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Kinetic energy as a density functional
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Whether or not kinetic energy can be represented in orbital Kohn-Sham equations by an effective local
potential has been discussed in several recent publications, reaching conflicting conclusions. It is shown here
that this conflict can be resolved by dropping the widespread but unjustified assumption that the existence of
a ground-state density functional for the kinetic energy of anN-electron system implies the existence of a
density-functional derivative equivalent to a local potential function. For more than two electrons, a density-
functional derivative does exist, but has the mathematical character of a linear operator that acts on orbital
wave functions.
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I. INTRODUCTION

The issue in dispute is whether an exactab initio Thomas-
Fermi theory~TFT! exists for ground states, equivalent
density-functional theory~DFT! @1,2#. This depends on the
definition for N-electron ground states of a ground-sta
kinetic-energy functionalTs@r# and of its density-functiona
derivative dTs /dr, where r is the ~spin-indexed! electron
density. If dTs /dr is assumed to exist as a local functio
vT(r ) it defines a Thomas-Fermi equation with the sa
physical content as the orbital equations of Kohn and Sh
@3–5#. This ‘‘locality hypothesis’’ appears so intuitively ob
vious that it has tacitly been incorporated into argume
@4,5# purporting to refute a straightforward sum rule@3,6#
that demonstrates incompatibility of the Thomas-Fermi~TF!
and Kohn-Sham~KS! equations for systems with more tha
two electrons~more than one distinct orbital energy level!.

It will be shown here that this functional derivative do
indeed exist, but takes a mathematical form different fr
that assumed. More precisely, two kinds of functional deri
tives are defined in functional analysis@7,8#. The functional
derivative of Fre´chet is the generalization to function
analysis of a total derivative, not depending on the ‘‘dire
tion’’ of variation in the underlying function space. The fun
tional derivative of Gaˆteaux is the generalization of a parti
derivative, depending on the direction of variation. Analy
of the functional variation of the noninteracting ground-st
kinetic energy, compatible with orbital Schro¨dinger equa-
tions, shows that the density-functional derivative is a Gˆ-
teaux derivative, having the character of a linear opera
that acts on orbital wave functions, not a Fre´chet derivative,
equivalent to a local potential function@9,10#. A Gâteaux
derivative does not define a Thomas-Fermi equation. T
demonstration is summarized here for the simplest poss
model, noninteracting electrons in a local external poten
In this model, all theoretical assertions can be tested fo
atom composed of noninteracting electrons, using exp
hydrogenic orbital wave functions and the correspond
density functions.

The Kohn-Sham density functionr5( inif i* f i implies
that any functional ofr is also a functional of the orbita
functionsf i . Hence DFT is also an orbital functional theo
~OFT!, for which the correct variational theory is well esta
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lished and undisputed. Practical applications of DFT use
methodology of OFT, determining ground-state orbital wa
functions and model density when an approximate exchan
correlation energy functionalExc@r# is specified. Hence a
correct variational derivation of the appropriate Eule
Lagrange equations must satisfy consistency conditions
tween DFT and OFT representations of what should be
same theory for ground states. These consistency condit
stated in the form of a chain rule, have been disputed by´l
@4# and by Holas and March@5#. This chain rule is rederived
here in a way that makes no extraneous assumptions and
be verified for noninteracting electrons.

Holas and March@5# argue that ‘‘the solution of the TF
like equation . . . and of the KSequations . . .should lead to
the same results . . . ’’. Their argument, however, invokes ci
cular logic, and cannot reach a definite conclusion. The ‘‘
cality hypothesis’’ is tacitly assumed and built into their n
tation. Their Eqs.~2.7! and ~2.8! ignore the possibility that
the functional derivativedTs /dr might be a linear operato
rather than a local function. Equation~2.8! has no precise
meaning unless this functional derivative is a multiplicativec
number. Without this tacit assumption, one cannot concl
that the theory implies the existence of a ‘‘TF-like equation
Their argument does not circumvent the sum rule@3# that
implies violation of the exclusion principle for more tha
two electrons.

II. NONINTERACTING ELECTRONS

The mathematical issues involved in comparing ‘‘exac
Kohn-Sham equations with Thomas-Fermi theory, based
the same Hohenberg-Kohn ground-state theory, can be
dressed in a model ofN noninteracting electrons. Kinetic
energy is defined exactly. A local external potential functi
v(r ) can be assumed, guaranteeing validity of Hohenbe
Kohn theorems@1# and of ‘‘noninteractingv representabil-
ity’’ @11,12#. Limiting the discussion, for simplicity, to non
degenerate ground states, variational trial functions
unnormalized single Slater determinantsF constructed from
N spin-indexed occupied orbital wave functionsf i for i
<N. Total and orbital energies are Lagrange multipliers d
termined to enforce normalization. Spin indices and summ
tions are implicit but are omitted in the simplified notation
©2001 The American Physical Society02-1
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be used here. (FuHuF) is an explicit functionalT1V of trial
orbital functions, where

T5(
i

ni~ i u t̂ u i !; V5(
i

ni~ i uv̂u i !, ~1!

expressed in terms of linear operatorst̂52(1/2)“2 and v̂
for a general nonlocal potential. Occupation numbersni51
for i<N are not varied here. Matrix elements are defined
( i u...u j )5*d3rf i* (r )...f j (r ).

The Schro¨dinger variational principle can be expressed
the form

E d3r(
i

ni~df i* $ t̂1 v̂2e i%f i1c.c.!50, ~2!

incorporating a diagonalized matrix of Lagrange multiplie
for orthonormality constraints. If variationsdf i are uncon-
strained in the orbital Hilbert space, this implies orbi
Euler-Lagrange~OEL! equations,

t̂f i5$e i2 v̂%f i , i 51, . . . ,N, ~3!

just Schro¨dinger equations for noninteracting electrons. T
derivation uses orbital functional derivatives

dT

nidf i*
5 t̂f i ,

dV

nidf i*
5 v̂f i , ~4!

defined such that

dT5E d3r(
i

ni~df i* t̂f i1c.c.!;

dV5E d3r(
i

ni~df i* v̂f i1c.c.!. ~5!

When v̂ is a local functionv(r ), the equations solved fo
ground states in the Kohn-Sham construction~minimizing
kinetic energy with fixed density! @2,13,14# are the same a
these noninteracting OEL equations. The density functior
5( inir i5( inif i* f i is constructed as a sum of densi
componentsr i5f i* f i , with fixed occupation numbersni .
If this noninteracting theory is extended as in the loc
density approximation to include a model exchang
correlation energy determined by an explicit function of de
sity, and hence of the occupied orbital functions, the orbi
functional derivation of the OEL equations given abo
produces the usual Kohn-Sham equations, using only s
dard variational theory. If nonlocal exchange is included a
electronic correlation is neglected, this derivation follows e
actly the logic of standard Hartree-Fock theory.

III. ORBITAL AND DENSITY-FUNCTIONAL DERIVATIVES

In deriving the OEL equations, one must consider infi
tesimal variations of energy functionals of occupied orbit
$f i%, or of the density functionr constructed from such
orbitals. Orbital-functional derivativesdF/nidf i* 5 v̂Ff i of
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functionalF@$f i%# are defined by

dF5E d3r(
i

ni H df i*
dF

nidf i*
1c.c.J . ~6!

The corresponding density variation is

dr5(
i

ni$df i* f i1c.c.%. ~7!

If F is also a density functional,dF/dr can always be de-
fined such that

dF5E d3r(
i

ni H df i*
dF

dr
f i1c.c.J . ~8!

These equations make no unstated assumptions and are
sistent if the orbital- and density-functional derivatives a
related by the chain rule (dF/dr)f i5dF/nidf i* 5 v̂Ff i . If
the density-functional derivativedF/dr were a Fre´chet de-
rivative, equivalent to a~spin-indexed! local functionvF(r ),
Eq. ~8! would reduce todF5*d3rvF(r )dr. This formula is
meaningful only if the linear operatorv̂F defined by the
orbital-functional derivative is equivalent in the OEL equ
tions to a multiplicative functionvF(r ). Assuming this to be
true without proof@4,5# constitutes the ‘‘locality hypothesis.’
An existence proof is required to justify the ‘‘definition
dF/dr5vF(r ) @11,12#.

A density functionalTs is defined by the orbital functiona
T evaluated for ground-state occupied orbital functionsf i .
In order to conform to the standard variational theory of t
Schrödinger equation, the notationTs here extends this defi
nition to all density functions generated by orbital variatio
in any infinitesimal function neighborhood of a solution
the ground-state equations. For variations about ground-s
solutions of Eqs.~3!, assuming a local external potenti
v(r ),

dTs5E d3r(
i

ni~df i* t̂f i1c.c.!

5E d3r(
i

ni~df i* $e i2v%f i1c.c.!. ~9!

Variation of a specified occupiedf i in the orbital Hilbert
space, restricted only by orthogonality to all other occup
orbitals, defines a partial density-functional derivati
dTs /nidr i such that

dTs5E d3r(
i

ni S df i*
dTs

nidr i
f i1c.c.D . ~10!

The partial functional derivatives implied by Eqs.~9! and
~10! are local functions

dTs

nidr i~r !
5e i2v~r !. ~11!
2-2
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For fixed orbital normalization, the eigenvaluese i drop out
of the variational equations and cannot be determined. T
constraint is explicitly relaxed in the variational derivation
the orbital Schro¨dinger equation. Ife i2v were the same
function vT(r ) for all i, a Fréchet derivativedTs /dr would
be defined such thatdTs5*d3r (dTs /dr)dr. This function
could replace the linear operatort̂ in the orbital Schro¨dinger
equations.

Equation~11! implies that such a unique local functio
does not exist unless all one-electron energiese i are equal.
This confirms the implication of the sum rule derived pre
ously @3#. However, Eq.~11! does define a functional deriva
tive that differs depending on the eigenvaluese i , character-
istic of different partial densities. Such a dependence
direction in the density-function space defines a Gaˆteaux
functional derivative@7,8#. Sincer5( inir i , if dTs /dr ex-
ists, the partial functional derivatives

dTs

nidr i
5e i2v~r ! ~12!

must satisfy the elementary chain rule

dTs

nidr i
5

]r

ni]r i

dTs

dr
5

dTs

dr
. ~13!

Defining H5 t̂1v, an explicit orbital index is not needed
Eq. ~12! is interpreted to define a linear operator acting
orbital wave functions,dTs /dr5H2v5 t̂ . This confirms
the chain rule for functional derivatives, and can be verifi
explicitly in the noninteracting atom model.

IV. CONCLUSIONS

There is no conflict between standard variational theory
the orbital-functional derivation and formal results of fun
tional analysis@15,16#, when the theory is restricted to no
ry
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malized orbitals and density@9#. It has been shown here tha
for a system of noninteracting electrons in an external pot
tial field v(r ), variations of ground-state kinetic energyTs ,
induced by variation of any occupied orbital function wi
fixed normalization, define a density-functional derivative
a local function plus an undetermined constant. In order
define a Thomas-Fermi equation this undetermined cons
must have a specific value. Extension of this derivation
unconstrained orbital variations shows that this ‘‘consta
has different values for different orbital components of t
electron density. Hence the implied functional derivative i
Gâteaux derivative, whose value depends on a direction
the function space@8# ~p. 123!. For a partial densityr i this
direction is defined by variations of orbitalf i that are or-
thogonal to all other occupied orbital functions. The ex
tence of a local functional derivative in any particular dire
tion in the function space does not imply that a unique lo

function exists that can replace the kinetic-energy operatt̂
in Kohn-Sham equations. Assuming the existence of suc
local potential leads to a contradiction forN.2.

The Hohenberg-Kohn theorems ensure that variational
ergy is minimized by the ground-state density associa
with a given external potential. This density is uniquely d
termined by variational theory. Because of the ‘‘directiona
nature of the density-functional derivative, exact TFT equ
tions must be operationally equivalent to the OEL equatio
which explicitly use the nonlocal Schro¨dinger operatort̂ .
This is consistent with an extended definition of the dens
functional derivativedTs /dr5H2v5 t̂ . Hence it is varia-
tionally correct to uset̂ in Kohn-Sham equations. The prob
lem with TFT for more than two electrons is that the orbi
structure of the density function must also be determined
order to define the kinetic energy. Semiclassical TFT
comes a quantum theory of electrons only on replacing
c-number functionvT by theq-number operatort̂ .
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