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Correlated many-body treatment of the Breit interaction with application
to cesium atomic properties and parity violation
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Corrections from the Breit interaction to basic properties of atomic133Cs are determined in the framework
of third-order relativistic many-body perturbation theory. The corrections to energies, hyperfine-structure con-
stants, off-diagonal hyperfine 6S-7S amplitude, and electric-dipole matrix elements are tabulated. It is dem-
onstrated that the Breit corrections to correlations are comparable to the Breit corrections at the Hartree-Fock
level. Modification of the parity-nonconserving~PNC! 6S-7S amplitude due to Breit interaction is also evalu-
ated; the resulting weak charge of133Cs shows no significant deviation from the prediction of the standard
model of elementary particles. The neutron skin correction to the PNC amplitude is also estimated to be20.2%
with an error bound of 30% based on the analysis of recent experiments with antiprotonic atoms. The present
work supplements publication@A. Derevianko, Phys. Rev. Lett.85, 1618 ~2000!# with a discussion of the
formalism and provides additional numerical results and updated discussion of parity violation.
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I. INTRODUCTION

To date, the most accurate measurement of parity non
servation ~PNC! @1,2# in atoms has been carried out b
Wieman and co-workers using133Cs @3,4#. The observed
weak charge of the nucleus,QW , is determined as a comb
nation of the experimental PNC amplitudeEPNC of the
6S1/2-7S1/2 transition and a theoretical atomic-structure p
rameterEPNC/QW . Such determinedQW provides powerful
constraints on possible extensions to the standard m
~SM! of elementary particles. The achieved precision in
periments@3,4# is 0.35%; however, the required atomic stru
ture parameter has been calculated only with an accurac
about 1%@5,6#, limiting the accuracy of determination of th
weak charge. Presently it is understood@7–9# that a detailed
account of the Breit corrections to basic atomic propertie
required to reach the next level of precision inab initio rela-
tivistic calculation of PNC amplitudes. In particular, th
Breit correction to the 6S1/2-7S1/2 PNC amplitude in133Cs
accounts for a dominant part of the deviation@4# of deter-
mined weak charge from the prediction of the stand
model @7–9#.

The purpose of this paper is to provide a detailed disc
sion of the formalism employed in Refs.@7,10# and to tabu-
late additional numerical results. Since the publication
Refs. @7,10# several calculations of the Breit correction
properties of cesium atom have been carried out@8,9,11# and
a comparison between different approaches is also prese
here. We also calculate a value for the neutron ‘‘skin’’ co
rection to the PNC amplitude based on the analysis of
periments with antiprotonic atoms@12#.

The major difference between the present analysis
earlier works on the Breit interaction in multielectron atom
@13–19# is the systematic treatment of correlation effec
i.e., contributions beyond self-consistent Breit-Coulom
Hartree-Fock~BCHF! formulation@14,17,18#. These correla-
tion effects are estimated here in the framework of relativ
tic many-body perturbation theory. It is demonstrated t
these additional contributions are comparable to the low
1050-2947/2001/65~1!/012106~13!/$20.00 65 0121
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order BCHF corrections for almost all considered atom
properties.

The paper is organized as follows. In Sec. II we descr
the employed many-body formalism. Numerical results
tabulated and discussed in Sec. III. We consider Breit cor
tions to energies, hyperfine-structure constants, off-diago
hyperfine 6S-7S amplitude, and electric-dipole matrix ele
ments. The Breit correction to parity nonconserving 6S-7S
amplitude is also evaluated in Sec. IV.

II. METHOD

The Breit interaction@20–22# is a two-particle interaction
caused by an exchange of transverse photons between a
electrons. Qualitatively, it describes a magnetic interact
between electrons~so-called Gaunt interaction! and retarda-
tion effect. Its low-frequency form in the Coulomb gaug
employed here, is given by1

B5(
i , j

2
1

2r i j
$ai•aj1~ai• r̂ i j !~aj• r̂ i j !%, ~2.1!

where a are Dirac matrices andr i j is a distance between
electrons. In this paper, we disregard the frequency dep
dence in the Breit interaction. It is worth noting that a co
sistent inclusion of the frequency dependence in the B
interaction would require simultaneous treatment of QE
self-energy correction@18#.

A. Many-body perturbation theory and Breit interaction

The many-body Hamiltonian of an atomic system can
generally represented as

H5H01T5(
i

h0~ i !1
1

2 (
i j

t~ i , j !, ~2.2!

where

1Unless specified otherwise, atomic units\5ueu5me51 are used
throughout the paper.
©2001 The American Physical Society06-1
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ANDREI DEREVIANKO PHYSICAL REVIEW A 65 012106
h0~ i !5c~ai•pi !1bc21Vnuc~ i ! ~2.3!

is a one-particle Dirac Hamiltonian for an electron includi
Coulomb interaction with the nucleusVnuc( i ) andt( i , j ) rep-
resents two-particle interactions. To effectively minimize t
perturbing two-particle interactions, one introduces a pot
tial U( i ) and rewrites the Hamiltonian as

H5(
i

$h0~ i !1U~ i !%1H 1

2 (
i j

t~ i , j !2(
i

U~ i !J .

~2.4!

For atoms with one valence electronv outside a closed-she
core a many-body wave functionuCv& in the independent-
particle approximation is a Slater determinant construc
from core and valence single-particle orbitalsf i . These or-
bitals satisfy the one-particle Dirac equation

~h01U !f i5« if i . ~2.5!

The potentialU is usually chosen to be spherically symme
ric and label i is a list of conventional quantum numbe
$ni , j i ,l i ,mi% for bound states, withni replaced by« i for
continuum. With the complete set of single-particle sta
f i , the Hamiltonian, Eq.~2.4!, can be recast into the secon
quantized form

H5(
i

« iai
†ai1(

i j
~2U ! i j ai

†aj1
1

2 (
i jkl

t i jkl ai
†aj

†alak .

~2.6!

Only certain combinations of positive- and negative-ene
solutions of the Dirac equation~2.5! are retained in relativ-
istic many-body Hamiltonian~no-pair approximation@23#!.
The reader is directed to Refs.@24,25# and references therei
for a detailed discussion of the problem of negative-ene
states.

We follow a convention of Ref.@26# and label core orbit-
als asa,b,..., excited ~virtual! orbitals asm,n,..., and va-
lence orbitals asv,w. Indexesi,j,k,l range over both core an
virtual ~including valence! orbitals. In this notation the
lowest-order wave function isuCv&

(0)5av
†u0core&, where

quasivacuum stateu0core&5(PaPcoreaa
†)u0& represents a

closed-shell atomic core. Introducing normal form of ope
tor products, :̄ :, defined with respect tou0core& one can
rewrite a two-particle operatorT as a sum of zero-, one-, an
two-body contributions@26#

T~0!5
1

2 (
h

tbb ,

T~1!5(
i j

t i j :ai
†aj :,

T~2!5
1

2 (
i jkl

t i jkl :ai
†aj

†alak :,

with t i j 5Sa(t ia ja2t iaa j). In this notation the Hamiltonian
reads
01210
-

d

s

y

y

-

H85S i« i :ai
†ai :1S i j $t i j 2Ui j %:ai

†aj :

1
1

2
S i jkl t i jkl :ai

†aj
†alak :. ~2.7!

Zero-body contribution to the total HamiltonianH has been
discarded since it does not affect the properties of vale
states. It is worth emphasizing that the Breit and Coulo
interactions are of course two-particle operators; reference to
zero-, one-, and two-body parts arises due to the separati
into the normal forms of operator products and is just a m
ter of convenience.

In the case at hand, the two-particle interaction

T5C1B

is a sum of the instantaneous Coulomb interactionC
5S i , j (1/r i j ) and the Breit interactionB, Eq. ~2.1!. Corre-
sponding two-particle matrix elements are designated asci jkl
and bi jkl . The Coulomb interaction dominates and we d
tinguish two possibilities in defining the effective potentialU
in Eq. ~2.5!: traditional Coulomb-Hartree-Fock~CHF! poten-
tial UCHF and BCHF potentialUBCHF, where the Breit and
Coulomb interactions are treated on the same footing.
differentiate between the two resulting eigensystems of
~2.5! we will add bar to the quantities pertaining to th
BCHF case, e.g.,«̄ i ,āi ,āi

† .
The conventional CHF equation reads

~h01UCHF!f i5« if i , ~2.8!

UCHF being mean-field Hartree-Fock potential; this potent
contains direct and exchange Coulomb interactions of e
tron i with core electrons. A set of CHF equations is solv
self-consistently for core orbitals; valence wave functio
and energies are determined subsequently by ‘‘freezing’’
core orbitals. The BCHF approximation constitutes introdu
tion of the Breit interaction simultaneously with the Co
lomb interaction into the above CHF equation

~h01UBCHF!f̄ i5 «̄ if̄ i . ~2.9!

Compared to the CHF equations, energies, wave functio
and the Hartree-Fock potential are modified. We discus
relation between CHF and BCHF methods and the associ
relaxation effect in Sec. II B.

To simplify the second-quantized Hamiltonian, Eq.~2.7!,
we use the fact that matrix elements of the Hartree-F
potentials are^f i uUCHFuf j&5ci j and ^f̄ i uUBCHFuf̄ j&5 c̄i j

1b̄i j . In the Coulomb-Hartree-Fock case the Hamiltoni
reduces to a sum of the conventional Coulomb Hamilton

HC8 5(
i

« i :ai
†ai :1

1

2 (
i jkl

ci jkl :ai
†aj

†alak : ~2.10!

and the Breit correction

dBHC8 5(
i j

bi j :ai
†aj :1

1

2 (
i jkl

bi jkl :ai
†aj

†alak :.

~2.11!
6-2
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CORRELATED MANY-BODY TREATMENT OF THE BREIT . . . PHYSICAL REVIEW A 65 012106
In the case of equivalent treatment of the Breit and Coulo
interactions~BCHF case! the corresponding Hamiltonian i
less complicated,

HC1B8 5(
i

«̄ i :āi
†āi :1

1

2 (
i jkl

~ c̄i jkl 1b̄i jkl !:āi
†ā j

†āl āk :,

~2.12!

since the effective one-body Breit term in Eq.~2.11! has
been ‘‘transformed away’’ by a proper choice of one-parti
states.

Of course, finding a solution of the Shro¨dinger equation
even with the traditional many-body Coulomb Hamiltonia
Eq. ~2.10!, is a nontrivial problem. Many-body perturbatio
theory@26# has proven to be very successful in treating co
tributions beyond the Hartree-Fock level. In particular,ab
initio relativistic many-body calculations for alkali-metal a
oms have been performed by Notre Dame and Novosib
~Sydney! groups. These and other calculations have been
viewed recently in Ref.@27#. An accurate description of th
correlations~i.e., contributions beyond Hartree-Fock valu!
plays a crucial role in high-precision calculations. One of
most striking examples of the importance of correlations
133Cs is the magnetic-dipole hyperfine-structure~HFS! con-
stant A of 5D5/2 level. Here the Coulomb-Hartree-Foc
value,17.47 MHz, has a sign opposite to that of experime
tal value221.24~5! MHz from Ref. @28#. The dominant cor-
relation corrections to matrix elements arise because of c
shielding of externally applied fields~e.g., nuclear fields for
HFS constants! and an additional attraction of a valence ele
tron by an induced dipole moment of the core@29#. The
former effect is described by contributions beginning at s
ond order@random-phase approximation~RPA!# and the lat-
ter in third order~Brueckner corrections! of many-body per-
turbation theory. Representative many-body diagrams
shown in Fig. 1. Qualitatively, the Breit correction to a ce
tain Coulomb diagram is proportional to the value of t
Coulomb diagram. Therefore, in addition to lowest-ord
corrections we consider the Breit contributions to the do
nant RPA and Brueckner diagrams. It will be demonstra
that thesecorrelated Breit corrections in many cases a
comparable to the lowest-order ones. In the BCHF basis
correlated Breit correction to valence energies appears in
second order; a sample diagram is drawn in Fig. 2. The

FIG. 1. Sample second- and third-order Brueckner-Goldst
diagrams representing many-body contributions to matrix eleme
Diagrams~a! and~b! arise in the random-phase approximation a
~c! is the Brueckner-orbital correction.
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rections to this class of diagrams is comparable to the m
fication at the Hartree-Fock level.

In the present paper we employ many-body perturbat
theory~MBPT!. Explicit expressions for contributions to ma
trix elements up to the third order were tabulated by Blund
et al. @30#. These authors provide formulas for a general p
turbing potential with one- and two-body parts. In the seco
and third orders there are 31 distinct diagrams involving o
body part of the perturbation and 28 diagrams contain
only two-body part. Certainly, calculations of the Breit co
rections are less complicated in the Breit-Coulomb-Hartr
Fock basis, where the one-body perturbation is absent.
other advantage of the BCHF basis is an automatic inclus
of important relaxation effect discussed below. An adequ
account for the relaxation effect correction in the CHF ba
would have required fifth-order calculations for matrix el
ments.

The generalization of MBPT expressions to a simul
neous treatment of Coulomb and Breit interactions
straightforward: Coulomb interaction lines are replaced b
sum of Coulomb and Breit interactions and particle~hole!
lines by Breit-Coulomb-Hartree-Fock states~see Figs. 1 and
2.! Together with the corrections linear in the Breit intera
tion such approach introduces terms nonlinear in the B
interaction. Strictly speaking, these nonlinear terms have
meaningful theoretical basis and therefore have to be o
ted. However, the Breit contribution to atomic properties
relatively small and the much smaller terms nonlinear in
Breit interactions can be neglected at the present leve
accuracy.

B. Relaxation effect

In the CHF basis the first-order corrections to valen
energies«v and matrix elementsZwv due to the one-body
part of the Breit interaction are given by

d«v5bvv ,
~2.13!

dZwv5(
iÞv

zwibiv

«v2« i
1 (

iÞw

bwiziv

«w2« i
.

Similar one-body Breit corrections can be calculated as
ferences between lowest-order values found in the Br
Coulomb-and Coulomb-Hartree-Fock approximations

e
ts.

FIG. 2. Representative second-order contribution to an ene
of valence electron.
6-3
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ANDREI DEREVIANKO PHYSICAL REVIEW A 65 012106
d«v
HF5 «̄v2«v , ~2.14!

dZwv
HF5^f̄wuzuf̄v&2^fwuzufv&.

In Fig. 3 we present a comparison of the lowest-order o
body Breit corrections to valence energies, HFS constanA
and electric-dipole transition amplitudes. The dotted a
striped bars represent first-order, Eq.~2.13!, and Hartree-
Fock corrections, Eq.~2.14!, respectively. There is a strikin
discrepancy between the two corrections for all these qu
tities. For example, the first-order correction to the 6s HFS
constant is20.4%, while at the Hartree-Fock level the Bre
correction almost vanishes.

These large discrepancies are explained by a ‘‘relaxati
effect, i.e., modification of the Hartree-Fock potent
through adjustment of core orbitals@18#. To illustrate this
effect we rewrite the BCHF equation, Eq.~2.9!, as

~h01UCHF1DU !f̄ i5 «̄ if̄ i , ~2.15!

where the perturbing potential isDU5UBCHF2UCHF. Fur-
ther, f̄ j5f j1x j , wherex j is a correction to a CFH wave
function f j due to the Breit interaction. In the lowest ord
these corrections can be expressed as

x j5(
i

8 f i

^ i uDUu j &
« j2« i

. ~2.16!

To the first order in the Breit interaction,

FIG. 3. Comparison of Hartree-Fock and first-order relative o
body Breit corrections to~a! energies of valence states,~b!
hyperfine-structure~HFS! constantsA, and~c! electric-dipole tran-
sition amplitudes. The dotted and striped bars represent first-o
and Hartree-Fock corrections, respectively. The relative correct
to the energies and HFS constants are defined with respect to
perimental values, and electric-dipole amplitudes with respec
Coulomb-Hartree-Fock values.
01210
-

d

n-

’’
l

DU~1!'(
a
E fa

†~2!b~1,2!fa~2!dt2

1(
a
E xa

†~2!c~1,2!fa~2!dt2

1(
a
E fa

†~2!c~1,2!xa~2!dt21 . . .

~2.17!

with the proper exchange terms. Here the first term is
explicit Breit contribution, while in the second and the thi
terms the Breit interaction enters implicitly through corre
tions to core orbitals. Only the first term~and its exchange
form! are included in the first-order correction, Eq.~2.13!. As
demonstrated by Lindrothet al. @18# for Breit corrections to
the energy levels of Hg, the residual ‘‘relaxation’’ terms a
large and substantially modify the first-order correction
Similar observation has been made by Johnsonet al. @31# in
calculations of Breit corrections to energies of sodiumli
ions. Independent of the present analysis~partially published
in Ref. @7#!, the relaxation effect in Cs has been recen
discussed by Kozlovet al. @32#.

At this point it is clear that the inclusion of Breit interac
tion in the Coulomb-Hartree-Fock equations~i! greatly sim-
plifies many-body perturbation expansions, and~ii ! automati-
cally accounts for the significant relaxation effects. In oth
words, compared to the traditional Coulomb-Hartree-Fo
formulation, the transformation to the Breit-CHF basis su
many-body diagrams involving the effective one-body Br
interaction to all orders of perturbation theory.

C. Construction of Breit-Coulomb Hartree-Fock basis

Several methods can be devised for constructing
Breit-CHF single-particle basis. For example, one can de
mine the Breit corrections to wave functions by substituti
Eq. ~2.17! into Eq. ~2.16!. It is convenient to express th
resulting equations in terms of expansion coefficientsj i j
5^f i ux j&

~« j2« i !j i j 5(
a

b̄ia ja1(
ka

$jka* c̃kia j1jkac̃aik j%

~2.18!

Here t̃ i jkl is an antisymmetrized two-particle matrix eleme
t̃ i jkl 5t i jkl 2t i j lk . Once the equations~2.18! are solved the
‘‘Breit-dressed basis’’ can be determined asf̄ j5f j

1( i8j i j f i . The derived equations are essentially equival
to the random-phase approximation or the self-consist
field method, with an effective one-body Breit interactio
serving as an external perturbation. The many-body diagr
for the amplitudesj i j are shown in Fig. 4. By iterating thes
equations one sums a certain class of many-body diagram
all orders in the Coulomb interaction.

The resulting equations~2.18! are linear in the Breit in-
teraction. It is worth noting that the Breit interaction, E
~2.1!, is an approximation and terms nonlinear in the Br
interaction have no meaningful theoretical basis. Therefo
linearized equations~2.18! are conceptually more attractiv
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CORRELATED MANY-BODY TREATMENT OF THE BREIT . . . PHYSICAL REVIEW A 65 012106
than the self-consistent BCHF method based on an inte
tion of Eq. ~2.9!. However, the Breit contribution to atomi
properties is relatively small and the much smaller nonlin
terms in the Breit interaction can be safely neglected at
present level of accuracy.

An alternative approach to generating the BCHF basis
has proven to be more numerically robust and was emplo
in the present work. Two complete basis sets, CHF$f i% and
BCHF $f̄ i% sets, can be related by a unitary transformati

f̄ j5(
i

di j f i .

Using Eq.~2.15! one determines expansion coefficientsdk j
and one-particle BCHF energies«̄ j from secular equations

~«k2 «̄ j !dk j1(
i

~DU !kidi j 50, ; j . ~2.19!

In this paper the difference between the two Hartree-F
potentialsDU was generated using finite-difference me
ods. The radial Coulomb-Hartree-Fock basis was appr
mated withB splines@19# and then transformed into the ra
dial BCHF basis employing Eq.~2.19!. Negative-energy
states,« i,2mec

2, were included in the diagonalization pro
cedure.

To summarize, third-order many-body calculations we
performed in the Breit-Coulomb-Hartree-Fock basis with
two-body Breit interactionB(2) treated on equal footing with
the residual Coulomb interaction. Sample many-body d
grams are presented in Figs. 2 and 1. Contributions

FIG. 4. Diagrammatic representation of Eq.~4!. Here horizontal
solid ~wavy! lines represent the Coulomb~Breit! interactions.
Double horizontal lines are expansion coefficientsj and little
‘‘stumps’’ indicate places where particle or hole lines are to
attached.
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a-

r
e

et
d

k
-
i-

e
e

-
f

negative-energy states, discussed, for example, in Ref.@24#,
were also included and found to be relatively small@10#. Two
series of third-order calculations were performed, first w
the Breit and Coulomb interactions fully included using t
Breit-CHF basis set, and second in the CHF basis set with
the Breit interaction and negative-energy states. The obta
differences are the Breit corrections analyzed in the follo
ing sections.

Numerical calculations were performed usingB-spline ba-
sis sets generated in a cavity of radius 75 a.u. This cavity
has been chosen for numerical consistency with the prev
determination of parity-nonconserving amplitudes by Blu
dell et al. @5#. The numerical quasispectrum was represen
by 100 negative-and 100 positive-energy states for each
gular quantum numberk. The intermediate-state summation
were performed over 75 lowest-energy positive-energy st
and 75 highest-energy negative-energy states for each pa
waves1/2-h1 1/2.

III. ATOMIC PROPERTIES

A. Energies of valence states

At the Hartree-Fock level, the Breit interaction contri
utes less than 0.1% to all the energy levels considered in
3. Numerical values for Breit correction at the Hartree-Fo
level are given in Table I; these were obtained as differen
between one-particle energies in Breit-CHF and CHF
proximations, i.e.,«̄v2«v . As in the traditional CHF calcu-
lations, the first-order many-body contributions to valen
energies vanish identically in the BCHF basis. In the seco
order the corrections arise due to self-energy diagrams.
each valence state we perform two calculations with a
without the Breit interaction and take a difference betwe
the two values. Further, we distinguish between two clas
of Breit modifications, one-body and two-body correction
as illustrated for a diagram in Fig. 5. The one-body con
bution arises from a transformation of the one-particle ba
from Coulomb-Hartree-Fock to Breit-CHF.

The calculated values and breakdown on various con
butions are presented in Table I. Apparently the Breit corr
tion to thecorrelation part of the energy,dEBO, is equally
important as the modification in the lowest order,dEHF. The
k
ue
TABLE I. Contributions of the Breit interaction to energies of valence electrons in cm21. ECHF are the
energies in the Coulomb-Hartree-Fock approximation.dEHF column lists corrections at the Hartree-Foc
level defined as«̄v2«v . ColumnsdEBO ,B(1) anddEBO ,B(2) are the contributions in the second order d
to one-body and two-body Breit interactions, respectively.

State ECHF dEHF dEBO ,B(1) dEBO ,B(2) dETotal

6S1/2 227954 3.2 24.98 20.83 22.6
7S1/2 212112 1.1 21.1 20.28 20.26
6P1/2 218791 7.5 20.08 20.28 7.1
7P1/2 29223 2.7 20.1 20.10 2.5
6P3/2 218389 2.9 21.8 20.25 0.84
7P3/2 29079 1.0 20.56 20.09 0.38
5D3/2 214138 210.2 212 20.35 222
5D5/2 214163 211.8 214 20.33 226
6-5
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ANDREI DEREVIANKO PHYSICAL REVIEW A 65 012106
interplay of Breit corrections to various many-body diagra
for the energy of the 7S1/2 state is remarkable. Here the tw
termsdEHF anddEBO,B(1) are almost equal and have opp
site signs, the resulting modification being determined
relatively smaller two-body Breit correctiondEBO,B(2).
From Table I we see that generally the two-body Breit co
tributions are smaller than the one-body corrections; theB(2)

corrections become important when the cancellations are
volved.

The first study of correlated Breit corrections to the en
gies of Cs and other alkali-metal atoms has been perfor
in Refs.@33,34#. Based on formalism developed in Ref.@35#,
the corrections have been determined as an expectation v
of the Breit correction to the Coulomb-Hartree-Fock man
body Hamiltonian, Eq.~2.11!,

dEv5^Cv
SDudBHC8 uCv

SD&. ~3.1!

Here uCv
SD& is the linearized coupled-cluster wave functio

limited to single and double excitations from the referen
Slater determinantav

†u0core&. The correlations are built into
these wave functions. The coupled-cluster singles-dou
~CCSD! formalism accounts for a complete third order
MBPT with certain classes of diagrams summed to all
ders. However, the random-phase-approximation sequen
diagrams, important for the self-consistent treatment of
Breit interaction, is missed starting from the fourth ord
The approach employed by Kozlovet al. @9# is similar to the
present method, but in Ref.@9# the full Breit interaction has
been approximated by the Gaunt term and contribution
to effective two-body interactionB(2) has been neglected.

FIG. 5. Separation of Breit correction into~a! two-body and~b!
one-body~basis shift! parts. Here horizontal solid and wavy line
represent Coulomb and Breit interactions respectively; double h
zontal line is a sum of Coulomb and Breit interactions. Vertic
solid lines correspond to Coulomb-Hartree-Fock states and ver
double lines to Breit-CHF states.
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Comparison of our results with the CCSD values and
sults of Ref.@9# is presented in Table II. The best agreeme
is for P1/2 states where there is no cancellation between c
rections dEHF and dEBO, B(1). The values differ signifi-
cantly forS1/2 states where strong cancellations, emphasiz
higher orders of MBPT, are present. One should keep
mind that these discrepancies arise only when the Breit
rections, due to cancellation effects, are small and do
have an enhanced effect on evaluation of pari
nonconserving amplitudes, discussed in Sec. IV. Calculati
@9# are less consistent with the present and CCSD res
with discrepancies caused by approximation of full Breit
teraction by Gaunt term and neglect of two-body part of
Breit interaction.

B. Magnetic-dipole hyperfine structure constants

To reiterate discussion in Sec. II, we performed two ser
of computations:~i! traditional Coulomb and~ii ! fully in-
cluding Breit interaction. The difference between resulti
values defines the Breit correction. From parametrical ar
ment it is assumed that the leading Breit corrections a
from induced modifications of the dominant traditional Co
lomb diagrams. Therefore the calculations were limited
the RPA and Brueckner diagrams~see Fig. 1!. Further, the
RPA sequence was truncated at the third order.

In calculations of Breit corrections to133Cs HFS
magnetic-dipole constantsA nucleus was modeled by a un
formly magnetized ball of radiusRm55.6748 fm. The gyro-
magnetic ratio for133Cs nucleus isgI50.737 89@36#.

The breakdown of Breit corrections to various classes
many-body diagrams is given in Table III. Clearly, the Bre

TABLE II. Comparison of Breit corrections to energies of v
lence electrons in cm21.

State This work CCSD@33# Gaunt, noB(2) @9#

6S1/2 22.6 21.1 24
7S1/2 20.26 0.72 0
6P1/2 7.1 6.9 9
7P1/2 2.5 2.6 2
6P3/2 0.84 0.29 2
7P3/2 0.38 0.45 0

ri-
l
al
TABLE III. Breit corrections to magnetic-dipole hyperfine structure constantsA of 133Cs in MHz. Column
CHF lists Coulomb-Hartree-Fock values. Breit corrections to a classX of many-body diagrams of orderN are
designated asdAX

N . Total Breit correctiondATotal is a sum of modificationsdAX
N .

State CHF dAHF
I dARPA

II1III dABO
III dATotal

6S1/2 1425.3 0.011 4.1 0.79 4.87
7S1/2 391.6 20.029 1.1 0.08 1.15
6P1/2 160.9 20.68 0.39 20.24 20.52
7P1/2 57.62 20.23 0.14 20.059 20.15
6P3/2 23.92 20.06 0.10 20.008 0.034
7P3/2 8.642 20.022 0.038 20.0020 0.014
5D3/2 18.23 0.099 0.10 0.11 0.31
6-6



an
a
o
o

de
to
i-

f.
he
ela
-

d

H
o

t i
rli
e
ot

l

e-

-

s
e
e-

nc-
est-
ng
ns
-
al-
ve
nts

ile
one
nd
x-

la-
ng
ty-
igh-

f

n
o

ff-
ant

i-

e-
in-

-
of
en

o

CORRELATED MANY-BODY TREATMENT OF THE BREIT . . . PHYSICAL REVIEW A 65 012106
correction to correlations (dARPA
II1III ,dABO

III ) is equally impor-
tant as the modifications in the lowest orderdAHF

I . As an
extreme case, almost entire Breit correction to HFS const
of 6S and 7S states comes from correlations. There is
cancellation of various contributions to the HFS constants
P1/2 and P3/2 states. For these states the contribution
higher-order diagrams not included in the present third-or
analysis can become enhanced. At the same time the
Breit corrections toA6S andA7S are expected to be insens
tive to higher-order contributions.

A comparison of our results, partially published in Re
@7#, with other calculations is presented in Table IV. T
correction to hyperfine constants is very sensitive to corr
tions: e.g., Ref.@37# found a numerically insignificant modi
fication for A6S , while Refs.@10,33# determined the modifi-
cation to be large~24.64 MHz!, and the approach reporte
here yields14.87 MHz. In the calculation of Ref.@37# the
correction was determined as a difference of the Breit-C
and CHF values; however, such approach misses two-b
Breit corrections of comparable size. In Refs.@10, 33# a
second-order perturbation analysis was used for the Brei
teraction, but the important relaxation effect discussed ea
was omitted. The present calculation incorporates all m
tioned diagrams and is also extended to third order. M
vated by strong dependence of results@7,33,37# on many-
body corrections, Sushkov@11# derived an analytica
expression for Breit correction to HFS constants ofS states.
His results for 6S and 7S states are in an excellent agre
ment with the present calculations. Kozlovet al. @9# used an
approach similar to Ref.@7#. There is a cancellation of vari

TABLE IV. Comparison of contributions of Breit interaction t
magnetic-dipole hyperfine-structure constantsA of 133Cs in MHz.

6S1/2 7S1/2 6P1/2 7P1/2

This worka 4.87 1.15 20.52 20.15
Kozlov et al. @9#b 5.0 0.8 20.2 0.0
Sushkov@11#c 4.6 1.09
Safronovaet al. @33#d 24.64 20.83 20.87 20.29
Blundell et al. @37#e 0.00 20.05 21.25 20.39

aThird-order calculations in the BCHF basis, Ref.@7#.
bFull Breit interaction is approximated by the Gaunt term.
cAnalytical aZ expansion withZ555.
dSecond-order calculations in the CHF basis. See Ref.@10# for de-
tails.
eRPA sequence of diagrams in one-body Breit interaction.
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ous contributions for theP states; both higher-order diagram
and an approximation of the full Breit interaction by th
Gaunt term in Ref.@9# are the sources of discrepancies b
tween our results for 6P1/2 and 7P1/2 states.

Hyperfine structure constants sample atomic wave fu
tions close to the nucleus and provide a unique way of t
ing atomic-structure calculations of parity-nonconservi
amplitudes. In Table V we combine the Breit correctio
with the results ofab initio all-order Coulomb-correlated cal
culations@37# and compare the results with experimental v
ues. It is clear that the Breit corrections uniformly impro
the agreement. In particular, the theoretical HFS consta
are improved to 0.1% for 6S1/2, 7S1/2, and 7P1/2 states ex-
cept for 6P1/2 where the discrepancy becomes 0.5%. Wh
the achieved agreement in Table V is encouraging,
should keep in mind the omitted QED corrections a
higher-order contributions in Coulomb interaction. For e
ample, an estimate@38,39# for hydrogenlikeCs ion results in
a QED correction to HFS constantA of S states at a few
0.1%. Due to electron-electron interaction inatomicCs QED
corrections can be significantly modified. Correlated calcu
tions of QED corrections would be beneficial for reachi
0.1% level of accuracy needed for interpretation of pari
nonconservation and also for understanding the role of h
order Coulomb diagrams at 0.1% precision.

C. Off-diagonal 6S-7S hyperfine-structure matrix element

Experiments@3# on PNC in 133Cs determine the ratio o
6S-7S PNC amplitudeEPNC to vector transition polarizabil-
ity b. The value ofb is difficult to calculate reliably since it
vanishes in the nonrelativistic limit. Following suggestio
@40#, Bennett and Wieman@4# determined a supporting rati
of b to off-diagonal magnetic-dipole matrix elementMhf
with a precision of 0.16%. Such an approach eliminatesb
from the analysis, but requires an accurate value forMhf .

The quantityMhf can be expressed in terms of the o
diagonal magnetic-dipole hyperfine-structure const
A6S-7S . This constant can be well approximated by a sem
empirical geometric-mean formula@41#

A6S-7S
s.e. 'AA6SA7S, ~3.2!

where A6S and A7S are precise experimental hyperfin
structure constants. The accuracy of this expression was
vestigated in Refs.@42–44#. Most recently, Dzuba and Flam
baum @44# employed several many-body techniques
increasing accuracy in the Coulomb interaction betwe
m

TABLE V. Comparison of theoretical and experimental hyperfine constantsA of 133Cs. All-order

Coulomb-correlated values by Blundellet al. @37# are supplemented with Breit corrections. Deviations fro
experimental values are placed in square brackets.

6S1/2 7S1/2 6P1/2 7P1/2

Coulomb@37# 2291.00@20.3%# 544.09@20.3%# 293.92@0.7%# 94.60@0.3%#

Breit 4.87 1.15 20.52 20.15
Total 2295.87@20.1%# 545.24@20.1%# 293.40@0.5%# 94.45@0.1%#

Experiment 2298.16 545.90 291.93~2! 94.35~4!
6-7
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TABLE VI. Breit corrections to reduced electric-dipole matrix elements for transitions between low-
valence states of Cs atom. ColumndD,% represents a ratio~in %! of the total Breit correction to a matrix
element calculated in a third order of MBPT. See caption of Table III for description of other columns

Transition CHF dDHF
I dDRPA

II1III dDBO
III dDTotal dD,%

6S1/2-6P1/2 5.278 0.00035 20.00022 20.0011 20.00097 20.02
6S1/2-6P3/2 7.426 0.00078 20.00045 20.0014 20.0011 20.02
6S1/2-7P1/2 0.3717 0.0018 20.00013 0.00021 0.0019 0.5
6S1/2-7P3/2 0.6947 0.00059 20.00020 0.00011 0.00049 0.07
7S1/2-6P1/2 4.413 0.0046 20.000067 0.00038 0.0049 0.1
7S1/2-6P3/2 6.671 0.0019 20.000011 20.00030 0.0016 0.02
7S1/2-7P1/2 11.01 20.0011 20.000050 20.0018 20.0029 20.03
7S1/2-7P3/2 15.34 0.0007 20.00013 20.0019 20.0013 20.009
5D3/2-6P1/2 8.978 20.0044 20.00035 20.0082 20.013 20.2
5D3/2-6P3/2 4.062 20.0028 20.00019 20.0035 20.0065 20.2
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electrons and found that this geometric-mean formula is
curate to a fraction of 1023. Here we extend their analysi
and rigorously consider the additional effect of the correla
Breit interaction. The Breit correction to hyperfine-structu
constantsA6S and A7S is in the order of 0.2% and it can
affect the sub-0.1% accuracy of the Coulomb analysis@44#.

Breit corrections are relatively small. If Eq.~3.2! holds,
the following relation between the Breit corrections (dA) has
to be satisfied

dA6S-7S
s.e.

A6S-7S
s.c. '

1

2 H dA6S

A6S
1

dA7S

A7S
J . ~3.3!

As a result of the correlated Breit calculations we fi
dA6S-7S52.4 MHz. With A6S-7S51120.1 MHz, the ratio
(dA6S-7S)/(A6S-7S)52.131023. Using the Breit corrections
to HFS constantsA6S andA7S from Table III, the semiempir-
ical rhs of the above equation is also 2.131023. Clearly, the
accuracy of the geometric-mean formula~3.2! is not affected
by the Breit correction. Qualitatively, this can be explain
by a close proportionality of 6S and 7S wave functions in
the vicinity of the nucleus, where the main contribution
the HFS constants ofS states is accumulated.

D. Electric-dipole transition amplitudes

Calculated Breit corrections to reduced electric-dip
matrix elements of various transitions in Cs are presente
Table VI. We note that the Breit corrections to the rando
phase approximation diagrams are small compared to
lowest-order and Brueckner-orbital corrections. Genera
the total corrections are rather small~;0.1%!, with an ex-
ception of 6S1/2-7P1/2 electric-dipole matrix element. Usin
the ab initio all-order Coulomb-correlated value by Blunde
et al. @37#, ^6S1/2iDi7P1/2&50.279, and adding the Bre
correction of 0.0019, one findŝ6S1/2iDi7P1/2&50.281 in a
better agreement with the 0.284~2! experimental value of
Shabanovaet al. @45#. The relatively large Breit correction i
caused both by an accidentally small matrix element and
admixture into ^6S1/2uDu7P1/2& from a 30 times larger
7S1/2-7P1/2 matrix element.
01210
c-

d

in
-
he
y

y

IV. PARITY-NONCONSERVING AMPLITUDE
6S1Õ2\7S1Õ2

The parity-nonconserving amplitude for the 6S1/2→7S1/2
transition in133Cs can be represented as a sum over inter
diate statesmP1/2

EPNC5(
m

^7SuDumP1/2&^mP1/2uHWu6S&
E6S2EmP1/2

1(
m

^7SuHWumP1/2&^mP1/2uDu6S&
E7S2EmP1/2

. ~4.1!

HereD andHW are electric-dipole amplitudes and weak i
teraction matrix elements, andEi are atomic energy
levels. The PNC amplitude is expressed in units
10211i ueua0(2QW /N), whereN578 is the number of neu
trons in the nucleus of133Cs andQW is the weak charge. In
these units the results of past calculations for133Cs are
EPNC520.905, Ref.@5#, andEPNC520.908, Ref.@6#. The
former value includes a partial Breit contribution10.002,
and the latter includes none. The reference many-b
Coulomb-correlated amplitude

EPNC
C 520.9075 ~4.2!

is determined as an average, with the partial Breit contri
tion removed from the value of Ref.@5#. The major differ-
ence between present and previous calculation@5# of Breit
correction to the PNC amplitude is an additional incorpo
tion of effective two-body part of the Breit interaction an
Breit correction to the correlations.

It is convenient to break the total Breit correctiondEPNC
into three distinct parts due to corrections in the weak int
action and dipole matrix elements, and energy denominat
respectively

dEPNC
B 5EPNC~dHW!1EPNC~dD !1EPNC~dE!. ~4.3!

For example, the modification of the PNC amplitude due
the Breit corrections to energiesdEnS, dEmP1/2

can be ex-
pressed as
6-8
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TABLE VII. Breit corrections to matrix elements of weak interaction for133Cs in units of
10211i ueua0(2QW /N). See caption of Table III for description of columns.

Transition CHF d(HW)HF
I d(HW)RPA

II1III d(HW)BO
III d(HW)Total

6S1/2-6P1/2 0.03159 20.00010 20.00015 20.000029 20.00028
6S1/2-7P1/2 0.01891 20.000058 20.000091 20.000014 20.00016
7S1/2-6P1/2 0.01656 20.000053 20.000081 20.000013 20.00015
7S1/2-7P1/2 0.00991 20.000031 20.000048 20.0000061 20.000085
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EPNC~dE!52(
m

^7SuDumP1/2&^mP1/2uHWu6S&
~E6S2EmP1/2

!2

3~dE6S2dEmP1/2
!1c.c.~7S↔6S!, ~4.4!

where the last term stands for the complex conjugate of
first term with 6S and 7S states interchanged. The Breit co
rections to energies and dipole matrix elements were
cussed in the preceding sections; here we focus on co
tions to the weak matrix elements.

The overwhelming contribution from parity-violating in
teractions arises from the Hamiltonian

HW5
GF

A8
QWrnuc~r !g5 , ~4.5!

whereGF is the Fermi constant,g5 is the Dirac matrix, and
rnuc(r ) is the neutrondensity distribution. To be consisten
with the previous calculations thernuc(r ) is taken to be a
proton Fermi distribution employed in Ref.@5#. The slight
difference between the neutron and proton distributions
be addressed in the conclusion of this section. The domin
contribution to the PNC amplitude, Eq.~4.1!, comes from
intermediate states 6P1/2 and 7P1/2. In Table VII we present
calculated third-order Breit corrections to the relevant ma
elements of weak interaction. Apparently, the dominant p
of the Breit correction arises from modifications at t
Hartree-Fock level and in RPA. All the corrections add c
herently, and we do not expect omitted higher-order d
grams to be important. In fact, third-order RPA correctio
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are a few times smaller than those in the second order, h
ing at a good convergence of the present technique.

The Breit correction to the PNC amplitude is determin
by combining induced modifications in matrix elements a
energy denominators. The required corrections are sum
rized in Table VIII. The tabulated dipole amplitudes are r
lated to the reduced matrix elements in Table VI as

^nS1/2uDun8P1/2&5^nS1/2iDin8P1/2&/A6.

Before proceeding to the correlated calculations, it
worth examining the Breit contribution to the PNC amp
tude at the Hartree-Fock level. Most of the Breit contributi
to the PNC amplitude can be determined by limiting t
summation over intermediate states in Eq.~4.1! to the two
lowest valenceP1/2 states: 6P1/2 and 7P1/2. In the CHF ap-
proximation one then findsEPNC520.6888~90% of the to-
tal value!. The lowest-order corrections to matrix elemen
and energy denominators calculated as differences betw
Breit-CHF and CHF values are listed in Table VIII. The r
sultant BCHF corrections toEPNC are

EPNC
HF ~dHW!50.0022~0.32%!,

EPNC
HF ~dD !50.0020~0.29%!, ~4.6!

EPNC
HF ~dE!520.0019~20.28%!.

Here the percentage values in parentheses are taken
respect to the CHF value of PNC amplitude. The sum
these three terms leads todEPNC50.0023. Inclusion of inter-
mediate states beyond 6P1/2 and 7P1/2 leads to a small ad-
en-
k
in
TABLE VIII. Breit corrections to electric-dipole amplitudes, weak-interaction matrix elements, and
ergy intervals;dX, I[XBCHF2XCHF, anddX, I1II1III are the differences in the third order of MBPT. Wea
matrix elements are expressed in units of 10211i ueua0(2QW /N) and energies and dipole amplitudes
atomic units.

6S1/2-6P1/2 6S1/2-7P1/2 7S1/2-6P1/2 7S1/2-7P1/2

HW , CHF 0.03159 0.01891 0.01656 0.009913
dHW , I 20.00010 20.00006 20.00005 20.000031
dHW , I1II1III 20.00028 20.00016 20.00015 20.000085
D, CHF 2.1546 0.15176 1.8017 4.4944
dD, I 0.0001 0.00073 0.0019 20.0004
dD, I1II1III 20.0004 0.00077 0.0020 20.0012
DE, CHF 20.041752 20.085347 0.030429 20.013166
dDE, I 20.000020 0.000003 20.000030 20.000007
dDE, I1II 20.000045 20.000023 20.000034 20.000012
6-9
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ANDREI DEREVIANKO PHYSICAL REVIEW A 65 012106
ditional modification todEPNC of 20.000 04. The obtained
lowest-order result is in agreement with the 0.002 correct
found by Blundellet al. @5#. In addition to the lowest-orde
the Breit correction in Ref.@5# also contained small random
phase-approximation diagrams in the Coulomb interac
for matrix elements of the weak interaction. The two-bo
Breit interaction has been disregarded in Ref.@5#. In the fol-
lowing discussion we will include these omitted effects. No
that if experimental energies~which effectively include the
Breit interaction! are used in the energy denominators of E
~4.1!, then theEPNC(dE) term must be excluded and the tot
correction becomes twice as large:dEPNC50.0042.

With further examination of the modifications ofindi-
vidual uncorrelated matrix elements summarized in Ta
VIII, one notices the following.

~i! Weak interaction matrix elements are each reduce
absolute value by 0.3%, which is directly reflected in a 0.3
correction to the PNC amplitude.

~ii ! Modification of dipole amplitudes is strongly nonun
form. There are substantial corrections only to t
6S1/2-7P1/2 ~0.5%! and 7S1/2-6P1/2 ~0.1%! matrix elements.
The large 0.5% Breit correction tô6S1/2uDu7P1/2& provides
partial resolution to a long-standing 1.5% discrepancy
spectroscopic experiment@45# and ab initio Coulomb-
correlated calculations@33,37,46#.

~iii ! The largest modification in the energy denominat
is 0.1% forE7S-E6P ; however, this leads to a 0.3% corre
tion EPNC(dE). As recently emphasized by Dzubaet al.
@47#, such large sensitivity of the resulting PNC amplitude
small variations in individual atomic properties entering E
~4.1! arises due to a cancellation of relatively large terms
the sum over states.

It is well known that correlations caused by residual Co
lomb interactions not included in the Hartree-Fock equati
can lead to substantial modifications of the lowest-order v
ues. For example, the weak matrix element^6S1/2uHWu6P1/2&
is increased by a factor of 1.8 by correlations due to resid
Coulomb interactions. As demonstrated in the previous s
tions, correlations are also important for a proper descrip
of the Breit corrections. Examination of the third-order co
rections listed in Table VIII reveals that the corrections
weak interaction matrix elements become three times la
than those in the lowest order. Using third-order matrix e
ments and second-order energies the followingab initio cor-
rections are determined:

EPNC~dHW!50.0043,

EPNC~dD !50.0035,

EPNC~dE!520.0028.

Thus the lowest-order corrections given in Eq.~4.6! are am-
plified in higher orders. The calculated Breit corrections
the PNC amplitude is expected to be insensitive to the om
ted higher-order diagrams. Such uncertainty can arise if
calculated Breit corrections to leading classes of many-b
diagrams cancel. Indeed, the calculated Breit corrections
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ways add coherently for matrix elements of weak interacti
There are also no strong cancellations between various B
corrections to the relevant dipole amplitud
^nS1/2uDun8P1/2& ~see Table VI!. Corrections to energy de
nominators are also stable with respect to the omitted hig
order contributions. For example, in Sec. III A we found th
the Breit correction to the energy of 7S1/2 valence state due
to cancellations of calculated contributions is small~20.26
cm21! enhancing possible effect of smaller higher-order c
rections. However, in the calculation of the termEPNC(dE)
this ~unstable! correction substantially appears only in
combination with a 25 times larger and stable Breit corr
tion ~7.1 cm21! to the energy of 6P1/2 state.

We further improve the accuracy of the calculation
combining all-order Coulomb-correlated matrix elemen
and experimental energy denominators tabulated in Ref.@5#
with the present third-order Breit corrections. The results

EPNC~dHW!50.0047~0.5%!,

EPNC~dD !50.0037~0.4%!, ~4.7!

EPNC~dE!520.0030~20.3%!.

Here the values in parentheses are defined relative to
Coulomb-correlated PNC amplitude, Eq.~4.2!. The total
Breit correction to the PNC amplitude isdEPNC

B 50.0054.
This result was first reported in Ref.@7#. Similar correction
of 0.0053 was obtained by Dzubaet al. @8#. Kozlov et al. @9#
found a 20% smaller correction of 0.004; this discrepancy
most likely due to the omission of the retarded part of t
Breit interaction in the calculations@9#.

If the experimental energies~which incorporate Breit cor-
rections by definition! are used in the energy denominato
the termEPNC(dE) should be excluded and the semiemp
ical Breit correction becomesdEPNC

B,s.e.50.0084. A minor dif-
ference of our treatment@7# of the Breit correction toEPNC
and Refs.@8,9# is the interpretation of results of previous
Coulomb-correlated calculations@5,6#. Authors @8,9# assert
that theab initio 0.6% correction~0.4% in Ref.@9#! should
be used to augmentEPNC

C , Eq. ~4.2!. Our approach is to
exclude the termEPNC(dE). The difference in the twointer-
pretations arises due to the difficulty of accounting fo
higher-order Coulomb diagrams. Some semiempirical ‘‘
ting’’ or ‘‘scaling’’ procedure is used in practice to mimic th
effect of the omitted contributions. Since only energies
known with a very high precision from experiments, expe
mental energies play a central role in such analysis. For
ample, the experimental energies were employed in eight
of ten test cases in the scatter analysis in the Table IV of R
@5# ~Phys. Rev. D! based on Eq.~4.1!.

The above discussion demonstrates some arbitrarines
countered in the analysis of theoretical values and ass
ment of theoretical uncertainty when a semiempirical adju
ment ofab initio values is attempted. We notice that autho
of Ref. @8,9# argue that the theoretical uncertainty of the PN
amplitude is in the order of 1%, therefore a 0.3% differen
between the two different interpretations of the Breit corre
tion is irrelevant at this level. We believe that the most co
6-10
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CORRELATED MANY-BODY TREATMENT OF THE BREIT . . . PHYSICAL REVIEW A 65 012106
vincing error estimate would be a repetition of the sca
analysis originally performed in Ref.@5# but with a Breit
correction to the involved quantities included. Such calcu
tion is beyond the scope of the present work. However,
expect that the resulting uncertainty would be better than
original 1% assigned to the results@5,6# because of the bette
theory-experiment agreement for dipole amplitudes~see@4#!
and hyperfine-structure constants~see Table V!. Additional
QED and especially neutron skin effects can further mod
the value ofEPNC in a way that cannot be mimicked by th
suggested analysis.

The parity violation in atoms is dominated by theZ-boson
exchange between atomic electrons andneutrons. However,
the reference valueEPNC

C Eq. ~4.2!, is based on the empiri
cally deducedproton distribution. The difference betwee
the proton and neutron distributions is visualized as the n
tron ‘‘skin’’ or ‘‘halo.’’ Here we update our previous treat
ment of the neutron skin correction with the most recent d
from the literature. This correction was estimated in Ref.@5#
but was not included in the final value for the PNC amp
tude. It can be shown that the neutron skin correctiondEPNC

n.s.

does not depend on the electronic structure, therefore it
be parametrized as

dEPNC
n.s.

EPNC
'2

3

7
~aZ!2

DRnp

Rp
. ~4.8!

HereRp is the root-mean-square~rms! radius of proton dis-
tribution andDRnp is the difference between rms radii o
neutron and proton distributions. This expression can be
ily derived from analysis by Fortsonet al. @48#. From non-
relativistic nuclear-structure calculations Pollock and We
iver @49# concludedDRnp /Rp50.016 or 0.022 depending o
the model of nuclear forces. The calculations@50,51# of
nuclear distributions wererelativistic and the corrections
twice as largeDRnp /Rp50.043– 0.053 were found. There
fore, nonrelativistic calculations led todEPNC

n.s. /EPNC of
20.1% and relativistic determinations to the range of20.3
to 20.4%. The latter values are comparable to the exp
mental error bar of the PNC amplitude@3,4# and unfortu-
nately it is difficult to assess the accuracy of the nucle
structure calculations.

Here we propose an alternative analysis of the neu
skin correction allowing to estimate the error bar. Inde
Trzcinskaet al. @12# very recently deduced neutron dens
distributions from experiments with antiprotonic atoms a
concluded that

DRnp5~20.0460.03!1~1.0160.15!
N2Z

A
fm. ~4.9!

Here N and A are the neutron and the mass numbers.
though experimental data for133Cs do not enter the analys
@12#, a wide range of stable nuclei was investigated. Assu
ing that this relation holds for133Cs we find DRnp
50.13(4) fm. For133Cs Rp54.807 fm@52# leading to

dEPNC
n.s.

EPNC
520.0019~6!. ~4.10!
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Therefore, the neutron skin corrects the PNC amplitude
20.2% with an error bar of 30%. This uncertainty contri
utes only 0.06% to an error budget of the observed w
charge, i.e., the proposed determination of the neutron
correction will be adequate until the 0.1% level of over
accuracy is reached.

Combining the calculated semiempirical 0.9% Breit co
rection with the reference Coulomb-correlated value, E
~4.2!, and the neutron skin correction, Eq.~4.10!, one obtains
the parity-nonconserving amplitude

EPNC~
133Cs!520.8974310211i ~2QW /N!. ~4.11!

In Sec. III C we concluded that the result for the off-diagon
hyperfine structure matrix elementMhf by Dzuba and Flam-
baum@44# is not affected by the Breit correction. Using the
value ofMhf together with the experimental results@3,4# we
arrive at

EPNC~
133Cs!520.8354~33!310211a.u. ~4.12!

From the values above, the observed weak charge is

QW~133Cs!5272.61~28!expt~73! theor.

This value differs from the prediction@53# of the standard
model QW

SM5273.20(13) by 0.7s, vs 2.5s of Ref. @4#,
wheres is calculated by taking experimental and theoreti
uncertainties in quadrature. Here we assigned 1% uncerta
to the theoretical PNC amplitude, Eq.~4.11!. The deviation
stands at 1.3s if 0.4% theoretical uncertainty is assumed
discussed by Bennett and Wieman@4#. Following Ref.@7#, a
similar conclusion has been reached in Refs.@8,9#.

V. CONCLUSION

In this paper we presented a relativistic many-body f
malism for treating correction from the Breit interaction. N
merical evaluation of the Breit corrections to a number
properties of cesium atom were carried out. In particular,
considered energies, hyperfine-structure constants, elec
dipole transition amplitudes and 6S-7S parity-violating am-
plitude. We demonstrated that the Breit corrections to co
lations are as important as the modifications at the low
order Hartree-Fock level. This work supplements Ref.@7#
with additional numerical results. The present treatment
been based on third-order relativistic many-body pertur
tion theory. In a few cases we observed intricate cance
tions between the lowest-order and higher-order correctio
These are the counterintuitive cases where the most
vanced methods of many-body perturbation theory origina
developed for residual Coulomb interaction, which will ha
to be employed to obtain an adequate description of a sm
Breit correction.

Is it possible to test the accuracy of the theoretical tre
ment of the Breit contribution for alkali-metal structure? O
could consider the nonrelativistically forbidden magnet
dipole transitionsnS1/2-n8S1/2. A second-order analysis@24#
demonstrated exceptionally large contributions from
Breit interaction and negative-energy states for such tra
6-11
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tions; more accurate all-order calculations would be de
able. At the same time, an accurate experimental value
the 7S-6S transition in Cs is available@4#.

We determined Breit correction to parity nonconservi
~PNC! amplitude of the 6S-7S transition. The calculated
correction resolves most of the discrepancy@4# between the
standard model prediction and atomic PNC determination
the 133Cs weak charge.

Breit correction to the PNC amplitude is one of th
smaller contributions that needed to be addressed in ord
reach the next level of accuracy inab initio calculations re-
quired for refined interpretation of parity violation. In th
paper we also evaluated and constrained the neutron ‘‘s
or ‘‘halo’’ correction. As discussed in Refs.@8,9,11#, the re-
-
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maining corrections that may contribute at a few 0.1%
due to higher-order many-body diagrams in the Coulo
interaction and QED corrections.
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