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Consider a system consisting nfd-dimensional quantum particlégudits, and suppose that we want to
optimize the entanglement between each pair. One can ask the following basic question regarding the sharing
of entanglement: what is the largest possible va&yg,(n,d) of the minimumentanglement between any two
particles in the systemMere we take the entanglement of formation as our measure of entangleRant.
n=3 andd=2, that is, for a system of three qubits, the answer is kndgyn;(3,2)=0.550. In this paper we
consider first a system af qudits and show thé,,,,(d,d)=1. We then consider a system of three particles,
with three different values af. Our results for the three-particle case suggest that as the dimehisioreases,
the particles can share a greater fraction of their entanglement capacity.
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Quantum entanglement, as exhibited, for example, in théhe degree to which entanglement can be shared among a
singlet state (2)(|01)—|10)) of a pair of qubits, has been number of particles. We focus in this paper on two special
the object of much study in recent years because of its corcasesn=d andn=23. As we will see, our results far=3,
nection with quantum communication and quantum compucombined with earlier work on the problem, suggest that in a
tation[1]. Though entanglement is a kind of correlation, it is well-defined sense the limitation on entanglement sharing
known to be fundamentally different from ordinary classicalbecomes less restrictive with increasing values of the dimen-
correlation. One of the characteristic differences is thissiond.
whereas arbitrarily many classical systems can be perfectly Before reviewing what is currently known about
correlated with each other—the temperature fluctuations ifEmaxdn.d), let us recall the definition of entanglement of
ten different cities could, in principle, be exactly parallel— formation. For a pure stat@b) of a bipartite quantum sys-
any entanglement that may exist between two quantum patem, the entanglemeii(®) is defined[7] as
ticles seems to limit the degree to which either of the par-
ticles can be entangled with anything el$g,3]. For
example, if two qubitsA andB are in the singlet state, then E(®)= _Ei rilogor;, (1)
neither of them can have any entanglement with a third qubit

C, simply because such entanglement would require the pair . . .
ply g 9 b where ther;’s are the eigenvalues of the density matrix of

AB to be in amixedstate, whereas the singlet state is pure. . o ;
g PUT sither subsystem(For a pure bipartite state the density ma-

Coffman et al. [3] have generalized this exampltill con- trices of both subsystems necessarily have the same eigen-
sidering only qubitsby allowing A andB to be only partially alues) A mixed statep can always be written in many dif-

entangled, in which case one finds an inequality expressing ; babilisti it ¢ distinct but not
trade-off between thé& B entanglement and thaC or BC erent ways as a probabllistic mixture ot distinct but no
necessarily orthogonal pure states

entanglement.

As this sort of limitation may be a fundamental property
of entanglement, one would like to express it more generally. _ 1D WP, 2
In particular, one would like to capture quantitatively the P 2 Pl (®il. @
limitation on the sharing of entanglement among arbitrarily

many particles of arbitrary dimension. The following prob- The entanglement of formation @f is defined[5,6] as the
lem offers one approach to such a quantitative expressioyerage entanglement of the pure states of the decomposi-
Consider a system of d-dimensional quantum particlé§u-  tion, minimized over all possible decompositions:

dits), and suppose that one wants each particle to be highly

entangled with each of the other particles. We expect that

there will have to be compromises, since increasing the en- E((p)=inf >, PiE(D)). 3
tanglement of any given pair will probably work against the i

entanglements of other pairs. It makes sense, then, to ask

how large one can make thminimum pairwise entangle- As we have mentioned above, the entanglement of formation
ment, the minimum being taken over all paj#]. In this  between a pair of qudits ranges from zero to,ldgLet us
paper we address this problem, taking as our measure oéfer to the maximum value lgg as theentanglement ca-
entanglement the entanglement of formatibré], which for  pacity of a pair of qudits.

a pair of qudits ranges from zero to lad) For a collection of For a pair of qubits, there is an explicit formula for the
n qudits, let us call the maximum possible value of the mini-entanglement of formation of an arbitrary mixed sfeg It
mum pairwise entanglemeig,,,,(n,d). This function, if it  is given in terms of another measure of entanglement called
can be found, will give us a specific quantitative bound onthe concurrencg8,9], which at this point has a standard defi-
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nition only for qubits® In terms of the concurrend®, which  of three qutrits. Let the particles be callédB, andC, and
ranges from zero to one, the entanglement of formation of &t the indicesi, j, andk label the elements of orthogonal
pair of qubits isE;(p) =& [C(p)], where the functior€ is  bases for the three particles, each index taking the values 0,

defined by 1, and 2. Our special state for this system is
1 1
&C)=h E(1+\/1—<;‘2) : (4) |§>=% iJZk eijliik), (5)

h being the binary entropy functiorh(x)= —xlog,Xx ) , ) )
—(1-x)log,(1—x). Note that&(C) is a monotonically in- Where €y is antisymmetric under interchange of any two
creasing function, witk£(0)=0 and&(1)= 1. We will not be indices andeg,=1. This is the singlet state of three qutrits

focusing particularly on qubits in this paper, but E4) will ~ With respect to the group S8); i.e., it is the unique three-

be useful both for summarizing previous work on the prob-dutrit state(up to an overall phase facothat is invariant
lem and, in a different context, for presenting our own re-under arbitrary transformations of the foldw U®U where

sults. U e SU(3). Thedensity matrix|&)(&| is symmetric under

We now list the results that have been obtained so fafltérchange of any two particles, so that each pair of particles
regardingE,,4(n,d). is equally entangled. To find the pairwise entanglement, we

(1) Enad2d)=log,d. This equation simply says that if W_rite down the reduced d'ensity matri_x of any pair; for defi-
there are only two particles, they can saturate their entangldliteness we choose the first two particlésand B:
ment capacity; they do not have to share the entanglement 1 1
with other particles. AB  _ L _Tie e s o

(2) Emax(3,2)=£(2/3)=0.550. Du et al.[4] obtained this Pijirir ™6 ; €iik€irjk=g (G 8 = dijrdji), ()
result by proving that the optimal pairwise entanglement for
a system of three qubits is achieved in the states being the Kronecker delta. Alternatively, we can wiite?
(14/3)(/100 +]010 +|001)). without indices as

(3) Emax(n,2)=£&(2/n). Koashiet al.[10] showed that for
a system ofn qubits, if the state is such that the density 1
matrix of each pair of particles is the same, then the maxi- PAB=5(| —F), (7)
mum pairwise concurrence isr2/lt is conceivabldthough it

seems unlikely that by removing the symmeltry constraint wherel is the identity operator an& is the operator that
one might be able to achieve a greater pairwise emanglelhterchan es particle and B: F=3,|ij)(ji|. The two-
ment; therefore, we write this result as an inequality rather ", 9 ABp_ : ISASHE .
than an equality. qutrit statep” is an example of a Werner state, that is, a
In this paper we add two new items to the above ligt: state that is invariant under all transformations of the form
Forn=d ?h{ft is, for a system of qudits, we find for each U®U whereU is unitary. Werner states can be defined for

value ofd a specific state in which each pair of particles hasa.nyd><d system, and one can s_hc[\m] that in any dimen-
exactly 1 “ebit” of entanglement between theiifor d=2, sion the Werner states are precisely those states that can be

: : : ritten asp=al+bF, a andb being real numbers and
our state reduces to the singlet state of a pair of qubitss wrt :
will show thatE,,,(d,d) is at least 1 for all values daf. (ii) being defined as above. Vollbrecht and Werfitt] have

Forn=3, that is, for a system of three particles, we add toshown that the entanglement of formation of any Werner

A state is given bye;(p) =& c(p)], wherec(p) = —Tr pF and
the known result for qubitsd=2) and to our own result for . . . . '
qutrits [d=3 in item (i)] a third example withd=7. Our & is the function defined in Eq(4). [When c(p) is non-

results for the three-particle case suggest that iasreases, ntea%i']vﬁ]’ :urpg/sse t?eABr;)I:elogoat;:tn&ugrggfaen f%rm\évlir?sr
the particles can share not just more entanglement, but £p ' 9

- . : i(p"")=&(1)=1. Thus each pair of qutrits has exactly one
greaterfraction of their entanglement capacity. ebit of entanglement. This value is, by the way, the maxi-

mum possible entanglement of any Werner state.
It is a simple matter to generalize the above construction
Before writing down our special state of qudits with  to a system ofd qudits. In that case, we haw indices
arbitraryd, we illustrate our construction in the special casei,,i,, ... 4, each taking values from O t— 1. Our spe-
cial state for this system is the Stl)( singlet staté

A system ofd qudits

The concurrence of a pure state of two qubits is simpfgetp,, 1
wherep, is the reduced density matrix of one of the qubits. The &)= — > €, .. .id|il colg), (8)
concurrence of a mixed statp of two qubits is given by \/a ERRR
max0\,—No—A3— N4}, Where \;=N\,=N3=)\, are the square
roots of the eigenvalues gf(o,® o) p* (oy®0y), p* being the
complex conjugate gf in the standard basis aidg, being the usual This state has been used recently by Hillery and dkuin a
Pauli matrix[8,9]. We recall these formulas here for the sake of scheme designed to probe a quantum gate that realizes an unknown
completeness but will not need them in the present paper. unitary transformatio12].
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where €, |s completely antisymmetric aney; . 4-1 A particular symmetry of¢) shows immediately that the
1. One can show directly that the reduced density matriairsAB, BC, andCA are all equaII),/ entangled. If we define
of each pair of particles is again a Werner state a new summation indek’ by k=2k" mod 7, then Eq(10)
becomes
AB 1 o
=g R © = [Z (alj.j, J>+b2 i +2K',j+4K',j+K')),
(11

and that the entanglement of formation of this state is one
ebit. We thus conclude th&,,,,(d,d)=1. We write an in-
equality here simply because our stbg® may not optimize
the pairwise entanglement; one might be able to do bette
However, having put some effort into looking for better
states withd=3, we regard it as likely that our state is op-
timal in that case.

where we have used the invariancetinder multiplication
by 2 mod 7. But Eq(11) differs from Eq.(10) in that the ket
}abels have been cyclically permuted. THy$ is invariant
under a cyclic permutation of the particles, and it follows
that each pair is equally entangled.

To write down the density matrix of one of the pairs, say
BC, it is helpful to reexpress Eq10) in yet another form,
changing the indey in the jk sum toj’'=j+k and then
A three-particle system relabelingj’ asj:

It is interesting to compare our result for three qutrits with 6
the previously studied example of three quljil§. For a |§>__ 2 @lj.j.jy+b> |j.j+kj+3K)). (12
triple of qubitsE, 5, is 0.550, and we have just seen that for =0 keQ
a triple of qutrits,E 5 is at least 1. However, a straightfor-
ward comparison of these numbers is not particularly illumi-The density matrix oBC is the trace of{)(¢| over particle
nating, because qubits and qutrits have different entangled, which we can write as
ment capacities. We can perhaps make a fairer comparison
by considering the ratio d£,,4 to the relevant entanglement 1
capacity. For qubits, this ratio is 0.550/jd=0.550, PBCT7 JZO Isi)(sil, (13
whereas for quitrits it is 1/log3=0.631. Thus by this mea-
sure, qutrits are better able to share entanglement than gy,
bits: they can share a greater fraction of their entanglement
capacity. It is interesting to ask whether this trend will con-
tinue for larger values ofl. That is, will E,44(3,d)/log,d |sj>=a|j,j>+b2 lj +k,j+3k), (14
continue to increase with increasid@ keQ

To address this question, we consider one further case
with three particles, namely, the cade-7. We choose the 'S the state oBC associated with the stalg) of A

value 7 because it allows us to construct a reasonably simple N order to find the entanglement of formatiéh (pgc),
and symmetric state that exhibits large pairwise entangleV€ need to consider pure-state decompositionpgef and

ment. In fact, we consider a one-paramdtenily of states, [Ind their average entanglements. Now, any pure $faiten
having the following form: such a decomposition must be a linear combination of the

seven orthogonal statésj) that make uppgc; that is, it
6 must lie in the seven-dimensional subspéa¢espanned by
Z a|j,J,j>+bk2Q|j+k,j+2k,j+4k>). {Is)}:

(10

S

erels;), defined by

10)=

sw

|B>=Ej Bilsi), (15)

HereQ is the sef1,2,4}, and all the arithmetic shown in the
ket labels is mod 7, the basis states of each particle beinvg/here21-|,8j 1. The problem of findind=s (pgc) is sim-
labeled by the integers, 0. . ,6. Wetakea andb to be real plified by two facts:(i) E(pgc) cannot be smaller than the
and positive, witha?+ 3b%=1 to ensure normalization. Thus smallest entanglement of any8)e H; that is, E;(pgc)
the state|¢) is completely specified once the valueafs ~ =mingE(B). (i) Given any stat¢3) e H, one can generate
given. an entire decomposition gfzc in which everyelement has
We have chosei® to consist of thequadratic residues the same entanglement|g@). (We prove this assertion in the
mod 7, that is, the elements {f,2,3,4,5,6 that can be writ-  following paragraph. Together, these two facts imply that
ten asx? mod 7 for some integex. The properties of qua- the entanglement of formation pf is equalto mingE; (B).
dratic residueg13] tend to minimize the overlap, in each Thus it is sufficient to find a single minimally entangled pure
particle’s state space, between terms in @) with differ-  state in the subspad& occupied bypgc.-
ent values of. (For this it is important that 7 is a prime of To generate a decomposition pgc from a given state
the form 4AN— 1 with integralN.) |B) e H, we apply a set of local unitary transformations to
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|B); such transformations are guaranteed not to change the TABLE I. Lower bounds or€pay.

entanglement. We start by defining two basic single-particle

transformationsS and T d Efa(3.4d) Efax"¥(3d)/log, d
Sid=oli): Tli)=li+1), (16) 2 0.550 0.550
| =wli); TH)=li+1) . L oo 0ea1
wherew=e?""" and, as always, the addition in the ket label 7 1.994 0.710

is mod 7. In terms of these basic operations, we define a pait

of two-particle transformations andV:

U=S"®s%: V=TaT. (17

One can show thatl|s;)=wl|s;) andV|s;)=|s; 1), from
which it follows that

6

6
1
29,2y 2, VPUTIBNBIUTTY (18)
1 (j=i")m *
:E%‘ﬁ 2 o BBl o)(Sjpl (19
=7 2 |B*2 Is;+p)(s 4ol =poc: (20

We have thus produced the desired decompositiopgef.
It remains, then, to find the smallest possible value o
E: (B). For the special case wheae=b=1/2, each stat{sj)

has exactly two bits of entanglement, but it happens tha

certain linear combinations of the statss) have slightly

smaller entanglement. Using numerical minimization, we

find that for this case, mi (8)=1.9933.
Of course we are free to choose the valueaofs we

(0.120,0.197,0.689,0.2590.468,-0.275/-0.332), and the
others we have found are all related to this one by permuta-
tions and phase changgesVe conclude, then, that for the
state|Z) with a=0.461, the entanglement of formation be-
tween each pair of particles is 1.9944, and, therefore,
Emaxd3,7)=1.9944.

This result gives us another data point as we consider the
dependence of the rath,,,(3,d)/log, d on the dimensioul.
Table | summarizes what we know so far about the case
=3. (For d=3 and d=7, the values given are lower
bounds).

In the limit asd goes to infinity, we wonder what value, if
any, the ratioE,,,,(3,d)/log, d approaches. It is conceivable
that the limit is 1, but it is equally conceivable that it is some
smaller constant. Either answer would be interesting. If the

1Jimit of Enhaxd(n.d)/log,d is 1 for all values ofn, then one

could reasonably say that entanglement can be shared freely
i[n an infinite dimensional state space.

We note that although in this paper we have focused on

the entanglement of formation, there exist other sound mea-
sures of entanglement, and it is surely a good idea, in trying

to quantify the restrictions on the sharing of entanglement, to

please, and it turns out that we maximize the entanglement dfeep in mind alternatives such as the relative entropy of en-

formation by choosinga=0.461, in which casd=0.512.
For this value ofa, we find numerically that the minimum
E:(B) is 1.9944, obtained both for the simple cag®)
=|s;) and for certain nontrivial linear combinationgOne
such combination has coefficientsg; equal to

tanglemen{14] and the generalized concurrence of Rungta

et al.[15]. At the present stage of investigation, it is not clear

which measure or measures will yield the most elegant quan-
titative expressions of the limitations on entanglement

sharing.
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