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Electron near a helium liquid surface
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The energies of an electron above a liquid-helium surface are analyzed in terms of an electron-atom polar-
izability potential with an infinite barrier. An integration over a layer, and a summation over different layers,
leads to a one-dimensional Coulomb potential with a 1/x2 correction. This potential provides an accurate
description of the observed one-dimensional Rydberg energies with a quantum defect.
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I. INTRODUCTION

It was suggested some time ago that isolated elect
resting on a helium surface have@1–3# a spectrum of one-
dimensional Coulomb potential in half space. The elect
induces an image charge in the helium surface, leading
potential@4#

V~x!52
Ze2

x
, x.0, Z5

e21

4~e11!

5`, for x,0 ~1.1!

wheree is the dielectric constant of liquid He. For helium
one has@5,6#

e51.057 23, Z50.006 955. ~1.2!

This leads to the usual hydrogenic spectrum. The spect
has been observed experimentally@6,7# though with some
deviations.

Recently, Nieto@8# has analyzed the spectrum of the ele
tron near the surface in terms of the one-dimensional C
lomb potential in half space with a quantum defect. He h
suggested an additional potential of the angular momen
barrier form,

Vd5
\2

2m

~2d!~2d11!

x2
for x.0, ~1.3!

which leads to a simple and elegant description of the qu
tum defectd. However, there are two related questions t
need to be considered. One has to do with the singular
havior of the potential at the origin that needs to be hand
with great care. The second point is about the physical or
of such a potential term. These points need to be analy
carefully.

Here, we analyze the electron-He surface interaction
terms of the electron-He atom interaction potential. This
tential is summed over the atoms in different layers of
half space to deduce the electron-surface potential. This
proach leads to an accurate representation of the Coul
potential in Eq.~1.1! and the quantum defect term in E
~1.3!. What is even more important is that it provides a cle
insight into the properties of different potential terms a
their physical origin. In particular, it emphasizes the po
1050-2947/2001/64~6!/064902~4!/$20.00 64 0649
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that one needs to carry out a careful summation over
contributions from different layers of the liquid.

We will use atomic unitse5\5me51, unless stated oth
erwise.

II. EFFECTIVE ELECTRON-SURFACE POTENTIAL

We first obtain the potential for an electron interacti
with a helium atom, and then use it to deduce the interac
potential for an electron near the surface of atoms in a liq
state.

A. Electron-atom potential

The basic interaction of an electron with an atom is giv
by the potential

U~rW,rW i !5(
i

S 1

urW2rW i u
2

1

r
D , ~2.1!

whererW is the position of the electron andrW i are the positions
of the electrons in the atom, with respect to the nucleus
the adiabatic approximation, the effective electron-atom
tential is developed by treating the electron as an obser
With the potential in Eq.~2.1! as a perturbation, one obtain
an effective potential for the interaction of the electron w
the atom,

V~r !5U001(
iÞ0

U0iUi0

E02Ei
1¯, ~2.2!

where the matrix elements are taken with respect to the
perturbed states of the atom.

Now for the helium atom in the ground state, because
the spherical symmetry of the density, the first term is ex
nentially small@9# for large r,

U00→e2~2EI !
1/2

r for r→`, ~2.3!

whereEI is the ionization energy of the atom, and therefo
will not be important in our considerations. The domina
term for larger comes from the second-order term in E
~2.2!. Using the Legendre polynomial expansion in Eq.~2.1!
to calculate the second-order term in Eq.~2.2!, one obtains
the polarization potential@10#,
©2001 The American Physical Society02-1
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Vpol~r !52
1

2 (
l 51

a l

1

r 2l 12
f l~r !. ~2.4!

Here, a l are the usual multipolar polarizabilities andf l(r )
are the damping functions@9#. At large values ofr, the damp-
ing functions differ from one by exponentially small quan
ties, but ensure that potential is nonsingular at the orig
Since in our analysis, larger region is the important domain
we will take f l(r )51.

There are two significant components that have been
out in our consideration with the electron as an observer. O
component corresponds to including the changes in the s
of the external electron. This leads to additional terms@11# in
the summation over the intermediate states in Eq.~2.2!, de-
scribed as nonadiabatic terms. However, these terms g
zero faster than the polarizability terms in Eq.~2.4! by a
factor or 1/r 2 for large r, and therefore will be left out. The
other important component corresponds to the exchange
fect between the external electron and the electrons in
atom. It essentially generates a strong repulsion@9# for the
external electron to be found in the region of the atom
electrons. We will represent this short-range repulsive po
tial by an infinite potential barrier. Combining the essent
components, one has for the electron-He potential,

V~r !52 1
2 a1

1

r 4
for r .a,

5` for r<a, ~2.5!

where we have included only the leading dipolar polariza
ity term. The barrier radius will be determined by requirin
that the predicted scattering length is equal to the experim
tal scattering length@12# of 1.19. One has an exact analytic
expression@13# for the scattering length for this potential,

A5a1
1/2cot@a1

1/2/a]. ~2.6!

Using the accurate value@14# of 1.383 fora1 of He andA
51.19 for the scattering length, one obtains

a51.51. ~2.7!

It is interesting to note that the Born approximation modifi
to take into account the vanishing of the wave function ar
5a leads to@13,15#

A5a2
a1

3a
. ~2.8!

With a151.383 andA51.19, this givesa51.50, which is
quite close to the value of 1.51 from the exact relation in E
~2.6!.

B. Electron-He surface potential

For deducing the potential for the electron near the
liquid surface, the electron-atom potential is integrated o
06490
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a layer. Using Eq.~2.5!, one then gets for the electron-singl
layer potential, with the electron at a distancex from the
layer,

V0~x!52 1
2 a1NsE

0

` 2prdr

~r21x2!2

52 1
2 pa1NsS 1

x2D for x.a

5` for x<a, ~2.9!

whereNs is the number of atoms per unit area in the layer
may be noted that ifd is the interparticle or interlayer dis
tance,

Ns5Nvd, Nv51/d3, ~2.10!

whereNv is the number of atoms per unit volume. The to
potential for the electron near the liquid surface is then
tained by summing over the different layers,

V~x!52 1
2 pa1Ns(

n50

`
1

~x1nd!2
for x.a

5` for x<a. ~2.11!

Usually, the summation is converted into an integral that th
gives the leading 1/x term correctly. However, from the
analysis of Nieto@8# it follows that 1/x2 term is important in
determining the quantum defect. Therefore, one has to c
out a more careful analysis of the summation. For this,
first separate out the leading term

(
n50

1

~x1nd!2
5

1

x2
1 (

n51

1

~x1nd!2
, ~2.12!

The second term tends to 1/(xd) for x→`. Therefore, we
consider a representation

(
n51

1

~x1nd!2
5

1

xd
1 f ~x!

5E
0

` du

~x1ud!2
1 f ~x!. ~2.13!

for obtaining a suitable form forf (x), one starts with

f ~x!5 (
n51

1

~x1nd!2
2E

0

` du

~x1ud!2

5 (
n51

1

~x1nd!2
2 (

n51
E

n21

n du

~x1ud!2
. ~2.14!

Carrying out the integration leads to
2-2
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f ~x!5 (
n51

1

~x1nd!2
2 (

n51

1

~x1nd!~x1nd2d!

52 (
n51

d

~x1nd!2~x1nd2d!
. ~2.15!

For x@d, this can be converted into an integral, and one g

f ~x!→2
1

2x2
1OS 1

x3D for x→`. ~2.16!

Combining Eqs.~2.12!–~2.16! then leads to

(
n50

1

~x1nd!2
5

1

xd
1

1

2x2
, for x→`, ~2.17!

correct to order (1/x3). Finally, one has for the total poten
tial, with the two leading asymptotic terms,

V~x!52ZF1

x
1

d

2x2G for x.a

5` for x<a, ~2.18!

where

Z5 1
2 pa1Nv . ~2.19!

For the liquid helium at a temperature between 1 and 2
one has a density of about 0.150 g/ml which is equivalent~in
a.u.!

Nv53.331023,

d56.7. ~2.20!

Together with the value of dipolar polarizabilitya151.383
for He, one gets

Z57.1731023, ~2.21!

which is quite close to the value of 0.006 955 obtained@5,6#
from the dielectric constant relation in Eq.~1.1!. The small
difference could be due to some variation in the polariza
ity of helium atom in the liquid state.

III. RESULTS

For obtaining the results in the Coulombic form, it
more appropriate to use the variable

x85x2a, ~3.1!

so that our potential is

V~x8!52ZF 1

x81a
1

d/2

~x81a!2G for x8.0

5` for x8<0. ~3.2!
06490
ts
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In the second term, only the leading asymptotic term will
retained. To analyze the solutions, we separate out the C
lombic part and write

V~x8!52
Z

x8
1Vpert~x8! for x8.0

5` for x8<0, ~3.3!

where the perturbative term is

Vpert5ZS 1

x8
2

1

x81aD2
Zd

2~x81a!2
. ~3.4!

For large values ofx8, which is the domain of interest, on
has

Vpert52
Z

2x82
~d22a!. ~3.5!

Finally, substitution of the values of Z50.006 955,d56.7,
anda51.51 leads to

Vpert52
0.0256

2x82
. ~3.6!

To deduce the corresponding quantum defect, we comp
this expression with

Vorbital5
2d~2d11!

2x82
, ~3.7!

which gives to leading order,

d'0.0256. ~3.8!

The corresponding hydrogenic energies are

En52
Z2

2~n2d!2
, ~3.9!

with the quantum defectd50.0256. This is quite close to th
experimentally determined value@8# of d50.0237.

It should be noted that our potential is nonsingular ax
5a or x850. Therefore, there are no technical difficulties
x850. In effect, what we have done is to treat the asympto
form of the deviation from the Coulombic term perturb
tively, for which the perturbed energies are given correc
by the expansion of the energy in Eq.~3.9! in powers ofd.
What is really striking is that the deviations from the Co
lombic energies are to be analyzed in terms of the discr
ness of the layers. A careful analysis of the potential due
the discrete layers provides a good description of the qu
tum defect in the one-dimensional Rydberg energies of
electron near a liquid-helium surface.
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