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Tunneling and traversal of ultracold atoms through vacuum-induced potentials
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We examine the passage of ultracold two-level atoms through the potential produced by the vacuum of the
cavity field. We find that the phase time may be considered as the appropriate measure of the time required for
the atom to traverse the cavity. The phase tunneling time for ultracold atoms exhibits both super- and sub-
classical time and we show how this behavior may be understood in terms of the momentum dependence of the
phase of transmission amplitude. The passage of the atom through the cavity is unique, as it involves a
coherent addition of the transition amplitudes corresponding to both barrier and well.
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I. INTRODUCTION p§
H,=%+hgu(z)(aaT+aoT), (1)

An important question of great interest in several disci-

plines of physics has been—what is the tunneling time ofyhereg is the atom-field coupling constant and (o) are
traversal time of a quantum-mechanical particle through ahe lowering(raising operators for the atomic transition. The
potential. Various definitions have been proposed and thgperatorsa (a') annihilate(create a photon of frequency.
subject has been reviewed extensivEly-3]. In this paper, For simplicity, the mode functiom(z) of the cavity is as-

we examine the passage time of a cold atom through a higlsumed to be a mesa functiof(z) (L —z). The operator
quality cavity. The question is a complicated one as we havg¢sa'+ac') is easily diagonalizable. It has eigenstates
here a coupling with three different types of the degrees of %), |#,.,) with eigenvalues 0,+n+1, respectively.
freedom—a) atom’s center of mass motioh) atom’s elec- The dressed eigenstates may be expanded in terms of eigen-
tronic states, an(t) photons. An analysis in the dressed-statestates of the free Hamiltonian ag°=|g,0) and |, . )

basis reveals that the interaction of a moving atom with 3=1/ﬁ(|e,n>i|g,n+1>).

single-mode vacuum field in a high-quality cavity is equiva- ~ Since we need the transmission amplitude of the excited
lent to a combination of a potential barrier and a well. Theatom for further discussion, we summarize the main results
connection to potential problems is provided by the existingof Meyeret al.[4]. Consider the initial atom-field state to be
results in the context of micromazegi,5]. These potentials |e,n), i.e., the atom is in the excited state and the cavity field
belong to the category of vacuum-induced potentials andontains fixed numbein) of photons. If we expand the com-
should be distinguished from the optical potentials produceddined state of the atom-cavity system as

by a far-off resonant field interacting with an at¢6]. Hav-

ing realized that the cavity field may act like a potential for (P(z,0)=x+(2Z]dn D+t x-(2D|¢ni0), (2

an ultracold atom, one could calculate the time the atom ) . )

takes to traverse the cavity using methods similar to thosd€" the time-dependent Schirger equation becomes

used, for example, in the context of tunneling electrons

through potential barriers and the propagation of light i%
through a dispersive medium. The motional effects in the

context of cavity QED are beginning to be seen. rigier-
mann et al. [7] have already reported the evidence of the
effect of a quantized motion of atoms in the asymmetries o
transmission of a weak light field through a cavity.

=h,x., a==. 3)

Here,h. = p§/2mi hgu(z) yn+1 are operators acting in the
space of the center-of-mass variables. Clearly, the cavity
with fixed number of photons creates a barrier and a well
potential for the external motion of the atom corresponding
to the dressed statds,, ), respectively, as discussed in

Ref. [4].
IIl. MODEL SYSTEM AND SUMMARY OF ATOM-FIELD We assume the initial state of the cavity to be vacuum
INTERACTION (n=0) state. The initial wave packet of a moving free atom

We consider an ultracold, two-level atom in its excited May be written in the form (z,t) =exp(-ipZt
state to be incident on a single-mode cavity of lenigtifthe ~ 2m#) fdk A(k)e'?= [dk A(k)e '"k72Mtglkz  Wwe assume
frequency of the cavity field has been tuned to the frequencshatA(k)’s are such that)(z,t) atz=0 peaks in time at the
o of the atomic transition between the excited stafeand  instantt=0. Thus, in the presence of the cavity, the wave
the ground statég). In a reference frame rotating with fre- packet az=0 (entry of the cavity has its peaKin time) at
quencyw, the Hamiltonian of the atom-field interaction in- t=0. We therefore write the initial wave function of the
cluding the quantized motion of center-of-madssn) of the  atom-field system asV'(z,0)) = (z,0)|e,0). The wave func-
atom, is given by tion of the atom-field system after the interaction may be
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obtained by expanding,0) in the dressed-state basis; ) 90 (k) d )
[4]. We use the reflection and transmission amplitudes 5| =g lkL+ ok —(hk%2m)t]) =0, (7)
p~, 7 of Ref.[5] for the potential barriefsuperscript+) k=k k=k
and wgll(superscript—), respectiv+ely. Carrying out the 'time which yields the phase tunneling timg,
evolution for the dressed statgs; ), we get the following
transmitted wave function in the regia*L: d
ph—™ ﬁ W‘H— o (8)

T o(z,t :fdk k)e (MY T (k)|e,0
[¥+(z.0) Ak [Teolk)[e0) The integral in Eq(6) may be evaluated approximately by

+Tg,1(k)|g,l)] gikz 4) makmg the Taylor expansion of the phase gf transrmssmn
amplitude about the mean-wave numblerk. Keeping
where terms up to second order in the expansion and assuming
<k to approximate|Teo(k)|~|Teo(k)|, the transmitted
wave function is given at=L by

|Wr(z,0))| =1

are the transmission amplitudes for the excited and ground
state of the atom, respectively. Note that the transmission 1
amplitudes for the excited or ground state of the atom de- (2m)%4
pend on the coherent addition of amplitudes of the barrier
and well. The reflected wave function of the atom-field sys-
tem in the regiorz<0 is obtained by replacing the transmis-
sion amplitudes™ by reflection amplitudep™ of the barrier
and well.

1 1
Te’O=§(7'++77), Tgyl=§(7'+—7'7), (5)

\@ exi(kL+ ¢(k)—Et/A)]| Te oK)

9

where E=7%2k?/2m is the average energy of the incident
atom and the parameter=~7#t/m— d?¢/Ik?|— accounts
for the spreading of the wave packet as it propagates. The
maximum amplitude of the transmitted wave packet, i.e., of
In the previous section, we have seen that dynamics of aj{e,0|¥(L,t))|? occurs at time =t given by the station-
ultracold atom passing through the cavity is reduced to thery phase assumption. It is very important to note that the
problem of reflection and transmission of an atom incidenfphase time has no significance when either the Taylor expan-
on the cavity-induced potentials. In this section, we study insion of the phase does not converge or additional terms more
detail the transmission of the atom in the initial excited statehan the second-order term are important in the expansion. In
through the cavity initially in vacuum state. The transmissionthis general case, the transmitted wave packet will be de-
amplitudeT, o=| T, o€'*™, given by Eq(5), depends on the formed from the Gaussian shape and the concept of follow-
vacuum coupling energﬁgzﬁ2k§/2m. We consider a ing the peak of the wave packet is meaningless. When there
Gaussian wave-packat( k) = exp(— (k— k) 2/ o?) of width o is no cavity | Te o(k)|=1, #(k)=0, then the phase time in
and mean-momentui for the incident atom. With this sub- Ed- (8) becomest,,=mL/7ik=t.,, which is the classical

stitution for A(k), the transmitted wave function including me needed for the peak of a free-atomic wave packet to
the normalization factor, is given fa=L by traverse a distance of length The phase tunneling time that

a particle takes to traversepatential barrier, has been stud-
ied extensively by Hartmafl]. The tunneling time for a

W r(z,t))= 1 \/sz dkexp(—(k—?)zlaz) barrier is less than the time a free particle takes to traverse
™S (277)3/4 o) _o

lll. PHASE TIME FOR ULTRACOLD ATOMS PASSING
THROUGH A HIGH-QUALITY CAVITY—ANALOG
OF SUB- AND SUPERLUMINAL PROPAGATION

the same distance in free space. Here, we report such a su-
o, _ _ perclassical traversal of the ultracold atom through the
x e kM T el ¢(kelkZ g, 0). (6)  vacuum-induced potentials. Note that the temperature of the
atom will be in the range 10-108 K if the coupling con-
For small widtho, the integrand in Eq6) has nonvanishing stantg (Eﬁkﬁ/Zm) is in the range of 100—10 kHz and if the

value only in a small range of wave-numbetscentered mean momenturi/k,=0.1. It should be borne in mind that
about the meark. Then, the envelope of the transmitted both barrier and well contribute to the traversal time of ul-
wave-packet(e,0|¥(z,t))|? will be maximum when the tracold atoms. Using E8), we plot in Fig. 1 the phase time
total phase® (k) of the integrand exhibits extremum at the as a function of the mean wave-numbefor the length of
wave-numbek=k. Since we have assumed that the peak ofthe cavityk,L=107. The important result here is that the
incident wave packet enters the cavity at titse0, this sta- phase time exhibits the resonant behavior of transmission
tionary phase condition gives the time at which the waveprobability and that the phase time is less than the classical
packet at the exit of the caviy=L is peaked as follows: timet, . In a different context, viz., in the tunneling time of
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FIG. 1. Dependence of the dimensionless phase ftisudid FIG. 3. Normalized probability densitp=|{e,0|¥(z,t))|% o
curve for transmission in the excited state on the mean waveat z=L as a function of dimensionless timiét. . The solid
numberk/k, of the incident atom for the parametef. =107. The  (dashed curve represent® after transmission through the cavity
phase time follows the resonant behavior of the transmission probifree space The parameters used for the calculation &g
ability | Te/? (dashed curve =m/2, o/k,=0.01, andk/k,=0.1. Both the solid and dashed

curves are normalized to unity.

electrons passing through a finite superlattice, a similar reso-
nant behavior is found3]. Another remarkable behavior of becomes closer to unity. The phase time being negative is
phase time is that it may even Inegative Negative phase very similar to the concept of negative group velocity in the
time implies that the peak of the transmitted wave packetase of electromagnetic pulse propagation. Here, the varia-
emerges even before the peak of the incident wave packd&bn of the refractive index of the medium with respect to the
enters the interaction region. This may be understood fronfrequency has a steep negative slope leading to superluminal
the interference between the incident wave and the wave tharopagatior{8]. To understand the negative phase time, we
is reflected at the end of the cavity. From E8), we see that have also plotted the phase functig(k) + kL in the inset of
when the derivative of the phase of transmission amplitude ifig. 2. The graph shows the expected negative slope for ul-
negative and its absolute value is greater than the ldngth  tracold atoms.
the cavity, the phase time becomes negative. Put another We now substantiate the above results by studying the
way, when the phase functiap(k) + kL has negative slope, behavior of the actual envelope of the wave function. We
the phase time takes negative values. In Fig. 2, we show thevaluate numerically the integral E&), which describes the
phase time for the parametkgL = 7/2. It is seen from the propagation of a Gaussian wave packet of an excited atom
graph that for ultracold atoms(k,<1), the phase time is through the vacuum-induced potentials. Garrett and McCum-
T ber [9] carried out a similar numerical integration for the
lectric-field amplitude of a Gaussian light pulse passing
rough an anomalous dispersive medium. In Fig. 3, we
”o show the numerical result of the normalized probability den-
' ' ' ' ' sity |(e,00W+(z,1))|?/ o at the exit of the cavity=L as a
function of the time for the parametelglL=n/2, a/k,
=0.01, k/k,=0.1. The peak of the transmitted wave packet
occurs at the time/t,~—0.98, which matches with the
phase time in Fig. 2 for the cold atork/k,=0.1). For com-
parison, we have also plotted the envelope of the wave
packet that travels through the same distance of lehgth
free space. The peak of the free wave packet occurs at the

expected classical time. In the case of fast atokig,& 1),
numerical integrationactual results not showrgives the

negative. For fast atomskf(k,>1), the phase time ap-
proaches the classical time as the transmission probabilit

1.0 .

00 02 ol.;ko.e 08 1.0 peak of the transmitted wave packet at the classical time

20 . . R (t/ty=1) as expected from Fig. 2. Thus, the peak of the

0.0 1.0 20 3.0 4.0 5.0 transmitted wave packet occurs at the instant given by the
Kk, expression for phase-time E@), even if that instant is ear-

FIG. 2. Dimensionless phase tirtgolid curve for transmission lier than the instant at which the incident wave packet enters
. . . — the cavity. While this is generally true for a narrow momen-
in the excited state as a function of the mean wave-nurkbgr of T ; — o
the incident atom for the parametiesl = /2. The dashed curve tum distribution characterized hy<k of the incident atom,
represents the probability of transmission of the atom in the initialStrong deformation of the incident wave packet sometimes
excited state [T, /%) through the cavity. The inset shows the phasemakes the phase time meaningles).

function ¢+kL as a function of the wave-numbktk, of the ex- We have so far considered only the propagation of the
cited atom for the same parameter. atomic wave packet in the initial excited state. But in a high-
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1.5 T T T T the excited stat€rig. 2). The two phase times differ consid-
erably for cold atoms. Generally, the difference in phase
times for the ground and excited states of the atom results in

10T the splitting of the incident wave packet into two in the total

t/ty transmission. But for the parameters of Fig. 3, the total trans-
mission is dominated by the contribution from the ground

05, n ] state, and hence, the splitting is not seen.

e IV. CONCLUSIONS

0'Ooo 1.0 2.0 3.0 40 5.0

In summary, we have considered the propagation of a
Kk, Gaussian wave packet of an excited two-level atom through
a high-quality cavity that is initially empty. The tunneling
time depends on the coherent addition of transmission am-
plitudes through a barrier and a well. The phase tunneling
ime may exhibit both super- and subclassical traversal be-
avior. For certain sets of parameter, the phase tunneling
time for cold atoms may even be negative. All this may be
understood in terms of the dispersion characteristics of the
hase of the transmission amplitude and is analogous to the
dispersion of the refractive index that leads to super- and
subluminal propagatiof8,9]. Though we have considered
the vacuum state for the initial state of the field, superclassi-
cal tunneling of ultracold atoms is a common feature for a
general Fock state of the cavity field.

FIG. 4. Dimensionless phase tin@lid curve for transmission
in the ground state as a function of the mean wave-nurkbgr of
the incident atom for the parametkgL = 7/2. The dashed curve
represents the probability of transmission of the atom in the groun
state (T 4/%) through the cavity.

quality cavity, the atom-field interaction leads to photon
emission by the excited atom. We may also study the beha
ior of the transmitted wave-packgg,1/¥+(z,t))|? for the
ground state of the atom using Hg). For the parameters of
Fig. 3, the phase time for the ground-stajg/t,~0.45 is
positive but still a superclassical time. Numerical integration
(results not shownalso gives the same time delay for the
transmitted wave packet. In Fig. 4, we show the behavior of
the phase time for the wave packet corresponding to the
transmitted atom in the ground state. This behavior is to be One of us(R.A.) thanks Dr. Kulkarni for discussions on
compared with that of the phase time for the transmission imumerical integration techniques.

ACKNOWLEDGMENT

[1] R. Y. Chiao and A. M. Steinberg, iRrogress in Opticsedited [6] P. S. Jessen and |. H. Deutsch, Adv. At. Mol. Phgg, 95

by E. Wolf (Elsevier, Amsterdam, 199,/Vol. 37, p. 345; E. P. (1996.

Wigner, Phys. Rev98, 145 (1959; T. E. Hartman, J. Appl.  [7] P. Minstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G.
Phys.33, 3427(1962; H. M. Nussenzveig, Phys. Rev. 82, Rempe, Phys. Rev. Let82, 3791(1999.

042107(2000. [8] L. J. Wang, A. Kuzmich, and A. Dogariu, Natufeondon

[2] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 406, 277 (2000.
71, 708(1993. [9] C. G. B. Garrett and D. E. McCumber, Phys. RevlA305

[3] Pedro Pereyra, Phys. Rev. Le8d, 1772(2000. (1970.

[4] B.-G. Englert, J. Schwinger, A. O. Barut, and M. O. Scully,
Europhys. Lett14, 25(199)); G. M. Meyer, M. O. Scully, and
H. Walther, Phys. Rev. A6, 4142(1997.

[5] Coupling of two cavities by cold atoms is treated in G. S.
Agarwal and R. Arun, Phys. Rev. Le8&4, 5098(2000.

[10] It should be borne in mind that all this discussion is predicted
on the assumption that the modulus of the transmission ampli-
tude is a slowly varying function df. Very sharp resonances
have to be handled differently.

065802-4



