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Integration of the Schrodinger equation by canonical transformations
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Owing to the operator nature of the quantum dynamical variables, classical canonical transformations for
integrating the equations of motion cannot be extended to the quantum domain. In this paper, a general
procedure is developed to construct the sequences of quantum canonical transformations for integrating the
Schralinger equations. The sequence is made of three elementary canonical transformations that constitute a
much larger class than the unitary transformations. In conjunction with the procedure, we also developed a
factorization technique that is analogous to the method of integration factor in classical integration. For
demonstration, with the same procedure we integrate nine nontrivial models, including the centripetal barrier
potential, the Kratzer's molecular potential, the Morse potential, treeiéTeller potential, the Hulfimepo-

tential, etc.
DOI: 10.1103/PhysRevA.65.012104 PACS nuntber03.65.Ca, 04.60.Ds, 02.30.Tb
[. INTRODUCTION synonymously as quantum canonical transformations, they

In classical mechanics, there are two approaches for intedo not represent the full class of canonical transformation.
grating the equations of motion, one is by solving theThere are simple and important canonical transformations,
second-order differential equations directly, the other is bysuch as transformations to the polar or spherical coordinates,
eliminating one of the conjugate variables with canonicalthat do not have corresponding unitary transformatiets
transformation$1]. In the latter case, the equation of motion | the past decade, a broader class of canonical transforma-
becomes trivial. For one-dimensional periodic systems ofjon, called isometric transformation, has been studied thor-
multidimensional separable systems, a general scheme is Hughly [5,6]. The class is defined by transformation of the
transform the Hamiltoniai (p,q) into H(J) by type (p,q)— (CpC1,CqCY), whereC is not necessarily
1 J (q unitar_y, neverf[heless, the_transformation preserves the com-

J= 5 3€ p(E,q)dg, 6= ﬁf p(J,q)dg, (1.1 mutatl(_)n relatiof p,q]= —i. In the class of isometric trans-
formation, three elementary types have been shown to be
particularly interesting. They are the interchange transforma-

y:r?a:gl\]eISU;hdee?\?\zlaO;k\;)aerrlil ?It?afilgr?slset/hei (\:/\(/)r? él;gtit: gggt]‘l;n iison, the similarity transformation, and the point transforma-
not integrable, Eq(1.1) still helps identify the quasiaction fon [5,6]. It was conjectured that every quantum canonical

variables that change slowly with time from the angle vari-ransformation may be decomposed int.o a finite sequence of
ables that are nearly periodic in time. In addition, Hf these three elementary .tran.sformatlofﬁj], although .

—H(p,q;\) where the parametex varies slowly(adiabati- whether or not every classical |ntegraple system may.be in-
cally) with time as the result of some external influence, ittegrated in the quantum level by canonical transformations is

can be shown that the action variable in Ef.1) remains  Still an open question. _
invariant when averaged over the period of motiadiabatic Although canonical transformation has not yet become a
invariance theorein 2]. popular technique for solving quantum models, much
In quantum mechanics, the situation is different. Becaus®rogress has been made in the past three decades. For ex-
of the noncommutative nature of the quantum variablesample, Moshinsky, Seligmen, and Wolf have converted the
there is no obvious way to extend the canonical transformaradial Coulomb potential to the harmonic oscillator with ca-
tion to the quantum level. For example, the action and angl@onical transformation8]. Leyvraz and Seligmen have re-
variables for the harmonic oscillator ale=1/2(p?>+ g?) and  duced the Hamiltonians tel(J) with canonical transforma-
0= arctan@/p), respectively. These expressions, in particulartions for the harmonic oscillator, the repulsive oscillator, and
the one for the angle variable, are not well defined in nonthe free-falling particlg7]. Anderson showed that the three
commutative operator algebra. Equatidnl) cannot be used elementary transformations mentioned above are closely re-
because there is not a known way to extend the Riemantated to known techniques for solving differential equations,
integration to operators. It is therefore interesting to ask: lsand pointed out all systems that may be solved by the inter-
there a scheme to “integrate” a quantum system by canonitwining method may also be solved by canonical transforma-
cal transformations, as an alternative to the method of solviions|[6,9].
ing the Schrdinger equation directly? In this paper, we present a procedure for finding the se-
In classical mechanics, canonical transformations arguence of canonical transformations that may be used to in-
those that preserve the Poisson bragket)}=—1. In quan-  tegrate quantum systems. As demonstrations, we use the pro-
tum mechanics, the natural extension is those that presengedure to solve nine known models. All of them may be
the commutation relationjsp,q]= —i [3]. Although unitary  found in Ref.[10], where they are integrated by the conven-
transformations have such a property and have been uséidnal method of solving the Schdinger equation. The
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model Hamiltonians arkl (p,q) = 1/2p2+ V(q) with the fol- interchangel: (p,q)—(qg,—p)
lowing different types oV(q):
(1) U/g?, e!f.(q):f e'd“¥(u)du,
(2) U(g—1/q)?, the centripetal barrier potentigl0—17, (2.2
(3) U(1/g®>—2/q), the Kratzer's molecular potential
[10,12, similarity St (p,q)—(p+f'(q),a)
(4) —Ue 9, the central-force model of deuterphQ], (@)
(5) U(e~29—2e"9), the Morse potentidl10,12, Ps(a) =€ (q), 2.2
(6) Ucscq, the Pschl-Teller potentia[10,13,
(7) —Usecfq, the modified Pschi-Teller potential soint P: (pﬂ)_}( ,1 p’g(q)>
(10,12, ) g'(a)
(8) 1/2U(1—coth 1/7)), the Hulthe potential[10],
(9) 1/2U(1+tanh 1/2)), the step potentidl10], ge(@)=VY[g~ X )], 2.3

’ -1 i :
whereU are arbitrary positive constants. Mod8) has been wheref mgansdf/dq gndg _means t.he Inverse funpﬂon
solved in Ref.[8] by first embedding it into a higher- of g. #,(q) in Eqg. (2.1 is the eigenfunction before the inter-

dimensional configuration space, then converting to thé&nange transformation if and only ¥(q) is the eigenfunc-

problem of harmonic oscillator. As we shall see, our methodi©n after the transformation. In other words(p,q)#(q)

is straightforward and much simpler. A special case of mode” E¥1(0)<*H(q,—p)¥(q) =EW(q), with the same eigen-
(7) with U=1 has also been solved previously using a dif-Value E. Similarly, :5(q) and ¢¢(q) in Egs.(2.2) and(2.3)
ferent procedure that corresponds to the intertwining metho@"® the eigenfunctions before the similarity transformation

[6,9]. With the procedure presented in this paper, the cas@d the point transformatio’n, respectively.  Namely,
with arbitrary U may be solved. Except for these special 1(P.@)¥s(Q)=Eys(q)=H(p+f',q)¥(q)=EW(q) and

cases, all the models are, to the best of our knowledge!(P.d)¥#(d)=Ep(q)=H(1/9'p,9)¥(q)=EW¥(q). Note
solved by canonical transformations for the first time. Simi-that the eigenvalues are preserved under these transforma-
lar to factorizing algebraic expressions, the procedure is ndions: These eigenfunction transformations may be verified
meant to work for arbitrary potential functions. Yet for solv- read:l;t For example,py=—idy,/dq leads to pi(q)
able models, it offers a general and logical approach. =Je*[uw(u)]du and integration by parts leads to

For each model, the solution consists of three péitshe ~ d¥1(d) =Je"9"[—p¥(u)]du. To simplify the decomposing,
sequence of elementary transformations that redic¢esq) W€ also use the following two composite transformations
to J, (ii) the reverse sequence that brings the eigenfunction dfeauently:

J to the eigenfunction oH(p,q), and (iii) the boundary = Y __if(p)
conditions that determines the allowed energy levels. Be- S (pa)—p.a-f(p)  ye(@=e""¥(q),

cause the transformation frothto any H(J) is canonical 24
(point transformation, Sec.)ll there is nota priori prefer- 1

ence ofH(J) over J. This is different from classical inte- Lp: —[p+f'(p)].9(q) | —(J,0)

grable cases wheié(J) is determined by Eq(1.1). In mod- g'(a)

els (3)-(9), we factorize the Hamiltonian into two parts and _ _—if(q)

integrate only the part that has the same null spacél as w,_p(q)—e Vo] 25

—E. It is the introduction of this technique that makes our~ . th ite t f tion 6f S, and!~*, wh
integration procedure applicable to a broad collection ofs_'ls € compostte franstormation » an » where
models in systematic way. I . (a,—p)—(p,0) is the inverse of. %(q) may glso
be written asfe'%€'"®) fe~ "W (u)du dv, which is equiva-
lent to "W (q). L, is the composite transformation of
II. INTEGRATION BY CANONICAL TRANSFORMATIONS Sfl andP711 Wheresfl: (p+ f’,q)_>(p,q) is the inverse

In this section, we show step by step the procedure thatf S andP " (1/g'p,9)—(p,q) is the inverse oP. In the
leads to the integration of the nine models. After the integrapro,Cess of reducing the Hamiltonian, three Important Kinds
tion, H(p,q) is transformed ta), the Heisenberg equation Of inear forms are used. They are called fhénear form,
J=i[H,J]=0 becomes triviald becomes a constant of mo- the_:q-lmear form, and the-linear form. Hamiltonians of the
tion, and the wave function of stationary states is simply the>linéar form,G(a)[p-+ F(0)], may be transformed td by
eigenfunction ofJ, i.e., W(6)=e*’, wherek is an eigen- Lp With 1/9°(q)=G(q) and '(q)=F(q). The g-linear
value of J. The eigenfunctions oH(p,q) may be obtained oM. G(P)q+F(p)], may be transformed first to the
from W (6) by the same sequence of canonical transformaB'“near form by the interchangé transformation. The
tions that reducebl(p,q) to J. Before we introduce the pro- P-linear form, G(p+F), where G=G[q+h(p)] and F
cedure, let us briefly discuss the three elementary canonicat F[d+h(p)], may also be transformed first to tpeinear
transformations that are used to perform the integration. Théorm by S with g—q—h(p).
following table shows their definitions and the corresponding Now we are ready to describe the procedure for reducing
transformations of the eigenfunctiof@): the Hamiltonians fronH(p,q) to J. First, we use a poin®
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transformation withg—g(q) to simplify the potentiaV(q). mations from the null space af Namely, fromW¥(6)=c
Then, we use a similarityS transformation withp—p  (constantand Eq.2.5), one obtains the eigenfunction before
+f'(q) to bring in additional terms from 1f# for eliminat- transformatiorL ,,
ing the simplifiedV(q). As will be explained in mode(1),
there are always two choices of the similarity transformation. lﬂLp(Q) =cCq
They lead to two different solutions for reducing the Hamil-
tonian toJ and correspondingly two independent wave func-From Eq.(2.1), one obtains the eigenfunction before trans-
tions. This is in accordance with the fact that a second-ordeformationl,
differential equation has two independent solutions. If one
makes the right choice aj(q) and f(q), after these trans- . . gy
formations the Hamiltonian may become much simpler. For ‘/’l(q):f e'qqup(u)du=cj ety B,
example, it may becomealinear form and the rest steps to
J are just an interchandetransformation followed by ah From Eq.(2.2), one obtains the eigenfunction before trans-
transformation. A technique introduced in this paper is theformation S,
factorization ofH — E and integrating only one of its factors
that has the same null space. For simpler models such as " N QU e 32 i
models(1) and(2), whether the integration is fa — E or H Ys(a)=q"n(q)=cq? | etue eE 2 du,
makes no difference, but for mod€B®)—(9) the factorization
of H—E is crucial. This technique is analogous to the use ofFinally, from Eq.(2.3), one obtains the eigenfunction before
integration factors in classical integration, where a differen{ransformatiorP, or the eigenfunction dfi(p,q) with eigen-
tial form is integrated by factorizing out or multiplying an valueE,
integration factor first.

In the solution of the following models, four positive con- o[ id2u a—3i2i
stantsa, B, 7y, ande will be used in the transformations. P(a)=ys(a*)=cq f ety E I dy,
Their definitions are

a—3/20iE/(20)

. That is,
a=3(1FV1+8U), =2V, y=\|2U-2E|, P(a)=ca2, 1 €q),

e=\2[E|. (2.6  Where

E=1/2¢’>0 for caseq1), (2), (6), (9), andE= —1/2¢°<0

H 14 *XZ v—
for cases3), (4), (5), (7), (8). J,(X)=1/—2i)(x/2) fe U4r—lellgt

(1) V(q)=U/g? whereq is from 0 tow. For this ex- s the Bessel functiony(q) remains finite ag]—0 and<,

ample, we first use the point transformation for all U andE. Note that we denote all the normalization
constants by, although they may represent different values
P (p.a)—(2Vap.Va), in different places. Changing to 1— «, which is the nega-

tive root 1/2(1- {1+ 8U), the transformations may also re-

2 2
such thatV—U/q and 1/p*~2(/ap)>. Then, we use a qceH—E to J. The corresponding wave function

similarity transformation

i P(A)=cq_ ;1 €q)
S (p,q)—>( P~ 2q 2q ,q) is independent of the first one, but divergesgas0, hence,
is excluded.
such that 1/ may be further transformed to 2Gp)? (2) The centripetal barrier potential(q)=U(q— 1/q)?,

—2iap—1/2a(a—1)/q. The last term cancels the simpli- whereq is from 0 to. This corresponds to the problem of
fied potentialU/q, if 1/2a(a—1)=U, namely,a=1/2(1  three-dimensional harmonic oscillator with nonzero angular
+ {1+8U). For the time being, we choose the positive rootmomentum, namely 1/2(p?+r2)+1(1+1)/(2r?) —E]R(r)
a=1/2(1+1+8U) as defined in Eq(2.6). The negative =0. For this example, we first use the point transformation
root will lead to the second independent eigenfunction and

be discussed momentarily. After these transformatidts, P: (p,q)—>(2\/ap, \/a),
—E—2(\Jqp)?—2iap—E. This is ag-linear form. By the

interchangel transformation, it will be transformed to the such thatv—U(q+1/q—2) andH—E—2qp*~ip+U(q
p-linear form —2q2[p+|(a 3/2)lq+E/(29%)], which  +1/g—2)—E. The termdJqg andU/q may be eliminated by
may be reduced tdby L , in Eqg. (2.5 with 1/g’ = —2g? and  the similarity transformation

f'=i(a— 3/2)/q+E/(2q2) The eigenspace d¢f(p,q) with
eigenvaluek, equivalent to the null space éf—E, may be
obtained through the corresponding eigenfunction transfor-

_ iB i«
S (p,g)— p+7—ﬁ,q)-
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Then,H—E is reduced to therlinear form 2o(p+iB)[q L, in Eq. (2.5 with 1/g'=—q(q+2ie) and f'=alq
—a/p—b/(p+iB)], where a=i[a/l2—3/4—B/2—E/(2B)]  +b/(q+2i€). As explained in mode(1), for the transfor-
and b=i[ a/2—3/4+ BI2+E/(2B)]. It can be transformed mation of eigenfunctions, the starting point is the null space
by I to the p-linear form —2q(q+iB)[p+a/q+b/(q  of J, i.e.,, ¥(#)=c. Going through the corresponding eigen-
+iB)], which is reduced td by L, in Eq. (2.5 with 1/9"  function transformations, one obtains
=-2q(q+iB) andf’=al/q+b/(g+iB). As in model(1),
we start from the null space &t ¥(6)=c is transformed, y(a)=cle "2 F(a—2U/€,2a;0)],—2eq-
through the corresponding eigenfunction transformations, to
If #(q) remains finite forg—0 andc, we must havex
efﬁUIZUa/ZJ qitiv jal2— 314 pI2—E/(2p) —2U/e=—n, hence E=—1/2¢>=—2U%(n+ a) "2, where
nis a nonnegative integer. Changiago 1— « for the trans-
formations, one obtains the second solution for reduting
—E to J and the second independent wave function

p(q)=c

X (U+iﬂ)a/2_3/4+B/2+E/(2’8)dU

v=02

That is p(@)=cle V1M F (1-a—2U/€,2—=2a;v)],- 2.

— [p-v/2, al2 _plo_ However, it diverges ag—0 and may be excluded.

=cle Fi(al2+1/4— BI2—EI(2pB),

pa=cl v Fala A (2B) (4) The central-force model of deuteraf(q)=—Ue 9,
a+1/2,v)], - g2, whereq is from 0 to«. For this example, we first use the
point transformation

where

P: , —gp,—Inq),
Fi(a,c;x)=I'(1—-a)l'(c)/[—2miT(c—a)] (p.a)=(—ap @
such thatV——Uq and H—E—1/2qG, where G=qp?
XJ e*(—t)@ Y(1-t)c 2 1dt —ip—2E/q—2U. After —2E/q is eliminated by the simi-
larity transformation
is the confluent hypergeometric function. Jdf(q) remains
finite for g—0 and «, one must havea/2+ 1/4— B/2 S
—E/(2B8)=—n, hence,E=28(n+ al2+1/4— B/2), where )
nis a nonnegative integer. Changiagto 1— « in the trans-
formations, one obtains the second solution for redu¢ing G is reduced to theg-linear form p[q—i(2e—1)/p

i€
p——.q/,

(p,a)— q

—E to J and the second independent wave function — B2/p?]. It may be further transformed tbthrough! and
o 1o al2 L, in Eq. (2.5 with 1/9'= —g? and f'=i(2¢—1)/q
p(q)=cl[e” " v T 4 F (= al2+3/4—- BI2—E/(2), + B%1g?. From the corresponding eigenfunction transforma-

— a+31220)], - o tions, one obtains

_ —qi2
However, it diverges ag—0 and may be excluded. y(q)=clr(2Be” 7).
In the following examples, we shall factoriz¢—E into

two parts. For instance, in modéB), H—E=1/(2q)G,  ¥(q) remains finite ag—0 ande, for all U andE. Chang-
where G=qp?—2Eq+2U/q—4U. As in models(1) and Ing € to —e for the transformations, one obtains the second

(2), after the terms-2Eq and 2J/q are eliminated by a® solution for_ reducingd — E to J and the second independent
transformationG will be reduced to aylinear form. Since Wave function
the null space of5 is equivalent to the null space éf—E, a2
the transformation fronG to J is equally good for solving P(a)=c_,(2Be” ¥7).
the wave functions and the energy levels.

(3) Kratzer's molecular potentiaV/(q)=U(1/g>—2/q), = However, it diverges ag— and may be excluded.
where g is from 0 to «. This corresponds to the three-  (5) The Morse potential/(q) =U(e”*—2e™9), whereq
dimensional problem for the Coulomb potential with nonzerois from —2 to c. This potential describes the vibration of a
angular momentum. For this examplel—E=1/(29)G, diatomic molecule. It goes to zero when the two atoms are
whereG=qp?—2Eq+2U/q—4U. After —2Eq and 2J/q far away from each other, and increases very fast when they
are eliminated by the similarity transformation are close to each other. For this example, we first use the

point transformation

s (p.g)—

) i
p*'G_E’q)’ P (p.a)—(—gp,~Ina),
G is reduced to theg-linear form p(p+2ie)[g—al/p such thatV—U(g?—2q) and H—E—1/2qG, where G
—b/(p+2i€)], wherea=i(a—1—2U/e) andb=i(a—1 =qp?—ip+2Uq—2E/q—4U. After 2Uq and —2E/q are
+2U/€). It may be further transformed td through!l and  eliminated by the similarity transformation
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S (p.a)—

pt+ip q,q,

G is reduced to theg-linear form p(p+2iB)[g—al/p
—b/(p+2iB)], wherea=i(e—1/2— ) and b=i(e—1/2
+ B). It may be further transformed tbthroughl andL , in
Eq. (2.5 with 1/g’=—q(q+2iB8) and f’'=a/q+b/(q

+2iB). From the corresponding eigenfunction transforma-in Eq. (2.8) and L

tions, one obtains
P(q)=cle " F (e~ B+1/2,2e+1;0)],-2pe-a.

If ¥(q) remains finite forqg— *£%, we must havee—
+1/2= —n, hence E= —1/2¢’= —1/2(n— B+ 1/2)?, where
n is a nonnegative integer. Changiego — e for the trans-
formations, one obtains the second solution for redu¢ing
—E to J and the second independent wave function

g(a)=cle V2 Fy(—e—B+12,~2e+1;0)],- 2pea.

However, it diverges ag— and may be excluded.

For models(3)—(5), we have made the factorizatidt
—E=F(q)G and reduced only to J. But F can also be a
function of p. This is the case for mode(§)—(9), where the
following factorization is used:

p(1—g?)p+p(dg+c)+e

Aefoy

What is in the braces is the so-calipdinear form and may
be transformed to thp-linear form (1—g?)p+bg+c by

+Cy.

(2.7

L2 +b(+a
qp p qp

0 (2.9

~ a

S(p!q)_> p.a——|.
The constanta,b are determined from the constardse.
For givend, e, there are two sets @f,b satisfying Eq.(2.7).
As will be explained in mode(6), the two sets will lead to

the same eigenfunction, hence, only one set of them will be

discussed.

(6) The Pachl-Teller potentiaV(q)=U cs& q, whereq
is from O to . For this example, we first use the point
transformation

1
P: (p,q)—>( —2\/1—q7p,§coslq),

such thatV—2U/(1—q) and H—E—2p(1—g%)p—2ipq
+2U/(1—q)+2—E. After 2U/(1—q) is eliminated by the
similarity transformation

i

> i)

(p,q)—

H—E is reduced to

1
2p(1—g?)p+2ip[(a—1)q+a]+ E(az— ) —2a+2.

PHYSICAL REVIEW A65 012104

This can be factorized by E@2.7) into

o

where a=—i[(a*€)/2—1], b=i(FTe+1). The p-linear
form in the braces may be further transformed throughS

5 in Eq. (2.5 with 1/g'=1—q? and f’
=(bg+ia)/(1—q°). From the corresponding eigenfunction
transformations, one obtains

2

a
q+ —

+b
pp

+a)+'
— |
q D a

w(q) — C{(l_ u)a/Zp(ai e)/271[(1_ u)*(aIeJrl)/Z

X(1+ u)(ai67l)/2]}u:cos ool

(1_U)a/2 é (u_v)—(a:e)/Z

=C

X(l_u)*(aie+l)/2(1+u)(ai57l)/2du
v=Ccos A

That is,
PQ)=c[(1-v)Y%F((aF €)/2(a* €)/2,a+1/2;
(1-v)/2)]y=cos z»
where

SFi(a,b,c;x)=T(1—-a)l'(c)/[27iT(c—a)]
X jg(—t)b‘c(l—t)C‘a‘l(x—t)‘bdt

is the hypergeometric function. SinceF4(a,b,c;x)
=,F.(b,a,c;x), the solutions for+e lead to the same
eigenfunction. If(q) remains finite forq—0 and =, we
must have 1/2¢F €)= —n, henceE=1/2¢*=1/2(2n+ a)?,
wheren is a nonnegative integer. Changingo 1— « for the
transformations, one obtains the second solution for reducing
H—E to J and the second independent wave function

P(Q)=c[(1-v)Y2F (1—a—e)/2(1— a+¢€)/2,
—a+3/2(1-v)/2)],=cos z -

However, it diverges ag|—0 and 7, hence may be ex-
cluded.

(7) The modified Peschl-Teller potential V(q)=
—U sech g, whereq is from — to <. One may simplify
the potential by the point transformation

P: (p,a)—((1—g®)p,tanh * q).
Then,V——U(1—g?) andH—-E—1/2(1— g% G, whereG
=p(1-g?)p—2E/(1—g?)—2U. After —2E/(1—q?) is
eliminated by the similarity transformation

ie

21+q 'Y/

ie
S (p!q)_> p+ 2(1_q)_

G is reduced to
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p(1—g2)p+2iepq+ e2— e—2U. (2.5 with 1/g’=1—q? and f'=2i(e+ y)/(1—g?). From
the corresponding eigenfunction transformations, one obtains
This may be factorized by E¢2.7) into
p(q)=c[(l+v) "(1-v)F(e—y,e—y+1,2e+1;

}. (1=v)/2)], = cothgr2) -

g

. ~ . If remains finite fo 0 ande«, we must have—
wherea=—i(a+e—1). The p-linear form in the braces _ f(nq)henceE= _ 1/2(28jn2)2/(2n)2 wheren is a pos);—
may be further transformed tbthroughSin Eq. (2.8) and  tjve integer. Changing to — e for the transformations, one

Ly in Eq. (2.5 with 1/g'=1-q* andf'=—2i(a—1)a/(1  obtains the second solution for reducibig-E to J and the
—g?). From the corresponding eigenfunction transforma-second independent wave function

tions, one obtains

1_

L2
qp

a 2
q+5) }p—Zi(a—l)

Q) =c[(1+v) "(1-v) Fi(—e—y,—e—y+1,
—2e+1;(1-v)/2)],=coth@r2) -

Q) =c[(1-v?)F | (—atetlateetl;

(1_0)/2)]v=tanhq-
. o However, it diverges agq— and may be excluded.
If #(q) remains finite forg— =, we must have-a+e€ (9) The step potentia¥/(q) = 1/2U(1+tanh 1/21), where

- - 2_ 2 :
+1=-—n, henceE=—1/2¢"=—1/2(n—a+1)°, wherenis ¢ s from —o to «. For this example, we first use the point
a nonnegative integer. To obtain the second independent Sg=nsformation

lution, we replace the similarity transformation by

. . 1
i€ i€ P: (p.g)— 5(1—q2)p,2tanh*1q :

S PO~ {PTa—g " 2are )

N such thatv—1/2U(1+q) andH—E—1/8(1—q?)G, where
The corresponding steps for reducidg-E toJareSin Eq. G= p(1-g?)p+4(U—E)/(1—q)—4E/(1+q). Compar-
(2.8 with a=ia andL in Eq.(2.9 with 1/g'= 1-g?and ing this with the factoiG in model(8), we obtain the rest of
f'=2i(aq—e€)/(1-q). The second independent wave the transformationgi) For E<U, the rest of the transforma-

function is then tions are the same as in mod@) with the replacement
B 204 —el2 —*ie and e— * y. Therefore, the first and second wave
p@)=cl(1+v)"(1-v) functions are

X oFq1(a,1— a.l_f;(l_v)/z)]v:tanhq'

P =c[(1+v)"'(1—v) " F (= yxie, = y=ie+1,
However, it diverges agq— and may be excluded. g1
(8) The Hulthe potential V() = 1/2U(1— coth 1/2q), =27+ L(1=0)/2) ]~ tanh@r) -
whereq is from 0 to«. For this example, we first use the Since ,F;(a,b,c;x)=(1—x)¢ 2 5,F,(c—b,c—a,c:x), the

point transformation solutions for*ie lead to the same eigenfunction. The solu-
1 tion for + y remains finite ag— = and the solution for
P: (p,q)—>(—(l—q2)p,2 coth ! q), — vy diverges agj—. (ii) For E>U, the rest of the trans-
2 formations are the same as in mod®l with the replacement

v— *ie ande— *ivy. Therefore, the first and second wave

such that—1/2U(1—q) andH—E—1/8(1-¢?)G, where ¢ o "

G=p(1-q?)p+4(U—E)/(1+q)—4E/(1—q). After 4(U
—E)/(1+q) and —4E/(1—q) are eliminated by the simi- P(q)=c[(L+v)T(1—v) = F (iy+ie, xiyrietl,
larity transformation

F2iy+1,(1-v)/2)], —tanh@r2) -

iy ie
S (pag)—|p+ m+ EQ) For the same reason as above, the solutionstfiar lead to
the same eigenfunction. The solutions fory remain finite
G is reduced to asq— .
P(1—-g*)p+2ip[e(1+q)+y(1-a)]+(e=y)*—(e— 7). IIl. DISCUSSIONS
This may be factorized by E@2.7) into In the last section, we have shown step by step how to
) integrate Hamiltonians in the quantum level by canonical
ol [1-|q+ a p+2i(et ) transformations. In the nine demonstrated models, it is seen
p ' that the procedure presented in this paper may be used in a

consistent and systematic way. In the process leading to the

wherea= —i(e—7). Thef)-linei\r form in the braces may be mjddie step, namely, the-linear, g-linear, and p-linear
further transformed td throughSin Eq. (2.8) andL, in Eq.  forms, two ways of reduction emerge naturally, each corre-
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sponds to one of the two independent solutions. The factor-
ization of H— E corresponds to the integration factor in clas-
sical integration. Yet, as we have mentioned in the beginning
the procedure does not work for arbitrary potentials. Now w

shall see where the obstacles are.

g’'=g?>-2\, g'=V. (3.3

If \=0, the solutions of Eq(3.3) are g=—1/(q+c) and
=1/(q+c)2. By changing the variable, it is equivalent to

. ; . . he problem withV=1/g?, namely, mode(1) with U=1. If
The first step in the procedure is to choose a swtabl%\\<0’ set 2=—k2 the solutions of Eq.(3.3 are g

function g(q) for the point transformations to simplify the )
potentials. However, the point transformations also changé k_tan(kq_+ (_:) and_ V=k?sec(kq+c). By ch_anglng the
1/2p? to a more complicated form 1/2@/p)>2. If the formis ~ variable, it is equivalent to the problem W'MZZ cscq,
no more complicated than polynomialspéndg, it may be ~ namely, model) with U=1. If A>0, set 2 =k", the so-
possible to factorize the form into one of the linear forms. InI‘Jt'gnS of Eq. (3.3 are g=—ktanhkgt+c) and V=
the examples we worked out, the choicegaind subsequent K sect(kq+c). By changing the variable, it is equivalent
factorization is not particularly difficult. This is because the {© the problem withv= —secftq, namely, model7) with
original potential functions may be simplified bg =1 Foran arbitranW/, one may solve by Eq.(3.1) with
=g, Ing, cos g, tanh tq, or coth g These functions N\ as an undetermined parameter, and use the solgtemd

do not introduce additional complicated terms intopf/pe-  E9- (3-2) fo déate_rmmevo. But there is no guarantee Zthat
cause their derivatives are simple roots of rational functionstio=1/2p“+ Vg will be easier to solve thall =1/2p“+V*.
If it is not apparent in the first place, the factorization is alsoFOr this reason, we were not able to find the solutions by the
more difficult than the classical counter part because of thétertwining procedure except for modets), (6), and (7).
noncommutative nature of the operator algebra. It is clear now neither our procgdure nor th_e intertwining
It may be interesting to compare our procedure with theProcedure are set to work for arbltra.ry potentials. Neyerthe-
intertwining procedure outlined in Rei6]. In the intertwin- less, the relations b'etween cano_nlcal_transfprmanon. and
ing procedure, three transformations are ugéglthe simi- some_standard_technlques for solv_lng differential equations,
larity transformationS:  p—p-+ig(q), (2) the transforma- @S pointed out in Ref6], seem to give some warrant to the
tion & q—q+i/p, and (3) the transformatiors % p method of canor_ncal transfqrmaﬂon, at Ieast.for modgls solv-
. L L S able by conventional techniques of differential equations. In
—p—ig(q). The first similarity transformation, 1

S VT oy . this light, it may be advantageous to try canonical transfor-
7#%2,( Tslpo%e 1s/ezt(sg +9%). is used to cancel the potential mations first. But the point we wish to make in this paper is

not just the technical viability of the method of canonical
1 transformation. In classical mechanics, canonical transforma-
=(g'+9%)=V+\.

(3.1 tions play more important roles in the analysis of dynamical
2 systems than solving equations of motion. A famous example
If, in addition, one sets is the Kolmogorov-Arnold-Moser theorem, in which se-
guences of canonical transformations are used to prove the
g'=V—Vqg, (3.20  existence of the invariant trajectorigs4—164. The powerful

techniques used in the proof of the Kolmogorov-Arnold-
after the three transformations, the original Hamiltonkn Moser theorem cannot be extended to quantum mechanics
=1/2p?+V? will be reduced to another, hopefully easier because they all involve Riemann integrals of dynamical
Hamiltonian Ho=1/2p?+ V3. The availability of an appro- variables. It may be possible to show that the three elemen-
priate g and a solvable/, that satisfy Eqs(3.1) and(3.2)  tary canonical transformations, together with their large va-
may limit the generality of the intertwining procedure. Whenriety of combinations, may serve as an equally powerful set
V=0, H; contains only one variable and is trivial to solve. of tools for the analysis of quantum dynamical systems. This

For this case, Eq43.1) and(3.2) are equivalent to

will be the direction of our future work.
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