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Dynamics of quantum entanglement
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A model of discrete dynamics of entanglement of a bipartite quantum state is considered. It involves a global
unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure
states the decay of entanglement is accompanied by an increase of von Neumann entropy of the system. We
observe and discuss revivals of entanglement due to unitary interaction of subsystems. For some mixed states
having different marginal entropies of the subsystems we find an asymmetry in speed of entanglement decay.
The entanglement of these states decreases faster, if the depolarizing channel acts on the “classical” sub-
system, characterized by smaller marginal entropy.
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[. INTRODUCTION a simple model of discrete time evolution. In Sec. Il we
derive bounds on the entropy increase under the action of the
Quantum entanglement is one of the most subtle and inenvironment. Then in Sec. IV we analyze the decrease of
triguing phenomena in natuid,2). Its potential usefulness entanglement versus increase of the degree of mixing of the
has been demonstrated in various applications such as quahitially pure states. The asymmetry in the entanglement de-
tum teleportation, quantum cryptography, and quantum densedy depending on the subsystem subjecting to influence of
coding. On the other hand, quantum entanglement is a fragilenvironment is described in Sec. V. In Sec. VI we consider
feature, which can be destroyed by interaction with the enthe entanglement revivals. The results of the paper are dis-
vironment. This effect due tdecoherencé3], is the main  cussed in Sec. VII.
obstacle for practical implementation of quantum computing.

A model allowing to study the dynamics of entanglement in Il. MODELS OF TIME EVOLUTION
presence of interaction with the environment has been re- . _ o .
cently analyzed by Yi and Su]. In this paper we consider the bipartite state subjected se-

In this paper we investigate destruction of the entang|eguential interactions with environment. They are modeled by

ment in a proposed model of discrete dynamics. We considéfuantum channels, defined as completely positive linear
a simple bipartite system consisting of two spin-1/2 particles™aPS, preserving the trace of the stgig _
Only one of them is subjected to periodic actions of a quan- Let o be a density operator acting on a finite-dimensional
tum channel, which represents the interaction with environ!iiloért space’i. The most general form of the quantum
ment. As the initial states we choose random states takef'@nnel is the following transformation—o":
from the ensemble of pure separable states and from the K K
ensemble of maximally entangled pure states. We also inves- ' _ gt v/, —
tigate the time evolution of mixed states having some special _A(U)_Zl VioVi,  where Z’l vivisl. @)
property. The corresponding system is composed of two sub-
systems exhibiting different properties with respect to somef in additionEi'il:ViV?:]I holds then the channel is called
entropy inequality that is satisfied by all classical systemspistochastic
One of the subsystems satisfies the inequality and may be Bistochastic channels can be alternatively defined as
considered “classical,” while the other, “quantum” sub- channels that do not decrease von Neumann entropy of quan-
system, violates the inequality. We investigate an asymmetryum states.
in the process of destruction of entanglement with respect to A particular example of the bistochastic channel is given
the subsystem interacting with the environment. We demonby random external field§6]. They can be written as
strate a possible presence of revivals of entanglement caused
by the global unitary evolution entangling the subsystems K
between consecutive actions of the environment. o'=Ag(0)=2, pATA], 2

The paper is organized as follows. In Sec. Il we describe =1

whereA,, i=1,2,...K areunitary operators and the vector of
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&% 2 N will be random external fields\g (2), all defined by the
U U s \ same set ofK=4 unitary operatorsA;=1, A,=0o, A3
A A =05, Ay,=03 (Where o; denote Pauli matricgsbut with
o b L different vectors of probability3):
1 1 1 I (1) —
5 ; ; ; pY=(1-¢€0,0¢),
tn
€ €
FIG. 1. Discrete model of periodic dynami¢s), (cf. Figs. 8.1 pl?= ( 1-¢0,5, —),
and 8.2 of Ref[10]). Interaction with the environmenk trans- 2°2
forms the statep, into ¢}, and then the unitary transformatidh
maps it intog, 1 . @) ( € € e) _
p =1 6,3,3,3 ’ O<e<l1. (6)

Such random systems can be described in the formalism of
quantum iterated function systerfig. The so-called Kraus ) )
form (1) can be reproduced setting=JpiA, . It is worth Each dynamw_s depends on two continuous parameters:
noting that in the case of the most elementary quantum syssontained inJ =e'*" governing the unitary dynamics arg
tem described on the Hilbert spa¢é=C? the channel is included in the vector of probabilities, and describing the
bistochastidgf and only ifit is a random external fielt2) (see ~ strength of the coupling with the environment. Additional
[8]). Note that an unitary evolution of the system can bediscrete indexj labels the different vectors of probability
considered as the simplest case of the bistochastic quantupy’. For these three models of dynamics we shall use the
channel withkK=1. compact notatione‘aye. The fourth dynamics denoted by
There exist, however, many quantum channels that are n@,, , is defined by putting in formuléb) the decaying chan-
bistochastic. We shall consider the followidgcayingchan-  nel(4). Dynamics involving the operatidd with “reflected”
nel, sometimes callef®] the amplitude damping channel (i.e., obtained fromH by permutating subsystemsgiamil-
tonian H' = oy® o, will be_denoted by the same symbols
o'=Ap(0)=MioM;1+MzoM,, (4 with only one change®—0.
Remark If « is equal to zero, then the unitary operatldn

where the matrices in Eq. (5) is reduced to identity transformation. In particular,

1 0 it can be seen that the dynam@ée corresponds to periodic
Ml:[ } action ofdepolarizing channe]11].

0 \/5 Now the essence of our study is the following: we con-
sider composite quantum systems subjected to the local in-
and teraction with the environment, which acts on one subsystem
1-p only. We investigate how the decay of the entanglement in
M, = p} the system depends on the initial state and the type of the

0 0 dynamics. In particular we analyze to which extent the de-

crease of the mean entanglement is reflected by the evolution
are written in the standard basis. of von Neumann entropy of the system.

Let o denote a mixed state of ag2 system i.e., the
density operator defined on the Hilbert spage H o® Hg
=(C?®(C?. The system consists of two subsystefmand B
that can represent spin-1/2 particles or two-level atoms. In

our model the unitary dynamics is interrupted by periodic e start establishing bounds for the increase of von Neu-
actions of the environment as shown schematically in Fig. 1mann entropy.

IIl. BOUNDS ON ENTROPY INCREASE
UNDER LOCAL CHANNEL

Discrete time evolution of the statereads in our model Proposition Under a local action of the quantum channel
; . ; 0ap— (I® A) @ ap, the increase of the von Neumann entropy
e(n+1)=Up’'(n)UT=U{A[e(n)J}UT, (5)  ASfor a bipartiten®m state is bounded by

whereA =1® A and the channeA is either bistochasti€2)

or decaying(4). HereU =e'*" represents a unitary transfor-

mation that involves an interaction between the two SUbWhere S(04) denotes the entropy of the subsystémIn

systemsA and B described by the HamiltoniaH. We use particular, if the system is separable th&B<In m.

AS=S(0%m) —S(ohe)<S(eW)—S(ehg) +Inm, (7)

the dimensionless units anﬂstam_js for a couplin~g. param- - proof. By definition the local channel is trace preserving,
eter. Subsequently we shall consider the cases Mitrqual  hence it does not change the density matrix of the first sub-
either tooy® oy=H ortoH=0y® o =H". system. Thuso3"'=p\ and the same holds for the corre-

In general we shall use four types of dynamics defined bysponding entropies. Then from subadditivity of the entropy
four different operatord\’s in the formula(5). Three of them we have
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out

ap)=S(oR" +S(eg"

=S(eM)+S(e3"<S(eR) + SPax

=S(e'M +Inm.

S(e

8

We get the first inequality in the Proposition by subtracting
S(eng) from both sides of the above inequality. For sepa-
rable states one always h&pis) —S(oxn)=0 [12] that
simplifies Eq.(7) to AS<Inm as expected.

Note that a sequence of quantum channels acting locally
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forms a quantum channel acting locally too. So the proposi-

tion works also for the dynamid®;,, and©,,. Moreover,
from Eq. (7) we see that the entropy of initially pure sepa-
rable statep'yz cannot exceed Im.

IV. ENTANGLEMENT VERSUS DEGREE OF MIXING

In this section we study the time evolution of entangle-

ment and compare it with the time evolution of von Neu-
mann entropy. To characterize the degree of entanglement
use theentanglement of formatiomtroduced by Bennett
et al. [11]. For any 222 mixed state this quantity may be
computed analytically as shown by Hill and Woottgis].
In this case the entanglement of formati&rior shorter, the
entanglement varies from zero(separable statgsto In2
(maximally entangled statgsso in the figures we used the
rescaled variabl&/In 2.

Our results were obtained by averaging over ensembles

FIG. 2. Dynamics of quantum entanglement for syst@rﬁ]s.
Mean entanglement of formatidi) (open symbolsand von Neu-
mann entrop¥$S (closed symbolsaveraged over a sample of 100
random pure states shown as functions of discrete timeNo
unitary evolution is present,e(=0). Parameteg, controlling the
interaction with environment is set to 0.0D) or 0.05().

frequency of oscillations is proportional ta The larger this
%earameter, the faster the unitary evolutldmotates the states

¢ from and into the convex set of separable states. In the
case of entropy, oscillations are only due to changes of the
second derivative, i.e., entropy is still monotonically decreas-
ing. This is not the case for entanglemé&ntwhich can also

be seen in Fig. 4 for several individual initial statesthout
averaging. For short times the curve fag=0 (no unitary
evolution seems to constitute an envelope for all other

rves.

random initial states. They were generated according to natu-

ral measures oni) six-dimensional manifold of all pure
states for &2 problem,(ii) three-dimensional manifold of
maximally entangled pure states, afiid) four-dimensional
manifold of separable pure states.

Numerical experiments have shown that the samples of

100 initial states, generated randomly as described in th
Appendix, were sufficient to receive reliable results.

A. Bistochastic channels

As shown in Refs[14,15 the mean entanglement of

mixed states decreases monotonically with increasing degree

of mixing. Due to interaction with the environment the ini-

tially pure states become mixed: their von Neumann entropy,

S(e)=—Tr(g Inp), grows in time. Thus it is natural to ex-

pect a corresponding monotonous decay of the mean en-

tanglement. This indeed takes place, as shown in Fig. 2, i
absence of the unitary dynamicsy=€0). Initial states were

taken randomly from the entire space of pure states, so i
accordance with15], the initial mean entanglement is close

to (In2)/2. The parallel processes of decay of the entangle-
ment and increase of the entropy are accelerated, if the pa-

rameter e describing the interaction with environment in-
creases.

For initially maximally entangled pure statfsase(ii)] a
similar dependence is represented by circles in Fig. 3. Her
(E(0))=In 2. The picture changes when unitary evolution is

1.2
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€ FIG. 3. As in Fig. 2 for a sample of 100 maximally entangled
stateq E(0)=In(2)] with e=0.01; «=0.0(0) and @=0.1(A) for

involved. The latter leads to oscillations of entanglement ofthannels described kg g™ and(b) p?. Observe how the influ-

formation, reflected in the time evolution of entropy. The

ence of the unitary dynamics depends on the kind of the channel.
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FIG. 4. Dependence of entanglement of formation on time for <E>/1829 AA“‘A‘MA
several randomly chosen maximally entangled pure states. The uni- . ‘,A‘
tary dynamicsU =exp(aH) is governed by the parameter Here <
€=0.01 in p®, and a=0.1 (narrow line$. Reference bold line 0.6 -
represents the case of no unitary dynamies=Q), for which the A:g,;"""""“----
dynamics of entanglement does not depend on the initial state. 0.3 :’AA%OO%
0.0 [ I o 200000000000000000¢
It is worth emphasizing a significant difference between 0 20 40 60 80 tn100
0L . [Fig. 3@] andO? , [Fig. 3b)]. In the former case the

presence of unitary evolution can accelerate the process of kG, 6. As in Fig. 2 for samples of 100 pure states subjected to
entropy increase. In the latter, on the contrary, switching ofne Kraus channe#) with p=0.05 anda=0.0. Initial states drown
Unitary evolution results in slower increase of the mean enrandom|y from the ensembles @) (), separable pure states)
tropy. The iteration of the channeihE preserves both the (¢), maximally entangled pure states, aiwi (O), ensemble of all
number and the position of the nonzero componei. iit is pure states. Cad@) with unitary evolution,a=0.1, is denoted by

not the case fo®?2 _, for which two Pauli matrices generate (A) in panel(b).

a, e

1.2 | a) <S> : : o
<E>/In2 the ent|r_e algebra of unlta_ry matr|qg$ involved.
0.9 Consider now the casgii), of initially separable states,
) rasnasaassast st presented in Fig. 5. The presence of the unitary evolution
“ may increase the mean entanglement, initially equal to zero.
0.6 However, there is one difference more; footh dynamics
e;e [Fig. 5@] andefm, [Fig. 5(b)] presence of the unitary
0.3 s dynamics accelerates the process of increase of entropy. In
. I Ky A%ﬁ - absence of the unitary dynamics< 0) the entropy does not
0.0 -l aastStaseation exceed the value In 2 in accordance to our proposition proved
0 20 40 60 80 tnlOO in Sec. Ill.
The obtained results show that the oscillations of the
12 b <S> mean entanglemefi are anticorrelated With the oscillations
<E>/In2 ) of the entropyS. It was also checked that i is kept con

] stant, but is the Hamiltonian is chosen randomly then the
0.9 Lasssasassstss oscillations of entanglement are smeared out. It means that
effects of quantum coherence are destroyed and the destruc-

0.6 | aasepmeseneness et tion of entanglement occurs faster.
0.3
B. Decaying channel
0.0 0 as Figure 6 presents results obtained for the amplitude damp-

80 tnlOO ing channel(4). In the absence of the unitary evolution (
=0) the mean entropyS), averaged over the entire mani-
FIG. 5. As in Fig. 3 for a sample of 100 initially separable pure fold of pure stategcase(i)], does not tend monotonically to
stateg E(0)=0]. In absence of unitary dynamicsy €0), the en-  its maximal value. Att,~ 20 the entropy reaches its maxi-
tanglement equals zero. mum and then decreases to its limiting value about] e

012101-4



DYNAMICS OF QUANTUM ENTANGLEMENT PHYSICAL REVIEW A65 012101

full circles in Fig. @b)]. This is due to the fact that for the 0.08

decayingchannel the entropy of the system may decrease. 0.9 x
Numerical data received by averaging over the set of E/In2 E/In2 ‘*5,‘

maximally mixed statefcase(ii), diamond$ and the set of 0.04 T

separable pure stat¢sase(iii), squaresare shown in Fig. 0.6

6(a). Observe that the steady-state limiting values of the von

Neumann entropyS represents the initial average entangle-

ment (E). Indeed, in absence of the unitary evolution the 03

perturbed subsystem is eventually dumped to the ground

state. So finally the state of the system is a product of the

ground state of the affected subsystem and the reduced den- 0.0

sity matrix of the unperturbed subsystem. Thus, after the 0 20 40 60 80 100

averaging procedure, one gets the averaged von Neumann

entropy of the subsystem not subjected to action of the chan-

nel. FIG. 7. Comparison of the dependence of the entanglement of
A random choice of initially pure states of the compositeformation for the stat@‘? with a?=3/4; q=3/5 (x) ande® (x).

system induces a certain measure in the space of the reducé&le bistochastic channgh with €=0.01 interacts with the “clas-

density matriceg16]. As proved recently by Hall17] the sical” subsystemB in the former case, and with the “quantum”

natural rotationally invariant measure on the spacél ef4 subsystenA in the latter case. Solid line represents the behavior of

pure states induces a uniform measure inBlech ballrep- @ maximally en_tanglt_ed Stamax- Magnification of the initial de-

resenting the density matrices fiir=2. Denoting the spec- pendence provided in the inset reveals the asymmetry of the en-

trum of reduced matrices bjl/2—r,1/2+r} we may write  tanglement decay.

— 2
more formally, P(r)=24r" for r €[0,1/2]. The von Neu-  fomed on the entire system. This classical feature is charac-
mann entropy, averaged over this measure equalsLY3in  eistic of quantum separable states. They do satisfy the fol-

agreement with the numerical data presented in Fig. 6. |owing two inequalities concerning von Neumann entropy
For nonzero values af we observe the oscillations of the [12,18:

mean entanglement, caused by the unitary evolution. It is

interesting, however, that the presence of unitary evolution S(eag)=S(04) 9
allows the final entropy to be maximpdee full triangles in

Fig. 6(b)] It means that the presence of the decay channel i8nd

completely masketdy the unitary interaction between the

two SubsyStemS. S(QAB)ES(QB)v (10)

wherep , and og denote the reduced density matrices, e.g.,
V. ASYMMETRY OF ENTANGLEMENT DECAY 0A=Trg(0ag). Now we shall focus on the following family

We shall consider here dynamics of mixed states havingc;) f states introduced in Ref19). They can be written as

an intriguing property. Namely, we choose a quantum bipar- oWi=q|W W, |+(1—q)| ¥, (¥,|, 0<qg<1,

tite system, whiclviolates some entropy inequality only with

respect to one of both subsysternst us recall first that the with normalized pure state vectors|¥,)=a|00)

information gain resulting from the measurement of any of+1—a?/11) and |¥,)=a|10)+ 1—a?/01) with 0<a

the subsystems of a quantum state with classical correlations 1. In the standard basig00), |01), |10), |11)), the corre-
is not greater than the gain obtained form measurement pesponding density matrix takes the form

qa’ 0 0 gay1-a?
" 0 (1-a)(1-a%) (1-qgayl—a? 0
e 0  (1-gayi-a (1-gya? 0 D
gay1—a? 0 0 q(1—a?)

Let us takea®>q>3. Then the first inequality9) is vio-  tanglement in different ways, depending on whether the en-
lated, while the second on@0) is not. Thus the composite vironment interacts with classical or quantum subsystem. In-
system can be called “quantum” with respect to the sub-tuitively one could guess that the entanglement should be
systemA and “classical” with respect to the subsystdBn ~ more robust if the noise affects the classical subsystem.
One may then expect that the bipartite system will lose en- Here we studied the systepi®) for q=3/5 anda?=3/4.
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FIG. 8. Unitary dynamics and asymmetry of entanglement de- FIG. 9. As in Fig. 8 fore=0.002 anda= —0.06, i.e., the pro-
cay: (a) the stateo? defined by parametera?=3/4 andq=3/5 cess runs back in time. Observe that maxima in Fig) rrespond
subjected to the bistochastic chanpglwith e=0.002 and unitary o minima in(a) and vice versa.
dynamicsH with &= 0.06 (*); the symmetric state(® interacting
with the reflected Hamiltoniakhl’ (X). Panel(b) shows the data for

riﬂeCteg unitary dynamics; the Hamiltoniaht® and H are ex-  tem This counterintuitive effect, called subsequently anoma-
changed.

lous entanglement dec&}ED), links quantum and classical

features of the state from information-theoretical point of

view.
Then von Neumann entropy of the entire syst&w,s(2/5)

: ; Let us recall that any 2 system may be described by
~0.673 1S greater than the entropy of the classical subsystemlo Bloch vectors, representing locally both subsystems, and
B for which Sg=5(1/4)~0.562, and smaller than the entropy a correlation matrixT, which represents the projection of the
of the quantum subsysten§,=s(9/20)~0.688, wheres ., hite system onto the family of mixtures of maximally
stands for the binary Shannon entropyx):=—xInx—(1  oniangled statetsee[20]). A possible explanation of AED
—X)In(1—x). We analyzed the time evolution of this quantum

] - S : should take into account the fact that the local action of
system in presence of a depolarizing charfaézL given by  environment changes both the Bloch vectors, the correlation
Eq.(2). In the theory of error-correcting codes it is one of the marix, as well as their relationship. A depolarizing channel
most popular models of environment-induced noise. Thgnay affect in a similar way both local parameters, but it may
evolution of entanglement for the stapé") is represented by gistinguish, in sense of the destruction of the entanglement,
stars in Fig. 7. In this case the bistochastic chamneakts on  the correlation parameters with respect to the side of the
the “classical” subsystenB. To investigate a possible asym- action.

metry of the entanglement decay we consider the st&te It should be noted that, regardless of which part is sub-
for which both subsystems are exchanged. More preciselyected to the noise, the entanglement of mixed stat®sand

all elements of both density matrices are equal, apart fronp(®) decreases slower than the entanglement of the maxi-
p$d=pS) and p{2d=pSY. The corresponding dynamics of mally entangled state®old line in Fig. 7. This is due to the

p? is denoted by crosses in Fig. 7. In this case the noiséact that the latter decreases fast for short times and slow at
interacts with the “quantum” subsysted. The magnifica- longer time scales, for which the initially pure state gets
tion in the inset reveals the asymmetry in the time evolutionmixed. It is thus instructive to compare the shape of the bold
Observe that the attack on the “classical” part of the systenline starting fromty~60 with the symbols representing the

is more harmful to the entanglement properties of the sysinitial decay of entanglement of the state8.
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action of the environment action is more damaging for the
entanglement.

It is instructive to analyze the same system with the uni-
tary evolution reversed in time. Such a case, obtained by a
change of the parameter— — «, is presented in Fig. 9. The
general character of the evolution is kept. The significant
difference is that here the entanglementaiaplified at the
very beginning that may have practical consequences if we
are interested in short times of the process. Note that Figs.

8(a) and 9a) reflected along the vertical line at=0 [re-
spectively, 8b) and reflected @)] exhibit some kind of sym-
metry with respect to the initial moment.

What happens if we allow the strength of the coupling
with the environment to be comparable with the parameter of
the unitary interaction? This situation, corresponding to the
case(b), is illustrated in Fig. 10. Here some interesting quali-
tative changes occur. The AED effect is present in the case
shown in Fig. 10a), at the beginning the entanglement dis-
appears faster when the classical part of the system is af-
\ fected by the environment. Moreover, in this case the en-
tanglement disappears completely and never revives. If the
guantum subsystem interacts with the environment, a single
entanglement revivabccurs.

In the complementary case, for whigh') interacts with
the reflected Hamiltoniahl’ [see 10b)], we observe a spe-
cial kind of competition: for short times the entanglement is
smaller, if the quantum subsystem is perturbed. For longer
times, the roles are interchanged, and the oscillations of the
entanglement are damped faster, if the classical subsystem
interacts with the environment.

In general one can see that the pictures corresponding to
the casesa) and(b) are qualitatively different depending on
the ratio €. This fact may be related to the observation
concerning the processes of decoherence. Depending on the
relation between two coupling parameters the so called

Consider now the depolarizing dynami€s> _ with an  pointer basisis determined either by the internal self-
unitary operation involved, ¢#0), affecting either sub- Hamiltonian of the system or by the Hamiltonian of the in-
systemA or B. To compare the dynamics of both symmetric teraction with environmerit3].
mixed statep® and¢(® we study their unitary interaction
governed by the Hamiltoniandi=o,®0,, and the re-
flected oneH’ =0 ® 0.

Let us consider two cases: We investigated the behavior of entanglement of bipartite

(a) the noise parameteris much less than the parameter spin-1/2 system subjected to periodic action of the environ-
a characterizing the unitary interaction, ment. The process of destruction of entanglement of initially

(b) both parameters are of the same order of magnitudepure states is accompanied by increasing of von Neumann

Numerical results obtained in the weak noise cagere  entropy. The asymptotic value of the entropy depends on the
presented in Figs. 8 and 9. The revivals of the entanglementorm of the interaction with the environment. For strongly
caused by the unitary interaction, are manifestly visiblemixing bistochastic channels, e.? and ©3, the entropy
since the strength of the interaction with the environment achieves the maximal value In 4. If the decaying channel is
=0.002 is much less than the parameter 0.06 governing involved, the entropy gets its maximum and then it mono-
the unitary dynamics. Note the characteristic entanglemertbnically decays to the asymptotic value, which reveals the
plateaus if the analyzed state travels across the set of thénitial entanglement of the system.
separable states and the entanglement attains its minimal If the internal unitary evolution entangling the system is
value equal to zero. The effect of anomalous entanglemengresent, the decay of the entropy due to the decaying channel
decay is clearly visible in Fig.(&), where the entanglement can be replaced by the process of mixing the state more and
decays faster if the environment interacts with the classicainore. The general feature of the time evolution is that the
subsystem. This contrasts the situation shown in F{g),8 entanglement decreases as the system becomes more mixed.
for which the unitary evolution is due to the reflected Hamil- This corresponds to the results recently presented in Refs.
tonianH’ and the exposure of the quantum subsystem to thgl4,15, where it was shown that the mean entanglement of

0.0

E/In2
0.06 it

|
0.04 ‘%
|

0.02

0.0

FIG. 10. As in Fig. 8 fore =0.01 anda=0.04.

VI. AMPLIFYING THE PROCESSES:
ENTANGLEMENT REVIVALS

VIl. DISCUSSION

012101-7



ZYCZKOWSKI, HORODECKI, HORODECKI, AND HORODECKI PHYSICAL REVIEW A5 012101

guantum states, averaged over a sample of mixed states with Finally, the obtained results show that even the simplest

the same von Neumann entropy, decreases with the degreelmpartite systems may exhibit nontrivial properties from the

mixing. The presence of the internal unitary evolution leadspoint of view of the information theory. In this context it

to the revivals of the entanglement and to suppresgimn would be important to investigate further the dynamics of

acceleratiop of the entanglement decay. mixed entanglement, in particular, by taking into account the
Perhaps the most intriguing is the character of asymmetrphenomenon of bound entanglemgab.

of the time evolution of the entanglement. For some initial

mixed states consisting of two nonequivalent subsystems, the

entanglement decays faster, if the environment interacts with ACKNOWLEDGMENTS
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thus say that thejuantum entanglement runs away faster
through the classical door

In the context of the above discussion some general ques- APPENDIX: RANDOM PURE STATES
tions emerge. Consider a quantum entangled spateith,
say, S(0,)>S(eg), not necessarily violating the inequality In this appendix we present algorithms allowing one to
(9). Under which conditions the entanglement is less robusgenerate random quantum states distributed uniformly in the
to action of the environment on this subsystem, for which theentire space of pure states, the manifold of separable pure
entropy of the reduced operator is smaller? How is it relategtates and the space of maximally entangled pure states. We
to a possible violation of the von Neumann entropy inequal-concentrate here on the simplest 2 problem, but the algo-
ity by subsystenA? What happens if instead of the inequali- rithms below can be easily generalized for higher dimen-
ties (9) and (10) one applies the generalizedentropies in-  Sions.
equalitied 18,19,2] satisfied for classical systems? All these
guestions seem to be important for a deeper understanding of
the dynamics of quantum entanglement.

It would be also interesting to analyze the role of entropic  The set of pure states of a four-dimensio¥D) Hilbert
asymmetric states like Eq@11) in context of quantum com- space forms a complex projective spade®, on which a
munication. In fact these states have only one coherent infomatural, unitarily invariant measure exists. To generate ran-
mation positive[22,23 (see alsd24]). For the correspond- dom pure states according to such a measure on this six-
ing quantum channels this might imply an asymmetry in thedimensional space we take a vector of a random unitary ma-
transfer of quantum information with respect to its direction,trix distributed according to the Haar measure o@)UThe

1. Generation of random pure states

(A—B or B—A). Hurwitz parametrizatio26] gives
| W)= (cosds,sind; cosd,e' #3,sind5 sind, cosd, e ¢2,sind4 sind, sin 9, €' 1), (A1)
|
where & e [0,7/2], and ¢, € [0,2m) for k=1,2,3. formly in [0, 1] and to setd, = arcsing-'*). The above for-

A uniform distribution over almost all OEPB is obtained mula with k= 1,2,.N—1 allows one to get a natural distri-
by choosing the uniform distribution of the “azimuthal” pytion onCPN-1 [27].
angles;P(¢y) = 1/27r. In the analogy to the volume element
on the sphere the “polar” angle$, should be taken in a

. . o) . 2. Random separable pure states
nonuniform way, with the probability densif26]

Any 2®2 pure separable state may be written|ds)
=|¢n)®|h,), where|y,) and|y,) are N=2, one-particle
P(9) =k sin(29,)(sind,) %2 (A2) pure states. The four-dimensional manifold of separable
states has thus a simple structure of a Cartesian product
CP1x CPL. A uniform measure on this manifold is obtained
for 9, e[0,7/2],k=1,2,3. In practice it is convenient to use be taking both statelj;) distributed uniformly(and inde-
auxiliary independent random variablég distributed uni- pendently at the Bloch sphere;P!~S?.

012101-8
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Working in the standard basis, tained by a symmetric operatiots,® 1 are also maximally
B entangled. Using the standard representatiotd pfwe pa-
W) =U10U[(1,0,0,0), (A3 rametrize maximally entangled states [128]
whereU, and U, denote two independent random unitary el
matrices distributed uniformly on SB). This parametriza- C‘_JS ei(p
tion describes the entire 4D manifold of the separable pure W)= 1| singe¥2 (A5)
states. e g | —sinde !¢z
cosde e

3. Random maximally entangled states
The anglesp; are distributed uniformly irf0,27), whereas

entlgnglr:a dag?elx?gs?:z way we may represent the mF"X'm""yaccording to(Al) P(9)=sin(29) for O €[0,7/2]. Note that
the standard element of the volume on the two sphdf@s
|We)=12U4/(0,1,1,0/v2). (A4)  =sin@ddde is written in a rescaled variable=24. Given
maximally entangled state corresponds to a single unitary
It is easy to see that for these states the reduced densityatrix U, pertaining to SW2), but the 3D manifold of the
matrix is proportional to identity matrix, and the entropy of maximally entangled states has the topology of the real pro-
entanglement achieves its maximum, In2. The states oljective spaceRP3~U(3)/U(1) [29].
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