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Conformal symmetry and the nonlinear Schrödinger equation
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We show that the width of the wave packet of a class of generalized nonlinear Schro¨dinger equations
~NLSE! trapped in an arbitrary time-dependent harmonic well in any dimensions is universally determined by
the same Hill’s equation. This class of generalized NLSE is characterized by a dynamical O~2,1! symmetry in
absence of the trap. As an application, we study the dynamical instabilities of the rotating as well as nonro-
tating Bose-Einstein condensates in one and two dimensions. We also show exact extended parametric reso-
nance in a nonrelativistic Chern-Simons theory producing a gauged NLSE.
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The nonlinear Schro¨dinger equation~NLSE! appears in
many branches of present-day physics and mathematics@1#.
The optical soliton@2#, a solution of the NLSE, has eve
been observed experimentally@3#. The one-dimensiona
NLSE is exactly solvable. There exists several other ge
alized NLSE in one dimension that are also exactly solva
However, very little exact and analytical results are kno
for higher-dimensional generalizations of these models,
though they are very much relevant in many branches
modern science. The purpose of this paper is to presen
exact, analytical description of the dynamics of the width
the wave packet for a class of generalized NLSE in arbitr
dimensions trapped in a time-dependent harmonic well. T
class of generalized NLSE is characterized by a dynam
O~2,1! symmetry in absence of the trap.

Consider the following Lagrangian in arbitraryd11 di-
mensions,

L5 ic* ]tc2
1

2m
u“cu22gV~c,c* ,r !. ~1!

The coupling constantg has the inverse-mass dimension
the natural units withc5h̄51. The real potentialV does not
depend on any dimensional coupling constant. This allow
have a scale-invariant theory. We demand the invarianc
the actionA5*dtddrL under the following time-dependen
transformations@4,5#,

r→rh5 ṫ~ t !21/2r , t→t5t~t!, ṫ~ t !5
dt~ t !

dt
,

c~t,r !→ch~ t,rh!5 ṫ d/4expS 2 i
ẗ

4ṫ
r h

2D c~t,r !, ~2!

with the scale factort given by

t~ t !5
at1b

gt1d
, ad2bg51. ~3!

Particular choices oft(t)5t1b,a2t, and t/(11gt), corre-
spond to time translation, dilation, and special conform
transformation. The generators of these transformations~as
given below! close under an O~2,1! algebra. AlthoughV is
restricted to have specific forms due to the requirement of
symmetry, one can still make infinitely many choices of it.
might be noted here, apart from its dependence on the
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densatec, the potential can also be explicitly dependent
the space coordinates. We keepV arbitrary, but, consisten
with the O~2,1! symmetry in Eq.~1!, unless mentioned oth
erwise.

Let us now introduce two momentsI 1 and I 2 in terms of
the densityr and the currentj as

r~t,r !5c* c, j ~t,r !52
i

2m
~c*“c2c“c* !,

I 1~t!5
m

2 E ddr r 2r, I 2~t!5
m

2 E ddr r • j . ~4!

We are dealing with a conservative system and the total n
ber of particlesN(t)5*ddrr is a constant of motion. The
momentI 2 is related to the speed of the growth of the co
densate. The momentI 1 describes the square of the width
the wave packet@6#. This quantity plays the central role i
the analysis of the collapse of the condensates of the NL
with or without time-independent harmonic trap@7–10#. It is
also used in the context of the Bose-Einstein condensa
~BEC! @11# to study the low-energy excitations and in opti
@12# to determine the beam-parameter evolution. The dyna
ics of I 1, when the system~1! is immersed in an externa
time-dependent harmonic trap, is the central subject of
investigation of this paper. We show that the dynamics ofI 1
is universally determined by the same solvable Hill’s equ
tion, independent of the space dimensionality, integrabil
and nature~short range, long range, local, nonlocal, line
nonlinear! of the interaction. The universality in the descri
tion of the dynamics of the width for this class of theory h
been observed partially through a time-dependent variatio
analysis in@13#. We present here exact, analytical, and co
plete treatment.

The system~1! has a dynamical O~2,1! symmetry. The
generators, the HamiltonianH, the dilatation generatorD,
and the conformal generatorK are

H5E ddr F 1

2m
u“cu21gV~c,c* ,r !G ,

D5tH2I 2 ,

K52t2H12tD1I 1 . ~5!
©2001 The American Physical Society03-1
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These generators are constant in time and lead to the fol
ing equations:

dH

dt
50,

dI1

dt
52I 2 ,

dI2

dt
5H. ~6!

For time-independent solutions, bothI 1 andI 2 do not depend
on t. As a consequence, the static solutions of a system
O~2,1! symmetry carry zero energy@14#. We also note that
I 25D50 andK5I 1 for static solutions of Eq.~1!. Defining
the width of the wave packet,X5AI 1, it is easy to find a
decoupled equation forX from Eq. ~6!,

d2X

dt2
5

Q

X3
, Q5I 1H2I 2

2.0,
dQ

dt
50. ~7!

The constant of motionQ is the Casimir operator of the
O~2,1! symmetry. Equation~7! can be interpreted as th
equation of motion of a particle moving in an inverse-squ
potential. Interestingly enough, this system also has a
namical O~2,1! symmetry. This reduced system of a partic
in an inverse-square potential is a well-studied problem
the solution is given by@4#

X25~a1bt!21
Q

a2
t2, ~8!

wherea andb are the integration constants.
Consider the time-dependent transformations in Eq.~2!

with arbitrary scale factort(t). This is no more symmetry
transformations of Eq.~1! for generalt. The actionA is
transformed into a new one,Ah5*dtddrhLh , containing a
time-dependent harmonic trap. The new LagrangianLh now
reads

Lh5 ich* ] tch2
1

2m
u“hchu22gV~ch ,ch* ,rh!

2
1

2
mv~ t !r h

2uchu2. ~9!

The time-dependent frequencyv(t) of the harmonic trap is
determined by

b̈1v~ t !b50, b~ t !5 ṫ21/2. ~10!

Once the solution of the equation of motion of Eq.~1! is
known, the same can be obtained for Eq.~9! by using the
transformation~2! and the Eq.~10! or the vice versa. Equa
tion ~10! describes the motion of a particle in a tim
dependent harmonic trap. Fort(t)5(1/v0)tan(v0t), it gives
v5v0. For the special choice of Eq.~3!, the frequencyv
obviously vanishes. The general solution of Eq.~10! for the
physically relevant periodicv(t) is well known and will be
discussed below.

The dynamical O~2,1! symmetry ofL is not present for
Lh . We replace (r ,c,t) by (rh ,ch ,t) in the definition ofI 1 ,
I 2, andH and denote the resulting expressions in terms of
‘‘curly form’’ of the associated variables. Under the transfo
mation ~2!, the Eq.~6! have the following form:
01210
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e

İ1~ t !52I2~ t !,

İ2~ t !5H~ t !2v~ t !I1~ t !,

Ḣ~ t !522v~ t !I2~ t !. ~11!

Defining a new variableX(t)5AI1(t), it is easy to find a
decoupled equation forX,

Ẍ1v~ t !X5
Q
X 3

,

Q5I1H2I 2
2.0, Q̇50. ~12!

We have the surprising result that the dynamics of the wi
of the wave packet of the system~9! is universally deter-
mined by the Eq.~12!. This result is independent of the in
tegrability of the model. We also have the freedom of cho
ing a large class ofV as long as the dynamical O~2,1!
symmetry in absence of the harmonic trap is maintained.
knowledge of the time evolution ofX allows us to determine
the time evolution ofH,

H5Ẋ21
Q
X2

. ~13!

For the time-independent trap,v(t)5v0, the Hamiltonian
Hh5H1v0I1 corresponding to the LagrangianLh is a con-
stant of motion. The HamiltonianHh is related to the gen-
erator of the compact SO~2! rotation of SO~2,1!.

Equation~12! can be interpreted as that of a particle mo
ing in a time-dependent harmonic trap and a inverse-squ
potential. Due to the underlying O~2,1! symmetry in absence
of the trap, this equation can be obtained directly from E
~7! through the use of the transformations~2!. The dynamics
of the widthX can thus be constructed exactly from Eq.~8!,

X~ t !5b~ t !X„t~ t !…, ~14!

with the knowledge of the scale factorst(t) andb(t) from
Eq. ~10! for a particular choice ofv(t). We provide below a
familiar form of solution of Eq.~12!, since it appears in
many branches of physics including the cylindrically sym
metric two-dimensional NLSE@10#. The general solution of
Eq. ~12! is given by,

X2~ t !5u2~ t !1
Q
W2

v2~ t !, W~ t !5uv̇2vu̇, ~15!

where u(t) and v(t) are two independent solutions of th
equation,

ẍ1v~ t !x50, ~16!

satisfyingu(t0)5X(t0), u̇(t0)5Ẋ(t0), v̇(t0)50, andv(t0)
Þ0. For periodicv(t) with the periodT, the above equation
is known as the Hill’s equation and is a text-book mater
@15#. We just mention here the general stability criteria
terms of the quantityd5uu(T)1 v̇(T)u with the normaliza-
tion X(0)50,Ẋ(0)51, andv(0)51. The solution is stable
3-2
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for d,2, while it is unstable ford.2. We remark that the
same stability criteria is valid for Eq.~10!.

The central result of this paper is contained in Eq.~12!.
Although our main concern in this paper is on NLSE, w
remark that the same result is true for a class of linear Sc¨-
dinger equations with Calogero-type inverse-square inte
tion in arbitrary dimension@16#. An example of arbitraryd
dimensional nonlinear potential consistent with O~2,1! sym-
metry is given by

V~c,c* ,r !5E ddr 8c* ~r 8!U~r2r 8!c~r 8!uc~r !u2,

~17!

with U(r ) having the following scaling property. Forr
→er , U(r )→U(er )5e22U(r ). We now discuss a few spe
cific examples of NLSE with different choices ofV that are
relevant in the contemporary literature.

BEC in d51, g.0,V5ucu6. The Gross-Pitaevskii equa
tion ~GPE! describing the repulsive Bose-Einstein conde
sates trapped in a time-dependent harmonic trap in one
mension can be obtained from the Lagrangian~9! @17#. Exact
soliton solutions of the GPE equation have been obtaine
absence of the trap@17,18#. Only approximate or numerica
results are known, when the time-independent harmonic
is included@17#.

Following our analysis, the exact solutions of Eq.~9! can
be obtained from those of Eq.~1! by simply using the trans
formation ~2! and the Eq. ~10! determining the time-
dependent scale factort for a particular choice of thev(t).
We consider the case of time-independent trap withv(t)
5v0 and chooseg5p2/(6m). Define the following dimen-
sionless variables:

x̄h5pc0
2xh , t̄ 5

p2c0
4

m
t, c̄h5

ch

c0
, v̄05

mv0

p4f0
8

,

~18!

wherec0
2, the asymptotic value of the density, is related

the chemical potentialm by, c0
25A2mm/p. The exact solu-

tion for c̄h is

c̄h5
1

cos~v̄0 t̄ !
expS 2

i v̄0

2
tan~v̄0 t̄ !x̄h

22
i

v̄0

tan~v̄0 t̄ !D
3F coshF 2y

cos~v̄0 t̄ !
G21

coshF 2y

cos~v̄0 t̄ !
G12

G 1/2

. ~19!

In the limit v̄0→0, the solution for the system without th
trap is recovered@17#. Without loss of any generality, we ar
choosingb50 in Eq. ~12! of @17#.

BEC in d52,V5ucu4. We get the GPE describing two
dimensional BEC in a time-dependent trap from the L
grangian~9!. No exact solution of this GPE with or withou
the trap is known. However, this is a well-studied system a
many of the dynamical properties are already kno
01210
o
c-
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@10,19,20#. We concentrate here on the rotating BEC a
present some interesting results. Consider a further ti
dependent rotation in Eq.~9! @5#,

t→ t̃ 5t, rh→ r̃h5S cosf ~ t ! sin f ~ t !

2sin f ~ t ! cosf ~ t !
D rh . ~20!

This transformsAh to Ãh5*d t̃ddr̃hL̃h containing an addi-
tional term proportional to thez component of the angula
momentum with the coefficient given by a time-depend
frequency. In particular, the newL̃h is given by

L̃h5 ich* ] t̃ch2
1

2m
u“̃hchu22gV~ch ,ch* , r̃h!

2
1

2
mv~ t ! r̃ h

2uchu22 ḟ ch* Lzch ,

Lz52 i S x̃h

]

] ỹh

2 ỹh

]

] x̃h
D , ~21!

wherex̃h and ỹh are the components of the two-dimension
vector r̃h . This is the Lagrangian for rotating BEC in a
external time-dependent isotropic trap in two dimensio
@21#. Interestingly, once the solution of the equation of m
tion of Eq. ~1! is known, the same can be obtained for E
~21!, using the Eqs.~2!, ~10!, and~20!, or vice versa. More-
over, under the transformation~20!, the set of equations in
Eq. ~11! remains the same in terms of the new variablet̃

and r̃h . Thus, the dynamics of the widthX( t̃ ) of Eq. ~21! is
again universally determined by the Eq.~12!. The introduc-
tion of the last term in Eq.~21! does not change the dynam
cal properties of the width. There may be dynamic instab
ties solely due to the rapid fluctuations in the phase of
condensate during the evolution in time. However, it is o
vious from the definition ofI 1 that such instabilities do no
show up in the evolution of the width.

GaugedNLSE. We now show that the dynamics of th
width remains unchanged even if the nontrivial gauge fie
are introduced in Eq.~1! maintaining the O~2,1! symmetry.
Consider a Lagrangian in 211 dimensions with the gaug
fields (A0 ,A) and the matter fieldc,

Lg5 ic* ~]t2 iA0!c2
1

2m
u~“2 iA!cu22gV~c,c* ,r !

1
k

4
emnlFmnAl , ~22!

where the last term is the Chern-Simons term. The mom
I 1 for this nonrelativistic Chern-Simons~CS! theory can be
interpreted as the width of the soliton or alternatively as
quadrupole moment. ForV5 1

2 ucu4, this is the Jackiw-Pi
model describing gauged NLSE@22#. This is relevant in
theories with anyons and in the quantum Hall effect@22–24#.
The Jackiw-Pi model is exactly solvable at the self-du
point, g51/muku. Our result is valid for arbitraryV main-
taining O~2,1! symmetry. For the particular case of Jackiw-
3-3
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model, the importance of our result lies at all non-self-d
points, where the model is not integrable. The Hamiltonian
given by

H5E d2r F 1

2m
u~“2 iA!cu21gV~c,c* ,r !G . ~23!

The CS term being a topological term does not contribute
the Hamiltonian. The generatorsD and K have the same
expressions as in Eq.~5!, with the partial derivative in the
expression of the currentj in the definition of the momentI 2
replaced by the respective covariant derivative. The tre
ment is now identical to the case without the gauge-fie
The same transformations~2! with d52 and the gauge field
transforming accordingly,

Am
h ~ t,rh!5

]xn

]xh
m

An~t,r !,

xm5~t,r !, Am5~A0 ,A!, m50,1,2, ~24!

introduce a time-dependent harmonic trap@22–24#. The
width of the soliton of this new Lagrangian is again unive
sally determined by Eq.~12!. Interestingly, the introduction
of the gauge fields and the nontrivial CS term to the us
two-dimensional NLSE does not change the dynamics oX.
D

et

c.

g
se
e
rip

.

.
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A comment is in order at this point. It is known that Eq.~12!
admits parametric resonances. Thus, the solitons of the
relativistic CS theory should exhibit the same phenomen
This provides an example of exact, extended parame
resonance in a gauge theory with the nontrivial CS term.

In conclusion, we have shown that the width of the wa
packet of a class of generalized NLSE is universally de
mined by the same Hill’s equation. This class of NLSE
characterized by a dynamical O~2,1! symmetry in absence o
the trap. The result is so robust that it is independent of~i!
the space dimensionality,~ii ! the integrability of the model,
and ~iii ! short range, long range, local, nonlocal, linear
nonlinear nature of the many-body interaction. This res
persists with its full generality even when the gauge fie
are introduced maintaining the dynamical O~2,1! symmetry.
The later example allows us to study an exact parame
resonance in a theory with the nontrivial gauge fields. S
cial cases of this class of generalized NLSE are relevan
BEC and in nonrelativistic Chern-Simons theory. It would
nice to see the importance of this class of NLSE in ma
more physical systems.
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