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Conformal symmetry and the nonlinear Schradinger equation

Pijush K. Ghosh
Department of Physics, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
(Received 27 February 2001; published 10 December 2001

We show that the width of the wave packet of a class of generalized nonlineard®gjeo equations
(NLSE) trapped in an arbitrary time-dependent harmonic well in any dimensions is universally determined by
the same Hill's equation. This class of generalized NLSE is characterized by a dynartf#c¢hlS9mmetry in
absence of the trap. As an application, we study the dynamical instabilities of the rotating as well as nonro-
tating Bose-Einstein condensates in one and two dimensions. We also show exact extended parametric reso-
nance in a nonrelativistic Chern-Simons theory producing a gauged NLSE.
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The nonlinear Schidinger equationNLSE) appears in  densatey, the potential can also be explicitly dependent on
many branches of present-day physics and mathen{dfics the space coordinates. We ke¥parbitrary, but, consistent
The optical soliton[2], a solution of the NLSE, has even with the O2,1) symmetry in Eq.(1), unless mentioned oth-
been observed experimentallh8]. The one-dimensional erwise.

NLSE is exactly solvable. There exists several other gener- Let us now introduce two moments andl, in terms of
alized NLSE in one dimension that are also exactly solvablethe densityp and the current as

However, very little exact and analytical results are known

for higher-dimensional generalizations of these models, al- ) i

though they are very much relevant in many branches of ~ P(TD)=¢" ¢, [(n.1)=— 5 (J*Vi—yVy*),
modern science. The purpose of this paper is to present an

exact, analytical description of the dynamics of the width of m m

the wave packet for a class of generalized NLSE in arbitrary 11(7)= EJ dirr2p, 1y(7)= Ef ddrr -j. 4
dimensions trapped in a time-dependent harmonic well. This

class of generalized NLSE is characterized by a dynamical

0(2,1) symmetry in absence of the trap. We are dealing with a conservative system and the total num-
Consider the following Lagrangian in arbitrady+ 1 di-  ber of particlesN(7)=/d"p is a constant of motion. The
mensions, momentl, is related to the speed of the growth of the con-

1 densate. The momeh describes the square of the width of
L=ig*d — — |V 2= gV ™ .1). 1 the wave packeEG]. This quantity plays the central role in
i 2m| W =gV y™.0) @) the analysis of the collapse of the condensates of the NLSE

) ) . _ . with or without time-independent harmonic trgp-10. It is
The coupling constarg has the inverse-mass dimension in 550 ysed in the context of the Bose-Einstein condensation
the natural units witt=h=1. The real potentia¥ does not  (BEC) [11] to study the low-energy excitations and in optics
depend on any dimensional coupling constant. This allows t¢12] to determine the beam-parameter evolution. The dynam-
have a scale-invariant theory. We demand the invariance dés of 1,, when the systentl) is immersed in an external
the actiond= [d~d° £ under the following time-dependent time-dependent harmonic trap, is the central subject of the

transformation$4,5], investigation of this paper. We show that the dynamics,of
is universally determined by the same solvable Hill's equa-

o ap : d7(t) . . ; ; T 1
r—rp=7(t) Y, r—t=t(7), T(t):T’ tion, independent of the space dimensionality, integrability,

and nature(short range, long range, local, nonlocal, linear,
- nonlineaj of the interaction. The universality in the descrip-

p(7.1) = hn(tiry) = 'Td’4exp< - il.rﬁ) y(rr), (2) tion of the dynamics of the width for this class of theory has
4t been observed partially through a time-dependent variational

analysis in[13]. We present here exact, analytical, and com-

with the scale factor given by plete treatment.
at+ The system(1) has a dynamical @,1) symmetry. The
T(t):m, ad—By=1. 3 generators, the HamiltoniaH, the dilatation generatob,

and the conformal generatérare

Particular choices of(t)=t+ 3,«?t, andt/(1+ yt), corre-

spond to time translation, dilation, and special conformal H:J q9r
transformation. The generators of these transformatiass

given below close under an @,1) algebra. AlthoughV is

1 2 *
SVl Vg r 0|,

restricted to have specific forms due to the requirement of the D=7H—1,,
symmetry, one can still make infinitely many choices of it. It
might be noted here, apart from its dependence on the con- K=—7mH+27D+1;. 5)
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These generators are constant in time and lead to the follow- T,(t)=2T,(1)
ing equations: 1 20
dH dl, dl, () =H(t) — o() Zy(1),
—=0, —=2l,, ——=H. (6) .
dr dr dr H(t) = — 20(t) T(t). (11)

For time-independent solutions, bdthandl, do not depend  pefining a new variableY(t)=\Z(t), it is easy to find a
on 7. As a consequence, the static solutions of a system witQecoupled equation fot,

0(2,1) symmetry carry zero energyl4]. We also note that
I,=D=0 andK =1, for static solutions of Eq1). Defining
the width of the wave packeX= /I, it is easy to find a
decoupled equation foX from Eq. (6),

. e
X+ w(t)X— ?,

X Q Q=T;H-75>0, Q=0. (12)

dQ
Q=I1,H-13>0, EZO' (7)

We have the surprising result that the dynamics of the width
of the wave packet of the syste(@) is universally deter-
The constant of motiorQ is the Casimir operator of the mined by the Eq(12). This result is independent of the in-
0(2,1) symmetry. Equation(7) can be interpreted as the tegrability of the model. We also have the freedom of choos-
equation of motion of a particle moving in an inverse-squaréng a large class ol as long as the dynamical (91
potential. Interestingly enough, this system also has a dysymmetry in absence of the harmonic trap is maintained. The
namical @2,1) symmetry. This reduced system of a particle knowledge of the time evolution ot allows us to determine

in an inverse-square potential is a well-studied problem anéhe time evolution ofH,

the solution is given by4] 9

_y, =
H—X+X2. (13

X2=(a+b7)2+%72, 8
For the time-independent tram(t) = wq, the Hamiltonian

wherea andb are the integration constants. Hh="H+ woZ; corresponding to the Lagrangidh, is a con-
Consider the time-dependent transformations in em stant of motion. The Hamiltoniahl, is related to the gen-
with arbitrary scale factor(t). This is no more symmetry e€rator of the compact S@) rotation of S@2,1).
transformations of Eq(1) for generalr. The actionA is ~ Equation(12) can be interpreted as that of a particle mov-
transformed into a new oned,= fdtd’ L, containing a NG in a time-dependent harmonic trap and a inverse-square

time-dependent harmonic trap. The new Lagrangiamow  Potential. Due to the underlying(@,1) symmetry in absence
reads of the trap, this equation can be obtained directly from Eq.

(7) through the use of the transformatiof@3. The dynamics
of the width X can thus be constructed exactly from E8),

i 1
L= dehn— ﬁlvh¢h|2_gv( Pn s \Th)
X(t)=b(t)X(7(1)), (14
1
- Emw(t)rﬁ|¢h|2- (9  with the knowledge of the scale factorét) andb(t) from
Eq. (10) for a particular choice ofo(t). We provide below a
familiar form of solution of Eq.(12), since it appears in
many branches of physics including the cylindrically sym-
metric two-dimensional NLSE10]. The general solution of

The time-dependent frequeney(t) of the harmonic trap is
determined by

b+ w(t)b=0, b(t)=r Y2 100 Eq.(12) is given by,
Once the solution of the equgtion of motion of E(G,) is 22(t) =u?(t) + gvz(t)’ W =uv—vu, (15
known, the same can be obtained for E®). by using the W2

transformation2) and the Eq(10) or the vice versa. Equa-
tion (10) describes the motion of a particle in a time- whereu(t) andv(t) are two independent solutions of the
dependent harmonic trap. Foft) = (1/wg)tan(wet), it gives  equation,
o= wq. For the special choice of E@3), the frequencyw
obviously vanishes. The general solution of EtQ) for the
physically relevant periodia(t) is well known and will be
discussed below.

The dynamical @,1) symmetry of L is not present for

X+ w(t)x=0, (16)

satisfyingu(to) = X(to), U(te)=X(to), v(te)=0, andu (to)
#0. For periodicw(t) with the periodT, the above equation

: L is known as the Hill's equation and is a text-book material
L. We replace(, ¢, 7) by (ry, , ¥y ,t) in the definition ofl ,, IS : . . Lo
I,, andH and denote the resulting expressions in terms of thélS]' We just ment_lon here thg genergl stability C”t_e”a n
“curly form” of the associated variables. Under the transfor- terms of the quantitys=|u(T)+uv(T)| with the normaliza-
mation (2), the Eq.(6) have the following form: tion X(0)=0,X(0)=1, andv(0)=1. The solution is stable
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for §<2, while it is unstable fors>2. We remark that the [10,19,20. We concentrate here on the rotating BEC and

same stability criteria is valid for Eq10). present some interesting results. Consider a further time-
The central result of this paper is contained in EtR).  dependent rotation in Eq9) [5],

Although our main concern in this paper is on NLSE, we .

remark that the same result is true for a class of linear Schro N - cosf(t)  sinf(t) )

dinger equations with Calogero-type inverse-square interac- T sinf(t)  cosf(t)) ™

tion in arbitrary dimensiorf16]. An example of arbitrand

dimensional nonlinear potential consistent witf2() sym-  This transformsA,, to A,= fdtd“r,Z,, containing an addi-

(20

metry is given by tional term proportional to the component of the angular
momentum with the coefficient given by a time-dependent
V(, lﬂ*,r):f dr 'y (r U= ) ()| g(r) |2, frequency. In particular, the neW, is given by
17)

~ 1 ~
L= dign— 5= Vahnl> =gV, ¢ .1
with U(r) having the following scaling property. Far n=1¥n i 2m| nol™ =GV ¥ )

—er, U(r)—U(er)=e2U(r). We now discuss a few spe- 1
cific examples of NLSE with different choices dfthat are — —mw(t)?ﬁ|¢h|2—i‘¢;'§ L, ,
relevant in the contemporary literature. 2

BEC in d=1,g>0,V=|y|® The Gross-Pitaevskii equa-
tion (GPE) describing the repulsive Bose-Einstein conden- =9~

) : ) . . L,=—i| Xp—=——"Ynh—="1, (21

sates trapped in a time-dependent harmonic trap in one di- Y X
mension can be obtained from the Lagrandi@n 17]. Exact
soliton solutions of the GPE equation have been obtained i
absence of the trafl7,18. Only approximate or numerical
results are known, when the time-independent harmonic traj
is included[17].

Following our analysis, the exact solutions of E@). can

be obtained from those of E¢l) by simply using the trans- - .
formation (2) and the Eq.(?lO) ydete?n):ininggthe time- (21), using the Eqs(2), (10), and(20), or vice versa. More-

dependent scale facterfor a particular choice of the(t). over, under the transformatidi20), the set of equations in

We consider the case of time-independent trap weilft) Eq.ill) remains the same in terms of tbe new variallles
= wy and choosg= 72/(6m). Define the following dimen- andry,. Thus, the dynamics of the widthi(t) of Eq. (21) is
sionless variables: again universally determined by the EG2). The introduc-
5 4 tion of the last term in Eq(21) does not change the dynami-
= X = 77_‘/fot - :ﬁ — _ Mwg cal properties of the width. There may be dynamic instabili-
h=TYoXn m b ¥ b 0 ey ties solely due to the rapid fluctuations in the phase of the
(18  condensate during the evolution in time. However, it is ob-
vious from the definition of ; that such instabilities do not
where wg, the asymptotic value of the density, is related toshow up in the evolution of the width.
the chemical potentigl by, 2= \2mu/ . The exact solu- GaugedNLSE We now show that the dynamics of the
m width remains unchanged even if the nontrivial gauge fields

Whereih andy,, are the components of the two-dimensional

ectorr,. This is the Lagrangian for rotating BEC in an

xternal time-dependent isotropic trap in two dimensions
[21]. Interestingly, once the solution of the equation of mo-
tion of Eq. (1) is known, the same can be obtained for Eq.

tion for ¢, is _ . S
o are introduced in Eq(l) maintaining the @,1) symmetry.
_ 1 iwg  ———y _ Consider a Lagrangian in21 dimensions with the gauge
wh=ﬁex — — tanwol) Xy — ;—tan(wot) fields (Ag,A) and the matter field,
0 0
1
1/2 . . .
COS{ 2y | Lq=19* (2, 1A0) = 5= |(V =i A) {2~ gV(y, 4 1)
cog wot)
2 9 e, A (22)
Ze ,
Ccos ; +2 4 s
cog wot)

o where the last term is the Chern-Simons term. The moment

In the limit wy—0, the solution for the system without the 1, for this nonrelativistic Chern-Simon&€$S) theory can be
trap is recoverefl17]. Without loss of any generality, we are interpreted as the width of the soliton or alternatively as the
choosing8=0 in Eq.(12) of [17]. quadrupole moment. Fov=3|4|*, this is the Jackiw-Pi

BEC in d=2V=|y|* We get the GPE describing two- model describing gauged NLSE2]. This is relevant in
dimensional BEC in a time-dependent trap from the La-theories with anyons and in the quantum Hall eff@a—24].
grangian(9). No exact solution of this GPE with or without The Jackiw-Pi model is exactly solvable at the self-dual
the trap is known. However, this is a well-studied system angboint, g=1/m| «|. Our result is valid for arbitraryy main-
many of the dynamical properties are already knowntaining O2,1) symmetry. For the particular case of Jackiw-Pi
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model, the importance of our result lies at all non-self-dualA comment is in order at this point. It is known that Efj2)
points, where the model is not integrable. The Hamiltonian isadmits parametric resonances. Thus, the solitons of the non-
given by relativistic CS theory should exhibit the same phenomenon.
1 This provides an example of exact, extended parametric
H=J d2r| == [(V—iA) >+ gV(y, ://*,r)}_ (23)  resonance in a gauge theory with the nontrivial CS term.
2m In conclusion, we have shown that the width of the wave
The CS term being a topological term does not contribute t acket of a class of generalized NLSE is universally deter-
the Hamiltonian. The generatof3 and K have the same
expressions as in Ed5), with the partial derivative in the

ined by the same Hill's equation. This class of NLSE is
characterized by a dynamical®1) symmetry in absence of

expression of the curreptin the definition of the momerit,

replaced by the respective covariant derivative. The trea

the trap. The result is so robust that it is independent )of
ment is now identical to the case without the gauge-fields

the space dimensionalityii) the integrability of the model,
and (i) short range, long range, local, nonlocal, linear or
The same transformatiorni2) with d=2 and the gauge fields
transforming accordingly,

honlinear nature of the many-body interaction. This result
persists with its full generality even when the gauge fields
are introduced maintaining the dynamical2Cl) symmetry.
NG The later example allows us to study an exact parametric
AZ(t,rh)z —MAV( 7,1), resonance in a theory with the nontrivial gauge fields. Spe-
IXn cial cases of this class of generalized NLSE are relevant in
e o _ BEC and in nonrelativistic Chern-Simons theory. It would be
XE=(nn), A'=(AoA), 1=01.2, @49 nice to see the importance of this class of NLSE in many
introduce a time-dependent harmonic trfg2—24. The  more physical systems.
width of the soliton of this new Lagrangian is again univer-
sally determined by Eq.12). Interestingly, the introduction This work is supported by JSPS. | would like to thank T.
of the gauge fields and the nontrivial CS term to the usuaDeguchi and T. K. Ghosh for their continuous interest in this
two-dimensional NLSE does not change the dynamic&’.of work and valuable comments on the manuscript.
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