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Integration of the Schrödinger equation by canonical transformations
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Owing to the operator nature of the quantum dynamical variables, classical canonical transformations for
integrating the equations of motion cannot be extended to the quantum domain. In this paper, a general
procedure is developed to construct the sequences of quantum canonical transformations for integrating the
Schrödinger equations. The sequence is made of three elementary canonical transformations that constitute a
much larger class than the unitary transformations. In conjunction with the procedure, we also developed a
factorization technique that is analogous to the method of integration factor in classical integration. For
demonstration, with the same procedure we integrate nine nontrivial models, including the centripetal barrier
potential, the Kratzer’s molecular potential, the Morse potential, the Po¨schl-Teller potential, the Hulthe´n po-
tential, etc.
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I. INTRODUCTION
In classical mechanics, there are two approaches for i

grating the equations of motion, one is by solving t
second-order differential equations directly, the other is
eliminating one of the conjugate variables with canoni
transformations@1#. In the latter case, the equation of motio
becomes trivial. For one-dimensional periodic systems
multidimensional separable systems, a general scheme
transform the HamiltonianH(p,q) into H(J) by

J5
1

2p R p~E,q!dq, u5
]

]JE
q

p~J,q!dq, ~1.1!

whereJ is the action variable andu is the conjugate angle
variable. Under weak perturbations, even when the syste
not integrable, Eq.~1.1! still helps identify the quasiaction
variables that change slowly with time from the angle va
ables that are nearly periodic in time. In addition, ifH
5H(p,q;l) where the parameterl varies slowly~adiabati-
cally! with time as the result of some external influence
can be shown that the action variable in Eq.~1.1! remains
invariant when averaged over the period of motion~adiabatic
invariance theorem! @2#.

In quantum mechanics, the situation is different. Beca
of the noncommutative nature of the quantum variab
there is no obvious way to extend the canonical transfor
tion to the quantum level. For example, the action and an
variables for the harmonic oscillator areJ51/2(p21q2) and
u5arctan(q/p), respectively. These expressions, in particu
the one for the angle variable, are not well defined in n
commutative operator algebra. Equation~1.1! cannot be used
because there is not a known way to extend the Riem
integration to operators. It is therefore interesting to ask
there a scheme to ‘‘integrate’’ a quantum system by cano
cal transformations, as an alternative to the method of s
ing the Schro¨dinger equation directly?

In classical mechanics, canonical transformations
those that preserve the Poisson bracket$p,q%521. In quan-
tum mechanics, the natural extension is those that pres
the commutation relations@p,q#52 i @3#. Although unitary
transformations have such a property and have been
1050-2947/2001/65~1!/012104~7!/$20.00 65 0121
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synonymously as quantum canonical transformations, t
do not represent the full class of canonical transformati
There are simple and important canonical transformatio
such as transformations to the polar or spherical coordina
that do not have corresponding unitary transformations@4#.
In the past decade, a broader class of canonical transfo
tion, called isometric transformation, has been studied th
oughly @5,6#. The class is defined by transformation of th
type (p,q)→(CpC21,CqC21), whereC is not necessarily
unitary, nevertheless, the transformation preserves the c
mutation relation@p,q#52 i . In the class of isometric trans
formation, three elementary types have been shown to
particularly interesting. They are the interchange transform
tion, the similarity transformation, and the point transform
tion @5,6#. It was conjectured that every quantum canoni
transformation may be decomposed into a finite sequenc
these three elementary transformations@6,7#, although
whether or not every classical integrable system may be
tegrated in the quantum level by canonical transformation
still an open question.

Although canonical transformation has not yet becom
popular technique for solving quantum models, mu
progress has been made in the past three decades. Fo
ample, Moshinsky, Seligmen, and Wolf have converted
radial Coulomb potential to the harmonic oscillator with c
nonical transformations@8#. Leyvraz and Seligmen have re
duced the Hamiltonians toH(J) with canonical transforma-
tions for the harmonic oscillator, the repulsive oscillator, a
the free-falling particle@7#. Anderson showed that the thre
elementary transformations mentioned above are closely
lated to known techniques for solving differential equation
and pointed out all systems that may be solved by the in
twining method may also be solved by canonical transform
tions @6,9#.

In this paper, we present a procedure for finding the
quence of canonical transformations that may be used to
tegrate quantum systems. As demonstrations, we use the
cedure to solve nine known models. All of them may
found in Ref.@10#, where they are integrated by the conve
tional method of solving the Schro¨dinger equation. The
©2001 The American Physical Society04-1
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model Hamiltonians areH(p,q)51/2p21V(q) with the fol-
lowing different types ofV(q):

~1! U/q2,
~2! U(q21/q)2, the centripetal barrier potential@10–12#,
~3! U(1/q222/q), the Kratzer’s molecular potentia

@10,12#,
~4! 2Ue2q, the central-force model of deuteron@10#,
~5! U(e22q22e2q), the Morse potential@10,12#,
~6! Ucsc2q, the Pöschl-Teller potential@10,13#,
~7! 2Usech2q, the modified Po¨schl-Teller potential

@10,12#,
~8! 1/2U(12coth 1/2q), the Hulthén potential@10#,
~9! 1/2U(11tanh 1/2q), the step potential@10#,

whereU are arbitrary positive constants. Model~3! has been
solved in Ref. @8# by first embedding it into a higher
dimensional configuration space, then converting to
problem of harmonic oscillator. As we shall see, our meth
is straightforward and much simpler. A special case of mo
~7! with U51 has also been solved previously using a d
ferent procedure that corresponds to the intertwining met
@6,9#. With the procedure presented in this paper, the c
with arbitrary U may be solved. Except for these spec
cases, all the models are, to the best of our knowled
solved by canonical transformations for the first time. Sim
lar to factorizing algebraic expressions, the procedure is
meant to work for arbitrary potential functions. Yet for sol
able models, it offers a general and logical approach.

For each model, the solution consists of three parts:~i! the
sequence of elementary transformations that reducesH(p,q)
to J, ~ii ! the reverse sequence that brings the eigenfunctio
J to the eigenfunction ofH(p,q), and ~iii ! the boundary
conditions that determines the allowed energy levels.
cause the transformation fromJ to any H(J) is canonical
~point transformation, Sec. II!, there is nota priori prefer-
ence ofH(J) over J. This is different from classical inte
grable cases whereH(J) is determined by Eq.~1.1!. In mod-
els ~3!–~9!, we factorize the Hamiltonian into two parts an
integrate only the part that has the same null space aH
2E. It is the introduction of this technique that makes o
integration procedure applicable to a broad collection
models in systematic way.

II. INTEGRATION BY CANONICAL TRANSFORMATIONS

In this section, we show step by step the procedure
leads to the integration of the nine models. After the integ
tion, H(p,q) is transformed toJ, the Heisenberg equatio
J̇5 i @H,J#50 becomes trivial.J becomes a constant of mo
tion, and the wave function of stationary states is simply
eigenfunction ofJ, i.e., C(u)5eiku, where k is an eigen-
value of J. The eigenfunctions ofH(p,q) may be obtained
from C(u) by the same sequence of canonical transform
tions that reducesH(p,q) to J. Before we introduce the pro
cedure, let us briefly discuss the three elementary canon
transformations that are used to perform the integration.
following table shows their definitions and the correspond
transformations of the eigenfunctions@6#:
01210
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interchangeI : ~p,q!→~q,2p!

c I~q!5E eiquC~u!du,

~2.1!

similarity S: ~p,q!→~p1 f 8~q!,q!

cS~q!5ei f (q)C~q!, ~2.2!

point P: ~p,q!→S 1

g8~q!
p,g~q!D

cP~q!5C@g21~q!#, ~2.3!

where f 8 meansd f /dq andg21 means the inverse functio
of g. c I(q) in Eq. ~2.1! is the eigenfunction before the inte
change transformation if and only ifC(q) is the eigenfunc-
tion after the transformation. In other words,H(p,q)c I(q)
5Ec I(q)⇔H(q,2p)C(q)5EC(q), with the same eigen-
valueE. Similarly, cS(q) andcP(q) in Eqs.~2.2! and ~2.3!
are the eigenfunctions before the similarity transformat
and the point transformation, respectively. Name
H(p,q)cS(q)5EcS(q)⇔H(p1 f 8,q)C(q)5EC(q) and
H(p,q)cP(q)5EcP(q)⇔H(1/g8p,g)C(q)5EC(q). Note
that the eigenvaluesE are preserved under these transform
tions. These eigenfunction transformations may be verifi
readily. For example,pc I52 idc I /dq leads to pc I(q)
5*eiqu@uC(u)#du and integration by parts leads t
qc I(q)5*eiqu@2pC(u)#du. To simplify the decomposing
we also use the following two composite transformatio
frequently:

S̃: ~p,q!→„p,q2 f 8~p!… c S̃~q!5ei f (p)C~q!,
~2.4!

L p : S 1

g8~q!
@p1 f 8~q!#,g~q!D→~J,u!

cLp
~q!5e2 i f (q)C@g~q!#. ~2.5!

S̃ is the composite transformation ofI , S, and I21, where
I21: (q,2p)→(p,q) is the inverse ofI . c S̃(q) may also
be written as*eiqvei f (v)*e2 ivuC(u)du dv, which is equiva-
lent to ei f (p)C(q). L p is the composite transformation o
S21 andP21, whereS21: (p1 f 8,q)→(p,q) is the inverse
of S andP21: (1/g8p,g)→(p,q) is the inverse ofP. In the
process of reducing the Hamiltonian, three important kin
of linear forms are used. They are called thep-linear form,
theq-linear form, and thep̃-linear form. Hamiltonians of the
p-linear form,G(q)@p1F(q)#, may be transformed toJ by
L p with 1/g8(q)5G(q) and f 8(q)5F(q). The q-linear
form, G(p)@q1F(p)#, may be transformed first to th
p-linear form by the interchangeI transformation. The
p̃-linear form, G(p1F), where G5G@q1h(p)# and F
5F@q1h(p)#, may also be transformed first to thep-linear
form by S̃ with q→q2h(p).

Now we are ready to describe the procedure for reduc
the Hamiltonians fromH(p,q) to J. First, we use a pointP
4-2
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INTEGRATION OF THE SCHRO¨ DINGER EQUATION BY . . . PHYSICAL REVIEW A65 012104
transformation withq→g(q) to simplify the potentialV(q).
Then, we use a similarityS transformation with p→p
1 f 8(q) to bring in additional terms from 1/2p2 for eliminat-
ing the simplifiedV(q). As will be explained in model~1!,
there are always two choices of the similarity transformati
They lead to two different solutions for reducing the Ham
tonian toJ and correspondingly two independent wave fun
tions. This is in accordance with the fact that a second-or
differential equation has two independent solutions. If o
makes the right choice ofg(q) and f (q), after these trans
formations the Hamiltonian may become much simpler. F
example, it may become aq-linear form and the rest steps t
J are just an interchangeI transformation followed by anL p
transformation. A technique introduced in this paper is
factorization ofH2E and integrating only one of its factor
that has the same null space. For simpler models suc
models~1! and~2!, whether the integration is forH2E or H
makes no difference, but for models~3!–~9! the factorization
of H2E is crucial. This technique is analogous to the use
integration factors in classical integration, where a differe
tial form is integrated by factorizing out or multiplying a
integration factor first.

In the solution of the following models, four positive con
stantsa, b, g, ande will be used in the transformations
Their definitions are

a[
1

2
~11A118U !, b[A2U, g[Au2U22Eu,

e[A2uEu. ~2.6!

E51/2e2.0 for cases~1!, ~2!, ~6!, ~9!, andE521/2e2,0
for cases~3!, ~4!, ~5!, ~7!, ~8!.

~1! V(q)5U/q2, whereq is from 0 to `. For this ex-
ample, we first use the point transformation

P: ~p,q!→~2Aqp,Aq!,

such thatV→U/q and 1/2p2→2(Aqp)2. Then, we use a
similarity transformation

S: ~p,q!→S p2
ia

2q
,qD ,

such that 1/2p2 may be further transformed to 2(Aqp)2

22iap21/2a(a21)/q. The last term cancels the simpl
fied potentialU/q, if 1/2a(a21)5U, namely, a51/2(1
6A118U). For the time being, we choose the positive ro
a51/2(11A118U) as defined in Eq.~2.6!. The negative
root will lead to the second independent eigenfunction a
be discussed momentarily. After these transformationsH
2E→2(Aqp)222iap2E. This is aq-linear form. By the
interchangeI transformation, it will be transformed to th
p-linear form 22q2@p1 i (a23/2)/q1E/(2q2)#, which
may be reduced toJ by L p in Eq. ~2.5! with 1/g8522q2 and
f 85 i (a23/2)/q1E/(2q2). The eigenspace ofH(p,q) with
eigenvalueE, equivalent to the null space ofH2E, may be
obtained through the corresponding eigenfunction trans
01210
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mations from the null space ofJ. Namely, fromC(u)5c
~constant! and Eq.~2.5!, one obtains the eigenfunction befo
transformationL p ,

cLp
~q!5cqa23/2eiE/(2q).

From Eq.~2.1!, one obtains the eigenfunction before tran
formation I ,

c I~q!5E eiqucLp
~u!du5cE eiquua23/2eiE/(2u)du.

From Eq.~2.2!, one obtains the eigenfunction before tran
formationS,

cS~q!5qa/2c I~q!5cqa/2E eiquua23/2eiE/(2u)du.

Finally, from Eq.~2.3!, one obtains the eigenfunction befo
transformationP, or the eigenfunction ofH(p,q) with eigen-
valueE,

c~q!5cS~q2!5cqaE eiq2uua23/2eiE/(2u)du.

That is,

c~q!5cq1/2Ja21/2~eq!,

where

Jn~x!51/~22p i !~x/2!nE e2x2t/4tn21e1/tdt

is the Bessel function.c(q) remains finite asq→0 and`,
for all U and E. Note that we denote all the normalizatio
constants byc, although they may represent different valu
in different places. Changinga to 12a, which is the nega-
tive root 1/2(12A118U), the transformations may also re
duceH2E to J. The corresponding wave function

c~q!5cq1/2J2a11/2~eq!

is independent of the first one, but diverges asq→0, hence,
is excluded.

~2! The centripetal barrier potentialV(q)5U(q21/q)2,
whereq is from 0 to`. This corresponds to the problem o
three-dimensional harmonic oscillator with nonzero angu
momentum, namely@1/2(p21r 2)1 l ( l 11)/(2r 2)2E#R(r )
50. For this example, we first use the point transformati

P: ~p,q!→~2Aqp,Aq!,

such thatV→U(q11/q22) and H2E→2qp22 ip1U(q
11/q22)2E. The termsUq andU/q may be eliminated by
the similarity transformation

S: ~p,q!→S p1
ib

2
2

ia

2q
,qD .
4-3
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Then, H2E is reduced to theq-linear form 2p(p1 ib)@q
2a/p2b/(p1 ib)#, where a5 i @a/223/42b/22E/(2b)#
and b5 i @a/223/41b/21E/(2b)#. It can be transformed
by I to the p-linear form 22q(q1 ib)@p1a/q1b/(q
1 ib)#, which is reduced toJ by L p in Eq. ~2.5! with 1/g8
522q(q1 ib) and f 85a/q1b/(q1 ib). As in model~1!,
we start from the null space ofJ. C(u)5c is transformed,
through the corresponding eigenfunction transformations

c~q!5cFe2bv/2va/2E eiuvua/223/42b/22E/(2b)

3~u1 ib!a/223/41b/21E/(2b)duG
v5q2

.

That is,

c~q!5c@e2v/2va/2
1F1„a/211/42b/22E/~2b!,

a11/2;v…#v5bq2,

where

1F1~a,c;x!5G~12a!G~c!/@22p iG~c2a!#

3E etx~2t !a21~12t !c2a21dt

is the confluent hypergeometric function. Ifc(q) remains
finite for q→0 and `, one must havea/211/42b/2
2E/(2b)52n, hence,E52b(n1a/211/42b/2), where
n is a nonnegative integer. Changinga to 12a in the trans-
formations, one obtains the second solution for reducingH
2E to J and the second independent wave function

c~q!5c@e2v/2v1/22a/2
1F1„2a/213/42b/22E/~2b!,

2a13/2;v…#v5bq2.

However, it diverges asq→0 and may be excluded.
In the following examples, we shall factorizeH2E into

two parts. For instance, in model~3!, H2E51/(2q)G,
where G5qp222Eq12U/q24U. As in models~1! and
~2!, after the terms22Eq and 2U/q are eliminated by anS
transformation,G will be reduced to aq-linear form. Since
the null space ofG is equivalent to the null space ofH2E,
the transformation fromG to J is equally good for solving
the wave functions and the energy levels.

~3! Kratzer’s molecular potentialV(q)5U(1/q222/q),
where q is from 0 to `. This corresponds to the three
dimensional problem for the Coulomb potential with nonze
angular momentum. For this example,H2E51/(2q)G,
whereG5qp222Eq12U/q24U. After 22Eq and 2U/q
are eliminated by the similarity transformation

S: ~p,q!→S p1 i e2
ia

q
,qD ,

G is reduced to theq-linear form p(p12i e)@q2a/p
2b/(p12i e)#, where a5 i (a2122U/e) and b5 i (a21
12U/e). It may be further transformed toJ through I and
01210
to

L p in Eq. ~2.5! with 1/g852q(q12i e) and f 85a/q
1b/(q12i e). As explained in model~1!, for the transfor-
mation of eigenfunctions, the starting point is the null spa
of J, i.e., C(u)5c. Going through the corresponding eige
function transformations, one obtains

c~q!5c@e2v/2va
1F1~a22U/e,2a;v !#v52eq .

If c(q) remains finite forq→0 and `, we must havea
22U/e52n, hence,E521/2e2522U2(n1a)22, where
n is a nonnegative integer. Changinga to 12a for the trans-
formations, one obtains the second solution for reducingH
2E to J and the second independent wave function

c~q!5c@e2v/2v12a
1F1~12a22U/e,222a;v !#v52eq .

However, it diverges asq→0 and may be excluded.
~4! The central-force model of deuteronV(q)52Ue2q,

whereq is from 0 to `. For this example, we first use th
point transformation

P: ~p,q!→~2qp,2 ln q!,

such that V→2Uq and H2E→1/2qG, where G5qp2

2 ip22E/q22U. After 22E/q is eliminated by the simi-
larity transformation

S: ~p,q!→S p2
i e

q
,qD ,

G is reduced to theq-linear form p2@q2 i (2e21)/p
2b2/p2#. It may be further transformed toJ throughI and
L p in Eq. ~2.5! with 1/g852q2 and f 85 i (2e21)/q
1b2/q2. From the corresponding eigenfunction transform
tions, one obtains

c~q!5cJ2e~2be2q/2!.

c(q) remains finite asq→0 and`, for all U andE. Chang-
ing e to 2e for the transformations, one obtains the seco
solution for reducingH2E to J and the second independe
wave function

c~q!5cJ22e~2be2q/2!.

However, it diverges asq→` and may be excluded.
~5! The Morse potentialV(q)5U(e22q22e2q), whereq

is from 2` to `. This potential describes the vibration of
diatomic molecule. It goes to zero when the two atoms
far away from each other, and increases very fast when t
are close to each other. For this example, we first use
point transformation

P: ~p,q!→~2qp,2 ln q!,

such that V→U(q222q) and H2E→1/2qG, where G
5qp22 ip12Uq22E/q24U. After 2Uq and 22E/q are
eliminated by the similarity transformation
4-4
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S: ~p,q!→S p1 ib2
i e

q
,qD ,

G is reduced to theq-linear form p(p12ib)@q2a/p
2b/(p12ib)#, where a5 i (e21/22b) and b5 i (e21/2
1b). It may be further transformed toJ throughI andL p in
Eq. ~2.5! with 1/g852q(q12ib) and f 85a/q1b/(q
12ib). From the corresponding eigenfunction transform
tions, one obtains

c~q!5c@e2v/2ve
1F1~e2b11/2,2e11;v !#v52be2q.

If c(q) remains finite forq→6`, we must havee2b
11/252n, hence,E521/2e2521/2(n2b11/2)2, where
n is a nonnegative integer. Changinge to 2e for the trans-
formations, one obtains the second solution for reducingH
2E to J and the second independent wave function

c~q!5c@e2v/2v2e
1F1~2e2b11/2,22e11;v !#v52be2q.

However, it diverges asq→` and may be excluded.
For models~3!–~5!, we have made the factorizationH

2E5F(q)G and reduced onlyG to J. But F can also be a
function ofp. This is the case for models~6!–~9!, where the
following factorization is used:

p~12q2!p1p~dq1c!1e

5pH F12S q1
a

pD 2Gp1bS q1
a

pD1cJ . ~2.7!

What is in the braces is the so-calledp̃-linear form and may
be transformed to thep-linear form (12q2)p1bq1c by

S̃:~p,q!→S p,q2
a

pD . ~2.8!

The constantsa,b are determined from the constantsd,e.
For givend,e, there are two sets ofa,b satisfying Eq.~2.7!.
As will be explained in model~6!, the two sets will lead to
the same eigenfunction, hence, only one set of them wil
discussed.

~6! The Pöschl-Teller potentialV(q)5U csc2 q, whereq
is from 0 to p. For this example, we first use the poi
transformation

P: ~p,q!→S 22A12q2p,
1

2
cos21 qD ,

such thatV→2U/(12q) and H2E→2p(12q2)p22ipq
12U/(12q)122E. After 2U/(12q) is eliminated by the
similarity transformation

S: ~p,q!→S p1
ia

2~12q!
,qD ,

H2E is reduced to

2p~12q2!p12ip@~a21!q1a#1
1

2
~a22e2!22a12.
01210
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This can be factorized by Eq.~2.7! into

2pH F12S q1
a

pD 2Gp1bS q1
a

pD1 iaJ ,

where a52 i @(a6e)/221#, b5 i (7e11). The p̃-linear
form in the braces may be further transformed toJ throughS̃
in Eq. ~2.8! and L p in Eq. ~2.5! with 1/g8512q2 and f 8
5(bq1 ia)/(12q2). From the corresponding eigenfunctio
transformations, one obtains

c~q!5c$~12u!a/2p(a6e)/221@~12u!2(a7e11)/2

3~11u!(a6e21)/2#%u5cos 2q

5cF ~12v !a/2 R ~u2v !2(a6e)/2

3~12u!2(a7e11)/2~11u!(a6e21)/2duG
v5cos 2q

.

That is,

c~q!5c@~12v !a/2
2F1„~a7e!/2,~a6e!/2,a11/2;

~12v !/2…#v5cos 2q ,

where

2F1~a,b,c;x!5G~12a!G~c!/@2p iG~c2a!#

3 R ~2t !b2c~12t !c2a21~x2t !2bdt

is the hypergeometric function. Since2F1(a,b,c;x)
5 2F1(b,a,c;x), the solutions for6e lead to the same
eigenfunction. Ifc(q) remains finite forq→0 and p, we
must have 1/2(a7e)52n, henceE51/2e251/2(2n1a)2,
wheren is a nonnegative integer. Changinga to 12a for the
transformations, one obtains the second solution for reduc
H2E to J and the second independent wave function

c~q!5c@~12v !1/22a/2
2F1„~12a2e!/2,~12a1e!/2,

2a13/2;~12v !/2…#v5cos 2q .

However, it diverges asq→0 and p, hence may be ex-
cluded.

~7! The modified Po¨schl-Teller potential V(q)5
2U sech2 q, whereq is from 2` to `. One may simplify
the potential by the point transformation

P: ~p,q!→„~12q2!p,tanh21 q….

Then,V→2U(12q2) andH2E→1/2(12q2)G, whereG
5p(12q2)p22E/(12q2)22U. After 22E/(12q2) is
eliminated by the similarity transformation

S: ~p,q!→S p1
i e

2~12q!
2

i e

2~11q!
,qD ,

G is reduced to
4-5
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p~12q2!p12i epq1e22e22U.

This may be factorized by Eq.~2.7! into

pH F12S q1
a

pD 2Gp22i ~a21!S q1
a

pD J ,

where a52 i (a1e21). The p̃-linear form in the braces
may be further transformed toJ throughS̃ in Eq. ~2.8! and
L p in Eq. ~2.5! with 1/g8512q2 and f 8522i (a21)q/(1
2q2). From the corresponding eigenfunction transform
tions, one obtains

c~q!5c@~12v2!e/2
2F1„2a1e11,a1e,e11;

~12v !/2…#v5tanhq .

If c(q) remains finite forq→6`, we must have2a1e
1152n, henceE521/2e2521/2(n2a11)2, wheren is
a nonnegative integer. To obtain the second independen
lution, we replace the similarity transformation by

S: ~p,q!→S p2
i e

2~12q!
2

i e

2~11q!
,qD .

The corresponding steps for reducingH2E to J areS̃ in Eq.
~2.8! with a5 ia andL p in Eq. ~2.5! with 1/g8512q2 and
f 852i (aq2e)/(12q2). The second independent wav
function is then

c~q!5c@~11v !e/2~12v !2e/2

32F1„a,12a,12e;~12v !/2…#v5tanhq .

However, it diverges asq→` and may be excluded.
~8! The Hulthén potential V(q)51/2U(12coth 1/2q),

whereq is from 0 to `. For this example, we first use th
point transformation

P: ~p,q!→S 1

2
~12q2!p,2 coth21 qD ,

such thatV→1/2U(12q) andH2E→1/8(12q2)G, where
G5p(12q2)p14(U2E)/(11q)24E/(12q). After 4(U
2E)/(11q) and 24E/(12q) are eliminated by the simi
larity transformation

S: ~p,q!→S p1
ig

11q
1

i e

12q
,qD ,

G is reduced to

p~12q2!p12ip@e~11q!1g~12q!#1~e2g!22~e2g!.

This may be factorized by Eq.~2.7! into

pH F12S q1
a

pD 2Gp12i ~e1g!J ,

wherea52 i (e2g). Thep̃-linear form in the braces may b
further transformed toJ throughS̃ in Eq. ~2.8! andL p in Eq.
01210
-

o-

~2.5! with 1/g8512q2 and f 852i (e1g)/(12q2). From
the corresponding eigenfunction transformations, one obt

c~q!5c@~11v !2g~12v !e
2F1„e2g,e2g11,2e11;

~12v !/2…#v5coth(q/2) .

If c(q) remains finite forq→0 and`, we must havee2g
52n, hence,E521/2(2U2n2)2/(2n)2, wheren is a posi-
tive integer. Changinge to 2e for the transformations, one
obtains the second solution for reducingH2E to J and the
second independent wave function

c~q!5c@~11v !2g~12v !2e
2F1„2e2g,2e2g11,

22e11;~12v !/2…#v5coth(q/2) .

However, it diverges asq→` and may be excluded.
~9! The step potentialV(q)51/2U(11tanh 1/2q), where

q is from 2` to `. For this example, we first use the poi
transformation

P: ~p,q!→S 1

2
~12q2!p,2 tanh21 qD ,

such thatV→1/2U(11q) andH2E→1/8(12q2)G, where
G5p(12q2)p14(U2E)/(12q)24E/(11q). Compar-
ing this with the factorG in model~8!, we obtain the rest of
the transformations.~i! For E,U, the rest of the transforma
tions are the same as in model~8! with the replacementg
→6 i e and e→6g. Therefore, the first and second wav
functions are

c~q!5c@~11v !6 i e~12v !6g
2F1„6g6 i e,6g6 i e11,

62g11;~12v !/2…#v5tanh(q/2) .

Since 2F1(a,b,c;x)5(12x)c2a2b
2F1(c2b,c2a,c;x), the

solutions for6 i e lead to the same eigenfunction. The sol
tion for 1g remains finite asq→6` and the solution for
2g diverges asq→`. ~ii ! For E.U, the rest of the trans-
formations are the same as in model~8! with the replacement
g→6 i e ande→6 ig. Therefore, the first and second wav
functions are

c~q!5c@~11v !6 i e~12v !6 ig
2F1„6 ig6 i e,6 ig6 i e11,

62ig11;~12v !/2…#v5tanh(q/2) .

For the same reason as above, the solutions for6 i e lead to
the same eigenfunction. The solutions for6 ig remain finite
asq→6`.

III. DISCUSSIONS

In the last section, we have shown step by step how
integrate Hamiltonians in the quantum level by canoni
transformations. In the nine demonstrated models, it is s
that the procedure presented in this paper may be used
consistent and systematic way. In the process leading to
middle step, namely, thep-linear, q-linear, and p̃-linear
forms, two ways of reduction emerge naturally, each cor
4-6
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sponds to one of the two independent solutions. The fac
ization ofH2E corresponds to the integration factor in cla
sical integration. Yet, as we have mentioned in the beginn
the procedure does not work for arbitrary potentials. Now
shall see where the obstacles are.

The first step in the procedure is to choose a suita
function g(q) for the point transformations to simplify th
potentials. However, the point transformations also cha
1/2p2 to a more complicated form 1/2(1/g8p)2. If the form is
no more complicated than polynomials ofp andq, it may be
possible to factorize the form into one of the linear forms.
the examples we worked out, the choice ofg and subsequen
factorization is not particularly difficult. This is because t
original potential functions may be simplified byg
5Aq, ln q, cos21q, tanh21 q, or coth21 q. These functions
do not introduce additional complicated terms into 1/2p2 be-
cause their derivatives are simple roots of rational functio
If it is not apparent in the first place, the factorization is a
more difficult than the classical counter part because of
noncommutative nature of the operator algebra.

It may be interesting to compare our procedure with
intertwining procedure outlined in Ref.@6#. In the intertwin-
ing procedure, three transformations are used:~1! the simi-
larity transformationS: p→p1 ig(q), ~2! the transforma-
tion S̃: q→q1 i /p, and ~3! the transformationS21: p
→p2 ig(q). The first similarity transformation, 1/2p2

→1/2p21 ipg21/2(g81g2), is used to cancel the potentia
V. That is, one sets

1

2
~g81g2!5V1l. ~3.1!

If, in addition, one sets

g85V2V0 , ~3.2!

after the three transformations, the original HamiltonianH
51/2p21V2 will be reduced to another, hopefully easi
HamiltonianH051/2p21V0

2. The availability of an appro-
priate g and a solvableV0 that satisfy Eqs.~3.1! and ~3.2!
may limit the generality of the intertwining procedure. Wh
V050, H0 contains only one variable and is trivial to solv
For this case, Eqs.~3.1! and ~3.2! are equivalent to
s.

01210
r-

g,
e

le

e

s.

e

e

g85g222l, g85V. ~3.3!

If l50, the solutions of Eq.~3.3! are g521/(q1c) and
V51/(q1c)2. By changing the variable, it is equivalent t
the problem withV51/q2, namely, model~1! with U51. If
l,0, set 2l52k2, the solutions of Eq.~3.3! are g
5k tan(kq1c) and V5k2 sec2(kq1c). By changing the
variable, it is equivalent to the problem withV5csc2 q,
namely, model~6! with U51. If l.0, set 2l5k2, the so-
lutions of Eq. ~3.3! are g52k tanh(kq1c) and V5
2k2 sech2(kq1c). By changing the variable, it is equivalen
to the problem withV52sech2 q, namely, model~7! with
U51. For an arbitraryV, one may solveg by Eq. ~3.1! with
l as an undetermined parameter, and use the solutiong and
Eq. ~3.2! to determineV0. But there is no guarantee tha
H051/2p21V0

2 will be easier to solve thanH51/2p21V2.
For this reason, we were not able to find the solutions by
intertwining procedure except for models~1!, ~6!, and~7!.

It is clear now neither our procedure nor the intertwini
procedure are set to work for arbitrary potentials. Nevert
less, the relations between canonical transformation
some standard techniques for solving differential equatio
as pointed out in Ref.@6#, seem to give some warrant to th
method of canonical transformation, at least for models so
able by conventional techniques of differential equations.
this light, it may be advantageous to try canonical transf
mations first. But the point we wish to make in this paper
not just the technical viability of the method of canonic
transformation. In classical mechanics, canonical transfor
tions play more important roles in the analysis of dynami
systems than solving equations of motion. A famous exam
is the Kolmogorov-Arnold-Moser theorem, in which s
quences of canonical transformations are used to prove
existence of the invariant trajectories@14–16#. The powerful
techniques used in the proof of the Kolmogorov-Arnol
Moser theorem cannot be extended to quantum mecha
because they all involve Riemann integrals of dynami
variables. It may be possible to show that the three elem
tary canonical transformations, together with their large
riety of combinations, may serve as an equally powerful
of tools for the analysis of quantum dynamical systems. T
will be the direction of our future work.
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