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Kinetic energy as a density functional
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Whether or not kinetic energy can be represented in orbital Kohn-Sham equations by an effective local
potential has been discussed in several recent publications, reaching conflicting conclusions. It is shown here
that this conflict can be resolved by dropping the widespread but unjustified assumption that the existence of
a ground-state density functional for the kinetic energy of\aalectron system implies the existence of a
density-functional derivative equivalent to a local potential function. For more than two electrons, a density-
functional derivative does exist, but has the mathematical character of a linear operator that acts on orbital
wave functions.
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I. INTRODUCTION lished and undisputed. Practical applications of DFT use the
methodology of OFT, determining ground-state orbital wave

The issue in dispute is whether an exabtinitio Thomas-  functions and model density when an approximate exchange-
Fermi theory(TFT) exists for ground states, equivalent to correlation energy functiondk, [ p] is specified. Hence a
density-functional theoryDFT) [1,2]. This depends on the correct variational derivation of the appropriate Euler-
definition for N-electron ground states of a ground-stateLagrange equations must satisfy consistency conditions be-
kinetic-energy functional [ p] and of its density-functional tween DFT and OFT representations of what should be the
derivative 6T/ dp, wherep is the (spin-indexed electron  same theory for ground states. These consistency conditions,
density. If 5T,/8p is assumed to exist as a local function stated in the form of a chain rule, have been disputed Hy Ga
v1(r) it defines a Thomas-Fermi equation with the samd4] and by Holas and Marclb]. This chain rule is rederived
physical content as the orbital equations of Kohn and Sharhere in a way that makes no extraneous assumptions and can
[3-5]. This “locality hypothesis” appears so intuitively ob- be verified for noninteracting electrons.
vious that it has tacitly been incorporated into arguments Holas and March5] argue that “the solution of the TF-
[4,5] purporting to refute a straightforward sum ryle,6] like equatian . . . and of the KSquatiors . . .should lead to
that demonstrates incompatibility of the Thomas-Feffifi)  the same resudt. . . ”. Their argument, however, invokes cir-
and Kohn-ShanfKS) equations for systems with more than cular logic, and cannot reach a definite conclusion. The “lo-
two electrongmore than one distinct orbital energy level  cality hypothesis” is tacitly assumed and built into their no-

It will be shown here that this functional derivative does tation. Their Eqs(2.7) and (2.8) ignore the possibility that
indeed exist, but takes a mathematical form different fromthe functional derivativeST¢/dp might be a linear operator
that assumed. More precisely, two kinds of functional deriva+ather than a local function. Equatid@.8) has no precise
tives are defined in functional analy§ig,8]. The functional ~meaning unless this functional derivative is a multiplicative
derivative of Frehet is the generalization to functional number. Without this tacit assumption, one cannot conclude
analysis of a total derivative, not depending on the “direc-that the theory implies the existence of a “TF-like equation.”
tion” of variation in the underlying function space. The func- Their argument does not circumvent the sum ¢ that
tional derivative of Geeaux is the generalization of a partial implies violation of the exclusion principle for more than
derivative, depending on the direction of variation. Analysistwo electrons.
of the functional variation of the noninteracting ground-state
kinetic energy, compatible with orbital Scliinger equa-
tions, shows that the density-functional derivative is a Ga
teaux derivative, having the character of a linear operator The mathematical issues involved in comparing “exact”
that acts on orbital wave functions, not a et derivative, Kohn-Sham equations with Thomas-Fermi theory, based on
equivalent to a local potential functiof®,10. A Gateaux the same Hohenberg-Kohn ground-state theory, can be ad-
derivative does not define a Thomas-Fermi equation. Thigiressed in a model ol noninteracting electrons. Kinetic
demonstration is summarized here for the simplest possiblenergy is defined exactly. A local external potential function
model, noninteracting electrons in a local external potentialy (r) can be assumed, guaranteeing validity of Hohenberg-
In this model, all theoretical assertions can be tested for aRohn theoremd1] and of “noninteractingy representabil-
atom composed of noninteracting electrons, using explicitty” [11,12. Limiting the discussion, for simplicity, to non-
hydrogenic orbital wave functions and the correspondingiegenerate ground states, variational trial functions are
density functions. unnormalized single Slater determinadisconstructed from

The Kohn-Sham density function==;n;¢; ¢; implies N spin-indexed occupied orbital wave functiogs for i
that any functional ofp is also a functional of the orbital <N. Total and orbital energies are Lagrange multipliers de-
functions¢; . Hence DFT is also an orbital functional theory termined to enforce normalization. Spin indices and summa-
(OFT), for which the correct variational theory is well estab- tions are implicit but are omitted in the simplified notation to

II. NONINTERACTING ELECTRONS
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be used here d§|H|®) is an explicit functionall +V of trial ~ functional F[{¢;}] are defined by
orbital functions, where

SF= fd3r2 nl{&;s, e ———+c.C.f.

T=mewxv=2nmmm (1)

. The corresponding density variation is
expressed in terms of linear operators — (1/2)V? and o

for a general nonlocal potential. Occupation numbges 1 .
for i<N are not varied here. Matrix elements are defined by 5922 ni{ ¢ i +c.cl. (7)
(il.1})=drgF (r)...;(r).

The Schrdinger variational principle can be expressed in

the form If Fis also a density functionalF/ép can always be de-

fined such that

f d3r2 ni(8¢*{t+0— €} +c.c)=0, (2 ®

6F
5F:J' d3r > ni[5¢r5—p¢i+c.c. :
|

incorporating a diagonalized matrix of Lagrange multipliers _ )
for orthonormality constraints. If varlatlon&;’a, are uncon- These equations make no unstated assumptions and are con-

Euler-LagrangdOEL) equations, related by the cham rulesE/ op) ¢| SFIN; o) = .
the density-functional derivativéF/dsp were a Frehet de—
toi={e-0}pi, i=1,... N, (3)  rivative, equivalent to &spin-indexedl local functionvg(r),

i Eq. (8) would reduce tosF = [d3rvg(r) 8p. This formula is
just Schralinger equations for noninteracting electrons. Thismeaningful only if the linear operatai- defined by the

derivation uses orbital functional derivatives orbital-functional derivative is equivalent in the OEL equa-
tions to a multiplicative functiow (r). Assuming this to be
oT ~14, oV —5, 4) true without proof4,5] constitutes the “locality hypothesis.”
n; 6¢, " niSot v An existence proof is required to justify the “definition”
SF1Sp=vg(r) [11,12.
defined such that A density functionall is defined by the orbital functional
T evaluated for ground-state occupied orbital functiens
STZJ A3, ni(S¢Figi+c.c); In order to conform to the standard variational theory of the
i Schralinger equation, the notatiohy here extends this defi-

nition to all density functions generated by orbital variations
3 in any infinitesimal function neighborhood of a solution of
j d rz (67D ¢i+c.c). ) the ground-state equations. For variations about ground-state
solutions of Egs.(3), assuming a local external potential
When o is a local functionv(r), the equations solved for v(r),
ground states in the Kohn-Sham constructiomnimizing

kinetic energy with fixed densiiy{2,13,14 are the same as _ 3 .2

these noninteracting OEL equations. The density fungion oTs= | d rZ ni(8¢7 thi+c.c)

=3inipi=3=n; ¢ ¢; is constructed as a sum of density

components; = ¢ ¢;, with fixed occupation numbers; . f 3 .

If this noninteracting theory is extended as in the local- d rz (8¢ {ei—v}ditcc). ©

density approximation to include a model exchange-
correlation energy determined by an explicit function of den-variation of a specified occupieg, in the orbital Hilbert
sity, and hence of the occupied orbital functions, the orbitalspace, restricted only by orthogonality to all other occupied
functional derivation of the OEL equations given aboveorbitals, defines a partial density-functional derivative
produces the usual Kohn-Sham equations, using only stansT_/n;5p; such that
dard variational theory. If nonlocal exchange is included and
electronic correlation is neglected, this derivation follows ex- 6T
actly the logic of standard Hartree-Fock theory. 5Ts:J' d3fzi ni( s N op, $it+c.c.. (10

I |

I1l. ORBITAL AND DENSITY-FUNCTIONAL DERIVATIVES The partial functional derivatives implied by Eq®) and

In deriving the OEL equations, one must consider infini-(10) are local functions
tesimal variations of energy functionals of occupied orbitals
{¢i}, or of the density functiorp constructed from such oTs ; (11)
orbitals. Orbital-functional derivative§F/n;5¢; =0 ¢; of n; op;i(r) =&—v(n).
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For fixed orbital normalization, the eigenvalugsdrop out  malized orbitals and densif®]. It has been shown here that
of the variational equations and cannot be determined. Thifor a system of noninteracting electrons in an external poten-
constraint is explicitly relaxed in the variational derivation of tial field v (r), variations of ground-state kinetic energy,
the orbital Schrdinger equation. If—v were the same induced by variation of any occupied orbital function with
functionv+(r) for all i, a Freehet derivativedTs/dp would  fixed normalization, define a density-functional derivative as
be defined such thaiT=[d% (5Ts/dp) Sp. This function 4 |ocal function plus an undetermined constant. In order to
could replace the linear operatbin the orbital Schidinger ~ define a Thomas-Fermi equation this undetermined constant
equations. must have a specific value. Extension of this derivation to
Equation(11) implies that such a unique local function unconstrained orbital variations shows that this “constant”
does not exist unless all one-electron energieare equal. has different values for different orbital components of the
This confirms the implication of the sum rule derived previ- electron density. Hence the implied functional derivative is a
ously[3]. However, Eq(11) does define a functional deriva- Gxeaux derivative, whose value depends on a direction in
tive that differs depending on the eigenvalugs character-  the function spacé8] (p. 123. For a partial density; this
istic of different partial densities. Such a dependence onyjrection is defined by variations of orbita} that are or-
direction in the density-function space defines alé@ax  hoqonal to all other occupied orbital functions. The exis-
functional derivative[7,8]. Sincep=Zinip;, if 6Ts/6p €~ tance of a local functional derivative in any particular direc-
ists, the partial functional derivatives tion in the function space does not imply that a unique local

OT, function exists that can replace the kinetic-energy operfator
m: &—v(r) (12 in Kohn-Sham equations. Assuming the existence of such a
local potential leads to a contradiction fie> 2.
must satisfy the elementary chain rule The Hohenberg-Kohn theorems ensure that variational en-

ergy is minimized by the ground-state density associated
oTs — ap &: 5_TS (13) with a given external potential. This density is uniquely de-
nidp; nNidp; ép  Sp termined by variational theory. Because of the “directional”
. nature of the density-functional derivative, exact TFT equa-
Defining H=t+v, an explicit orbital index is not needed if tions must be operationally equivalent to the OEL equations,
Eq. (12) is interpreted to define a IinearA operator acting onypich explicitly use the nonlocal Schdimger operator.
orbital wave functions,éTs/dp="H—v=t. This confirms  This is consistent with an extended definition of the density-
the chain rule for functional derivatives, and can be verifiednctional derivative5T5/5p=H—v=f. Hence it is varia-
explicitly in the noninteracting atom model.

tionally correct to usé in Kohn-Sham equations. The prob-
lem with TFT for more than two electrons is that the orbital
structure of the density function must also be determined, in

There is no conflict between standard variational theory irPrder to define the kinetic energy. Semiclassical TFT be-
the orbital-functional derivation and formal results of func- c0mes a quantum theory of electrons only on replacing the
tional analysig 15,16, when the theory is restricted to nor- c-number functiorv; by the g-number operatot.

IV. CONCLUSIONS
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