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Conclusive teleportation of ad-dimensional unknown state
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We formulate a conclusive teleportation protocol for a systerd-@imensional Hilbert space utilizing the
positive operator-valued measurement. The conclusive teleportation protocol ensures some perfect teleporta-
tion events when the channel is only partially entangled, at the expense of lowering the overall average fidelity.
We discuss how much information remains in the inconclusive parts of the teleportation.
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Recently, Mor and HorodecKil] proposed a conclusive A guantum statée), in the d-dimensional Hilbert space
teleportation protocol for a quantum state in two-dimensionalH,
Hilbert space for a partially entangled quantum channel.
They employed a positive operator-valued measurement .
(POVM) [2] as the joint measurement at the sending station. |¢’>1:i21 cili)a, @)
When the measurement is successful by a random chance,
the initially unknown quantum state is teleported perfectly,is teleported to a remote place via a partially entangled chan-
which is called aconclusiveevent. In contrast, for aimcon-  nel in the @ d)-dimensional Hilbert spacé{® H. We as-
clusiveevent, the teleportation loses its quantum characterissume that the quantum channel is prepared wigug en-
tics. To indicate the success of the measurement, an exttangled pairof particles 2 and 3 in the state
single bit has to be sent to the receiver together with the
two-bit information via a classical channel. Bandyopadhyay
[3] and Li et al. [4] have also proposed protocols to imple- [ 25= 2, ailii )z, )
ment conclusive teleportation in two-dimensional Hilbert =1
space. Bandyopadhyay uses a combination of orthogonal N ; o : "
Greenberger-Horne-Zeilinger measurements and POVMﬁvhere{h)} is an orthonormal basis set @dhdimensional Hil

while Li et al. take general transformations at the receivin Bert spaceri. All real coefficientsa; are nonzero. For a
. - 9 gmaximally entangled quantum channa)=d~*2 The total
station leaving the measurement orthogonal.

Quantum information theory has been extensively deVelguantum state for the unknown particle 1 and the entangled

oped for a two-level spin-1/2 system, namely, quantum bit Olpair 2 and 3 is given by the direct product of the unknown
qubit. It is only recently thatl-dimensional quantum systems state] ¢), and the quantum channel st3tg)z;,

have attracted a considerable research effort. In particular, Py, = ® 3
discrimination between linearly independent quantum states ¥hizs=[6)1819)zs. ®

in d dimensions and its application to entanglement concenthe sender performs a joint measurement on particles 1 and
tration have been studied by Chefles and Barfftquan- 2 o that we expand the composite system based on states for
tum cloning by Zanard[6], and quantum teleportation by particles 1 and 2.

Zubairy [7] and Stenholm and Bardrof@8]. Rungtaet al. In the standard teleportation protocol suggested by Ben-
called thed-dimensional quantum system tijedit and in-  nettet al.[12], the joint measurement is based on Bell states,
vestigated its entanglement and separab{i8} The qudit \yhich form an orthonormal basis set of the maximally en-
was extensively studied as a finite-dimensional version of fangled stateg|y™)} for a spin-1/2 system. This basis set

continuous variable state by Gottesrmiral_. [10]. .. can be obtained by applying a set of local unitary operations
In this paper, we formulate the conclusive teleportation in. ~ , . . m. 1 m

d-dimensional Hilbert space for partially entangled quantum{UA} on the given maximally entangled statg™): |yy;)

channel, utilizing rank-one positive operator-valued mea=U"®1|¢™) [12,13. For a spin-1/2 system the set of uni-

surement for the joint measurement at the sending statiotary operators is given byl,o,,0y,0,}. These results are

and unitary transformation at the receiving station. We shovextended to thel-dimensional quantum teleportatidd3].

that some teleportation information can be extracted from th&he orthonormal basis set should satisfy the completeness,

inconclusive outcome by evaluating the teleportation fidelity.

The maximum information the receiver recovers for the in- o

conclusive outcome is limited by classical thediy]. It is laxa= 2 |¢M(p™)

found that the overall fidelity for conclusive teleportation is a=l

less than that for the standard teleportation, which implies d2

that the conclusive teleportatlo_n enables perfect telepqrtat!on _ 2 0a®1| ¢m><¢m|0aT®L (4)

events at the expense of lowering the overall average fidelity. a=1

d

d
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where Iy q=1®1 with the identity operatorl in H. The d?
completeness can be written in the matrix form based on the lijy= > T i,jia)| ). (13
orthonormal bases dfij)}, a=1

1 d? ) The completeness relation with respect to the entangled

Sk Sl =3 Z Uiuy (5  states{|i,)} is nontrivial due to their being nonorthogonal
a=1 for a partially entangled quantum channel. Instead, we
modify the completeness for the set of orthonormal bases

whereUﬁE<i|U“|j>. Note that Eq(5) depends only on the {lij)} using Eq.(13) as

unitary operators. In addition the orthonormality of the en-

tangled basis states,;=(y;|y}) leads to the orthogonal g 2 d
condition for the unitary operators, Low o= iV = rLi i i
70 dxd ijZl|1><1| QZM; (ijs0) )il
TrU« 0f=d 5,4. (6) (14)

In the conclusive teleportation protocol, the basis set of The total statdW),3in Eq. (3) can now be written with
entangled states is obtained by using the same local unitawe|p of the modified completeness equatiad) as

operators{U®} on the state of the quantum chanii),

|y =0 1|4) (7) | W) 105= 2” P a) ) 1ii] || )1®] )2
for «a=1,2,...d% Note thatd? state vectorg7) form a L
basis set because they are linearly independent as shown _= Jet 15
later. The basis statds,) are not necessarily orthogonal. d azl [te12® |%)s- @9

Only when the channel is maximally entangled wigh
=d~ 12 the set of the basis stat¢hy,)} becomes{|y™},  The second equality is given by E€L0) and the orthonor-
which represents the von Neumann orthogonal measurememhality of the baseg]ij)}. The von Neumann orthogonal
It is possible to expand the stdtg,) in the orthonormal measurement with the maximally entangled basef o)}
basedij), cannot exactly discern the nonorthogonal state vedisrs
and the teleportation is no longer perfect for the partially

d
B e entangled quantum channel.
|¢a>_i’j2:1 (aii lif), ®) A POVM for the joint measurement is defined as a parti-
tion of unity by the positive operators, which are in general
whereT'(«;i,j) is calculated from Eq€2) and(7) as nonorthogonal. A set of POVM operatof¥ ,} with n>d?

e outcomes satisfy the measurement conditions of positivity
I'(aii,))=Ujja;. ©  and completeness,
The mapl’ performs the basis transformation frdimj )} to

n
. —1 "
{|#)}. We define a new map~* as 2:1 M= Ty g (16)

1
I Yij;e)=-UTat, (10 _ . . _
d The conclusive teleportation has a crucial step to discern
nonorthogonal basis stat¢g¢,) for B=1,2, ... d? in Eq.

which is well defined becausg 0 for allj in Eq. (2). Itis 15 "o this purpose, joint POVM operators are designed

then straightforward to show th&t ! is the inverse map of

I' such that such that
o2 (PpIM | gy 5,5 for a<d? 17
> T )T (k)= 88y (12)
a=1 This implies that when the measurement outcome is due to
and any ofI\A/Ia for a<d?, we can conclusively discern the non-
orthogonal states in Eq15). On the other hand, the mea-
d surement bears inconclusive results when the outcome is of
2 T(a;i )T H1,j58)=8up, 12 1, for a>d2.

=t Any set of POVM operators can be decomposed into
which result from Eqs(9) and(10) with use of the complete- ank-one general projectof2]. We present the conclusive
ness equatiofs) and the orthogonality of unitary operators, Mmeasurement operators by general projectors in the form of
Eq. (6). The existence of ~! shows that thel® state vectors

{|#.)} form a basis set. Using ~(i,j; @), the inverse rela- R o

tion to Eq.(8) follows: M=\ ), for a<d? (189
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where the real parameter=0. The completeness can be The inconclusive event occurs with the probability
guaranteed by adding an inconclusive measurement operator

Mg241, Pa2+1= 124 Mg 1| W) 106= 1= Peop. (27)
d? The maximum ofP.,, is determined by the range of the
Mgz 1=lgxqg— 2 M. (19)  Positive real parametex, which is constrained by the posi-
a=1 tivity of inconclusive operator. Instead of calculating Eg.

R (21), the diagonal elements of the inconclusive operator are
Note thatM42. 4 is, in general, a mixture of rank-one pro- used. With use of the orthogonality of unitary operators, Eq.
jectors and it can also be decomposed into rank-one generg), the inconclusive measurement operator is found as
projectors. The positive real parametérsin Eq. (18) are

N d

constrained such thad 42, ; satisfies the positivity under the ~ _ B L S

completeness equatidi6), Md2+1_i’j221 1 ajzd UNULE (28)
(WMgz,q|)=0 for V|y). (200 This is positive only whem<a?d for all j=1,2, ... d. Let

aZ be the smallest among?, then the condition €&\
sagd ensures the positivity. We have thus found that the
maximal conclusive-event probability,

Substituting Eqs(18) and (19) into Eq. (20), the positivity
condition for the inconclusive operator leads to
d2
S M@=t for ¥ |g). (21 Plon=acd, (29
a=1

which is in agreement with the results obtained by Chefles
For the purpose of the discriminatidt?7), the generally and Barnet{5].

nonorthogonal and unnormalized sta{@fa)} in Eq. (18) The proposed POVM enables to discern nonorthogonal
are conditioned to satisfy the relation stateq ¢,,) with finite probabilityp,=\/d? for each conclu-
5 sive event. When it is employed for the joint measurement,
(walzﬂﬁ}: Oap- (22 we have a nonzero probability to teleport faithfully. When

_ the measurement outcome is inconclusive, we simply repeat
To find its explicit form, we expantiy,) in the orthogonal the protocol till a conclusive result is obtained. Our protocol
basis|ij ), for the conclusive teleportation has two distinct components
g from standard teleportation: POVM for joint measurement
=S Tlai i) 23 and additional classical communication whether the event is
ol e ' conclusive or not. The additional classical communication
requires a single classical bit.

The map1~“ is obtained from the relation betwe&nandl’ ~ 1 The information transfer by conclusive teleportation is

in Egs.(9) and (10) as compared to standard teleportation in terms of average fidel-
ity. The fidelity F is defined by the overlap between the
T(ai,j)=T (i j:a) original state|¢) and the evolved statg; F={(¢|p|®).

When the quantum channel is pure, a pure state is recovered
at the receiving station after performing one teleportation
procedure. The teleported pure state of the density operator

. _ . - ,Ba is dependent on the measurement outcome, here, indexed
Then, the unnormalized statgg,,) satisfy the condition 4, at the sending station. After executing the teleportation

- a —1

(22). B _ . protocol infinitely, the ensemble of teleported quantum sys-
The probability for each conclusive evemt=d= is given o is represented by a density OperéiGTEapa;)a, where
by the measurement bears the outcome index®dth the prob-
N ability p,. The fidelity can thus be given byF

P,= 123(\Ir||\7|a|\1r>123:—2_ (25  =32.pd|pal®). In quantum teleportation, the original
d state|¢) is unknown so that it is necessary to average the
. . ) . fidelity over all possible unknown states. The average fidelity
For the outcomex with the probabilityp,,, the particle 3is g

in the state) *"| ¢)5. Performing the unitary operatidth® by

the receiver completes the conclusive teleportation. The — 1 - - -

overall probabilityP,,, for conclusive events is given by the = vf dQ; Pa(D)fa(Q), (30
summation ofp, over conclusive events,

@2 where f,(Q)=(#(Q)|p.|#(Q)) and an unknown pure

Peon= 2 pfl- (26) states|¢(ﬁ)) is parametrized by a real vectéy in the pa-
d rameter space of volumé [15,16].
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In conclusive teleportation, we know that faithful telepor- . d 2
tation is assured at the conclusive event. Even though the Fs ai)
inconclusive result is not of use in quantum sense, the re- =1
ceiver may still try to recover some information on the origi- For the maximally entangled channel, both upper bounds co-
nal unknown state. We note thisty2, ; in Eq. (28) is diag-  incide exactly. However, for the partially entangled channel,
onal and a convex combination of projectors. It is thus

1+ . (34

Td+1

possible to decompose the operalz. ; further into d? 24 did 5 2+_2 a;a,
general projectors such that the new set of POVM operators = +d(d-1)ag <F- 1# (35)
is represented by d+1 s d+1
M= N[ (b, (31) Sinceas=a, for all j. This shows that the average fidelity for
“ e conclusive teleportation, based on Eg1), is less than for
where standard teleportation.
We have formulated the conclusive teleportation protocol
5 {ma) for a<d? of an unknown state in thé-dimensional Hilbert space uti-
[gly=1 5 . lizing the joint POVM. The systematic scheme is presented
lijy  for a=d*+(j—1)d+i, by the discrimination of the nonorthogonal states by POVM
) 5 operators. By conclusive teleportation one can teleport per-
.| dag for a<d fectly the unknown quantum state with finite probability. In-
= 1—a§/aj2 for a=d2+(j —1)d+i. (32 stead of the conclusive teleportation one can choose a two-

step procedure: After an entanglement concentrdfignthe
The average fidelity is calculated by allowing the set ofstandard teleportation is performed using the maximally en-

POVM (31) at sending station and unitary transformation attangled quantum channel. In this case the concentration
receiving station. The average fidelity for the conclusive teleProbability is the same as the success probability of conclu-

portation is upper bounded by sive teleportation. By the study of conclusive teleportation
we have found that some information of the unknown state
F= Pcmonf_con_|_(1_ P?On)f_inc' (33)  can be extracted from inconclusive events.
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