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Conclusive teleportation of ad-dimensional unknown state
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We formulate a conclusive teleportation protocol for a system ind-dimensional Hilbert space utilizing the
positive operator-valued measurement. The conclusive teleportation protocol ensures some perfect teleporta-
tion events when the channel is only partially entangled, at the expense of lowering the overall average fidelity.
We discuss how much information remains in the inconclusive parts of the teleportation.
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Recently, Mor and Horodecki@1# proposed a conclusive
teleportation protocol for a quantum state in two-dimensio
Hilbert space for a partially entangled quantum chann
They employed a positive operator-valued measurem
~POVM! @2# as the joint measurement at the sending stat
When the measurement is successful by a random cha
the initially unknown quantum state is teleported perfec
which is called aconclusiveevent. In contrast, for anincon-
clusiveevent, the teleportation loses its quantum characte
tics. To indicate the success of the measurement, an e
single bit has to be sent to the receiver together with
two-bit information via a classical channel. Bandyopadhy
@3# and Li et al. @4# have also proposed protocols to impl
ment conclusive teleportation in two-dimensional Hilbe
space. Bandyopadhyay uses a combination of orthog
Greenberger-Horne-Zeilinger measurements and POV
while Li et al. take general transformations at the receivi
station leaving the measurement orthogonal.

Quantum information theory has been extensively dev
oped for a two-level spin-1/2 system, namely, quantum bi
qubit. It is only recently thatd-dimensional quantum system
have attracted a considerable research effort. In partic
discrimination between linearly independent quantum sta
in d dimensions and its application to entanglement conc
tration have been studied by Chefles and Barnett@5#, quan-
tum cloning by Zanardi@6#, and quantum teleportation b
Zubairy @7# and Stenholm and Bardroff@8#. Rungtaet al.
called thed-dimensional quantum system thequdit and in-
vestigated its entanglement and separability@9#. The qudit
was extensively studied as a finite-dimensional version o
continuous variable state by Gottesmanet al. @10#.

In this paper, we formulate the conclusive teleportation
d-dimensional Hilbert space for partially entangled quant
channel, utilizing rank-one positive operator-valued m
surement for the joint measurement at the sending sta
and unitary transformation at the receiving station. We sh
that some teleportation information can be extracted from
inconclusive outcome by evaluating the teleportation fidel
The maximum information the receiver recovers for the
conclusive outcome is limited by classical theory@11#. It is
found that the overall fidelity for conclusive teleportation
less than that for the standard teleportation, which imp
that the conclusive teleportation enables perfect teleporta
events at the expense of lowering the overall average fide
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A quantum stateuf&1 in the d-dimensional Hilbert space
H,

uf&15(
i 51

d

ci u i &1 , ~1!

is teleported to a remote place via a partially entangled ch
nel in the (d3d)-dimensional Hilbert space,H^ H. We as-
sume that the quantum channel is prepared with apure en-
tangled pairof particles 2 and 3 in the state

uc&235(
i 51

d

ai u i i &23, ~2!

where$u i &% is an orthonormal basis set ind-dimensional Hil-
bert spaceH. All real coefficientsai are nonzero. For a
maximally entangled quantum channel,ai5d21/2. The total
quantum state for the unknown particle 1 and the entang
pair 2 and 3 is given by the direct product of the unknow
stateuf&1 and the quantum channel stateuc&23,

uC&1235uf&1^ uc&23. ~3!

The sender performs a joint measurement on particles 1
2 so that we expand the composite system based on state
particles 1 and 2.

In the standard teleportation protocol suggested by B
nettet al. @12#, the joint measurement is based on Bell stat
which form an orthonormal basis set of the maximally e
tangled states$uca

m&% for a spin-1/2 system. This basis s
can be obtained by applying a set of local unitary operati

$Ûa% on the given maximally entangled stateucm&: uca
m&

5Ûa
^ 1ucm& @12,13#. For a spin-1/2 system the set of un

tary operators is given by$1,ŝx ,ŝy ,ŝz%. These results are
extended to thed-dimensional quantum teleportation@13#.
The orthonormal basis set should satisfy the completene

1d3d5 (
a51

d2

uca
m&^ca

mu

5 (
a51

d2

Ûa
^ 1ucm&^cmuÛa†

^ 1, ~4!
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where 1d3d51^ 1 with the identity operator1 in H. The
completeness can be written in the matrix form based on
orthonormal bases of$u i j &%,

d ikd j l 5
1

d (
a51

d2

Ui j
a Ukl

a* , ~5!

whereUi j
a [^ i uÛau j &. Note that Eq.~5! depends only on the

unitary operators. In addition the orthonormality of the e
tangled basis statesdab5^ca

mucb
m& leads to the orthogona

condition for the unitary operators,

Tr Ûa†
Ûb5d dab . ~6!

In the conclusive teleportation protocol, the basis set
entangled states is obtained by using the same local un
operators$Ûa% on the state of the quantum channel~2!,

uca&5Ûa
^ 1uc& ~7!

for a51,2, . . . ,d2. Note thatd2 state vectors~7! form a
basis set because they are linearly independent as sh
later. The basis statesuca& are not necessarily orthogona
Only when the channel is maximally entangled withai

5d21/2 the set of the basis states$uca&% becomes$uca
m&%,

which represents the von Neumann orthogonal measurem
It is possible to expand the stateuca& in the orthonormal

basesu i j &,

uca&5 (
i , j 51

d

G~a; i , j !u i j &, ~8!

whereG(a; i , j ) is calculated from Eqs.~2! and ~7! as

G~a; i , j !5Ui j
a aj . ~9!

The mapG performs the basis transformation from$u i j &% to
$uca&%. We define a new mapG21 as

G21~ i , j ;a!5
1

d
Ui j

a* aj
21 , ~10!

which is well defined becauseajÞ0 for all j in Eq. ~2!. It is
then straightforward to show thatG21 is the inverse map o
G such that

(
a51

d2

G21~ i , j ;a!G~a;k,l !5d ikd j l ~11!

and

(
i j 51

d

G~a; i , j !G21~ i , j ;b!5dab , ~12!

which result from Eqs.~9! and~10! with use of the complete
ness equation~5! and the orthogonality of unitary operator
Eq. ~6!. The existence ofG21 shows that thed2 state vectors
$uca&% form a basis set. UsingG21( i , j ;a), the inverse rela-
tion to Eq.~8! follows:
06430
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u i j &5 (
a51

d2

G21~ i , j ;a!uca&. ~13!

The completeness relation with respect to the entang
states$uca&% is nontrivial due to their being nonorthogon
for a partially entangled quantum channel. Instead,
modify the completeness for the set of orthonormal ba
$u i j &% using Eq.~13! as

1d3d5 (
i j 51

d

u i j &^ i j u5 (
a51

d2

(
i j 51

d

G21~ i , j ;a!uca&^ i j u.

~14!

The total stateuC&123 in Eq. ~3! can now be written with
help of the modified completeness equation~14! as

uC&1235F(
a i j

G21( i , j ;a)uca&12̂ i j uG uf&1^ uc&23

5
1

d (
a51

d2

uca&12^ Ûa†uf&3 . ~15!

The second equality is given by Eq.~10! and the orthonor-
mality of the bases$u i j &%. The von Neumann orthogona
measurement with the maximally entangled bases of$uca

m&%
cannot exactly discern the nonorthogonal state vectorsuca&
and the teleportation is no longer perfect for the partia
entangled quantum channel.

A POVM for the joint measurement is defined as a pa
tion of unity by the positive operators, which are in gene
nonorthogonal. A set of POVM operators$M̂a% with n.d2

outcomes satisfy the measurement conditions of positi
and completeness,

(
a51

n

M̂a51d3d . ~16!

The conclusive teleportation has a crucial step to disc
nonorthogonal basis statesucb& for b51,2, . . . ,d2 in Eq.
~15!. For this purpose, joint POVM operators are design
such that

^cbuM̂aucb&}dab for a<d2. ~17!

This implies that when the measurement outcome is du
any of M̂a for a<d2, we can conclusively discern the non
orthogonal states in Eq.~15!. On the other hand, the mea
surement bears inconclusive results when the outcome i
M̂a for a.d2.

Any set of POVM operators can be decomposed i
rank-one general projectors@2#. We present the conclusiv
measurement operators by general projectors in the form
@14#

M̂a5luc̃a&^c̃au for a<d2, ~18!
4-2
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where the real parameterl>0. The completeness can b
guaranteed by adding an inconclusive measurement ope
M̂d211,

M̂d21151d3d2 (
a51

d2

M̂a . ~19!

Note thatM̂d211 is, in general, a mixture of rank-one pro
jectors and it can also be decomposed into rank-one gen
projectors. The positive real parametersl in Eq. ~18! are
constrained such thatM̂d211 satisfies the positivity under th
completeness equation~16!,

^cuM̂d211uc&>0 for ;uc&. ~20!

Substituting Eqs.~18! and ~19! into Eq. ~20!, the positivity
condition for the inconclusive operator leads to

(
a51

d2

lu^c̃auc&u2<1 for ; uc&. ~21!

For the purpose of the discrimination~17!, the generally
nonorthogonal and unnormalized states$uc̃a&% in Eq. ~18!
are conditioned to satisfy the relation

^c̃aucb&5dab . ~22!

To find its explicit form, we expanduc̃a& in the orthogonal
basisu i j &,

uc̃a&5 (
i , j 51

d

G̃~a; i , j !u i j &. ~23!

The mapG̃ is obtained from the relation betweenG andG21

in Eqs.~9! and ~10! as

G̃~a; i , j !5G21* ~ i , j ;a!

5
1

d
Ui j

a aj
21 . ~24!

Then, the unnormalized statesuc̃a& satisfy the condition
~22!.

The probability for each conclusive eventa<d2 is given
by

pa5 123̂ CuM̂auC&1235
l

d2
. ~25!

For the outcomea with the probabilitypa , the particle 3 is
in the stateÛa†uf&3. Performing the unitary operationÛa by
the receiver completes the conclusive teleportation. T
overall probabilityPcon for conclusive events is given by th
summation ofpa over conclusive events,

Pcon5 (
a51

d2

pa5
l

d
. ~26!
06430
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The inconclusive event occurs with the probability

pd2115 123̂ CuM̂d211uC&123512Pcon . ~27!

The maximum ofPcon is determined by the range of th
positive real parameterl, which is constrained by the pos
tivity of inconclusive operator. Instead of calculating E
~21!, the diagonal elements of the inconclusive operator
used. With use of the orthogonality of unitary operators, E
~5!, the inconclusive measurement operator is found as

M̂d2115 (
i , j 51

d S 12
l

aj
2d

D u i j &^ i j u. ~28!

This is positive only whenl<aj
2d for all j 51,2, . . . ,d. Let

as
2 be the smallest amongaj

2 , then the condition 0,l
<as

2d ensures the positivity. We have thus found that t
maximal conclusive-event probability,

Pcon
m 5as

2d, ~29!

which is in agreement with the results obtained by Che
and Barnett@5#.

The proposed POVM enables to discern nonorthogo
statesuca& with finite probabilitypa5l/d2 for each conclu-
sive event. When it is employed for the joint measureme
we have a nonzero probability to teleport faithfully. Whe
the measurement outcome is inconclusive, we simply rep
the protocol till a conclusive result is obtained. Our protoc
for the conclusive teleportation has two distinct compone
from standard teleportation: POVM for joint measureme
and additional classical communication whether the even
conclusive or not. The additional classical communicat
requires a single classical bit.

The information transfer by conclusive teleportation
compared to standard teleportation in terms of average fi
ity. The fidelity F is defined by the overlap between th
original stateuf& and the evolved stater̂; F5^fur̂uf&.
When the quantum channel is pure, a pure state is recov
at the receiving station after performing one teleportat
procedure. The teleported pure state of the density oper
r̂a is dependent on the measurement outcome, here, ind
a, at the sending station. After executing the teleportat
protocol infinitely, the ensemble of teleported quantum s
tem is represented by a density operatorr̂5(apar̂a , where
the measurement bears the outcome indexeda with the prob-
ability pa . The fidelity can thus be given byF
5(apa^fur̂auf&. In quantum teleportation, the origina
stateuf& is unknown so that it is necessary to average
fidelity over all possible unknown states. The average fide
is

F̄[
1

VE dVW (
a

pa~VW ! f a~VW !, ~30!

where f a(VW )5^f(VW )ur̂auf(VW )& and an unknown pure
statesuf(VW )& is parametrized by a real vectorVW in the pa-
rameter space of volumeV @15,16#.
4-3
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BRIEF REPORTS PHYSICAL REVIEW A 64 064304
In conclusive teleportation, we know that faithful telepo
tation is assured at the conclusive event. Even though
inconclusive result is not of use in quantum sense, the
ceiver may still try to recover some information on the orig
nal unknown state. We note thatM̂d211 in Eq. ~28! is diag-
onal and a convex combination of projectors. It is th
possible to decompose the operatorM̂d211 further into d2

general projectors such that the new set of POVM opera
is represented by

M̂a85l8uc̃a8 &^c̃a8 u, ~31!

where

uc̃a8 &5H uc̃a& for a<d2

u i j & for a5d21~ j 21!d1 i ,

l85H das
2 for a<d2

12as
2/aj

2 for a5d21~ j 21!d1 i .
~32!

The average fidelity is calculated by allowing the set
POVM ~31! at sending station and unitary transformation
receiving station. The average fidelity for the conclusive te
portation is upper bounded by

F̄5Pcon
m f̄ con1~12Pcon

m ! f̄ inc , ~33!

where f̄ con ( f̄ inc) denotes the average fidelity for the concl
sive ~inconclusive! event; f̄ con51 while f̄ inc is equal to
2/(d11), which is the maximal fidelity for a classical tele
portation@17#. The average fidelity for standard teleportati
is upper bounded by@15#
nt
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F̄s5
1

d11 F11S (
i 51

d

ai D 2G . ~34!

For the maximally entangled channel, both upper bounds
incide exactly. However, for the partially entangled chann

F̄5
21d~d21!as

2

d11
<F̄s5

21(
iÞ j

aiaj

d11
~35!

sinceas<aj for all j. This shows that the average fidelity fo
conclusive teleportation, based on Eq.~31!, is less than for
standard teleportation.

We have formulated the conclusive teleportation proto
of an unknown state in thed-dimensional Hilbert space uti
lizing the joint POVM. The systematic scheme is presen
by the discrimination of the nonorthogonal states by POV
operators. By conclusive teleportation one can teleport p
fectly the unknown quantum state with finite probability. I
stead of the conclusive teleportation one can choose a
step procedure: After an entanglement concentration@5#, the
standard teleportation is performed using the maximally
tangled quantum channel. In this case the concentra
probability is the same as the success probability of con
sive teleportation. By the study of conclusive teleportati
we have found that some information of the unknown st
can be extracted from inconclusive events.
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