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Electron near a helium liquid surface
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The energies of an electron above a liquid-helium surface are analyzed in terms of an electron-atom polar-
izability potential with an infinite barrier. An integration over a layer, and a summation over different layers,
leads to a one-dimensional Coulomb potential with ®° Idorrection. This potential provides an accurate
description of the observed one-dimensional Rydberg energies with a quantum defect.
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[. INTRODUCTION that one needs to carry out a careful summation over the
contributions from different layers of the liquid.
It was suggested some time ago that isolated electrons We will use atomic unit®=#%=m,=1, unless stated oth-
resting on a helium surface hay&-3] a spectrum of one- erwise.
dimensional Coulomb potential in half space. The electron
induces an image charge in the helium surface, leading t0 a ||, EFFECTIVE ELECTRON-SURFACE POTENTIAL
potential[4]
We first obtain the potential for an electron interacting

zZe? e—1 with a helium atom, and then use it to deduce the interaction
V(X)=— X x>0, Z= 4(e+1) potential for an electron near the surface of atoms in a liquid
state.
=00, for x<0 (1.2

wheree is the dielectric constant of liquid He. For helium, A. Electron-atom potential

one hag5,6] The basic interaction of an electron with an atom is given
by the potential

e=1.057 23, Z=0.006 955. (1.2
1 1
This leads to the usual hydrogenic spectrum. The spectrum u(r, Fi)zz ( —— —), (2.1
has been observed experimentdl6;7] though with some CoAr=r o

deviations. .. . - .
Recently, Nietd8] has analyzed the spectrum of the elec-Wherer is the position of the ele_ctron amdare the positions
tron near the surface in terms of the one-dimensional Couf the electrons in the atom, with respect to the nucleus. In
lomb potential in half space with a quantum defect. He haghe adiabatic approximation, the effective electron-atom po-
suggested an additional potential of the angular momenturi¢ntial is developed by treating the electron as an observer.

barrier form, With the potential in Eq(2.1) as a perturbation, one obtains
an effective potential for the interaction of the electron with
72 (= 6)(—6+1) the atom,
s=s— ————— for x>0, 1.3
2m X2
_ UoiUio
| _ - V(1) =Ugot 2, +eoy 2.2
which leads to a simple and elegant description of the quan- izo Eo—E;

tum defects. However, there are two related questions that

need to be considered. One has to do with the singular bavhere the matrix elements are taken with respect to the un-
havior of the potential at the origin that needs to be handlegherturbed states of the atom.

with great care. The second point is about the physical origin Now for the helium atom in the ground state, because of
of such a potential term. These points need to be analyzeithe spherical symmetry of the density, the first term is expo-

carefully. nentially small[9] for larger,
Here, we analyze the electron-He surface interaction in 0
terms of the electron-He atom interaction potential. This po- Ugg—e @B for r—o, 2.3

tential is summed over the atoms in different layers of the

half space to deduce the electron-surface potential. This apvhereE, is the ionization energy of the atom, and therefore,
proach leads to an accurate representation of the Coulomill not be important in our considerations. The dominant
potential in Eg.(1.1) and the quantum defect term in Eq. term for larger comes from the second-order term in Eq.
(1.3). What is even more important is that it provides a clear(2.2). Using the Legendre polynomial expansion in E2}1)
insight into the properties of different potential terms andto calculate the second-order term in Ef.2), one obtains
their physical origin. In particular, it emphasizes the pointthe polarization potentigl10],
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1 1 a layer. Using Eq(2.5), one then gets for the electron-single-

Vpol(r)=— > > a— filr). (2.4 layer potential, with the electron at a distancdrom the
=1 r layer,

Here, a; are the usual multipolar polarizabilities arfig(r) )

are the damping functiori9]. At large values of, the damp- Vo(x)=— zalef T2l o202

. . . . - 0 (p°+Xx%)

ing functions differ from one by exponentially small quanti-

» 2m7pdp

ties, but ensure that potential is nonsingular at the origin. 1
Since in our analysis, largeregion is the important domain, =— %Tmle(—z for x>a
we will take f,(r)=1.
There are two significant components that have been left
=0 for x<a, (2.9

out in our consideration with the electron as an observer. One
component corresponds to including the changes in the states _ ) )
of the external electron. This leads to additional tefaigin ~ WhereNs is the number of atoms per unit area in the layer. It
the summation over the intermediate states in @), de- may be noted that ifl is the interparticle or interlayer dis-
scribed as nonadiabatic terms. However, these terms go {81ce:

zero faster than the polarizability terms in EQ.4) by a 3

factor or 1t2 for larger, and therefore will be left out. The Ns=N,d, N, =1/d", (2.10
other important component corresponds to the exchange ef-

fect between the external electron and the electrons in th&hereN, is the number of atoms per unit volume. The total
atom. It essentia”y generates a Strong repu|$minfor the pOtential for the electron near the |IQUId surface is then ob-
external electron to be found in the region of the atomictained by summing over the different layers,

electrons. We will represent this short-range repulsive poten-
tial by an infinite potential barrier. Combining the essential

i ' V(Xx)=—3ma;N —— for x>a
components, one has for the electron-He potential, (X) 2T Ns (x+nd)?

o

1 =00 for x=a. (2.11

V(r)=—3a;— for r>a,

' Usually, the summation is converted into an integral that then

= for r=a, (2.5 gives the leading ¥ term correctly. However, from the
analysis of Nietd8] it follows that 142 term is important in

where we have included only the leading dipolar polarizabil-determining the quantum defect. Therefore, one has to carry
ity term. The barrier radius will be determined by requiring out a more careful analysis of the summation. For this, we
that the predicted scattering length is equal to the experimerfirst separate out the leading term
tal scattering length12] of 1.19. One has an exact analytical

expressiorf13] for the scattering length for this potential, 1 1 1
— =7 > —, (212
A= ?cofal?a]. (2.6) n=0 (X+nd)* x° n=1(x+nd)
Using the accurate valud4] of 1.383 fora, of He andA ~ The second term tends to &) for x—c. Therefore, we
=1.19 for the scattering length, one obtains consider a representation
a=1.51. (2.7 1
=—+f(x)

. . N L = 2 xd
It is interesting to note that the Born approximation modified n=1 (x+nd)

to take into account the vanishing of the wave functiom at fw du

=a leads t0[13,15 = +f(x). (2.13

0 (x+ud)?
ay
A=a- . (2.8 for obtaining a suitable form fof(x), one starts with

With a;=1.383 andA=1.19, this givesa=1.50, which is o= 1 (> du

quite close to the value of 1.51 from the exact relation in Eq. (X)_n:l (x+nd)? 0 (x+ud)?

(2.6).

1 n
B. El i = — = —. (219
. Electron-He surface potential A=1 (x+nd)2 =1 Jn-1 (x+ud)?

For deducing the potential for the electron near the He
liquid surface, the electron-atom potential is integrated oveCarrying out the integration leads to
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1 1 In the second term, only the leading asymptotic term will be
retained. To analyze the solutions, we separate out the Cou-
lombic part and write

f(x)= 2>,

1 (x+nd)2 &1 (x+nd)(x+nd—d)

B d

z
- . 21 'y — — ! !
n; (x+nd)2(x+nd—d) 213 V(X')== 7+ Vper(x')  for x>0

Forx>d, this can be converted into an integral, and one gets = for x'<0, (3.3

where the perturbative term is
for x—co, (2.16

1
f(X)————=+0
(x) o

e
et 1 Zd
Combining Eqs(2.12—(2.16) then leads to Vper=2 X x'+al 2(x' +a)?’ 3.4
1 - i+ 1 for x—, (2.17) For large values ok’, which is the domain of interest, one
i=0 (x+nd)? xd  2x?’ ’ has
correct to order (X°). Finally, one has for the total poten- b
tial, with the two leading asymptotic terms, Vper= —m(d—Za). (3.5
1 d
VX)=-2z| +_—=| for x>a Finally, substitution of the values of=Z0.006 955d=6.7,
2x anda=1.51 leads to
= for x<a, (2.18
~ 0.0256
where Vper= — o (3.6)
Z=3ma;N,. (2.19

To deduce the corresponding quantum defect, we compare
For the liquid helium at a temperature between 1 and 2 Kthis expression with
one has a density of about 0.150 g/ml which is equivalent

a.u) = 8(—o+1)

N,=3.3x10"%, Voia™ 5z 57

d=6.7. (2.20 which gives to leading order,

Together with the value of dipolar polarizability; =1.383 5~0.0256. (3.9
for He, one gets

7=717%10°%, (2.21) The corresponding hydrogenic energies are
which is quite close to the value of 0.006 955 obtaifg®]| E—_ z? 3.9
from the dielectric constant relation in E@L.1). The small " 2(n-6)% '
difference could be due to some variation in the polarizabil-
ity of helium atom in the liquid state. with the quantum defeai=0.0256. This is quite close to the

experimentally determined valy8] of §=0.0237.
ll. RESULTS It should be noted that our potential is nonsingulax at

=a or x' =0. Therefore, there are no technical difficulties at
x'=0. In effect, what we have done is to treat the asymptotic
form of the deviation from the Coulombic term perturba-
X' =x—a, (3.1 tively, for which the perturbed energies are given correctly
by the expansion of the energy in E®.9) in powers of .
so that our potential is What is really striking is that the deviations from the Cou-
lombic energies are to be analyzed in terms of the discrete-
ness of the layers. A careful analysis of the potential due to
the discrete layers provides a good description of the quan-
tum defect in the one-dimensional Rydberg energies of an
=0 for x'<0. (3.2 electron near a liquid-helium surface.

For obtaining the results in the Coulombic form, it is
more appropriate to use the variable

1 d/2

+ for x’>0
x'ta (x'+a)?

V(x')=-Z
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