCoN- The haner is organized as follows. In Sec. Il we describe

servation (PNC) [1,2] in atoms has been carried out by the employed many-body formalism. Numerical results are
Wieman and co-workers using™Cs [3,4]. The observed tapulated and discussed in Sec. IIl. We consider Breit correc-
weak charge of the nucleu®,y, is determined as a combi- tions to energies, hyperfine-structure constants, off-diagonal
nation of the experimental PNC amplitudgsyc of the  hyperfine &-7S amplitude, and electric-dipole matrix ele-
6S,/,- 7Sy, transition and a theoretical atomic-structure pa-ments. The Breit correction to parity nonconservirg BS
rameterEpyc/Qyw. Such determine®,, provides powerful ~amplitude is also evaluated in Sec. IV.

constraints on possible extensions to the standard model
(SM) of elementary particles. The achieved precision in ex-
perimentd 3,4] is 0.35%; however, the required atomic struc-  The Breit interactiod20—22 is a two-particle interaction

ture parameter has been calculated only with an accuracy @faused by an exchange of transverse photons between atomic
about 1945,6], limiting the accuracy of determination of the electrons. Qualitatively, it describes a magnetic interaction
weak charge. Presently it is understd@d-9] that a detailed between electronéo-called Gaunt interactiprand retarda-
account of the Breit corrections to basic atomic properties igion effect. Its low-frequency form in the Coulomb gauge,
required to reach the next level of precisioraim initio rela- ~ €mployed here, is given by

tivistic calculation of PNC amplitudes. In particular, the

IIl. METHOD

. . . ) 1
Breit correction to the 8,,,-7S;,, PNC amplitude in'3*Cs B=> — = {a- aj+(a;-Tjj)(a;-Ti)}, (2.1
accounts for a dominant part of the deviatigf of deter- <) 2
mined weak charge from the prediction of the standardynere 4 are Dirac matrices and;; is a distance between

model[7-9]. _ , _ , _electrons. In this paper, we disregard the frequency depen-
The purpose of this paper is to provide a detailed discUsgence in the Breit interaction. It is worth noting that a con-

sion of the formalism employed in Refg,10] and to tabu-  gjstent inclusion of the frequency dependence in the Breit

late additional numerical results. Since the publication Ofinteraction would require simultaneous treatment of QED
Refs.[7,10] several calculations of the Breit correction to self-energy correctiofil8].

properties of cesium atom have been carried 818,11] and
a comparison between different approaches is also presented A. Many-body perturbation theory and Breit interaction
here. We also calculate a value for the neutron “skin” cor- The many-body Hamiltonian of an atomic system can be
rection to the PNC amplitude based on the analysis of exgenerally represented as
periments with antiprotonic atonjd2].

The major difference between the present analysis and 1 o
earlier works on the Breit interaction in multielectron atoms H :H0+T:Ei ho(i)+ EZ t(i.j), (2.2
[13-19 is the systematic treatment of correlation effects, .
i.e., contributions beyond self-consistent Breit-Coulomb-where
Hartree-FocKBCHF) formulation[14,17,18. These correla-
tion effects are estimated here in the framework of relativis-
tic many-body perturbation theory. It is demonstrated that Unless specified otherwise, atomic urits |e|=m,=1 are used
these additional contributions are comparable to the lowesthroughout the paper.
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ho(i)=c(a - p;)+ BC?+ Voudi) (2.3 H' =& :ala:+3;{t;—U;}:ala:

is a one-particle Dirac Hamiltonian for an electron including
Coulomb interaction with the nuclets, (i) andt(i,j) rep-
resents two-particle interactions. To effectively minimize the
perturbing two-particle interactions, one introduces a potenZero-body contribution to the total Hamiltonidh has been
tial U(i) and rewrites the Hamiltonian as discarded since it does not affect the properties of valence
states. It is worth emphasizing that the Breit and Coulomb
. . 1 . . interactions are of course twaarticle operators; reference to
H_Ei {ho(1) +U ()} + E% t("])_zi: U(')]' zero-, one-, and twbody parts arises due to the separation
(2.4  into the normal forms of operator products and is just a mat-
ter of convenience.

1 afat .
+§Eijk|tijk|.ai aja|ak.. (27)

For atoms with one valence electroroutside a closed-shell In the case at hand, the two-particle interaction
core a many-body wave functidW,) in the independent-
particle approximation is a Slater determinant constructed T=C+B

from core and valence single-particle orbitals. These or-

bitals satisfy the one-particle Dirac equation is a sum of the instantaneous Coulomb interaction

=3i-j(1/rj;) and the Breit interactiom8, Eq. (2.1). Corre-

(hg+U) =€, . (2.5 sponding two-particle matrix elements are designated;as
and bjj . The Coulomb interaction dominates and we dis-

The potentiall is usually chosen to be spherically symmet- tinguish two possibilities in defining the effective potential

ric and labeli is a list of conventional quantum numbers in Eq.(2.5): traditional Coulomb-Hartree-FodiCHF) poten-

{n;,ji.l;,m;} for bound states, witm; replaced bye; for  tial UHF and BCHF potentialUB"F, where the Breit and

continuum. With the complete set of single-particle statesCoulomb interactions are treated on the same footing. To

¢, the Hamiltonian, Eq(2.4), can be recast into the second- differentiate between the two resulting eigensystems of Eq.

guantized form (2.5 we will add bar to the quantities pertaining to the
BCHF case, e.9z;,a;,a; .

tijklaiTajTalak- The conventional CHF equation reads

(2.6) (ho UM =5, (2.9

Only certain combinations of positive- and negative-energy)”"" being mean-field Hartree-Fock potential; this potential
solutions of the Dirac equatiof2.5) are retained in relativ- contains direct and exchange Coulomb interactions of elec-
istic many-body Hamiltoniarino-pair approximation[23]).  troni with core electrons. A set of CHF equations is solved
The reader is directed to Ref@4,25 and references therein Self-consistently for core orbitals; valence wave functions

for a detailed discussion of the problem of negative-energnd energies are determined subsequently by “freezing” the
states. core orbitals. The BCHF approximation constitutes introduc-

als asa,b, ..., excited (virtual) orbitals asm,n, ..., and va- lomb interaction into the above CHF equation
lence orbitals ag,w. Indexes,j,k,I range over both core and
virtual (including valencg orbitals. In this notation the

_ i i 0)=gt . . .
lowest-order wave function i§¥,)®=a |09, where Compared to the CHF equations, energies, wave functions,

i = T . o .
quasivacuum  state{Ocore = (Ilaccoreda) [0) represents a ang the Hartree-Fock potential are modified. We discuss a
closed-shell atomic core. Introducing normal form of opera-rg|ation between CHE and BCHFE methods and the associated

N| =

H:Ei eia?aﬁ% (_U)ijaiTaj'i‘ ijk|

(ho+UBCHR) =% ;. (2.9

tor products, :--:, defined with respect t¢0.,¢ ONe can relaxation effect in Sec. Il B.
rewrite a t\NO-pc.’;lrtI(‘,.le Opel’ath’ as a sum Of Zero-, one-, and To S|mp||fy the Second_quantized Ham“tonian, Ea_n’
two-body contribution$26] we use the fact that matrix elements of the Hartree-Fock
1 potentials are(;|UH ¢y =c;; and (¢;|UBH ;) =T;;
T(O)=§; tob, +bjj. In the Coulomb-Hartree-Fock case the Hamiltonian
reduces to a sum of the conventional Coulomb Hamiltonian
W=t -afa: , 1
T ; tijala;, chzi ei:ala :+§ij§1:’| Cij ajalaiac: (2,10
1 and the Breit correction
T(Z):E tijkl :aiTaJTa|ak:,

ikl

with tj; =2 ,(tjaja—tiaaj). In this notation the Hamiltonian ikl
reads (2.11

1
5BH,C:% b” :aiTaj T+ Ez bijkl :aiTa]Ta|ak:.
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(a) (b) ( ) FIG. 2. Representative second-order contribution to an energy

FIG. 1. Sample second- and third-order Brueckner-Goldston@' valence electron.
diagrams representing many-body contributions to matrix elements.
Diagrams(a) and (b) arise in the random-phase approximation andrections to this class of diagrams is comparable to the modi-
(c) is the Brueckner-orbital correction. fication at the Hartree-Fock level.
In the present paper we employ many-body perturbation
In the case of equivalent treatment of the Breit and Coulombheory(MBPT). Explicit expressions for contributions to ma-
interactions(BCHF casg the corresponding Hamiltonian is trix elements up to the third order were tabulated by Blundell
less complicated, et al.[30]. These authors provide formulas for a general per-
turbing potential with one- and two-body parts. In the second
_ and third orders there are 31 distinct diagrams involving one-
> (Ciju+bik)alaaay:, body part of the perturbation and 28 diagrams containing
1kl only two-body part. Certainly, calculations of the Breit cor-
(212 rections are less complicated in the Breit-Coulomb-Hartree-
) ) . ] Fock basis, where the one-body perturbation is absent. An-
since the effective one-body Breit term in E@.11) has  other advantage of the BCHF basis is an automatic inclusion
been “transformed away” by a proper choice of one-particleof important relaxation effect discussed below. An adequate
states. o _ . _ account for the relaxation effect correction in the CHF basis
Of course, finding a solution of the Sluiager equation would have required fifth-order calculations for matrix ele-
even with the traditional many-body Coulomb Hamiltonian, ments.
Eqg. (2.10, is a nontrivial problem. Many-body perturbation  The generalization of MBPT expressions to a simulta-
theory[26] has proven to be very successful in treating conmeous treatment of Coulomb and Breit interactions is
tributions beyond the Hartree-Fock level. In particulab,  straightforward: Coulomb interaction lines are replaced by a
initio relativistic many-body calculations for alkali-metal at- sym of Coulomb and Breit interactions and partithole)
oms have been performed by Notre Dame and Novosibirsknes by Breit-Coulomb-Hartree-Fock stat@ee Figs. 1 and
(Sydney groups. These and other calculations have been re; ) Together with the corrections linear in the Breit interac-
viewed recently in Refl27]. An accurate description of the tion such approach introduces terms nonlinear in the Breit
correlations(i.e., contributions beyond Hartree-Fock value interaction. Strictly speaking, these nonlinear terms have no
plays a crucial role in high-precision calculations. One of themeaningful theoretical basis and therefore have to be omit-
most striking examples of the importance of correlations ined, However, the Breit contribution to atomic properties is
'3%Cs is the magnetic-dipole hyperfine-struct@=S) con-  relatively small and the much smaller terms nonlinear in the

stant A of 5Dg), level. Here the Coulomb-Hartree-Fock Breit interactions can be neglected at the present level of
value, +7.47 MHz, has a sign opposite to that of experimen-accuracy.

tal value —21.245) MHz from Ref.[28]. The dominant cor-

relation corrections to matrix elements arise because of core-

shielding of externally applied field®.g., nuclear fields for B. Relaxation effect
HFS constanisand an additional attraction of a valence elec-
tron by an induced dipole moment of the cdi29]. The
former effect is described by contributions beginning at sec
ond order{random-phase approximatigRPA)] and the lat-
ter in third order(Brueckner correctionsof many-body per- Se.=b
turbation theory. Representative many-body diagrams are v
shown in Fig. 1. Qualitatively, the Breit correction to a cer-

tain Coulomb diagram is proportional to the value of the

Coulomb diagram. Therefore, in addition to lowest-order 8Z s = .
corrections we consider the Breit contributions to the domi- i#0 8y & iFw Ew T &

nant RPA and Brueckner diagrams. It will be demonstrated

that thesecorrelated Breit corrections in many cases are

comparable to the lowest-order ones. In the BCHF basis th8imilar one-body Breit corrections can be calculated as dif-
correlated Breit correction to valence energies appears in thfierences between lowest-order values found in the Breit-
second order; a sample diagram is drawn in Fig. 2. The cor€oulomb-and Coulomb-Hartree-Fock approximations

N| -

- =t
Hé+B—§i: s aa .+

In the CHF basis the first-order corrections to valence
energiese,, and matrix elementg,,, due to the one-body
part of the Breit interaction are given by

(2.13
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0.1
005 (@ e, ] AU~ J $4(2)b(1,2) $4(2)d
0
g ool Iy 2 J Xa(2)e(L,2) $(2)d7,
= 6Pz E 5d,. 5d.,,
S 04
S 02| ] +2 J $1(2)c(1Dxa(2)d o+ . ..
G 0 a
(8] L 4
5 oa - - 217
e :8:2 C . ‘ ‘ ‘ . with the proper exchange terms. Here the first term is an
B 8s 8Pz 80z S 5ds explicit Breit contribution, while in the second and the third
£ 08y terms the Breit interaction enters implicitly through correc-
06 (o) Ef S ] tions to core orbitals. Only the first terfand its exchange
0.4 1 § ] form) are included in the first-order correction, £8.13. As
0'3 L e T m§ ] demonstrated by Lindrotht al. [18] for Breit corrections to
02 ‘ . N s the energy levels of Hg, the residual “relaxation” terms are
' 65-0Pu: o gp OPugy gy S oo o large and substantially modify the first-order corrections.

Similar observation has been made by Johnsioal. [31] in
FIG. 3. Comparison of Hartree-Fock and first-order relative one-Calculations of Breit corrections to energies of sodiumlike
body Breit corrections to(a) energies of valence stateg¢p)  i0ns. Independent of the present analygirtially published
hyperfine-structuréHFS) constantsh, and(c) electric-dipole tran-  IN Ref. [7]), the relaxation effect in Cs has been recently
sition amplitudes. The dotted and striped bars represent first-ordéfiscussed by Kozloet al. [32].
and Hartree-Fock corrections, respectively. The relative corrections At this point it is clear that the inclusion of Breit interac-
to the energies and HFS constants are defined with respect to efion in the Coulomb-Hartree-Fock equatiofisgreatly sim-
perimental values, and electric-dipole amplitudes with respect t@lifies many-body perturbation expansions, @ndautomati-
Coulomb-Hartree-Fock values. cally accounts for the significant relaxation effects. In other
words, compared to the traditional Coulomb-Hartree-Fock
seF=5 —¢ (2.14 formulation, t_he transf_ormation to the Bre_it-CHF basis sums
v v many-body diagrams involving the effective one-body Breit
_ interaction to all orders of perturbation theory.
5Zv|-\|/5:<¢w|z| ¢v>_<¢)w|z|¢v>'
C. Construction of Breit-Coulomb Hartree-Fock basis
In Fig. 3 we present a comparison of the lowest-order one- Several methods can be devised for constructing the
body Breit corrections to valence energies, HFS constants Breit-CHF single-particle basis. For example, one can deter-
and electric-dipole transition amplitudes. The dotted andmine the Breit corrections to wave functions by substituting
striped bars represent first-order, H@.13, and Hartree- Eq. (2.17) into Eq. (2.16. It is convenient to express the

Fock corrections, Eq2.14), respectively. There is a striking resulting equations in terms of expansion coefficiesis
discrepancy between the two corrections for all these quan:<¢i|Xj>

tities. For example, the first-order correction to the BFS
constant is—0.4%, while at the Hartree-Fock level the Breit — - -
correction almost vanishes. (ej—eéij= ; biaja+ % {€kaCuiaj T éxaCaiki}
These large discrepancies are explained by a “relaxation” (2.19
effect, i.e., modification of the Hartree-Fock potential 5
through adjustment of core orbital48]. To illustrate this Heret;;y, is an antisymmetrized two-particle matrix element

effect we rewrite the BCHF equation, E@.9), as tijki =tij — tijik . Once the equation€2.18 are solved the
- “Breit-dressed basis” can be determined a$;= ¢;
(ho+ UHF+AU) =T ¢;, (219 +3/&;¢;. The derived equations are essentially equivalent

to the random-phase approximation or the self-consistent-
where the perturbing potential iSU=UBHF—UCHF Fur-  field method, with an effective one-body Breit interaction
ther, gj =¢;+x;, Wherey; is a correction to a CFH wave serving as an external perturbation. The many-body diagrams
function ¢; due to the Breit interaction. In the lowest order for the amplitudes;;; are shown in Fig. 4. By iterating these

these corrections can be expressed as equations one sums a certain class of many-body diagrams to
all orders in the Coulomb interaction.
(AUl Thg result'ing equationQ.l& arelinear ?n.the Brgit in-
XJ:Z bi————. (2.1  teraction. It is worth noting that the Breit interaction, Eq.
1

€8 (2.1), is an approximation and terms nonlinear in the Breit
interaction have no meaningful theoretical basis. Therefore,

To the first order in the Breit interaction, linearized equation§2.18 are conceptually more attractive
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negative-energy states, discussed, for example, in[Ré4F,
” were also included and found to be relatively smad]. Two
= = I-V~O + + + exchange series of third-order calculations were performed, first with
“ the Breit and Coulomb interactions fully included using the
Breit-CHF basis set, and second in the CHF basis set without
] ] ] ] the Breit interaction and negative-energy states. The obtained
FIG. 4. Diagrammatic representation of B4). Here horizontal jfferences are the Breit corrections analyzed in the follow-
solid (wavy)_ lines r_epresent the Cc_)ulomtBre_lq mteractl_ons. ing sections.
Z?S:}'es,,h?rﬂjziggzl Il'nes ari eXpan?oln Coe:'f'e'f_tsand ||tt|te be . Numerical calculations were performed usBgpline ba-
P places where particie or hole fines are 10 Degiq sets generated in a cavity of radius 75 a.u. This cavity size
attached. ? ) . :
has been chosen for numerical consistency with the previous
gl_etermination of parity-nonconserving amplitudes by Blun-
dell et al.[5]. The numerical quasispectrum was represented

properties is relatively small and the much smaller nonlineaP¥ 100 negative-and 100 positive-energy states for each an-

terms in the Breit interaction can be safely neglected at thgvuelfg qlejléfg:lljlnrg(;]l;\r?et:’e;;;g\?vg;fg:eerdIate(-)zﬁt/ee-seur:g:’natgg?es
present level of accuracy. P gy p gy

An alternative approach to generating the BCHF basis seqnd 75 highest-energy negative-energy states for each partial

has proven to be more numerically robust and was employe\fya\/esl’z'hl vz

in the present work. Two complete basis sets, GkbF and
BCHF {¢;} sets, can be related by a unitary transformation 1. ATOMIC PROPERTIES

than the self-consistent BCHF method based on an integr
tion of Eq. (2.9). However, the Breit contribution to atomic

_ 2 A. Energies of valence states
g i dyr- At the Hartree-Fock level, the Breit interaction contrib-
utes less than 0.1% to all the energy levels considered in Fig.
Using Eq.(2.15 one determines expansion coefficiedis 3. Numerical values for Breit correction at the Hartree-Fock
and one-particle BCHF energies from secular equations  level are given in Table |; these were obtained as differences
between one-particle energies in Breit-CHF and CHF ap-
= _ ; proximations, i.e.g,— ¢, . As in the traditional CHF calcu-
(&k 8j)dkj+§i: (AU)yd;; =0, Vj. (2.19 lations, the first-order many-body contributions to valence
energies vanish identically in the BCHF basis. In the second
In this paper the difference between the two Hartree-Foclorder the corrections arise due to self-energy diagrams. For
potentialsSAU was generated using finite-difference meth-each valence state we perform two calculations with and
ods. The radial Coulomb-Hartree-Fock basis was approxiwithout the Breit interaction and take a difference between
mated withB splines[19] and then transformed into the ra- the two values. Further, we distinguish between two classes
dial BCHF basis employing Eq(2.19. Negative-energy of Breit modifications, one-body and two-body corrections,
statesg;< —m.c?, were included in the diagonalization pro- as illustrated for a diagram in Fig. 5. The one-body contri-
cedure. bution arises from a transformation of the one-particle basis
To summarize, third-order many-body calculations werefrom Coulomb-Hartree-Fock to Breit-CHF.
performed in the Breit-Coulomb-Hartree-Fock basis with the The calculated values and breakdown on various contri-
two-body Breit interactioB(® treated on equal footing with butions are presented in Table 1. Apparently the Breit correc-
the residual Coulomb interaction. Sample many-body diation to thecorrelation part of the energygEgq, is equally
grams are presented in Figs. 2 and 1. Contributions oimportant as the modification in the lowest ord®E-. The

TABLE I. Contributions of the Breit interaction to energies of valence electrons in‘cBcyr are the
energies in the Coulomb-Hartree-Fock approximatiéB,- column lists corrections at the Hartree-Fock
level defined a&,—¢, . ColumnssEgg,BY and 6Egq,B@ are the contributions in the second order due
to one-body and two-body Breit interactions, respectively.

State Ecur SEpr S5Ego,BW S5Ego,B@ SE1otal
6S1/ —27954 3.2 —4.98 -0.83 -2.6
7Si2 —-12112 1.1 -1.1 -0.28 -0.26
6Py —-18791 7.5 -0.08 -0.28 7.1
7P —9223 2.7 -0.1 -0.10 25
6P —18389 2.9 -1.8 -0.25 0.84
7Pap —9079 1.0 -0.56 -0.09 0.38
5Dg, —-14138 -10.2 —12 -0.35 —22
5Ds), —14163 -11.8 -14 -0.33 -26
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TABLE II. Comparison of Breit corrections to energies of va-
‘}:ﬂ - H — H + ”_” - H lence electrons in cnt.
@ (b)

State This work CCSp33] Gaunt, noB® [9]
a

6S)» —-2.6 -1.1 -4

FIG. 5. Separation of Breit correction inta) two-body and(b) 7S, ~0.26 0.72 0

one-body(basis shift parts. Here horizontal solid and wavy lines gp,, 71 6.9 9

represent Coulomb and Breit interactions respectively; double hori- ;p A 25 26 2

zontal line is a sum of Coulomb and Breit interactions. Vertical 6P 0.84 0.29 2
solid lines correspond to Coulomb-Hartree-Fock states and vertical 32

TP3p 0.38 0.45 0

double lines to Breit-CHF states.

interplay of Breit corrections to various many-body diagrams  Comparison of our results with the CCSD values and re-
for the energy of the &,,, state is remarkable. Here the two sults of Ref[9] is presented in Table II. The best agreement
terms SE . and 5Ego, B are almost equal and have oppo- is for P, states where there is no cancellation between cor-
site signs, the resulting modification being determined bytections 6E,x and 6Egg, BY). The values differ signifi-
relatively smaller two-body Breit correctiodEgy,B?).  cantly forS,, states where strong cancellations, emphasizing
From Table | we see that generally the two-body Breit con-igher orders of MBPT, are present. One should keep in
tributions are smaller than the one-body correctionsBff¢  mind that these discrepancies arise only when the Breit cor-
corrections become important when the cancellations are inections, due to cancellation effects, are small and do not
volved. have an enhanced effect on evaluation of parity-
The first study of correlated Breit corrections to the enernonconserving amplitudes, discussed in Sec. IV. Calculations
gies of Cs and other alkali-metal atoms has been performef@] are less consistent with the present and CCSD results,
in Refs.[33,34]. Based on formalism developed in RE35],  with discrepancies caused by approximation of full Breit in-
the corrections have been determined as an expectation valt&raction by Gaunt term and neglect of two-body part of the
of the Breit correction to the Coulomb-Hartree-Fock many-Breit interaction.
body Hamiltonian, Eq(2.17),

5Ev=<‘lffD| 5BH[:|‘I'USD>- (3.1 B. Magnetic-dipole hyperfine structure constants

To reiterate discussion in Sec. Il, we performed two series
of computations:(i) traditional Coulomb andii) fully in-

Here |W3P) is the linearized coupled-cluster wave function cluding Breit interaction. The difference between resulting
limited to single and double excitations from the referencevalues defines the Breit correction. From parametrical argu-
Slater determinanazlocore}. The correlations are built into ment it is assumed that the leading Breit corrections arise
these wave functions. The coupled-cluster singles-doublefsom induced modifications of the dominant traditional Cou-
(CCSD formalism accounts for a complete third order of lomb diagrams. Therefore the calculations were limited to
MBPT with certain classes of diagrams summed to all orthe RPA and Brueckner diagranisee Fig. 1 Further, the
ders. However, the random-phase-approximation sequence BPA sequence was truncated at the third order.
diagrams, important for the self-consistent treatment of the In calculations of Breit corrections to'*Cs HFS
Breit interaction, is missed starting from the fourth order.magnetic-dipole constan#s nucleus was modeled by a uni-
The approach employed by Kozlet al.[9] is similar to the  formly magnetized ball of radiuR,,=5.6748 fm. The gyro-
present method, but in R] the full Breit interaction has magnetic ratio for*Cs nucleus igy;=0.737 89[36].
been approximated by the Gaunt term and contribution due The breakdown of Breit corrections to various classes of
to effective two-body interactioB(® has been neglected.  many-body diagrams is given in Table Ill. Clearly, the Breit

TABLE lll. Breit corrections to magnetic-dipole hyperfine structure constams*33Cs in MHz. Column
CHF lists Coulomb-Hartree-Fock values. Breit corrections to a Alasfsmany-body diagrams of ordé&are
designated agA) . Total Breit correctionsAry is @ sum of modificationsAY .

State CHF S5ALE SARPA! AN, S5ATol
6S1/ 1425.3 0.011 4.1 0.79 4.87
7S 391.6 —0.029 1.1 0.08 1.15
6P 160.9 —-0.68 0.39 —0.24 —-0.52
7P 57.62 -0.23 0.14 —0.059 -0.15
6P, 23.92 —-0.06 0.10 —0.008 0.034
7P2p, 8.642 —0.022 0.038 —0.0020 0.014
5Ds, 18.23 0.099 0.10 0.11 0.31
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TABLE IV. Comparison of contributions of Breit interaction to ous contributions for the states; both higher-order diagrams

magnetic-dipole hyperfine-structure constattsf ***Cs in MHz.  and an approximation of the full Breit interaction by the
Gaunt term in Ref[9] are the sources of discrepancies be-
6Sy2 7Sz 6Py TPy tween our results for By, and 7P,, states.
This worlé 487 115 -052 —015 ; Hyplerfm? s;c;ucturel constadnts sa_dmple atomic waveff;mct—
Kozlov et al. [9]° 50 08 0.2 00 ions close to the nucleus and provide a unique way of test-

ing atomic-structure calculations of parity-nonconserving

C
Sushkov[L1] d 4.6 1.09 amplitudes. In Table V we combine the Breit corrections
Safronoveet al. [33] ~464 -08  -087 -029 with the results ofib initio all-order Coulomb-correlated cal-
Blundell et al. [37]° 0.00 —0.05 —-1.25 —0.39

culationg37] and compare the results with experimental val-
ues. It is clear that the Breit corrections uniformly improve
the agreement. In particular, the theoretical HFS constants
are improved to 0.1% for 8,5, 7S;;», and 7P, states ex-
cept for 624, where the discrepancy becomes 0.5%. While
the achieved agreement in Table V is encouraging, one
should keep in mind the omitted QED corrections and
higher-order contributions in Coulomb interaction. For ex-
, , WAl anlll ~ , ample, an estimatg88,39 for hydrogenlikeCs ion results in
correction to correlationsdAgea , 9Ago) IS equ?lly IMPOr- " 3 QED correction to HFS constad of S states at a few
tant as the modifications in the lowest ord#h.e. As an 0,19, Due to electron-electron interactiorgitomicCs QED
extreme case, almost entire Breit correction to HFS constanigorrections can be significantly modified. Correlated calcula-
of 6S and 7S states comes from correlations. There is ations of QED corrections would be beneficial for reaching
cancellation of various contributions to the HFS constants Obl% level of accuracy needed for interpretation of parity_
Pi» and Py, states. For these states the contribution ofnonconservation and also for understanding the role of high-
higher—order diagrams not included in the present third-ordeérder Coulomb diagrams at 0.1% precision_
analysis can become enhanced. At the same time the total
Breit corrections toAgs and A;g are expected to be insensi-
tive to higher-order contributions. . ) ] ]
A comparison of our results, partially published in Ref. Experiment§3] on PNC in**Cs determine the ratio of
[7], with other calculations is presented in Table IV. The6S-7S PNC amplitudeEpyc to vector transition polarizabil-
correction to hyperfine constants is very sensitive to correlally 8. The value ofg is difficult to calculate reliably since it
tions: e.g., Ref[37] found a numerically insignificant modi- Vvanishes in the nonrelativistic limit. Following suggestion
fication for Ags, while Refs.[10,33 determined the modifi- [40], Bennett and Wiemaf¥] determined a supporting ratio
cation to be largé—4.64 MH2), and the approach reported Of B to off-diagonal magnetic-dipole matrix elemeNty
here yields+4.87 MHz. In the calculation of Ref37] the ~ With a precision of 0.16%. Such an approach elimingges
correction was determined as a difference of the Breit-CHHrom the analysis, but requires an accurate valueMgy.
and CHF values; however, such approach misses two-body The quantityM can be expressed in terms of the off-
Breit corrections of comparable size. In Refd0, 33 a  diagonal magnetic-dipole hyperfine-structure ~ constant
second-order perturbation analysis was used for the Breit infes-7s- This constant can be well approximated by a semi-
teraction, but the important relaxation effect discussed earliegmpirical geometric-mean formu[d1]
was omitted. The present calculation incorporates all men- se. —
tioned diagrams and is also extended to third order. Moti- 6575~ VAesATs:
vated by strong dependence of resulfs33,37 on many-
body corrections, Sushkoj11l] derived an analytical where Ags and A;5 are precise experimental hyperfine-
expression for Breit correction to HFS constantsSaitates.  structure constants. The accuracy of this expression was in-
His results for @ and 7S states are in an excellent agree- vestigated in Ref§42-44. Most recently, Dzuba and Flam-
ment with the present calculations. Kozletal.[9] used an  baum [44] employed several many-body techniques of
approach similar to Ref7]. There is a cancellation of vari- increasing accuracy in the Coulomb interaction between

&Third-order calculations in the BCHF basis, REf].

bEull Breit interaction is approximated by the Gaunt term.
“Analytical «Z expansion withZ=55.

dSecond-order calculations in the CHF basis. See [Rél.for de-
tails.

°RPA sequence of diagrams in one-body Breit interaction.

C. Off-diagonal 6S-7S hyperfine-structure matrix element

(3.2

TABLE V. Comparison of theoretical and experimental hyperfine constanisf '33Cs. All-order
Coulomb-correlated values by Blundell al.[37] are supplemented with Breit corrections. Deviations from
experimental values are placed in square brackets.

6S1, 7S, 6Py TPy
Coulomb[37] 2291.00—0.3% 544.09—-0.3%) 293.920.7% 94.600.3%)
Breit 4.87 1.15 —0.52 —0.15
Total 2295.87—0.1%] 545.24—0.1%] 293.400.5%] 94.450.1%]
Experiment 2298.16 545.90 291(23 94.354)
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TABLE VI. Breit corrections to reduced electric-dipole matrix elements for transitions between low-lying
valence states of Cs atom. Columb,% represents a ration %) of the total Breit correction to a matrix
element calculated in a third order of MBPT. See caption of Table Il for description of other columns.

Transition CHF 5Dy SDppa! oDpo 5D 1ot 5D, %
6S1- 6Py 5.278 0.00035  —0.00022 —0.0011 —-0.00097  —0.02
6Sy/-6P3, 7.426 0.00078  —0.00045 —0.0014 —0.0011 -0.02
6Sy> 7Py 0.3717 0.0018  —0.00013 0.00021 0.0019 0.5
6Sy>7P3p 0.6947 0.00059  —0.00020 0.00011 0.00049 0.07
7S176Py), 4.413 0.0046 —0.000067 0.00038 0.0049 0.1
7S, 6P3;, 6.671 0.0019 —0.000011  —0.00030 0.0016 0.02
7Sy TPy, 11.01 —0.0011 —0.000050  —0.0018 —0.0029 -0.03
7Sy 7P 15.34 0.0007 —0.00013 —0.0019 —0.0013 —0.009
5D 6Py, 8.978 —0.0044 —0.00035 —0.0082 -0.013 -0.2
5D 3 6P, 4.062 —0.0028 —0.00019 —0.0035 —0.0065 -0.2

IV. PARITY-NONCONSERVING AMPLITUDE
6Sy,— 7Sy,

electrons and found that this geometric-mean formula is ac-
curate to a fraction of 10°. Here we extend their analysis
and rigorously consider the additional effect of the correlated
Breit interaction. The Breit correction to hyperfine-structure
constantsAgs and A,g is in the order of 0.2% and it can
affect the sub-0.1% accuracy of the Coulomb analf8.
Breit corrections are relatively small. If E¢3.2) holds,
the following relation between the Breit correction®\) has

The parity-nonconserving amplitude for th&,6—7S,,,
transition in*3Cs can be represented as a sum over interme-
diate statesn Py,

EPNCZE
m

(7S|DImM Py (mPy Hy|6S)

to be satisfied Ees™ Empy,
(7S|HW|MPy5)(mPy,|D[6S)
6AsS7s 1 [6Res OAss + — . (4]
st ~3 + . (3.3 m E7s~Emp,
6s7s 2 Aes Ass

HereD andH,, are electric-dipole amplitudes and weak in-
As a result of the correlated Breit calculations we findteraction matrix elements, and; are atomic energy
OAgs7s=2.4MHz. With Ags7s=1120.1MHz, the ratio |evels. The PNC amplitude is expressed in units of
(8A6s75)/ (Ass 75) = 2.1X 10" 2. Using the Breit corrections 10~ |e|ag(— Qy/N), whereN=78 is the number of neu-
to HFS constantégs andA;s from Table IlI, the semiempir-  trons in the nucleus of**Cs andQ,y is the weak charge. In
ical rhs of the above equation is also 21072, Clearly, the  these units the results of past calculations f8iCs are
accuracy of the geometric-mean formi®?2) is not affected  E, .= —0.905, Ref[5], and Epyc= —0.908, Ref[6]. The
by the Breit correction. Qualitatively, this can be explainedformer value includes a partial Breit contribution0.002,
by a close proportionality of & and 7S wave functions in  and the latter includes none. The reference many-body
the vicinity of the nucleus, where the main contribution to Coulomb-correlated amplitude
the HFS constants @& states is accumulated.

ESne=—0.9075 (4.2

D. Electric-dipole transition amplitudes is determined as an average, with the partial Breit contribu-
Calculated Breit corrections to reduced electric-dipoletion removed from the value of Reff5]. The major differ-
matrix elements of various transitions in Cs are presented ience between present and previous calculdftfgnof Breit
Table VI. We note that the Breit corrections to the random-correction to the PNC amplitude is an additional incorpora-
phase approximation diagrams are small compared to thiéon of effective two-body part of the Breit interaction and
lowest-order and Brueckner-orbital corrections. GenerallyBreit correction to the correlations.
the total corrections are rather sméa#0.1%), with an ex- It is convenient to break the total Breit correctid&pyc
ception of 65,/,- 7Py, electric-dipole matrix element. Using into three distinct parts due to corrections in the weak inter-
the ab initio all-order Coulomb-correlated value by Blundell action and dipole matrix elements, and energy denominators,
et al. [37], (6S,J|D||7P4)=0.279, and adding the Breit respectively
correction of 0.0019, one find$S,,,J|D| 7P, =0.281 in a
better agreement with the 0.2@4 experimental value of
Shabanovat al.[45]. The relatively large Breit correction is
caused both by an accidentally small matrix element and byror example, the modification of the PNC amplitude due to
admixture into (6S,,/D|7Py,) from a 30 times larger the Breit corrections to energie#E,s, SEnp, , can be ex-
7Sy~ 7Py, matrix element. pressed as

SEpnc=Epnd SHw) + Epng( 8D) + Epno( SE).  (4.3)
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TABLE VII. Breit corrections to matrix elements of weak interaction féf°Cs in units of
10" Yj|eag(— Qw/N). See caption of Table Il for description of columns.

Transition CHF S(HwW) e S(Hw) e’ S(Hw)so S(Hw) Total
6S,/,-6P4), 0.03159 —0.00010 —0.00015 —0.000029 —0.00028
6S,/- 7Py, 0.01891 —0.000058 —0.000091 —0.000014 —0.00016
7Sy 6P 0.01656 —0.000053 —0.000081 —0.000013 —0.00015
7Sy TP 0.00991 —0.000031 —0.000048 —0.0000061 —0.000085

are a few times smaller than those in the second order, hint-
ing at a good convergence of the present technique.

The Breit correction to the PNC amplitude is determined
by combining induced modifications in matrix elements and
energy denominators. The required corrections are summa-
rized in Table VIII. The tabulated dipole amplitudes are re-
fated to the reduced matrix elements in Table VI as

(7S|D[M Py} (M Py Hy|6S)
Epnc(9E)=— 2 EecErn )
m 6s— Emp,,

X (6Egs— 6Emp,,) +C.C(7S=69), (4.9

where the last term stands for the complex conjugate of th
first term with 65 and 7S states interchanged. The Breit cor-
rections to energies and dipole matrix elements were dis- (nSyDIN' Py =(nSyJD[In' Py)/\6.
cussed in the preceding sections; here we focus on correc-
tions to the weak matrix elements. Before proceeding to the correlated calculations, it is
The overwhelming contribution from parity-violating in- worth examining the Breit contribution to the PNC ampli-
teractions arises from the Hamiltonian tude at the Hartree-Fock level. Most of the Breit contribution
to the PNC amplitude can be determined by limiting the
summation over intermediate states in E4.1) to the two
lowest valenceP, states: ®,,, and 7Pq,. In the CHF ap-
proximation one then findEpyc= —0.6888(90% of the to-
tal value. The lowest-order corrections to matrix elements

whereGe is the Fermi constantys is the Dirac matrix, and 5y energy denominators calculated as differences between
prud 1) is the neutrondensity distribution. To be consistent geit CHF and CHF values are listed in Table VIII. The re-

with the preyio_us_calpulations thpznu_&r) is taken to t_)e & sultant BCHF corrections tBpyc are
proton Fermi distribution employed in Ref5]. The slight

difference between the neutron and proton distributions will
be addressed in the conclusion of this section. The dominant
contribution to the PNC amplitude, E¢4.1), comes from
intermediate statesFs , and 7P,,,. In Table VII we present
calculated third-order Breit corrections to the relevant matrix
elements of weak interaction. Apparently, the dominant part
of the Breit correction arises from modifications at theHere the percentage values in parentheses are taken with
Hartree-Fock level and in RPA. All the corrections add co-respect to the CHF value of PNC amplitude. The sum of
herently, and we do not expect omitted higher-order diathese three terms leads #&pnc=0.0023. Inclusion of inter-
grams to be important. In fact, third-order RPA correctionsmediate states beyond§,, and 7P, leads to a small ad-

G
HW=T;Qanuc<r>ys, (4.5

ENN o 8Hw) =0.0022(0.32%),
Epnd(6D)=0.002@0.29%), (4.6)

Epkd E)=—0.0019 — 0.28%).

TABLE VIII. Breit corrections to electric-dipole amplitudes, weak-interaction matrix elements, and en-
ergy intervals;0X, |=Xgchue—Xcue andsX, 1+11+11l are the differences in the third order of MBPT. Weak
matrix elements are expressed in units of ¥9|e|ag(— Qw/N) and energies and dipole amplitudes in

atomic units.

6S1/-6P 6Sy/- 7Py 7Sy-6Pyp 7Sy TPy
Hy, CHF 0.03159 0.01891 0.01656 0.009913
SHy, | —0.00010 —0.00006 —0.00005 —0.000031
SHy, 111+ —0.00028 —0.00016 —0.00015 —0.000085
D, CHF 2.1546 0.15176 1.8017 4.4944
oD, | 0.0001 0.00073 0.0019 —0.0004
oD, [+ +111 —0.0004 0.00077 0.0020 —0.0012
AE, CHF —0.041752 —0.085347 0.030429 —0.013166
SAE, | —0.000020 0.000003 —0.000030 —0.000007
SAE, I+11 —0.000045 —0.000023 —0.000034 —0.000012
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ditional modification toSEpyc of —0.00004. The obtained Ways add coherently for matrix elements of weak interaction.
lowest-order result is in agreement with the 0.002 correctionT here are also no strong cancellations between various Breit
found by Blundellet al. [5]. In addition to the lowest-order corrections to the relevant dipole  amplitudes
the Breit correction in Ref5] also contained small random- (nS;;/D|n’Py,,) (see Table V). Corrections to energy de-
phase-approximation diagrams in the Coulomb interactioominators are also stable with respect to the omitted higher-
for matrix elements of the weak interaction. The two-bodyorder contributions. For example, in Sec. Il A we found that
Breit interaction has been disregarded in RBf. In the fol-  the Breit correction to the energy ofS{;, valence state due
lowing discussion we will include these omitted effects. Noteto cancellations of calculated contributions is snial0.26

that if experimental energie@vhich effectively include the cm™%) enhancing possible effect of smaller higher-order cor-
Breit interaction are used in the energy denominators of Eq.rections. However, in the calculation of the teffpyd( 5E)

(4.1), then theEpy( SE) term must be excluded and the total this (unstablg correction substantially appears only in a

correction becomes twice as largse = 0.0042. combination with a 25 times larger and stable Breit correc-
With further examination of the modifications @fdi-  tion (7.1 cm™) to the energy of €y, state. .

vidual uncorrelated matrix elements summarized in Table We further improve the accuracy of the calculation by

VIII, one notices the following. combining all-order Coulomb-correlated matrix elements

and experimental energy denominators tabulated in [Bgf.

(i) Weak interaction matrix elements are each reduced iRyjth the present third-order Breit corrections. The results are
absolute value by 0.3%, which is directly reflected in a 0.3%

correction to the PNC amplitude. Epnd(dHw) =0.0047(0.5%),
(ii) Modification of dipole amplitudes is strongly nonuni-
form. There are substantial corrections only to the Epnd 6D)=0.0037(0.4%), 4.7
6S;/- 7Py, (0.5% and 75,,,-6P;;, (0.1% matrix elements.
The large 0.5% Breit correction ¥®S,,,|D|7P,,) provides Epng 8E)= —0.0030( — 0.3%).

partial resolution to a long-standing 1.5% discrepancy of

spectroscopic experimenf45] and ab initio Coulomb-  Here the values in parentheses are defined relative to the
correlated calculationg33,37,44. Coulomb-correlated PNC amplitude, E®.2). The total

(iii) The largest modification in the energy denominatorsgreit correction to the PNC amplitude i8EE,.=0.0054.
is 0.1% forE7s-Egp; however, this leads to a 0.3% correc- Thijs result was first reported in Ref7]. Similar correction
tion Epyo(SE). As recently emphasized by Dzuketal.  of 0.0053 was obtained by Dzuled al.[8]. Kozlov et al.[9]
[47], such large sensitivity of the resulting PNC amplitude tofound a 20% smaller correction of 0.004; this discrepancy is
small variations in individual atomic properties entering Eq.most likely due to the omission of the retarded part of the
(4.1 arises due to a cancellation of relatively large terms ingreit interaction in the calculatior®].
the sum over states. If the experimental energidgsvhich incorporate Breit cor-
. . . rections by definitiop are used in the energy denominators
| It IS well known thaﬁ correlat!ons caused by residual C.Ou'the termEpnd(SE) should be excluded and the semiempir-
omb interactions not included in the Hartree-Fock equations . ) Bee. : .
can lead to substantial modifications of the lowest-order vallcal Breit correction becomesEpi,c _9'0084' A minor dif-
ues. For example, the weak matrix elem@@, ;| Hy|6P1) ference of our treatmeni#] of the Breit correction tdEpyc

is increased by a factor of 1.8 by correlations due to residu nd lReEs.[8,9] IISt tge |n|'cer=3r?tatg)réofAre{;ults %fgprewouts
Coulomb interactions. As demonstrated in the previous sec: oulomb-correlated calculatiori$,6]. Authors[8,9] asser

tions, correlations are also important for a proper descriptiorﬁhat theab initio O.G%Ccorrectlor(OA% in Ref.[9]) ShO.L"d

of the Breit corrections. Examination of the third-order cor-P€ used to augmeripyc, Eq. (4.2). Our approach is to
rections listed in Table VIII reveals that the corrections to€xclude the temtepyo(SE). The difference in the twanter-
weak interaction matrix elements become three times largdiétations arises due to the difficulty of accounting for
than those in the lowest order. Using third-order matrix elelNigher-order Coulomb diagrams. Some semiempirical “fit-
ments and second-order energies the followdbghnitio cor- ting” or “scaling” procedure is used in practice to mimic the

rections are determined: effect of the omitted contributions. Since only energies are
known with a very high precision from experiments, experi-
Epng( dHy) =0.0043, mental energies play a central role in such analysis. For ex-
ample, the experimental energies were employed in eight out
Epng D) =0.0035, of ten test cases in the scatter analysis in the Table IV of Ref.
[5] (Phys. Rev. D based on Eq4.1).
Epnc(0E)=—0.0028. The above discussion demonstrates some arbitrariness en-

countered in the analysis of theoretical values and assign-
Thus the lowest-order corrections given in E4.6) are am-  ment of theoretical uncertainty when a semiempirical adjust-
plified in higher orders. The calculated Breit corrections toment ofab initio values is attempted. We notice that authors
the PNC amplitude is expected to be insensitive to the omitef Ref.[8,9] argue that the theoretical uncertainty of the PNC
ted higher-order diagrams. Such uncertainty can arise if thamplitude is in the order of 1%, therefore a 0.3% difference
calculated Breit corrections to leading classes of many-bodpetween the two different interpretations of the Breit correc-
diagrams cancel. Indeed, the calculated Breit corrections ation is irrelevant at this level. We believe that the most con-
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vincing error estimate would be a repetition of the scattefTherefore, the neutron skin corrects the PNC amplitude by
analysis originally performed in Ref5] but with a Breit —0.2% with an error bar of 30%. This uncertainty contrib-
correction to the involved quantities included. Such calcula-utes only 0.06% to an error budget of the observed weak
tion is beyond the scope of the present work. However, weharge, i.e., the proposed determination of the neutron skin
expect that the resulting uncertainty would be better than theorrection will be adequate until the 0.1% level of overall
original 1% assigned to the result& 6] because of the better accuracy is reached.
theory-experiment agreement for dipole amplitu¢ese[4]) Combining the calculated semiempirical 0.9% Breit cor-
and hyperfine-structure constaritee Table V. Additional  rection with the reference Coulomb-correlated value, Eq.
QED and especially neutron skin effects can further modify(4.2), and the neutron skin correction, Eg.10), one obtains
the value ofEpyc in @ way that cannot be mimicked by the the parity-nonconserving amplitude
suggested analysis.

The parity violation in atoms is dominated by tAéoson Epnd(1*C9)=—0.8974<10" Mi(—Qw/N). (4.1
exchange between atomic electrons aeditrons However, )
the reference vaIuESNC Eq. (4.2), is based on the empiri- In Sec_. I1C we conclude_d that the result for the off-diagonal
cally deducedproton distribution. The difference between NYPerfine structure matrix elemehtys by Dzuba and Flam-
the proton and neutron distributions is visualized as the ned?@Um[44] is not affected by the Breit correction. Using their
tron “skin” or “halo.” Here we update our previous treat- Value 0fMp; together with the experimental result4] we

ment of the neutron skin correction with the most recent dat&/ve at
from the literature. This correction was estimated in R&}.
but was not included in the final value for the PNC ampli-

tude. It can be shown that the neutron skin COrrecﬁErﬂ',ﬁc_ From the values above, the observed weak charge is
does not depend on the electronic structure, therefore it can

be parametrized as Qu(*¥C) = — 72.6128) e 73) theor

n.s.
g PNC § o )2ARnp. 4.9 This value differs from the predictiofb3] of the standard
Epnc 7 Rp model Qj'=—73.20(13) by 0.%, vs 2.5 of Ref. [4],

. . . whereo is calculated by taking experimental and theoretical
HereR, is the root-mean-squarems) radius of proton dis- cerainties in quadrature. Here we assigned 1% uncertainty
tribution andAR,,, is the difference between rms radii of 5 he theoretical PNC amplitude, E@t.11). The deviation
neutron and proton distributions. This expression can be eagiands at 1.3 if 0.4% theoretical uncertainty is assumed as

ily derived from analysis by Fortsoet al. [48]. From non-  jiscussed by Bennett and Wiem@#. Following Ref.[7], a
relativistic nuclear-structure calculations Pollock and We”'similar conclusion has been reached in RE#s9).

iver [49] concludedAR,,/R,=0.016 or 0.022 depending on
the model of nuclear forces. The calculatiof&0,51 of
nuclear distributions wereelativistic and the corrections

twice as largeAR,,/R,=0.043-0.053 were found. There-  |n this paper we presented a relativistic many-body for-
fore, nonrelativistic calculations led t&SESJJ/Epnc Of  malism for treating correction from the Breit interaction. Nu-
—0.1% and relativistic determinations to the range-d¥.3  merical evaluation of the Breit corrections to a number of
to —0.4%. The latter values are comparable to the experiproperties of cesium atom were carried out. In particular, we
mental error bar of the PNC amplitud8,4] and unfortu-  considered energies, hyperfine-structure constants, electric-
nately it is difficult to assess the accuracy of the nucleardipole transition amplitudes ands67S parity-violating am-
structure calculations. plitude. We demonstrated that the Breit corrections to corre-
Here we propose an alternative analysis of the neutrofations are as important as the modifications at the lowest-
skin correction allowing to estimate the error bar. Indeedorder Hartree-Fock level. This work supplements H&i.
Trzcinskaet al. [12] very recently deduced neutron density with additional numerical results. The present treatment has
distributions from experiments with antiprotonic atoms andbeen based on third-order relativistic many-body perturba-
concluded that tion theory. In a few cases we observed intricate cancella-
tions between the lowest-order and higher-order corrections.
ARnp:(—0.04t0.03)+(1.01t0.15)¥fm. (4.9 These are the counterintuitive cases v_vhere the mo_st ad-
vanced methods of many-body perturbation theory originally
developed for residual Coulomb interaction, which will have

Here N and A are the neutron and the mass numbers. Al e employed to obtain an adequate description of a small
though experimental data fdf*Cs do not enter the analysis gyeit correction.

[12], a wide range of stable nuclei was investigated. Assum- 5 it possible to test the accuracy of the theoretical treat-
ing that this relation holds for'*Cs we find ARy,  ment of the Breit contribution for alkali-metal structure? One

Epnd(*Cs)= —0.835433)x 10 au.  (4.12

V. CONCLUSION

=0.13(4) fm. For'*CsR,=4.807 fm[52] leading to could consider the nonrelativistically forbidden magnetic-
ns. dipole transitions1S;,,-n’S;,». A second-order analysj4]
N 0.00196). (4.10 demonstrated exceptionally large contributions from the
Epnc Breit interaction and negative-energy states for such transi-

012106-11



ANDREI DEREVIANKO PHYSICAL REVIEW A 65 012106

tions; more accurate all-order calculations would be desirmaining corrections that may contribute at a few 0.1% are
able. At the same time, an accurate experimental value fadue to higher-order many-body diagrams in the Coulomb

the 7S-6S transition in Cs is availablg4]. interaction and QED corrections.
We determined Breit correction to parity nonconserving
(PNC) amplitude of the &-7S transition. The calculated ACKNOWLEDGMENTS
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