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Dynamics of quantum entanglement
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A model of discrete dynamics of entanglement of a bipartite quantum state is considered. It involves a global
unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure
states the decay of entanglement is accompanied by an increase of von Neumann entropy of the system. We
observe and discuss revivals of entanglement due to unitary interaction of subsystems. For some mixed states
having different marginal entropies of the subsystems we find an asymmetry in speed of entanglement decay.
The entanglement of these states decreases faster, if the depolarizing channel acts on the ‘‘classical’’ sub-
system, characterized by smaller marginal entropy.
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I. INTRODUCTION

Quantum entanglement is one of the most subtle and
triguing phenomena in nature@1,2#. Its potential usefulness
has been demonstrated in various applications such as q
tum teleportation, quantum cryptography, and quantum de
coding. On the other hand, quantum entanglement is a fra
feature, which can be destroyed by interaction with the
vironment. This effect due todecoherence@3#, is the main
obstacle for practical implementation of quantum computi
A model allowing to study the dynamics of entanglement
presence of interaction with the environment has been
cently analyzed by Yi and Sun@4#.

In this paper we investigate destruction of the entang
ment in a proposed model of discrete dynamics. We cons
a simple bipartite system consisting of two spin-1/2 particl
Only one of them is subjected to periodic actions of a qu
tum channel, which represents the interaction with envir
ment. As the initial states we choose random states ta
from the ensemble of pure separable states and from
ensemble of maximally entangled pure states. We also in
tigate the time evolution of mixed states having some spe
property. The corresponding system is composed of two s
systems exhibiting different properties with respect to so
entropy inequality that is satisfied by all classical system
One of the subsystems satisfies the inequality and may
considered ‘‘classical,’’ while the other, ‘‘quantum’’ sub
system, violates the inequality. We investigate an asymm
in the process of destruction of entanglement with respec
the subsystem interacting with the environment. We dem
strate a possible presence of revivals of entanglement ca
by the global unitary evolution entangling the subsyste
between consecutive actions of the environment.

The paper is organized as follows. In Sec. II we descr
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a simple model of discrete time evolution. In Sec. III w
derive bounds on the entropy increase under the action o
environment. Then in Sec. IV we analyze the decrease
entanglement versus increase of the degree of mixing of
initially pure states. The asymmetry in the entanglement
cay depending on the subsystem subjecting to influence
environment is described in Sec. V. In Sec. VI we consid
the entanglement revivals. The results of the paper are
cussed in Sec. VII.

II. MODELS OF TIME EVOLUTION

In this paper we consider the bipartite state subjected
quential interactions with environment. They are modeled
quantum channels, defined as completely positive lin
maps, preserving the trace of the state@5#.

Let s be a density operator acting on a finite-dimensio
Hilbert spaceH. The most general form of the quantu
channel is the following transformations→s8:

s8[L~s!5(
i 51

K

VisVi
† , where (

i 51

K

Vi
†Vi5I. ~1!

If in addition S i 51
K 5ViVi

†5I holds then the channel is calle
bistochastic.

Bistochastic channels can be alternatively defined
channels that do not decrease von Neumann entropy of q
tum states.

A particular example of the bistochastic channel is giv
by random external fields@6#. They can be written as

s8[LR~s!5(
i 51

K

piAisAi
† , ~2!

whereAi , i 51,2,...,K areunitary operators and the vector o
probabilitiespW 5@p1 ,...,pK# is normalized

(
i 51

K

pi51, pi>0. ~3!
©2001 The American Physical Society01-1
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Such random systems can be described in the formalism
quantum iterated function systems@7#. The so-called Kraus
form ~1! can be reproduced settingVi5ApiAi . It is worth
noting that in the case of the most elementary quantum
tem described on the Hilbert spaceH5C2 the channel is
bistochasticif and only if it is a random external field~2! ~see
@8#!. Note that an unitary evolution of the system can
considered as the simplest case of the bistochastic qua
channel withK51.

There exist, however, many quantum channels that are
bistochastic. We shall consider the followingdecayingchan-
nel, sometimes called@9# the amplitude damping channel

s8[LD~s!5M1sM11M2sM2 , ~4!

where the matrices

M15F1 0

0 Ap
G

and

M25F0 A12p

0 0
G

are written in the standard basis.
Let % denote a mixed state of a 2̂2 system i.e., the

density operator defined on the Hilbert spaceH5HA^ HB
5C2

^ C2. The system consists of two subsystemsA and B
that can represent spin-1/2 particles or two-level atoms
our model the unitary dynamics is interrupted by perio
actions of the environment as shown schematically in Fig

Discrete time evolution of the state% reads in our mode

%~n11!5U%8~n!U†5U$L̂@%~n!#%U†, ~5!

whereL̂ 5I ^ L and the channelL is either bistochastic~2!

or decaying~4!. HereU5eiaH̃ represents a unitary transfo
mation that involves an interaction between the two s
systemsA and B described by the HamiltonianH̃. We use
the dimensionless units anda stands for a coupling param
eter. Subsequently we shall consider the cases withH̃ equal
either tosx^ sy[H or to H̃5sy^ sx[H8.

In general we shall use four types of dynamics defined
four different operatorsL’s in the formula~5!. Three of them

FIG. 1. Discrete model of periodic dynamics~5!, ~cf. Figs. 8.1
and 8.2 of Ref.@10#!. Interaction with the environmentL̂ trans-
forms the state%n into %n8 and then the unitary transformationU
maps it into%n11 .
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will be random external fieldsLR ~2!, all defined by the
same set ofK54 unitary operators:A15I, A25s1 , A3
5s2 , A45s3 ~where s i denote Pauli matrices!, but with
different vectors of probability~3!:

pW ~1!5~12e,0,0,e!,

pW ~2!5S 12e,0,
e

2
,
e

2D ,

pW ~3!5S 12e,
e

3
,
e

3
,
e

3D , 0<e<1. ~6!

Each dynamics depends on two continuous parametera

contained inU5eiaH̃ governing the unitary dynamics ande,
included in the vector of probabilities, and describing t
strength of the coupling with the environment. Addition
discrete indexj labels the different vectors of probabilit
pW ( j ). For these three models of dynamics we shall use
compact notationUa,e

j . The fourth dynamics denoted b
Ua,p is defined by putting in formula~5! the decaying chan-
nel ~4!. Dynamics involving the operationU with ‘‘reflected’’
~i.e., obtained fromH by permutating subsystems! Hamil-
tonian H85sy^ sx will be denoted by the same symbo
with only one change:U→Ũ.

Remark. If a is equal to zero, then the unitary operationU
in Eq. ~5! is reduced to identity transformation. In particula
it can be seen that the dynamicsU0,e

3 corresponds to periodic
action ofdepolarizing channel@11#.

Now the essence of our study is the following: we co
sider composite quantum systems subjected to the loca
teraction with the environment, which acts on one subsys
only. We investigate how the decay of the entanglemen
the system depends on the initial state and the type of
dynamics. In particular we analyze to which extent the d
crease of the mean entanglement is reflected by the evolu
of von Neumann entropy of the system.

III. BOUNDS ON ENTROPY INCREASE
UNDER LOCAL CHANNEL

We start establishing bounds for the increase of von N
mann entropy.

Proposition. Under a local action of the quantum chann
%AB→(I^ L)%AB , the increase of the von Neumann entro
DS for a bipartiten^ m state is bounded by

DS[S~%AB
out!2S~%AB

in !<S~%A
in!2S~%AB

in !1 ln m, ~7!

where S(%A) denotes the entropy of the subsystemA. In
particular, if the system is separable thenDS< ln m.

Proof. By definition the local channel is trace preservin
hence it does not change the density matrix of the first s
system. Thus%A

out5%A
in and the same holds for the corre

sponding entropies. Then from subadditivity of the entro
we have
1-2
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S~%AB
out!<S~%A

out!1S~%B
out!

5S~%A
in!1S~%B

out!<S~%A
in!1Smax

B

[S~%A
in!1 ln m. ~8!

We get the first inequality in the Proposition by subtracti
S(%AB

in ) from both sides of the above inequality. For sep
rable states one always hasS(%AB

in )2S(%A
in)>0 @12# that

simplifies Eq.~7! to DS< ln m as expected.
Note that a sequence of quantum channels acting loc

forms a quantum channel acting locally too. So the propo
tion works also for the dynamicsU0,e

i andU0,p . Moreover,
from Eq. ~7! we see that the entropy of initially pure sep
rable state%AB

in cannot exceed lnm.

IV. ENTANGLEMENT VERSUS DEGREE OF MIXING

In this section we study the time evolution of entang
ment and compare it with the time evolution of von Ne
mann entropy. To characterize the degree of entanglemen
use theentanglement of formationintroduced by Bennet
et al. @11#. For any 2̂ 2 mixed state this quantity may b
computed analytically as shown by Hill and Wootters@13#.
In this case the entanglement of formationE ~or shorter, the
entanglement! varies from zero~separable states! to ln 2
~maximally entangled states!, so in the figures we used th
rescaled variableE/ ln 2.

Our results were obtained by averaging over ensemble
random initial states. They were generated according to n
ral measures on~i! six-dimensional manifold of all pure
states for 2̂ 2 problem,~ii ! three-dimensional manifold o
maximally entangled pure states, and~iii ! four-dimensional
manifold of separable pure states.

Numerical experiments have shown that the samples
100 initial states, generated randomly as described in
Appendix, were sufficient to receive reliable results.

A. Bistochastic channels

As shown in Refs.@14,15# the mean entanglement o
mixed states decreases monotonically with increasing de
of mixing. Due to interaction with the environment the in
tially pure states become mixed: their von Neumann entro
S(%)52Tr(% ln %), grows in time. Thus it is natural to ex
pect a corresponding monotonous decay of the mean
tanglement. This indeed takes place, as shown in Fig. 2
absence of the unitary dynamics, (a50). Initial states were
taken randomly from the entire space of pure states, s
accordance with@15#, the initial mean entanglement is clos
to (ln 2)/2. The parallel processes of decay of the entan
ment and increase of the entropy are accelerated, if the
rametere describing the interaction with environment in
creases.

For initially maximally entangled pure states@case~ii !# a
similar dependence is represented by circles in Fig. 3. H
^E(0)&5 ln 2. The picture changes when unitary evolution
involved. The latter leads to oscillations of entanglement
formation, reflected in the time evolution of entropy. T
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frequency of oscillations is proportional toa. The larger this
parameter, the faster the unitary evolutionU rotates the states
% from and into the convex set of separable states. In
case of entropy, oscillations are only due to changes of
second derivative, i.e., entropy is still monotonically decre
ing. This is not the case for entanglementE, which can also
be seen in Fig. 4 for several individual initial states~without
averaging!. For short times the curve fora50 ~no unitary
evolution! seems to constitute an envelope for all oth
curves.

FIG. 2. Dynamics of quantum entanglement for systemU0,e
2 .

Mean entanglement of formation^E& ~open symbols! and von Neu-
mann entropŷS& ~closed symbols! averaged over a sample of 10
random pure states shown as functions of discrete timetn . No
unitary evolution is present, (a50). Parametere, controlling the
interaction with environment is set to 0.01~s! or 0.05~h!.

FIG. 3. As in Fig. 2 for a sample of 100 maximally entangle
states@E(0)5 ln(2)# with e50.01; a50.0(s) anda50.1(n) for
channels described by~a! pW (1) and~b! pW (2). Observe how the influ-
ence of the unitary dynamics depends on the kind of the chann
1-3
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It is worth emphasizing a significant difference betwe
Ua,e

1 @Fig. 3~a!# andUa,e
2 @Fig. 3~b!#. In the former case the

presence of unitary evolution can accelerate the proces
entropy increase. In the latter, on the contrary, switching
unitary evolution results in slower increase of the mean
tropy. The iteration of the channelUa,e

1 preserves both the
number and the position of the nonzero component inpW . It is
not the case forUa,e

2 , for which two Pauli matrices generat

FIG. 4. Dependence of entanglement of formation on time
several randomly chosen maximally entangled pure states. The

tary dynamicsU5exp(iaH̃) is governed by the parametera. Here
e50.01 in pW (2), and a50.1 ~narrow lines!. Reference bold line
represents the case of no unitary dynamics (a50), for which the
dynamics of entanglement does not depend on the initial state

FIG. 5. As in Fig. 3 for a sample of 100 initially separable pu
states@E(0)50#. In absence of unitary dynamics, (a50), the en-
tanglement equals zero.
01210
of
n
-

the entire algebra of unitary matricesAi involved.
Consider now the case~iii !, of initially separable states

presented in Fig. 5. The presence of the unitary evolut
may increase the mean entanglement, initially equal to z
However, there is one difference more; forboth dynamics
Ua,e

1 @Fig. 5~a!# andUa,e
2 , @Fig. 5~b!# presence of the unitary

dynamics accelerates the process of increase of entrop
absence of the unitary dynamics (a50) the entropy does no
exceed the value ln 2 in accordance to our proposition pro
in Sec. III.

The obtained results show that the oscillations of
mean entanglementE are anticorrelated with the oscillation
of the entropyS. It was also checked that ifa is kept con-
stant, but is the Hamiltonian is chosen randomly then
oscillations of entanglement are smeared out. It means
effects of quantum coherence are destroyed and the des
tion of entanglement occurs faster.

B. Decaying channel

Figure 6 presents results obtained for the amplitude da
ing channel~4!. In the absence of the unitary evolution (a
50) the mean entropŷS&, averaged over the entire man
fold of pure states@case~i!#, does not tend monotonically to
its maximal value. Attn;20 the entropy reaches its max
mum and then decreases to its limiting value about 0.3@see

r
ni-

FIG. 6. As in Fig. 2 for samples of 100 pure states subjected
the Kraus channel~4! with p50.05 anda50.0. Initial states drown
randomly from the ensembles of~a! ~h!, separable pure states;~a!
~L!, maximally entangled pure states, and~b! ~s!, ensemble of all
pure states. Case~i! with unitary evolution,a50.1, is denoted by
~n! in panel~b!.
1-4
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DYNAMICS OF QUANTUM ENTANGLEMENT PHYSICAL REVIEW A 65 012101
full circles in Fig. 6~b!#. This is due to the fact that for th
decayingchannel the entropy of the system may decreas

Numerical data received by averaging over the set
maximally mixed states@case~ii !, diamonds# and the set of
separable pure states@case~iii !, squares# are shown in Fig.
6~a!. Observe that the steady-state limiting values of the v
Neumann entropŷS& represents the initial average entang
ment ^E&. Indeed, in absence of the unitary evolution t
perturbed subsystem is eventually dumped to the gro
state. So finally the state of the system is a product of
ground state of the affected subsystem and the reduced
sity matrix of the unperturbed subsystem. Thus, after
averaging procedure, one gets the averaged von Neum
entropy of the subsystem not subjected to action of the ch
nel.

A random choice of initially pure states of the compos
system induces a certain measure in the space of the red
density matrices@16#. As proved recently by Hall@17# the
natural rotationally invariant measure on the space ofN54
pure states induces a uniform measure in theBloch ball rep-
resenting the density matrices forN52. Denoting the spec
trum of reduced matrices by$1/22r ,1/21r % we may write
more formally, P(r )524r 2 for r P@0,1/2#. The von Neu-
mann entropy, averaged over this measure equals 1/3@17#, in
agreement with the numerical data presented in Fig. 6.

For nonzero values ofa we observe the oscillations of th
mean entanglement, caused by the unitary evolution. I
interesting, however, that the presence of unitary evolu
allows the final entropy to be maximal@see full triangles in
Fig. 6~b!# It means that the presence of the decay channe
completely maskedby the unitary interaction between th
two subsystems.

V. ASYMMETRY OF ENTANGLEMENT DECAY

We shall consider here dynamics of mixed states hav
an intriguing property. Namely, we choose a quantum bip
tite system, whichviolates some entropy inequality only wi
respect to one of both subsystems. Let us recall first that the
information gain resulting from the measurement of any
the subsystems of a quantum state with classical correlat
is not greater than the gain obtained form measurement
b

en
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formed on the entire system. This classical feature is cha
teristic of quantum separable states. They do satisfy the
lowing two inequalities concerning von Neumann entro
@12,18#:

S~%AB!>S~%A! ~9!

and

S~%AB!>S~%B!, ~10!

where%A and%B denote the reduced density matrices, e
%A[TrB(%AB). Now we shall focus on the following family
of states introduced in Ref.@19#. They can be written as

% ~1!
ªquC1&^C1u1~12q!uC2&^C2u, 0,q,1,

with normalized pure state vectorsuC1&5au00&
1A12a2u11& and uC2&5au10&1A12a2u01& with 0,a
,1. In the standard basis,~u00&, u01&, u10&, u11&!, the corre-
sponding density matrix takes the form

FIG. 7. Comparison of the dependence of the entanglemen
formation for the state% (1) with a253/4; q53/5 ~!! and% (2) ~3!.
The bistochastic channelpW 3 with e50.01 interacts with the ‘‘clas-
sical’’ subsystemB in the former case, and with the ‘‘quantum
subsystemA in the latter case. Solid line represents the behavio
a maximally entangled statermax. Magnification of the initial de-
pendence provided in the inset reveals the asymmetry of the
tanglement decay.
% ~1!5F qa2 0 0 qaA12a2

0 ~12q!~12a2! ~12q!aA12a2 0

0 ~12q!aA12a2 ~12q!a2 0

qaA12a2 0 0 q~12a2!

G . ~11!
en-
In-
be
Let us takea2.q. 1
2. Then the first inequality~9! is vio-

lated, while the second one~10! is not. Thus the composite
system can be called ‘‘quantum’’ with respect to the su
systemA and ‘‘classical’’ with respect to the subsystemB.
One may then expect that the bipartite system will lose
-

-

tanglement in different ways, depending on whether the
vironment interacts with classical or quantum subsystem.
tuitively one could guess that the entanglement should
more robust if the noise affects the classical subsystem.

Here we studied the systemr (1) for q53/5 anda253/4.
1-5
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Then von Neumann entropy of the entire system,S5s(2/5)
'0.673 is greater than the entropy of the classical subsys
B for which SB5s(1/4)'0.562, and smaller than the entrop
of the quantum subsystem,SA5s(9/20)'0.688, wheres
stands for the binary Shannon entropy,s(x)ª2x ln x2(1
2x)ln(12x). We analyzed the time evolution of this quantu
system in presence of a depolarizing channelU3,e

0 given by
Eq. ~2!. In the theory of error-correcting codes it is one of t
most popular models of environment-induced noise. T
evolution of entanglement for the state% (1) is represented by
stars in Fig. 7. In this case the bistochastic channelL̃ acts on
the ‘‘classical’’ subsystemB. To investigate a possible asym
metry of the entanglement decay we consider the stater (2),
for which both subsystems are exchanged. More precis
all elements of both density matrices are equal, apart fr
r23

(2)5r32
(1) and r32

(2)5r23
(1) . The corresponding dynamics o

r (2) is denoted by crosses in Fig. 7. In this case the no
interacts with the ‘‘quantum’’ subsystemA. The magnifica-
tion in the inset reveals the asymmetry in the time evoluti
Observe that the attack on the ‘‘classical’’ part of the syst
is more harmful to the entanglement properties of the s

FIG. 8. Unitary dynamics and asymmetry of entanglement
cay: ~a! the state% (1) defined by parametersa253/4 andq53/5
subjected to the bistochastic channelpW 3 with e50.002 and unitary
dynamicsH with a50.06 ~!!; the symmetric state% (2) interacting
with the reflected HamiltonianH8 ~3!. Panel~b! shows the data for
reflected unitary dynamics; the HamiltoniansH8 and H are ex-
changed.
01210
m

e

ly,
m

e
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tem. This counterintuitive effect, called subsequently anom
lous entanglement decay~AED!, links quantum and classica
features of the state from information-theoretical point
view.

Let us recall that any 2̂ 2 system may be described b
two Bloch vectors, representing locally both subsystems,
a correlation matrixT, which represents the projection of th
composite system onto the family of mixtures of maxima
entangled states~see@20#!. A possible explanation of AED
should take into account the fact that the local action
environment changes both the Bloch vectors, the correla
matrix, as well as their relationship. A depolarizing chann
may affect in a similar way both local parameters, but it m
distinguish, in sense of the destruction of the entanglem
the correlation parameters with respect to the side of
action.

It should be noted that, regardless of which part is s
jected to the noise, the entanglement of mixed statesr (1) and
r (2) decreases slower than the entanglement of the m
mally entangled states~bold line in Fig. 7!. This is due to the
fact that the latter decreases fast for short times and slo
longer time scales, for which the initially pure state ge
mixed. It is thus instructive to compare the shape of the b
line starting fromtN'60 with the symbols representing th
initial decay of entanglement of the statesr ( i ).

- FIG. 9. As in Fig. 8 fore50.002 anda520.06, i.e., the pro-
cess runs back in time. Observe that maxima in Fig. 8~a! correspond
to minima in ~a! and vice versa.
1-6
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VI. AMPLIFYING THE PROCESSES:
ENTANGLEMENT REVIVALS

Consider now the depolarizing dynamicsUa,e
3 with an

unitary operation involved, (aÞ0), affecting either sub-
systemA or B. To compare the dynamics of both symmet
mixed states% (1) and% (2) we study their unitary interaction
governed by the Hamiltonians:H5sx^ sy , and the re-
flected oneH85sy^ sx .

Let us consider two cases:
~a! the noise parametere is much less than the paramet

a characterizing the unitary interaction,
~b! both parameters are of the same order of magnitu
Numerical results obtained in the weak noise case~a! are

presented in Figs. 8 and 9. The revivals of the entanglem
caused by the unitary interaction, are manifestly visib
since the strength of the interaction with the environmene
50.002 is much less than the parametera50.06 governing
the unitary dynamics. Note the characteristic entanglem
plateaus, if the analyzed state travels across the set of
separable states and the entanglement attains its min
value equal to zero. The effect of anomalous entanglem
decay is clearly visible in Fig. 8~a!, where the entanglemen
decays faster if the environment interacts with the class
subsystem. This contrasts the situation shown in Fig. 8~b!,
for which the unitary evolution is due to the reflected Ham
tonianH8 and the exposure of the quantum subsystem to

FIG. 10. As in Fig. 8 for«50.01 anda50.04.
01210
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action of the environment action is more damaging for
entanglement.

It is instructive to analyze the same system with the u
tary evolution reversed in time. Such a case, obtained b
change of the parametera→2a, is presented in Fig. 9. The
general character of the evolution is kept. The signific
difference is that here the entanglement isamplifiedat the
very beginning that may have practical consequences if
are interested in short times of the process. Note that F
8~a! and 9~a! reflected along the vertical line attn50 @re-
spectively, 8~b! and reflected 9~b!# exhibit some kind of sym-
metry with respect to the initial moment.

What happens if we allow the strength of the coupli
with the environment to be comparable with the paramete
the unitary interaction? This situation, corresponding to
case~b!, is illustrated in Fig. 10. Here some interesting qua
tative changes occur. The AED effect is present in the c
shown in Fig. 10~a!, at the beginning the entanglement di
appears faster when the classical part of the system is
fected by the environment. Moreover, in this case the
tanglement disappears completely and never revives. If
quantum subsystem interacts with the environment, a sin
entanglement revivaloccurs.

In the complementary case, for which% (1) interacts with
the reflected HamiltonianH8 @see 10~b!#, we observe a spe
cial kind of competition: for short times the entanglement
smaller, if the quantum subsystem is perturbed. For lon
times, the roles are interchanged, and the oscillations of
entanglement are damped faster, if the classical subsys
interacts with the environment.

In general one can see that the pictures correspondin
the cases~a! and~b! are qualitatively different depending o
the ratio e/a. This fact may be related to the observatio
concerning the processes of decoherence. Depending o
relation between two coupling parameters the so ca
pointer basis is determined either by the internal sel
Hamiltonian of the system or by the Hamiltonian of the i
teraction with environment@3#.

VII. DISCUSSION

We investigated the behavior of entanglement of bipar
spin-1/2 system subjected to periodic action of the envir
ment. The process of destruction of entanglement of initia
pure states is accompanied by increasing of von Neum
entropy. The asymptotic value of the entropy depends on
form of the interaction with the environment. For strong
mixing bistochastic channels, e.g.,U2 and U3, the entropy
achieves the maximal value ln 4. If the decaying channe
involved, the entropy gets its maximum and then it mon
tonically decays to the asymptotic value, which reveals
initial entanglement of the system.

If the internal unitary evolution entangling the system
present, the decay of the entropy due to the decaying cha
can be replaced by the process of mixing the state more
more. The general feature of the time evolution is that
entanglement decreases as the system becomes more m
This corresponds to the results recently presented in R
@14,15#, where it was shown that the mean entanglemen
1-7
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quantum states, averaged over a sample of mixed states
the same von Neumann entropy, decreases with the degr
mixing. The presence of the internal unitary evolution lea
to the revivals of the entanglement and to suppression~or
acceleration! of the entanglement decay.

Perhaps the most intriguing is the character of asymm
of the time evolution of the entanglement. For some init
mixed states consisting of two nonequivalent subsystems
entanglement decays faster, if the environment interacts
the classical subsystem, which satisfies the entropic ineq
ity. Many years ago Schro¨dinger considered entanglement
pure state as a property of having both subsystems les
formative for the observer, than the composite syste
Mixed states~11! considered here exhibit this property on
with respect to one subsystem@19#. Our results show that the
action of environment to the classical subsystem is so
times more harmful to the entanglement. In this case one
thus say that thequantum entanglement runs away fas
through the classical door.

In the context of the above discussion some general q
tions emerge. Consider a quantum entangled state% with,
say,S(%A).S(%B), not necessarily violating the inequalit
~9!. Under which conditions the entanglement is less rob
to action of the environment on this subsystem, for which
entropy of the reduced operator is smaller? How is it rela
to a possible violation of the von Neumann entropy inequ
ity by subsystemA? What happens if instead of the inequa
ties ~9! and ~10! one applies the generalizeda-entropies in-
equalities@18,19,21# satisfied for classical systems? All the
questions seem to be important for a deeper understandin
the dynamics of quantum entanglement.

It would be also interesting to analyze the role of entro
asymmetric states like Eq.~11! in context of quantum com
munication. In fact these states have only one coherent in
mation positive@22,23# ~see also@24#!. For the correspond
ing quantum channels this might imply an asymmetry in
transfer of quantum information with respect to its directio
~A→B or B→A!.
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Finally, the obtained results show that even the simp
bipartite systems may exhibit nontrivial properties from t
point of view of the information theory. In this context
would be important to investigate further the dynamics
mixed entanglement, in particular, by taking into account
phenomenon of bound entanglement@25#.
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APPENDIX: RANDOM PURE STATES

In this appendix we present algorithms allowing one
generate random quantum states distributed uniformly in
entire space of pure states, the manifold of separable p
states and the space of maximally entangled pure states
concentrate here on the simplest 2^ 2 problem, but the algo-
rithms below can be easily generalized for higher dime
sions.

1. Generation of random pure states

The set of pure states of a four-dimensional~4D! Hilbert
space forms a complex projective spaceCP3, on which a
natural, unitarily invariant measure exists. To generate r
dom pure states according to such a measure on this
dimensional space we take a vector of a random unitary
trix distributed according to the Haar measure on U~4!. The
Hurwitz parametrization@26# gives
uC&5~cosq3 ,sinq3 cosq2eiw3,sinq3 sinq2 cosq1eiw2,sinq3 sinq2 sinq1eiw1!, ~A1!
i-

ble
duct
d

whereqkP@0,p/2#, andwkP@0,2p) for k51,2,3.
A uniform distribution over almost all ofCP3 is obtained

by choosing the uniform distribution of the ‘‘azimuthal
angles;P(wk)51/2p. In the analogy to the volume eleme
on the sphere the ‘‘polar’’ anglesqk should be taken in a
nonuniform way, with the probability density@26#

P~qk!5k sin~2qk!~sinqk!
2k22 ~A2!

for qkP@0,p/2#,k51,2,3. In practice it is convenient to us
auxiliary independent random variablesjk distributed uni-
formly in @0, 1# and to setqk5arcsin(jk
1/2k). The above for-

mula with k51,2,...,N21 allows one to get a natural distr
bution onCPN21 @27#.

2. Random separable pure states

Any 2^ 2 pure separable state may be written asuCs&
5uc1& ^ uc2&, where uc1& and uc2& are N52, one-particle
pure states. The four-dimensional manifold of separa
states has thus a simple structure of a Cartesian pro
CP13CP1. A uniform measure on this manifold is obtaine
be taking both statesuc i& distributed uniformly~and inde-
pendently! at the Bloch sphere,CP1;S2.
1-8
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Working in the standard basis,

uCs&5U1^ U2u~1,0,0,0!&, ~A3!

whereU1 and U2 denote two independent random unita
matrices distributed uniformly on SU~2!. This parametriza-
tion describes the entire 4D manifold of the separable p
states.

3. Random maximally entangled states

In an analogous way we may represent the maxim
entangled states as

uCe&5I^ U1u~0,1,1,0!/&&. ~A4!

It is easy to see that for these states the reduced de
matrix is proportional to identity matrix, and the entropy
entanglement achieves its maximum, ln 2. The states
d

R.

kil

t-

in

01210
re

y

ity

b-

tained by a symmetric operationsU1^ 1 are also maximally
entangled. Using the standard representation ofU1 we pa-
rametrize maximally entangled states by@28#

uCe1&5
1

& F cosq eiw1

sinq eiw2

2sinq e2 iw2

cosq e2 iw1

G . ~A5!

The anglesw i are distributed uniformly in@0,2p!, whereas
according to~A1! P(q)5sin(2q) for qP@0,p/2#. Note that
the standard element of the volume on the two spheresdS
5sinu du dw is written in a rescaled variableu52q. Given
maximally entangled state corresponds to a single uni
matrix U1 pertaining to SU~2!, but the 3D manifold of the
maximally entangled states has the topology of the real p
jective space,RP3;U~3!/U~1! @29#.
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@27# M. Poźniak, K. Życzkowski, and M. Kus´, J. Phys. A31, 1059
~1998!.
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