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Entanglement generation and degradation by passive optical devices

S. Scheel and D.-G. Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Univetsitana, Max-Wien-Platz 1, D-07743 Jena, Germany
(Received 30 March 2001; published 16 November 2001

The influence of losses in the interferometric generation and the transmission of continuous-variable en-
tangled light is studied, with special emphasis on Gaussian states. Based on the theory of quantum-state
transformation at absorbing dielectric devices, the amount of entanglement is quantified by means of the
relative-entropy measure. Upper bounds of entanglement and the distance to the set of separable Gaussian
states are calculated. Compared with the distance measure, the bounds can substantially overestimate the
entanglement. In particular, they do not show the drastic decrease of entanglement with increasing mean
photon number, as does the distance measure.
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I. INTRODUCTION 1). It is well known [10-15 that a lossless beam splitter

£ ed H _ callv in infini transforms the operators of the incoming modgéw) and
ntangled quantum states that exist generically in infinite< - »
dimensional Hilbert spaces have been of increasing interegﬁ(w) to the operators of the outgoing modeg(w) and

(see, for exampld,1]). Typical examples are Gaussian statesP2(®) according to

such as two-mode squeezed vacuum states, which are the R -
states commonly used in quantum communication of by(w) T a(w) @
continuous-variable systems, e.g., quantum teleportation Bo(w) =T(w) 2,(@) '

[2—4] and quantum dense codif§—7]. In practice, neces-
sarily existing dissipative environments spoil the quantum-

as yet impossible in practice. It typically involves minimiza- to
ay(w) aj(w)
T*(a))( . >,TT(w)< N I R
az(w) a(w)
by using the convexity property of the relative entropy. For
reveals the ultimate limits for quantum-mechanical transmis-
Vi) =5$:5,]0,0), @
studied. A typical situation in quantum communication iswith §(i=1,2) being thesingle-modg squeeze operator

state purity and coherence, and the question arises as to théereT(w) is the unitary characteristic transformation ma-
amount of entanglement that is really available. trix of the beam splitter. Equivalently, the operators can be
Unfortunately, computation of the amount of entangle-left unchanged and instead the density operator is trans-
ment of mixed states in infinite-dimensional Hilbert spaces igormed with the inverse matrif¥ ~!(w)=T*(w) according
tions over a very large>) number of parameters, as is the
case for the entropy of formation as well as for the distance
to the set of all separable quantum states measured by either _ -
the relative entropy or Bures’ metri8]. It is, however, pos- Qour=Lin
sible to derive upper bounds on the entanglement coh@ént
Gaussian states, however, it is possible to derive an upper Let each of the two incoming modes be prepared in a
bound based on the distance to the set of separable Gaussgteezed vacuum state, i.e.,
states that is far better than the convexity bound and may be
very useful for estimation of the entanglement degradation in O m=|W i)W 3)
continuous-variable quantum communication. In particular, it Qin A
sion of information through noisy channels. where
The aim of the present article is to study the generation
and processing of entangled Gaussian states of light by ab-
sorbing devices. In Sec. Il the influence of losses in the in-
terferometric entanglement generation at a beam splitter is
considered in Sec. lll, in which the entanglement degrada-
tion of a two-mode squeezed vacuyiMSV) state trans-
mitted through a noisy communication channel, say, two a1 by
lossy optical fibers, is examined. Some concluding remarks
are given in Sec. IV.

II. ENTANGLEMENT GENERATION BY MIXING
SQUEEZED VACUA AT A BEAM SPLITTER

A
~

. az by
A. Lossless beam splitters

Let us first consider the case of a lossless beam splitter FIG. 1. Squeezed statég,) and|y,) impinging on a beam
and (quasjmonochromatic light ofmid-)frequencyw (Fig. splitter producing entangled light beams.
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B. Lossy beam splitters

S — 1 Af2_ #x 22

S—exr{ a E(gia‘ ) In practice there are always some losses and things get
slightly more complicated. The SP) group transformation

5) in Eq. (1) has to be replaced by an $4) group transforma-
tion, where the unitary transformation acts in the product
Hilbert space of the field modes and the device mdd&s-

(gi=tanHgle¥, ¢=args). Here, the second equality fol- 20]. As a result, Eqs(1) and (2), respectively, have to be
lows from general disentangling theorefii6,17. By Eq.  replaced by

(2), the output quantum state is

. Blw)=A(0)a(w) (13
Qout= |\I,out><q,outj , (6)
and
where
oP=TrPo, [A*(0) ), AT(w)a!(0)], (14

2 2\11/4 1 AT

W ou =[(1—0a|*)(1—[qz|*) ] ex ~ 5 0(Tuay . o
where the “four-vector” notationa(w) for abbreviating the

list of operatorsa;(w), a)(»), g;(w), and g,(w) [and
B(w) accordingly has been used. The $4) group element
A(w) is expressed in terms of the characteristic transforma-
TheT;; are the elements of the characteristic transformationion and absorption matricé(w) and A(w) of the beam
matrix T (at the chosen mid-frequengyvhich can be given, splitter as
without loss of generality, in the form

00. (@

R 1 “ n
+T80)2— 5 a(T1A]+ Ta})?

T(w) Alw)

T:( TR ) ® T s o e oS eAw
-R* T* (15)
with T=|T|e'¢T and R=|R|€'r being the(compley trans-  with the commuting positive Hermitian matrices
mission and reflection coefficients of the beam splitter.

From inspection of Eq(6) it is seen that the preparation C(0)=VT(0)T"(w), S(w)=VA(w)A*(w). (16)
of an entangled state is controlled by the parameter

From the above, the output density matrix in the Fock basis
§10= Q1 T1rT o1+ Qo Ta2T 2= — Q1 TR +0RT*. (9 can be given in the form ofAppendix A

When&,,=0 is valid, then the output state is separable. Thi

S o
is the case fokp; — ¢+ 2(dr— ¢pr) =0 and|qs|=|q,|. On (ma,mz|@oulns,n2)

the other hand, if agaifg,|=|q,|=|q| but ¢;— p,+2(p AL |2)
— ¢r) = = m, then for| TR|= 1/2 the output quantum state is \/ 91 Y2 )Mt Mg
just a TMSV state, m;!my!ing!n,!
_ — T Talexd —aatat - 1
Vo =|TMSV) = y1—|q|”exfd —qa;a;1(0,0), (10) X >, —Hm1,m2,91 Qz(o)Hnl S

91.0,=0 91!92!
where

17

WhereH,'Y'(O) denotes the Hermite polynomial of four vari-
Since, according to Ed6), the output quantum state is a abIe; with zero argument, generated by the symmetric matrix
pure state, entanglement is uniquely measured by the voM with elements

Neumann entropy of th@educed quantum state of either of
the output modes, Mij=q1Ai1A 1+ AoA A . (18)

:|q|i(¢2+¢R*¢T):_|q|ei(¢1+¢T*¢R)_ (11

E(éour)=51(2)= —Tr[él(z) In él(z)], (12) _Note that in Eq(17) it is assumed that the device is prepared
in the ground state.

whereg ,) denotes théreduced output density operator of In order to qu(aFr)mfy the entanglement content of a mixed
mode 1(2), which is obtained by tracing, With respect to stateg, such a0 in Eq.(17), we make use of the relative
mode 2(1). Note that using squeezed coherent states insteadOPY measuring the distance of the state to the stall

of squeezed vacuum states does not change the entangi&parable states [8],

ment. This is due to the fact that coherent shifts are unitary R L R

operations on subsystems which leave any entanglement E(e)=minTr e(Ing—Ino)]. (19
measure invariant. oces
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For pure states this measure reduces to the von Neumann

E(@out)

entropy(12) of either of the subsystems, which can be com-

puted by means of Schmidt decomposition of the o.
continuous-variable staf@1]. It is also known that when the

guantum state has the Schmidt form

ézz] Cn,m|¢’nv¢n><¢m1¢m|a (20) 0.

then the amount of entanglement measured by the relative

entropy is given by22,23

E(é): _; Cn,nln Cn,n_S(é)-

Unfortunately, there is no closed solution of EHG9) for
arbitrary mixed states. Nevertheless, upper bounds on the
entanglement can be calculatggl, representing the quan- m

4 1 A}

= 1fla

FIG. 2. Entanglement produced at a lossless beam splitter with

(21) refractive indexn=1.41 (dashed curveas a function of the beam

splitter thicknesd. The full curve shows the upper bound of the
entanglement produced at a lossy beam splitter withl1.41
+0.1i. The squeezing parameters chosencare q,=0.5.

ENTANGLEMENT DEGRADATION IN TMSV

tum state under study in terms of states in Schmidt decom- 5 ANSMISSION THROUGH LOSSY OPTICAL FIBERS
position and using the convexity of the relative entropy,
Let us now turn to the problem of entanglement degrada-

tion in transmission of light prepared in a TMSV state
through absorbing fibers. The situation is somewhat different

E(E pnén)<2 an(én)v E ph=1. (22
" . . from that in the previous section, since we are effectively

Applying the method to the output quantum state
(17), i.e., rewriting it in the form of

(F)—E Ci1,ol k. k) (1, ||+2 E Ci1,mlk+m,k)

OLI'[

© [}

o+mll+ X X Cypmlkk+my(l,1+m|
m=1 k,I=0

_ dealing with an eight-port device as depicted in Fig. 3, where
in Eg.the two channels are characterized by the transmis§ign (

and reflection R;) coefficients {(=1,2). In particular, for

perfect input coupling R;=0), the system is essentially

characterized by the transmission coefficiehts
From Eq.(10) it is easily seen that in the Fock basis a

TMSYV state reads

'TMSV):“‘WHZO (—a)"n,n), (25)

=PoCo+ 2 Pm@mit > Pm@m.2. (23 _
m=1 m=1 whose entanglement content is
the inequality(22) leads to Iql?
E(ITMSV)) = —In(1—[q[2) - q| Zhlal. (9
E(QG)=<PoE(C0)+ 2 PrlE(emy)+E(@m2], (24
Application of the quantum-state transformatidd) yields
. . . , (Ri=0) [19]
whereE(Qo), E(@m1), andE(en ) can be determined ac-
cording to Eq.(21). In the numerical calculation we have i a,
used the dielectric-plate model of a beam splitter, taking the 1 —
T and A matrices from[20,24]. The result is illustrated in - ~
Fig. 2, which shows the dependence on the plate thickness of |+) “ %2
the upper bound of the attainable entanglement. The oscilla- a3 )
tions are due to phase matching and phase mismatch at cer- 9 I
a i

tain beam splitter thicknessgs. Eq.(9)]. Note that the local
minima of the curve for the lossy beam splitter never go

down to zero as do the corresponding minima of the curve FIG. 3. A two-mode input field prepared in the quantum state
for the lossless beam splitter. This obviously reflects the faclty) is transmitted through two absorbing dielectric four-port de-
that the result for the lossless beam splitter is exact, whereasces, a;, a5 (a,, a,) being the photonic operators of the rel-

that for the lossy beam splitter is only an upper bound.
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© [’

ééﬁ1=<1—|qlz>n§0 kéo [ Kot m(Cmlm+K)(k|+H.c.)

@ (dm/m+1){1|+H.c)], (27)
where
(o)
1 E(ITMSVY)
Cm=(— q)m/2T1m< 1- 25 5m0> ) (28)
1
dm=(—q>m’2T2"( 1- §5mo) , (29
and
Kitm FIG. 4. Estimate of the entanglement, E83), observed after
) 5 ) 5 \k transmission of a TMSV state through absorbing fibdrs<T,) as
:[|Q| (1=[TH (2= |T[H %l (@a+m)! [ [T, a function of the squeezing parametet? and the transmission
KT (k+myL(T+m)l(a—k)!(a—D)! | 1—|T,|2 lengthl.
|T,|? ! In this approximation, the calculation of the entanglement of
F the mixed output quantum state reduces to the determination
T2 of the entanglement of a pure stafie9]:
A PR, NOTER A0
X oFy B (1= ]Te[)(1—[T> . 1—x 1—x
[k=1]+1 EQ@E)~(1-NE(¥)= —— —In :
(30) (1-x)°=y [(1=x)°~y
_ —%)2 ) —
[a=max(,)]. Note that in Eq(27) the fibers are assumed to + (10{ly+(1—x)7]In(1—x)—yIn y}’
be in the ground state. [y—(1—x)?]?

A. Entanglement estimate by pure state extraction 33
The amount of entanglement contained in flmeixed  where
output state(27) can also be estimated following the line
sketched in Sec. Il B. In particular, the convexity of the rela- x=|q[2(1—|T|H(1—|T,|?), (34
tive entropy can be combined with Schmidt decompositions
of the output state in order to calculate, on using the theorem
(21), appropriate bounds on entanglement. Before doing so,

o st conder e cose Ol il 002221, o it forT, T, L he entanglemet of e TSV stat
" is preserved, i.e., Eq33) reduces to Eq(26). In Fig. 4, the

estimate of entanglement as given by E2f) is plotted as a

function of the transmission length and the strength of initial
Since, by Eqgs(27)—(30), for low squeezing only a few squeezing foff,=T,=T, whereT is given by the Lambert-

matrix elements are excited that were not contained in th@eer law of extinction,

original Fock expansiori25), we can forget about the en-

tanglement that could be present in the newly excited ele- T=einr@ollcg =1/l (36)

ments and treat them as contributions to the separable states

only. Following [19], the inseparable state relevant for en-

tanglement can then be estimated to be the pure state

y=[qTi T2 (35

1. Extraction of a single pure state

Here,ng is the real part of the complex refractive indéy,
=c/(nw) is the absorption length, ards the transmission

— o length.
VI-\|W)= 1~ |al > KomCndnln,n). (32 It is worth repeating that the estimate given by E2B) is
Kooo n=0 valid for low squeezing only. Higher squeezing amounts to

_ i more excited density matrix elements and E33) might
It has the properties that only matrix elements of the sam@ecome wrong. Moreover, we cannot even infer it to be a
type as in the input TMSV state occur and the coefficients ofyoyndin any sense since no inequality has been involved. A
the matrix element{0,0)«[n,n) are met exactly, i.e., possible way out would be to extract successively more and

~ (B more pure states from E(R7). But, instead, let us turn to the
(1=2)(0,0W¥){(¥|n,n)=(0,0Q54Nn,N). (32 schmidt decomposition.
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2. Upper bound of entanglement EEE)
- . E(TM5V))
In a similar way as in Sec. Il B, an upper bound on the

entanglement can be obtaingd] if the density operatof27)
is rewritten as the convex sum of density operators in 4.
Schmidt decomposition,

)

08, 2 | AilkK)LIT+ X By mlke+ m,k)

o

®@(+m,l|+ 2_1 Cutml K, kM) 1T+m| (37)

0.2 0.4 0.6 0.8 1 Hla

and the inequality22) together with Eq(21) is applied. FIG. 5. Upper bound of the entanglement degradation of a
From general arguments one would expect the entanglerMsy state transmitted through absorbing fibefs £ T,) as a
ment to decrease faster the more squeezing one puts into tRghction of the transmission lengthfor the squeezing parameters

TMSV, because stronger squeezing is equivalent to saying=0.1 (solid line) andq=0.9 (dashed ling In the numerical cal-
the state is more macroscopically nonclassical and quanturulation, Fock statefn) up to q"=<0.02 have been taken into ac-
correlations should be destroyed faster. As an example, ormunt.
would have to look at the entanglement degradation of an
n-photon Bell-type statd¥.), E(|¥,))<|T|*"In2 [25]. puting the relative entropy, which will also enable us to give
Since the transmission coefficiefitdecreases exponentially an essentially better bound on the entangleniéot other
with increasing transmission length, entanglement decreaséiantities that in a sense characterize entanglement, see
even faster. Note that similar arguments also hold for thé26]).
destruction of the interference pattern of a catlike state Since itis close to impossible to compute the distance of
~|a)+|—a) when it is transmitted, e.g., through a beama Gaussian state to the setalf separable states we restrict
splitter. It is well known that the two peaki thejth output ~ ourselves to separablBaussianstates. A quantum state is
channel decay ag Tj1|2, whereas the quantum interference cpmr_nonly caII_ed Gaussian if its quantum characteristic func-
decays as$T;y|2exd —2|a2(1—[T;1A)]. tion is Gaussian. By the general relation for Aamode

The upper bound on the entanglement as calculated abo@lantum state
seems to suggest that the entanglement degradation is simply
exponential with the transmission length for essentially all i iNf dZNaX(—a)ﬁ(a) (39)

T

olIng—InN+(afa)M

B. Distance to separable Gaussian states

=Tr(é|n@)+min<(é*é)|v|g

this is a fallacy. The higher the squeezing, the more densitit is obvious that the density operator of a Gaussian state can
t i i i o=Nexpg —(a'a)M
um state. Thus the inequality gets more inadequate. In order o
n=1, solid line and|q|=0.9535 (1= 10, dashed line For  normalization factor. Here and in the following we restrict
fastest. The behavior changes for larger transmission lengths. The relative entropy19) can now be written as
oeS

oges

stricted to situations where only a few quanta of the overall (40)

(initial) squeezing parameters, which would make the TMSV
a good candidate for a robust entangled quantum state. But
matrix elements are excited, and the more terms appear, abe written in exponential form as
cording to Eq.(37), in the convex sun(22). Equivalently, R
more and more separable states are mixed into the full quan- a ) 1 39
AT 1
to see this, we have shown in Fig. 5 the upper bound on the a
entanglement for just two differefinitial) squeezing param- \yherem is a Hermitian matrix that can be assumed to give
eters|q|=0.71 (equivalent to the mean photon number of 5 symmetrically ordered density operator, avids a suitable
small transmission lengths, where very few separable stateurselves to Gaussian states with zero mean. Since coherent
are mixed in, the curves show the expected behavior in thg@isplacements, being local unitary transformations, do not
sense that the state with higher initial squeezing decoheréffluence entanglement, they can be disregarded.
We would thus conclude that the upper bound proposed in
[9] is insufficient. . a
Er(0)=minTr .
af
The methods of computing entanglement estimates and a A
bounds as considered in the preceding sections are based on at —in o
Fock-state expansions. In practice they are typically re- e
system(consisting of the field and the devjcare excited, .
otherwise the calculation even of the matrix elements beSince we have chosen the density operatéo be symmetri-
comes arduous. Here we will focus on another way of com<ally ordered, the last term in EG40) is nothing but a sum

063811-5
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of (weighted symmetrically ordered expectation values

(a™™ma"_o (m+n=2). For a Gaussian quantum staeit
can be showriAppendix B that Eq.(40) can equivalently be

PHYSICAL REVIEW /44 063811

1
—=sIm(TT,)

Z1y=2Zy= 2

(47)

written in terms of the matrbD, in the exponential of the (=0, s=sinh2¢). With regard to optical fibers with per-

characteristic function o as
- A . 11
Er(0)=Tr(gIn Q)+m|n ETr(MUDg)—InJ\/. (41
ge8

From the above it is clear that we need only the mabijx
(which is unitarily equivalent to the variance majri¥or a

Gaussian distribution with zero mean the elements of the

variance matrixV are defined byVi;=(Z;,j)s—o as the

(symmetrically orderedexpectation values of the quadrature

components= (X1,P1,X2,P2).
The variance matrix of the TMSV stat@5) reads
=tanHge?, é=|ge?)

cl2 0 —84/2 —s,/2
X Z 0 cl2  —s,2 /2
Vé’:(zT Y): —8,/2 —s,)l2  cl2 o |
—S,/2  54/2 0 cl2
(42)

with the notation c=cosh 24, s;=sinh 3&cos¢, and s,
=sinh 2&sin¢. In the casep=0 the variance matrix42)
reduces to the generic form

0 zz O
z
Vo= : (43
zz 0 vy
0 z O

fect input coupling R;=0) and equal transmission lengths,
we again may sefT;|=e "'a. Moreover, we may assume
real T; and thus se¥,,=27,,=0.

First, one can check for separability according to the cri-
terion[27,2§

1 2
detX detY + Z—|detZ|) —Tr(XJZJIYJZ "))
1
= 7 (detX+dety), (48)
which reduces to
2 2 2 2 1
Axy=2)(Xy=2)=(x*+y*) +2[z12| — 7. (49)

Combining Eqs(44)—(49), it is not difficult to prove that the
boundary between separability and inseparability is reached
for [19,28,29

L ~ 2y
I=1g 2In 1+n—m(1—e ). (50

It is worth noting that this is exactly the same condition as
for the transmitted state still being a squeezed state or not. To
show this, we calculate the normally ordered variance

(:(AF)%) of a phase-sensitive quantity such s
=|F,|e'%1a, +|F,|e'*2a,+ H.c. Using the input-output rela-
tions (13), the normally ordered variance of the output field
is derived to be

specified by four real parameters. Note that the variance ma- <Z(A|A:)22)out=2|F1|2[|T1|28inhz|§| +ne(1—|T4?)]

trix of any Gaussian state can be brought to the f¢48) by
local Sp(2R)® Sp(2R) transformation$27], so that we can
restrict further discussion to that case.

Application of the input-output relationd3) gives for the

+2|F o2 T,/ 2sinkP[ €] + nipna( 1= T, %) ]
—2|F1F,T T,|sinh 2 £[cog @1+ @+ o1

elements of the variance matrix of the output s{dt@], on +¢) (51)
assuming that the two modes are transmitted through two '
four-port devices prepared in thermal states of mean photo(iT;=|T;|e'¢7, i=1,2; er=¢7, t 7). For equal ampli-
numbersng; , tudes |Fq|=|F,/=|F|] and equal fibers |T,|=|T,
L L . =|T|, ngpi1=ng2=ny, the (phase-dependentminimum is
obtained as
X11:X22:§C|T1|2+ §|R1|2+ N+ 5 (1—[Tyf?
(AF)Z =4 FI2[ny(1—|T|®) —|T|%sinh &4,
_|R1|2)u (44) < ( ) >out|m|n | | [ th( | | ) | | H§| (:!52
1 1 1 Equation(52) exactly leads to the conditiof%0), i.e.,
Y11:Y22:§C|T2|2+ §|R2|2Jr N+ 5 (1-[T,J?
) - <0 if I<lsg,
_|R2| )- (45) <-(AF) ->oulJmin =0 if |>|5. (53)
77— EsRe(T T,) (46) Therefore, measurement of squeezing corresponds, in some
1 ) 1i2h sense, to an entanglement measurement.
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lE(|TMSV)) (out)
0.8 8
0.6 6
0.4 4
0.2 5l
0.1 0.2 0.3 0.4 0.5/A €]
1 2 3 4 5

FIG. 6. Entanglement degradation of a TMSV state transmitted
through absorbing fibersT(=T,) as a function of the transmission state through absorbing fiberS,= T,) as a function of the squeez-

length | for the (initial) mean photon numbersi=1 (|q| ing parameteg for various transmission lengtig | =0 (topmost
=0.7071) (topmost curvg n=10 (|q|=0.9535), n=10" (la  curve, I=10"2, (middle curve, | =101, (lowest curve]. For
=0.9950), anch=10* (|g|=0.9995) (lowest curve. |¢€]=<0.5 andl/I,<102, the numerical accuracy of the values of
E(égi)[) decreases due to low accuracy in the eigenvector compu-
In order to obtain(for | <lg) a measure of the entangle- tation.
ment degradation, we compute the distance of the output
quantum state to the set of all Gaussian states satisfying the Obviously, saturation of entanglement has dramatic con-
equality in (49), since they just represent the boundary be-sequences for applications in quantum information process-
tween separability and inseparability. These states are conng. For example, in continuous-variable teleportation a
pletely specified by only three real parametgpse of the highly squeezed TMSV state is required in order to teleport
parameters in the equality {#9) can be computed from the an arbitrary quantum state with sufficiently high fideligj.
other threg¢ With regard to Eq(41), minimization is thus Even if the input TMSV state were infinitely squeezed, the
performed only in a three-dimensional parameter space. Revailable (low) saturation value of entanglement prevents
sults of our numerical analysis are shown in Fig. 6. It isone from high-fidelity teleportation ofrbitrary quantum
clearly seen that the entanglement cont@etative to the states over finite distancé29—37.
entanglement in the initial TMSV statdecreases noticeably A very illustrative example is quantum dense coding
faster for larger squeezing, or, equivalently, for higher mean,here a classical bit is encoded in a coherent m& ) of
phot_on numbefthe relation between the mean photon NUM-gne mode of a TMSV state. The analysis giverighshows
ber n in one mode and the squeezing parameters being that, when the state is subject to decoherence during trans-
=sink?|&=|q/%(1—|qA)]. mission through a symmetric channel, then quantum dense
It is very instructive to know how much entanglement is coding is superior to classical coding only if, in the strong-
available after transmission of the TMSV state through thesqueezing limit, the transmission coefficient does not drop
fibers. Examples of thémaximally) available entanglement below |T|?=0.75. Looking at Fig. 7 and noting that this
for different transmission lengths are shown in Fig. 7. Onevalue of the transmission coefficient corresponds to a fiber
observes that a chosen transmission length allows only fdength ofl~0.14 ,, one realizes that the maximal possible
transport of a certain amount of entanglement. The saturatioamount of entanglement that can be transmitted through such
value, which is quite independent of the value of the inpuffibers is roughlyE~0.7. But this is precisely the amount of
entanglement, decreases drastically with increasing transmigguantum information needed to transmit one bit @lassi-
sion length(compare the upper curve with the two lower cal) information encoded in an infinitely squeezed input
curves in the figure TMSV state. That means that it is impossible to transmit the
The reason for the saturation effect is rather general anthformation even of a single classical bit quantum mechani-
not restricted to the TMSV state under study. The quantumeally over distances longer thdr=0.14 ,, thereby render-
state transformatiofil4) corresponds to a convolution of the ing this type of quantum information processing useless.
phase-space functions of the incoming field and the device
noise[ 18], the latter being responsible for entanglement deg-
radation. Eventually, the width of the noise Gaussian pre-
vents recovery, after transmission, of the phase-space struc- In Fig. 8 the entanglement degradation as calculated in
ture that is typical of a(strongly entangled state. For Sec. Ill B is compared with the estimate obtained in Sec.
example, an infinitely squeezed TMSV state gives rise tdll A1 and the bound obtained in Sec. Il A2. The figure
infinitely narrow Wigner functions along certain directions in reveals that the distance of the output state to the separable
the phase space. Thus, after transmission finite widths am@aussian statg$ower curve is much smaller than might be
observed which are solely determined by the noise of thexpected from the bound on the entanglen{epper curve
device. calculated according to E¢24) together with Eqs(21) and

FIG. 7. Available entanglement after transmission of a TMSV

C. Comparison of the methods
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BT vices, losses always give rise to entanglement degradation.
L E(TMSV)) In particular, after propagation of the two modes of a two-
mode squeezed vacuum through fibers the available en-
tanglement can be drastically reduced. Unfortunately, quan-
tifying the entanglement of mixed states in an infinite-
dimensional Hilbert spaces has been close to impossible.
Therefore, estimates and upper bounds for the entanglement
content have been developed.

The analytical estimate employed in this article is based
on extraction of a single pure state from the output Gaussian
state, using its reduced von Neumann entropy as an estimate
for the entanglement. However, this method is not unique,

0.2 0.2 0.6 0.8 1 Ul since there are many different ways of extracting pure states,
_ nor is it an upper bound, since nothing is said about the

FIG. 8. Comparison of the upper bound on entanglem&per  resjqual entanglement contained in the state that is left over.
curve according to Eq(37), the entanglement estimateniddle |, hrinciple, more and more pure states could be extracted
curve according to Eq.(33), and the distance measu(bwg until the residual state becomes separable.
curvg according to Eq.(41) for the mean photon numben Instead, an upper bound can be calculated by decompos-
=1 (la|=0.7071). ing the output Gaussian state into a convex sum of Schmidt

) ) ) states as proposed [@]. The disadvantage of this method is

(37), as well as the estimateniddle curve derived by ex-  that the bound gets worse for increasistatistical mixing.
tracting a single pure state according to E8@). Note that |y particular, it may give hints of large entanglement even if
the entanglement of the single pure ste#) comes closest  the quantum state under consideration is almost separable.
to the distance of the actual state to the separable Gaussian | order to overcome this disadvantage, the distance of the
states, whereas the convex s(87) of density operators in  otput Gaussian state to the set of separable Gaussian states
Schmidt decomposition can give much higher values. Bothneasured by the relative entropy is considered. It has the
methods, however, overestimate the entanglement. SinGgjyantage that separable states obviously correspond to zero
with increasing mean photon number the convex sum congisiance. Although one has yet no proof that there does not
tains more and more terms, the bound gets woasel sub-  exist a non-Gaussian separable state that is closer to the
stantially slower on the computer, whereas computation ogayssian state under consideration than the closest separable
the distance measuré1) does not depend onlit _ Gaussian state, one has good reason to think that it is even an

Thus, in our view, the distance to the separable Gaussiagntanglement measure. In any case, it is a much better bound
states should be the measure of choice for determining th@an the one obtained by convexity. In particular, it clearly
entanglement degradation of entangled Gaussian states. Neysmonstrates the drastic decrease of entanglement of the out-
ertheless, it should be pointed out that the distance to sepgyt state with increasing entanglement of the input state.
rable Gaussian states has been considered, and not the reover, one observes saturation of entanglement transfer;
tance to all separable states. We have no proof yet that theggat is, the amount of entanglement that can maximally be
does not exist an mseparab_le non-Gaussian state that intained in the output state is solely determined by the
closer than the closest Gaussian state. transmission length and does not depend on the amount of

entanglement contained in the input state.

IV. CONCLUSIONS

. . . . ACKNOWLEDGMENTS
In the present article the interferometric generation and

transmission of entangled light have been studied, with spe- S.S. wishes to thank V. I. Man’ko for helpful discussions
cial emphasis on Gaussian states. Optical devices such as multivariable Hermite polynomials. The authors also ac-
beam splitters and fibers are regarded as being dispersing akdowledge discussions about Gaussian quantum states with
absorbing dielectric four-port devices as typically used inE. Schmidt.

practice. In particular, their action on light is described in

terms of the experimentally measurable transmission, reflec- APPENDIX A: FOCK-STATE EXPANSION

tion' and absorption coefficients. OF MULTIMODE SQUEEZED VACUUM STATES

An entangled two-mode state can be generated by mixing Let us consider an

single-mode nonclassical light at a beam splitter. Dependingqueezed vacuum st and an absorbing beam splitter in

on.the phases of t_he impinging light beams and the bear{he ground state. The quantum-state transformation formula
splitter transformation, the amount of entanglement con(—§14) then leads to

tained in the outgoing light can be controlled. For squeeze

incoming field prepared in the

vacuum input states and appropriately chosen phases, maxi- i * . ~

mal entanglement is obtained for lossless, symmetrical beam o= Ei <91,gz|Sai(§1)5a5(52)|0,0,0,0

splitters. In realistic experiments, however, losses such as 91.02=0

material absorption prevent one from realizing that value. 0.0.0.08" &r Al
When entangled light is transmitted through optical de- (0,004 2 (62) ai(§1)|gl'g2> (A1)
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where the transformed operatas are defined by Hxl ,m2,g1,g2(0)

H,(0) mitmylg!g,!

air:jgl A ay (A2) ol .
according to the rules of quantum-state transformation X2 M; Mgy M s
Equivalently, the Fock-state expansion of the density matri P . (A8)
m/2 terms
reads
~(F) (m=m;+m,+g;+9g,). Here, the? sum runs over all
(Mg, M| QN nz) m!/(m;!m,!g,!g,!) possible combinations to distributa,
indices 1, m, indices 2, g, indices 3, andg, indices 4
:<m1am2|<gl,gzléai(gl)éaé(gz)|0,0,O,Q among the Indlcesl,]l’ o Am2o w2

In particular, if we restrict ourselves to two dimensions,

9(00008, (8] (E)lgr.glmny). (a3 AT Smplies o

Hin, m,(0)
Expanding the Fock states in terms of coherent states and
using the squeeze operator in the form given in the second H (0
equality in Eq.(5), we obtain after performing all integrals ZMM(mrmzfv)/“M(mz*er)/“m Im,! m,
om/2 11 22 2o -
<m1,m2|é$)t|nl,n2) (/2] 1 | i
Xn;& 1 M11(2M 1p)# " “"M3,
_ (1 — 2 n(u—2n)!H n—-v|!
_ \/(1 GG o emyrngen, (w=2n) ( ZV)
m;!myin;tn,! (A9)
|—|Hml'm2'91*92(0)H:1’\{|n2*gllgz(o)' [ = max(my,my),v=|m—my[]. The sum can also be calcu-
91,92=0 91:92° lated, leading to Gegenbauer, Jacobi, or associated Legendre

(A4)  polynomials[34].

Another way of writing this is the one we used for the
numerical calculation of the density matrix elements. The
method, however, is applicable only in cases where the num-
ber of variables the Hermite polynomial depends on is suffi-
ciently small. The multivariable Hermite polynomigow in

where the Hermite polynomials of four variables are gener
ated by the symmetric matrid with elements

Mij=0a1Ai1A 1+ A RA 2. (AS)  four variable$ of zero argument can be written as
Using the relation between Hermite polynomials of one vari- (— 1)”‘1*”‘2*91*92Hml'mzygllgz(O)
able and those of several variab[&8],
oMt M2tg1+92 1 T
am My = NN T ex;{ — E)\ MA , (A10)
L T (x X)) 1 Oihg ONgTON, A=0
my+ - Tm,=m ml! mn! My, . m 1 An
2 with M being given by Eq(A5). Expanding the right hand
l(f)(a) side of Eq.(A10), the only surviving term is the one propor-
2 d(a,x) tional to WTMN\) (M *M2*91%92)2 Myltinomial expansion of
- m! " 2e@ )’ (AB)  this term then leads to Eq17).
where APPENDIX B: MULTIMODE GAUSSIAN DENSITY
OPERATORS AND WIGNER FUNCTIONS
We start with the Wigner function of ad-mode Gaussian
¢(a,X)=i§;¢ aiM;x; (A7) state of the form as
and ¢(a)=¢(a,a), we get for the multivariable Hermite Wy ()= ;exp( — EgTvlg), (B1)
polynomial of zero argument (2m)NJdetV 2
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wherel=(xq,p1, - -
tor” of the quadrature components of the(complex vari-

ablesa; andV is the 2Nx 2N variance matrix of the quadra-
ture components. The characteristic function defined by the

Fourier transform reads

1
mdm=em{—zﬁvn) (B2)

Alternatively, the quantum state can be given by the density

operator

a

1 ..
ex —E(a aM

é:
Tr[ ex;{ —(afa)m }

(Wherea is actually anN-dimensional “vector” with “com-
ponents”a;).

In order to relate the matrik to the matrixV, we intro-
duce a unitary transformation

EREEE

where the matrixU is chosen such that it diagonalizbs,
henceU" MU =@ (with @ being diagonal Note thatU sat-
isfies the generalized unitary relation

af

~

(B3)

(B4)

UJUt=J with J=diagly,—Iy). (B5)

Then, the characteristic function of the density operé&@®)
is

. Xn,Pn) is the 2N-dimensional “vec-

PHYSICAL REVIEW /&4 063811

)
el
:ex;{—%(_i*yu !

h1® * A
ECO'[E U A

S NEN

with an obvious definition of the matri®, thus establishing

a relation between the matriM in the exponential of the
density operator and the matriX in the exponential of the
characteristic function. From the third to the fourth equality
in Eq. (B6) we have used the expression for the characteristic
function of a thermal statg35]. In due course, the normal-
ization of the density operator is obtained as

XN()\,)\*)ZTr[éD(A)]:Tr[éexr{(é*é)

(B6)

N
(QF
N=]] 2 sinh—2I . (B7)
=1

The above description shows a way to compute the en-

tropy of a Gaussian quantum stateas well as the relative
entropy between two Gaussian quantum statemd o as

2

O e 1
Tr(o In Q):E In Zsmh—)—zTr(MgDe), (B8)
i=1

N
. 9 1
Tr(e Ina)=>, In(Z smh?) —5T1(M,Dy,), (B9
i=1

where ®; and 3; are, respectively, the eigenvalues Mf,
andM,, .
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