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Tunneling and traversal of ultracold atoms through vacuum-induced potentials
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We examine the passage of ultracold two-level atoms through the potential produced by the vacuum of the
cavity field. We find that the phase time may be considered as the appropriate measure of the time required for
the atom to traverse the cavity. The phase tunneling time for ultracold atoms exhibits both super- and sub-
classical time and we show how this behavior may be understood in terms of the momentum dependence of the
phase of transmission amplitude. The passage of the atom through the cavity is unique, as it involves a
coherent addition of the transition amplitudes corresponding to both barrier and well.
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I. INTRODUCTION

An important question of great interest in several dis
plines of physics has been—what is the tunneling time
traversal time of a quantum-mechanical particle throug
potential. Various definitions have been proposed and
subject has been reviewed extensively@1–3#. In this paper,
we examine the passage time of a cold atom through a h
quality cavity. The question is a complicated one as we h
here a coupling with three different types of the degrees
freedom—~a! atom’s center of mass motion,~b! atom’s elec-
tronic states, and~c! photons. An analysis in the dressed-sta
basis reveals that the interaction of a moving atom with
single-mode vacuum field in a high-quality cavity is equiv
lent to a combination of a potential barrier and a well. T
connection to potential problems is provided by the exist
results in the context of micromazers@4,5#. These potentials
belong to the category of vacuum-induced potentials
should be distinguished from the optical potentials produ
by a far-off resonant field interacting with an atom@6#. Hav-
ing realized that the cavity field may act like a potential f
an ultracold atom, one could calculate the time the at
takes to traverse the cavity using methods similar to th
used, for example, in the context of tunneling electro
through potential barriers and the propagation of lig
through a dispersive medium. The motional effects in
context of cavity QED are beginning to be seen. Mu¨nster-
mann et al. @7# have already reported the evidence of t
effect of a quantized motion of atoms in the asymmetries
transmission of a weak light field through a cavity.

II. MODEL SYSTEM AND SUMMARY OF ATOM-FIELD
INTERACTION

We consider an ultracold, two-level atom in its excit
state to be incident on a single-mode cavity of lengthL. The
frequency of the cavity field has been tuned to the freque
v of the atomic transition between the excited stateue& and
the ground stateug&. In a reference frame rotating with fre
quencyv, the Hamiltonian of the atom-field interaction in
cluding the quantized motion of center-of-mass~c.m.! of the
atom, is given by
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-
r
a
e

h-
e
f

e
a
-

g

d
d

e
s
t
e

f

y

HI5
pz

2

2m
1\gu~z!~sa†1as†!, ~1!

whereg is the atom-field coupling constant ands (s†) are
the lowering~raising! operators for the atomic transition. Th
operatorsa (a†) annihilate~create! a photon of frequencyv.
For simplicity, the mode functionu(z) of the cavity is as-
sumed to be a mesa functionu(z)u(L2z). The operator
(sa†1as†) is easily diagonalizable. It has eigenstat
uf0&, ufn11

6 & with eigenvalues 0,6An11, respectively.
The dressed eigenstates may be expanded in terms of e
states of the free Hamiltonian asuf0&5ug,0& and ufn11

6 &
51/A2(ue,n&6ug,n11&).

Since we need the transmission amplitude of the exc
atom for further discussion, we summarize the main res
of Meyeret al. @4#. Consider the initial atom-field state to b
ue,n&, i.e., the atom is in the excited state and the cavity fi
contains fixed number~n! of photons. If we expand the com
bined state of the atom-cavity system as

uC~z,t !&5x1~z,t !ufn11
1 &1x2~z,t !ufn11

2 &, ~2!

then the time-dependent Schro¨dinger equation becomes

i\
]xa

]t
5haxa , a56. ~3!

Here,h65pz
2/2m6\gu(z)An11 are operators acting in th

space of the center-of-mass variables. Clearly, the ca
with fixed number of photons creates a barrier and a w
potential for the external motion of the atom correspond
to the dressed statesufn11

6 &, respectively, as discussed
Ref. @4#.

We assume the initial state of the cavity to be vacu
(n50) state. The initial wave packet of a moving free ato
may be written in the form c(z,t)5exp(2ipz

2t/

2m\)*dk A(k)eikz5*dk A(k)e2 i (\k2/2m)teikz. We assume
that A(k)’s are such thatc(z,t) at z50 peaks in time at the
instant t50. Thus, in the presence of the cavity, the wa
packet atz50 ~entry of the cavity! has its peak~in time! at
t50. We therefore write the initial wave function of th
atom-field system asuC(z,0)&5c(z,0)ue,0&. The wave func-
tion of the atom-field system after the interaction may
©2001 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW A 64 065802
obtained by expandingue,0& in the dressed-state basisuf1
6&

@4#. We use the reflection and transmission amplitud
r6, t6 of Ref. @5# for the potential barrier~superscript1)
and well~superscript2), respectively. Carrying out the tim
evolution for the dressed statesuf1

6&, we get the following
transmitted wave function in the regionz>L:

uCT~z,t !&5E dk A~k!e2 i (\k2/2m)t@Te,0~k!ue,0&

1Tg,1~k!ug,1&]eikz, ~4!

where

Te,05
1

2
~t11t2!, Tg,15

1

2
~t12t2!, ~5!

are the transmission amplitudes for the excited and gro
state of the atom, respectively. Note that the transmiss
amplitudes for the excited or ground state of the atom
pend on the coherent addition of amplitudes of the bar
and well. The reflected wave function of the atom-field s
tem in the regionz<0 is obtained by replacing the transmi
sion amplitudest6 by reflection amplitudesr6 of the barrier
and well.

III. PHASE TIME FOR ULTRACOLD ATOMS PASSING
THROUGH A HIGH-QUALITY CAVITY—ANALOG

OF SUB- AND SUPERLUMINAL PROPAGATION

In the previous section, we have seen that dynamics o
ultracold atom passing through the cavity is reduced to
problem of reflection and transmission of an atom incid
on the cavity-induced potentials. In this section, we study
detail the transmission of the atom in the initial excited st
through the cavity initially in vacuum state. The transmiss
amplitudeTe,0[uTe,0ueif(k), given by Eq.~5!, depends on the
vacuum coupling energy\g[\2ko

2/2m. We consider a

Gaussian wave-packetA(k)5exp„2(k2 k̄)2/s2
… of width s

and mean-momentumk̄ for the incident atom. With this sub
stitution for A(k), the transmitted wave function includin
the normalization factor, is given forz>L by

uCT~z,t !&5
1

~2p!3/4
A2

sE2`

`

dk exp„2~k2 k̄!2/s2
…

3e2 i (\k2/2m)tuTe,0ueif(k)eikzue,0&. ~6!

For small widths, the integrand in Eq.~6! has nonvanishing
value only in a small range of wave-numbersk centered
about the meank̄. Then, the envelope of the transmitte
wave-packetu^e,0uCT(z,t)&u2 will be maximum when the
total phaseQ(k) of the integrand exhibits extremum at th
wave-numberk5 k̄. Since we have assumed that the peak
incident wave packet enters the cavity at timet50, this sta-
tionary phase condition gives the time at which the wa
packet at the exit of the cavityz5L is peaked as follows:
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]Q~k!

]k U
k5 k̄

5
]

]k
@kL1f~k!2~\k2/2m!t#U

k5 k̄

50, ~7!

which yields the phase tunneling timetph

tph5F m

\k S ]f

]k
1L D G

k5 k̄

. ~8!

The integral in Eq.~6! may be evaluated approximately b
making the Taylor expansion of the phase of transmiss
amplitude about the mean-wave numberk5 k̄. Keeping
terms up to second order in the expansion and assumins

! k̄ to approximate uTe,0(k)u'uTe,0( k̄)u, the transmitted
wave function is given atz5L by

uCT~z,t !&uz5L

'
1

~2p!3/4
A2

s
exp@ i ~ k̄L1f~ k̄!2Ēt/\!#uTe,0~ k̄!u

3A 2p

S 2

s2
1 ia D expS 2Ē~ t2tph!

2

mS 2

s2
1 ia D D ue,0&, ~9!

where Ē5\2k̄2/2m is the average energy of the incide
atom and the parametera5\t/m2]2f/]k2uk5 k̄ accounts
for the spreading of the wave packet as it propagates.
maximum amplitude of the transmitted wave packet, i.e.,
u^e,0uCT(L,t)&u2 occurs at timet5tph given by the station-
ary phase assumption. It is very important to note that
phase time has no significance when either the Taylor exp
sion of the phase does not converge or additional terms m
than the second-order term are important in the expansion
this general case, the transmitted wave packet will be
formed from the Gaussian shape and the concept of foll
ing the peak of the wave packet is meaningless. When th
is no cavity uTe,0(k)u51, f(k)50, then the phase time in
Eq. ~8! becomestph5mL/\ k̄[tcl , which is the classical
time needed for the peak of a free-atomic wave packe
traverse a distance of lengthL. The phase tunneling time tha
a particle takes to traverse apotential barrier, has been stud-
ied extensively by Hartman@1#. The tunneling time for a
barrier is less than the time a free particle takes to trave
the same distance in free space. Here, we report such a
perclassical traversal of the ultracold atom through
vacuum-induced potentials. Note that the temperature of
atom will be in the range 1027–1028 K if the coupling con-
stantg ([\ko

2/2m) is in the range of 100–10 kHz and if th

mean momentumk̄/ko50.1. It should be borne in mind tha
both barrier and well contribute to the traversal time of
tracold atoms. Using Eq.~8!, we plot in Fig. 1 the phase time
as a function of the mean wave-numberk̄ for the length of
the cavitykoL510p. The important result here is that th
phase time exhibits the resonant behavior of transmiss
probability and that the phase time is less than the class
time tcl . In a different context, viz., in the tunneling time o
2-2
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BRIEF REPORTS PHYSICAL REVIEW A 64 065802
electrons passing through a finite superlattice, a similar re
nant behavior is found@3#. Another remarkable behavior o
phase time is that it may even benegative. Negative phase
time implies that the peak of the transmitted wave pac
emerges even before the peak of the incident wave pa
enters the interaction region. This may be understood fr
the interference between the incident wave and the wave
is reflected at the end of the cavity. From Eq.~8!, we see that
when the derivative of the phase of transmission amplitud
negative and its absolute value is greater than the lengthL of
the cavity, the phase time becomes negative. Put ano
way, when the phase functionf(k)1kL has negative slope
the phase time takes negative values. In Fig. 2, we show
phase time for the parameterkoL5p/2. It is seen from the
graph that for ultracold atoms (k̄/ko!1), the phase time is
negative. For fast atoms (k̄/ko@1), the phase time ap
proaches the classical time as the transmission probab

FIG. 1. Dependence of the dimensionless phase time~solid
curve! for transmission in the excited state on the mean wa

numberk̄/ko of the incident atom for the parameterkoL510p. The
phase time follows the resonant behavior of the transmission p
ability uTe,0u2 ~dashed curve!.

FIG. 2. Dimensionless phase time~solid curve! for transmission

in the excited state as a function of the mean wave-numberk̄/ko of
the incident atom for the parameterkoL5p/2. The dashed curve
represents the probability of transmission of the atom in the in
excited state (uTe,0u2) through the cavity. The inset shows the pha
function f1kL as a function of the wave-numberk/ko of the ex-
cited atom for the same parameter.
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becomes closer to unity. The phase time being negativ
very similar to the concept of negative group velocity in t
case of electromagnetic pulse propagation. Here, the va
tion of the refractive index of the medium with respect to t
frequency has a steep negative slope leading to superlum
propagation@8#. To understand the negative phase time,
have also plotted the phase functionf(k)1kL in the inset of
Fig. 2. The graph shows the expected negative slope for
tracold atoms.

We now substantiate the above results by studying
behavior of the actual envelope of the wave function. W
evaluate numerically the integral Eq.~6!, which describes the
propagation of a Gaussian wave packet of an excited a
through the vacuum-induced potentials. Garrett and McCu
ber @9# carried out a similar numerical integration for th
electric-field amplitude of a Gaussian light pulse pass
through an anomalous dispersive medium. In Fig. 3,
show the numerical result of the normalized probability de
sity u^e,0uCT(z,t)&u2/s at the exit of the cavityz5L as a
function of the time for the parameterskoL5p/2, s/ko

50.01, k̄/ko50.1. The peak of the transmitted wave pack
occurs at the timet/tcl'20.98, which matches with the
phase time in Fig. 2 for the cold atom (k̄/ko50.1). For com-
parison, we have also plotted the envelope of the w
packet that travels through the same distance of lengthL in
free space. The peak of the free wave packet occurs at
expected classical time. In the case of fast atoms (k̄/ko@1),
numerical integration~actual results not shown! gives the
peak of the transmitted wave packet at the classical t
(t/tcl'1) as expected from Fig. 2. Thus, the peak of t
transmitted wave packet occurs at the instant given by
expression for phase-time Eq.~8!, even if that instant is ear
lier than the instant at which the incident wave packet en
the cavity. While this is generally true for a narrow mome
tum distribution characterized bys! k̄ of the incident atom,
strong deformation of the incident wave packet sometim
makes the phase time meaningless@10#.

We have so far considered only the propagation of
atomic wave packet in the initial excited state. But in a hig

-

b-

l

FIG. 3. Normalized probability densityP[u^e,0uCT(z,t)&u2/s
at z5L as a function of dimensionless timet/tcl . The solid
~dashed! curve representsP after transmission through the cavit
~free space!. The parameters used for the calculation arekoL

5p/2, s/ko50.01, and k̄/ko50.1. Both the solid and dashe
curves are normalized to unity.
2-3
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BRIEF REPORTS PHYSICAL REVIEW A 64 065802
quality cavity, the atom-field interaction leads to phot
emission by the excited atom. We may also study the beh
ior of the transmitted wave-packetu^g,1uCT(z,t)&u2 for the
ground state of the atom using Eq.~4!. For the parameters o
Fig. 3, the phase time for the ground-statetph /tcl'0.45 is
positive but still a superclassical time. Numerical integrat
~results not shown! also gives the same time delay for th
transmitted wave packet. In Fig. 4, we show the behavio
the phase time for the wave packet corresponding to
transmitted atom in the ground state. This behavior is to
compared with that of the phase time for the transmission

FIG. 4. Dimensionless phase time~solid curve! for transmission

in the ground state as a function of the mean wave-numberk̄/ko of
the incident atom for the parameterkoL5p/2. The dashed curve
represents the probability of transmission of the atom in the gro
state (uTg,1u2) through the cavity.
tt

ly,
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the excited state~Fig. 2!. The two phase times differ consid
erably for cold atoms. Generally, the difference in pha
times for the ground and excited states of the atom result
the splitting of the incident wave packet into two in the to
transmission. But for the parameters of Fig. 3, the total tra
mission is dominated by the contribution from the grou
state, and hence, the splitting is not seen.

IV. CONCLUSIONS

In summary, we have considered the propagation o
Gaussian wave packet of an excited two-level atom thro
a high-quality cavity that is initially empty. The tunnelin
time depends on the coherent addition of transmission
plitudes through a barrier and a well. The phase tunne
time may exhibit both super- and subclassical traversal
havior. For certain sets of parameter, the phase tunne
time for cold atoms may even be negative. All this may
understood in terms of the dispersion characteristics of
phase of the transmission amplitude and is analogous to
dispersion of the refractive index that leads to super- a
subluminal propagation@8,9#. Though we have considere
the vacuum state for the initial state of the field, supercla
cal tunneling of ultracold atoms is a common feature fo
general Fock state of the cavity field.
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