
PHYSICAL REVIEW A, VOLUME 64, 063811
Entanglement generation and degradation by passive optical devices
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The influence of losses in the interferometric generation and the transmission of continuous-variable en-
tangled light is studied, with special emphasis on Gaussian states. Based on the theory of quantum-state
transformation at absorbing dielectric devices, the amount of entanglement is quantified by means of the
relative-entropy measure. Upper bounds of entanglement and the distance to the set of separable Gaussian
states are calculated. Compared with the distance measure, the bounds can substantially overestimate the
entanglement. In particular, they do not show the drastic decrease of entanglement with increasing mean
photon number, as does the distance measure.
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I. INTRODUCTION

Entangled quantum states that exist generically in infin
dimensional Hilbert spaces have been of increasing inte
~see, for example,@1#!. Typical examples are Gaussian sta
such as two-mode squeezed vacuum states, which are
states commonly used in quantum communication
continuous-variable systems, e.g., quantum teleporta
@2–4# and quantum dense coding@5–7#. In practice, neces
sarily existing dissipative environments spoil the quantu
state purity and coherence, and the question arises as t
amount of entanglement that is really available.

Unfortunately, computation of the amount of entang
ment of mixed states in infinite-dimensional Hilbert space
as yet impossible in practice. It typically involves minimiz
tions over a very large (→`) number of parameters, as is th
case for the entropy of formation as well as for the dista
to the set of all separable quantum states measured by e
the relative entropy or Bures’ metric@8#. It is, however, pos-
sible to derive upper bounds on the entanglement conten@9#
by using the convexity property of the relative entropy. F
Gaussian states, however, it is possible to derive an u
bound based on the distance to the set of separable Gau
states that is far better than the convexity bound and ma
very useful for estimation of the entanglement degradatio
continuous-variable quantum communication. In particula
reveals the ultimate limits for quantum-mechanical transm
sion of information through noisy channels.

The aim of the present article is to study the generat
and processing of entangled Gaussian states of light by
sorbing devices. In Sec. II the influence of losses in the
terferometric entanglement generation at a beam splitte
studied. A typical situation in quantum communication
considered in Sec. III, in which the entanglement degra
tion of a two-mode squeezed vacuum~TMSV! state trans-
mitted through a noisy communication channel, say, t
lossy optical fibers, is examined. Some concluding rema
are given in Sec. IV.

II. ENTANGLEMENT GENERATION BY MIXING
SQUEEZED VACUA AT A BEAM SPLITTER

A. Lossless beam splitters

Let us first consider the case of a lossless beam spl
and ~quasi!monochromatic light of~mid-!frequencyv ~Fig.
1050-2947/2001/64~6!/063811~11!/$20.00 64 0638
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1!. It is well known @10–15# that a lossless beam splitte
transforms the operators of the incoming modesâ1(v) and
â2(v) to the operators of the outgoing modesb̂1(v) and
b̂2(v) according to

S b̂1~v!

b̂2~v!
D 5T~v!S â1~v!

â2~v!
D , ~1!

whereT(v) is the unitary characteristic transformation m
trix of the beam splitter. Equivalently, the operators can
left unchanged and instead the density operator is tra
formed with the inverse matrixT21(v)5T1(v) according
to

%̂out5%̂ inFT1~v!S â1~v!

â2~v!
D ,TT~v!S â1

†~v!

â2
†~v!

D G . ~2!

Let each of the two incoming modes be prepared in
squeezed vacuum state, i.e.,

%̂ in5uC in&^C inu ~3!

where

uC in&5Ŝ1Ŝ2u0,0&, ~4!

with Ŝi( i 51,2) being the~single-mode! squeeze operator

FIG. 1. Squeezed statesuc1& and uc2& impinging on a beam
splitter producing entangled light beams.
©2001 The American Physical Society11-1
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Ŝi5expF2
1

2
~j i âi

†22j i* âi
2!G5expS 2

1

2
qiâi

†2D
3~12uqi u2!(2n̂i11)/4expS 1

2
qi* âi

2D ~5!

(qi5tanhujiueifi, fi5argj i). Here, the second equality fo
lows from general disentangling theorems@16,17#. By Eq.
~2!, the output quantum state is

%̂out5uCout&^Coutu, ~6!

where

uCout&5@~12uq1u2!~12uq2u2!#1/4expF2
1

2
q1~T11â1

†

1T21â2
†!22

1

2
q2~T12â1

†1T22â2
†!2G u0,0&. ~7!

The Ti j are the elements of the characteristic transforma
matrix T ~at the chosen mid-frequency!, which can be given,
without loss of generality, in the form

T5S T R

2R* T* D , ~8!

with T5uTueifT andR5uRueifR being the~complex! trans-
mission and reflection coefficients of the beam splitter.

From inspection of Eq.~6! it is seen that the preparatio
of an entangled state is controlled by the parameter

j125q1T11T211q2T12T2252q1TR* 1q2RT* . ~9!

Whenj1250 is valid, then the output state is separable. T
is the case forf12f212(fT2fR)50 anduq1u5uq2u. On
the other hand, if againuq1u5uq2u5uqu but f12f212(fT
2fR)56p, then foruTRu51/2 the output quantum state
just a TMSV state,

uCout&5uTMSV&5A12uqu2exp@2qâ1
†â2

†#u0,0&, ~10!

where

q5uqu i (f21fR2fT)52uquei (f11fT2fR). ~11!

Since, according to Eq.~6!, the output quantum state is
pure state, entanglement is uniquely measured by the
Neumann entropy of the~reduced! quantum state of either o
the output modes,

E~ %̂out!5S1(2)52Tr@%̂1(2) ln %̂1(2)#, ~12!

where%̂1(2) denotes the~reduced! output density operator o
mode 1~2!, which is obtained by tracing%̂out with respect to
mode 2~1!. Note that using squeezed coherent states ins
of squeezed vacuum states does not change the enta
ment. This is due to the fact that coherent shifts are unit
operations on subsystems which leave any entanglem
measure invariant.
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B. Lossy beam splitters

In practice there are always some losses and things
slightly more complicated. The SU~2! group transformation
in Eq. ~1! has to be replaced by an SU~4! group transforma-
tion, where the unitary transformation acts in the prod
Hilbert space of the field modes and the device modes@18–
20#. As a result, Eqs.~1! and ~2!, respectively, have to be
replaced by

b̂~v!5L~v!â~v! ~13!

and

%̂out
(F)5Tr(D)%̂ in@L1~v!â~v!,LT~v!â†~v!#, ~14!

where the ‘‘four-vector’’ notationâ(v) for abbreviating the
list of operatorsâ1(v), â2(v), ĝ1(v), and ĝ2(v) @and
b̂(v) accordingly# has been used. The SU~4! group element
L(v) is expressed in terms of the characteristic transform
tion and absorption matricesT(v) and A(v) of the beam
splitter as

L~v!5S T~v! A~v!

2S~v!C21~v!T~v! C~v!S21~v!A~v!
D
~15!

with the commuting positive Hermitian matrices

C~v!5AT~v!T1~v!, S~v!5AA~v!A1~v!. ~16!

From the above, the output density matrix in the Fock ba
can be given in the form of~Appendix A!

^m1 ,m2u%̂out
(F)un1 ,n2&

5A~12uq1u2!~12uq2u2!

m1!m2!n1!n2!
~21!m11m21n11n2

3 (
g1 ,g250

`
1

g1!g2!
Hm1 ,m2 ,g1 ,g2

M ~0!Hn1 ,n2 ,g1 ,g2
* M ~0!,

~17!

whereHn
M(0) denotes the Hermite polynomial of four var

ables with zero argument, generated by the symmetric ma
M with elements

Mi j 5q1L i1L j 11q2L i2L j 2 . ~18!

Note that in Eq.~17! it is assumed that the device is prepar
in the ground state.

In order to quantify the entanglement content of a mix
state%̂, such as%̂out

(F) in Eq. ~17!, we make use of the relative
entropy measuring the distance of the state to the setS of all
separable statesŝ @8#,

E~ %̂ !5min
ŝPS

Tr@%̂~ ln %̂2 ln ŝ !#. ~19!
1-2
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For pure states this measure reduces to the von Neum
entropy~12! of either of the subsystems, which can be co
puted by means of Schmidt decomposition of t
continuous-variable state@21#. It is also known that when the
quantum state has the Schmidt form

%̂5(
n,m

Cn,mufn ,cn&^fm ,cmu, ~20!

then the amount of entanglement measured by the rela
entropy is given by@22,23#

E~ %̂ !52(
n

Cn,n ln Cn,n2S~ %̂ !. ~21!

Unfortunately, there is no closed solution of Eq.~19! for
arbitrary mixed states. Nevertheless, upper bounds on
entanglement can be calculated@9#, representing the quan
tum state under study in terms of states in Schmidt dec
position and using the convexity of the relative entropy,

ES (
n

pn%̂nD<(
n

pnE~ %̂n!, (
n

pn51. ~22!

Applying the method to the output quantum state in E
~17!, i.e., rewriting it in the form of

%̂out
(F)5 (

k,l 50

`

Ck,l ,0uk,k&^ l ,l u1 (
m51

`

(
k,l 50

`

Ck,l ,muk1m,k&

^ ^ l 1m,l u1 (
m51

`

(
k,l 50

`

Ck,l ,muk,k1m&^ l ,l 1mu

5p0%̂01 (
m51

`

pm%̂m,11 (
m51

`

pm%̂m,2 , ~23!

the inequality~22! leads to

E~ %̂out
(F)!<p0E~ %̂0!1 (

m51

`

pm@E~ %̂m,1!1E~ %̂m,2!#, ~24!

whereE(%̂0), E(%̂m,1), andE(%̂m,2) can be determined ac
cording to Eq.~21!. In the numerical calculation we hav
used the dielectric-plate model of a beam splitter, taking
T and A matrices from@20,24#. The result is illustrated in
Fig. 2, which shows the dependence on the plate thicknes
the upper bound of the attainable entanglement. The osc
tions are due to phase matching and phase mismatch at
tain beam splitter thicknesses@cf. Eq.~9!#. Note that the local
minima of the curve for the lossy beam splitter never
down to zero as do the corresponding minima of the cu
for the lossless beam splitter. This obviously reflects the
that the result for the lossless beam splitter is exact, whe
that for the lossy beam splitter is only an upper bound.
06381
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III. ENTANGLEMENT DEGRADATION IN TMSV
TRANSMISSION THROUGH LOSSY OPTICAL FIBERS

Let us now turn to the problem of entanglement degra
tion in transmission of light prepared in a TMSV sta
through absorbing fibers. The situation is somewhat differ
from that in the previous section, since we are effectiv
dealing with an eight-port device as depicted in Fig. 3, wh
the two channels are characterized by the transmissionTi)
and reflection (Ri) coefficients (i 51,2). In particular, for
perfect input coupling (Ri50), the system is essentiall
characterized by the transmission coefficientsTi .

From Eq. ~10! it is easily seen that in the Fock basis
TMSV state reads

uTMSV&5A12uqu2(
n50

`

~2q!nun,n&, ~25!

whose entanglement content is

E~ uTMSV&)52 ln~12uqu2!2
uqu2

12uqu2
lnuqu2. ~26!

Application of the quantum-state transformation~14! yields
(Ri50) @19#

FIG. 2. Entanglement produced at a lossless beam splitter
refractive indexn51.41 ~dashed curve! as a function of the beam
splitter thicknessl. The full curve shows the upper bound of th
entanglement produced at a lossy beam splitter withn51.41
10.1i . The squeezing parameters chosen areq15q250.5.

FIG. 3. A two-mode input field prepared in the quantum st
uc& is transmitted through two absorbing dielectric four-port d

vices, â1 , â3 (â28 , â48) being the photonic operators of the re
evant input~output! modes.
1-3
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%̂out
(F)5~12uqu2! (

m50

`

(
k,l 50

`

@Kk,l ,m~cmum1k&^ku1H.c.!

^ ~dmum1 l &^ l u1H.c.!#, ~27!

where

cm5~2q!m/2T1
mS 12

1

2
dm0D , ~28!

dm5~2q!m/2T2
mS 12

1

2
dm0D , ~29!

and

Kk,l ,m

5
@ uqu2~12uT1u2!~12uT2u2!#aa! ~a1m!!

Ak! l ! ~k1m!! ~ l 1m!! ~a2k!! ~a2 l !!
S uT1u2

12uT1u2
D k

3S uT2u2

12uT2u2
D l

3 2F1S a11, a1m11

uk2 l u11
;uqu2~12uT1u2!~12uT2u2! D

~30!

@a5max(k,l)#. Note that in Eq.~27! the fibers are assumed t
be in the ground state.

A. Entanglement estimate by pure state extraction

The amount of entanglement contained in the~mixed!
output state~27! can also be estimated following the lin
sketched in Sec. II B. In particular, the convexity of the re
tive entropy can be combined with Schmidt decompositio
of the output state in order to calculate, on using the theo
~21!, appropriate bounds on entanglement. Before doing
let us first consider the case of low initial squeezing,
which the entanglement can be estimated rather simply.

1. Extraction of a single pure state

Since, by Eqs.~27!–~30!, for low squeezing only a few
matrix elements are excited that were not contained in
original Fock expansion~25!, we can forget about the en
tanglement that could be present in the newly excited
ments and treat them as contributions to the separable s
only. Following @19#, the inseparable state relevant for e
tanglement can then be estimated to be the pure state

A12luC&5A12uqu2

K000
(
n50

`

K00ncndnun,n&. ~31!

It has the properties that only matrix elements of the sa
type as in the input TMSV state occur and the coefficients
the matrix elementsu0,0&↔un,n& are met exactly, i.e.,

~12l!^0,0uC&^Cun,n&5^0,0u%̂out
(F)un,n&. ~32!
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In this approximation, the calculation of the entanglement
the mixed output quantum state reduces to the determina
of the entanglement of a pure state@19#:

E~ %̂out
(F)!'~12l!E~ uC&)5

12x

~12x!22y
lnF 12x

~12x!22y
G

1
~12x!$@y1~12x!2# ln~12x!2y ln y%

@y2~12x!2#2
,

~33!

where

x5uqu2~12uT1u2!~12uT2u2!, ~34!

y5uqT1T2u2. ~35!

Note that forT15T251 the entanglement of the TMSV sta
is preserved, i.e., Eq.~33! reduces to Eq.~26!. In Fig. 4, the
estimate of entanglement as given by Eq.~33! is plotted as a
function of the transmission length and the strength of ini
squeezing forT15T25T, whereT is given by the Lambert-
Beer law of extinction,

T5einR(v)v l /ce2 l / l A. ~36!

Here,nR is the real part of the complex refractive index,l A
5c/(nIv) is the absorption length, andl is the transmission
length.

It is worth repeating that the estimate given by Eq.~33! is
valid for low squeezing only. Higher squeezing amounts
more excited density matrix elements and Eq.~33! might
become wrong. Moreover, we cannot even infer it to be
boundin any sense since no inequality has been involved
possible way out would be to extract successively more
more pure states from Eq.~27!. But, instead, let us turn to the
Schmidt decomposition.

FIG. 4. Estimate of the entanglement, Eq.~33!, observed after
transmission of a TMSV state through absorbing fibers (T15T2) as
a function of the squeezing parameteruqu2 and the transmission
length l.
1-4
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ENTANGLEMENT GENERATION AND DEGRADATION BY . . . PHYSICAL REVIEW A64 063811
2. Upper bound of entanglement

In a similar way as in Sec. II B, an upper bound on t
entanglement can be obtained@9# if the density operator~27!
is rewritten as the convex sum of density operators
Schmidt decomposition,

%̂out
(F)5 (

k,l 50

` H Ak,l uk,k&^ l ,l u1 (
m51

`

Bk,l ,muk1m,k&

^ ^ l 1m,l u1 (
m51

`

Ck,l ,muk,k1m&^ l ,l 1muJ , ~37!

and the inequality~22! together with Eq.~21! is applied.
From general arguments one would expect the entan

ment to decrease faster the more squeezing one puts int
TMSV, because stronger squeezing is equivalent to sa
the state is more macroscopically nonclassical and quan
correlations should be destroyed faster. As an example,
would have to look at the entanglement degradation of
n-photon Bell-type stateuCn

6&, E(uCn
6&)<uTu2nln 2 @25#.

Since the transmission coefficientT decreases exponentiall
with increasing transmission length, entanglement decre
even faster. Note that similar arguments also hold for
destruction of the interference pattern of a catlike st
;ua&1u2a& when it is transmitted, e.g., through a bea
splitter. It is well known that the two peaks~in the j th output
channel! decay asuTj 1u2, whereas the quantum interferen
decays asuTj 1u2exp@22uau2(12uTj1u2)#.

The upper bound on the entanglement as calculated a
seems to suggest that the entanglement degradation is si
exponential with the transmission length for essentially
~initial! squeezing parameters, which would make the TM
a good candidate for a robust entangled quantum state.
this is a fallacy. The higher the squeezing, the more den
matrix elements are excited, and the more terms appear
cording to Eq.~37!, in the convex sum~22!. Equivalently,
more and more separable states are mixed into the full q
tum state. Thus the inequality gets more inadequate. In o
to see this, we have shown in Fig. 5 the upper bound on
entanglement for just two different~initial! squeezing param
eters uqu50.71 ~equivalent to the mean photon number
n̄51, solid line! and uqu50.9535 (n̄510, dashed line!. For
small transmission lengths, where very few separable st
are mixed in, the curves show the expected behavior in
sense that the state with higher initial squeezing decoh
fastest. The behavior changes for larger transmission leng
We would thus conclude that the upper bound propose
@9# is insufficient.

B. Distance to separable Gaussian states

The methods of computing entanglement estimates
bounds as considered in the preceding sections are base
Fock-state expansions. In practice they are typically
stricted to situations where only a few quanta of the ove
system~consisting of the field and the device! are excited,
otherwise the calculation even of the matrix elements
comes arduous. Here we will focus on another way of co
06381
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puting the relative entropy, which will also enable us to gi
an essentially better bound on the entanglement~for other
quantities that in a sense characterize entanglement,
@26#!.

Since it is close to impossible to compute the distance
a Gaussian state to the set ofall separable states we restri
ourselves to separableGaussianstates. A quantum state i
commonly called Gaussian if its quantum characteristic fu
tion is Gaussian. By the general relation for anN-mode
quantum state

ŝ5
1

pNE d2Na x~2a!D̂~a! ~38!

it is obvious that the density operator of a Gaussian state
be written in exponential form as

ŝ5N expF2~ â†â!MsS â

â†D G , ~39!

whereMs is a Hermitian matrix that can be assumed to g
a symmetrically ordered density operator, andN is a suitable
normalization factor. Here and in the following we restri
ourselves to Gaussian states with zero mean. Since coh
displacements, being local unitary transformations, do
influence entanglement, they can be disregarded.

The relative entropy~19! can now be written as

ER~ %̂ !5min
ŝPS

TrH %̂F ln %̂2 ln N1~ â†â!MsS â

â†D G J
5Tr~ %̂ ln %̂ !1min

ŝPS
K ~ â†â!MsS â

â†D 2 ln NL
%̂

.

~40!

Since we have chosen the density operatorŝ to be symmetri-
cally ordered, the last term in Eq.~40! is nothing but a sum

FIG. 5. Upper bound of the entanglement degradation o
TMSV state transmitted through absorbing fibers (T15T2) as a
function of the transmission lengthl for the squeezing parameter
q50.1 ~solid line! andq50.9 ~dashed line!. In the numerical cal-
culation, Fock statesun& up to qn&0.02 have been taken into ac
count.
1-5
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of ~weighted! symmetrically ordered expectation valu

^â†mân&s50 (m1n52). For a Gaussian quantum state%̂ it
can be shown~Appendix B! that Eq.~40! can equivalently be
written in terms of the matrixD% in the exponential of the
characteristic function of%̂ as

ER~ %̂ !5Tr~ %̂ ln %̂ !1min
ŝPS

F1

2
Tr~MsD%!2 ln NG . ~41!

From the above it is clear that we need only the matrixD%

~which is unitarily equivalent to the variance matrix!. For a
Gaussian distribution with zero mean the elements of
variance matrixV are defined byVi j 5^ẑ i ,ẑ j&s50 as the
~symmetrically ordered! expectation values of the quadratu
componentsẑ5( x̂1 ,p̂1 ,x̂2 ,p̂2).

The variance matrix of the TMSV state~25! reads (q
5tanhujueif, j5ujueif)

V%5S X Z

ZT YD 5S c/2 0 2s1/2 2s2/2

0 c/2 2s2/2 s1/2

2s1/2 2s2/2 c/2 0

2s2/2 s1/2 0 c/2

D ,

~42!

with the notation c5cosh 2uju, s15sinh 2ujucosf, and s2
5sinh 2ujusinf. In the casef50 the variance matrix~42!
reduces to the generic form

V05S x 0 z1 0

0 x 0 z2

z1 0 y 0

0 z2 0 y

D ~43!

specified by four real parameters. Note that the variance
trix of any Gaussian state can be brought to the form~43! by
local Sp(2,R) ^ Sp(2,R) transformations@27#, so that we can
restrict further discussion to that case.

Application of the input-output relations~13! gives for the
elements of the variance matrix of the output state@19#, on
assuming that the two modes are transmitted through
four-port devices prepared in thermal states of mean pho
numbersnthi ,

X115X225
1

2
cuT1u21

1

2
uR1u21S nth11

1

2D ~12uT1u2

2uR1u2!, ~44!

Y115Y225
1

2
cuT2u21

1

2
uR2u21S nth21

1

2D ~12uT2u2

2uR2u2!, ~45!

Z1152Z2252
1

2
s Re~T1T2!, ~46!
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Z125Z2152
1

2
s Im~T1T2! ~47!

(f50, s5sinh 2uju). With regard to optical fibers with per
fect input coupling (Ri50) and equal transmission length
we again may setuTi u5e2 l / l A. Moreover, we may assum
real Ti and thus setZ125Z2150.

First, one can check for separability according to the c
terion @27,28#

detX detY1S 1

4
2udetZu D 2

2Tr~XJZJYJZ TJ!

>
1

4
~detX1detY!, ~48!

which reduces to

4~xy2z1
2!~xy2z2

2!>~x21y2!12uz1z2u2
1

4
. ~49!

Combining Eqs.~44!–~49!, it is not difficult to prove that the
boundary between separability and inseparability is reac
for @19,28,29#

l 5 l S[
l A

2
lnF11

1

nth
~12e22uju!G . ~50!

It is worth noting that this is exactly the same condition
for the transmitted state still being a squeezed state or no
show this, we calculate the normally ordered varian

^:(DF̂)2:& of a phase-sensitive quantity such asF̂
5uF1ueiw1â11uF2ueiw2â21H.c. Using the input-output rela
tions ~13!, the normally ordered variance of the output fie
is derived to be

^:~DF̂ !2:&out52uF1u2@ uT1u2sinh2uju1nth1~12uT1u2!#

12uF2u2@ uT2u2sinh2uju1nth2~12uT2u2!#

22uF1F2T1T2usinh 2ujucos~w11w21wT

1f! ~51!

(Ti5uTi ueiwTi, i 51,2; wT5wT1
1wT2

). For equal ampli-

tudes uF1u5uF2u5uFu and equal fibers uT1u5uT2u
5uTu, nth15nth25nth the ~phase-dependent! minimum is
obtained as

^:~DF̂ !2:&outumin54uFu2@nth~12uTu2!2uTu2sinhujue2uju#.
~52!

Equation~52! exactly leads to the condition~50!, i.e.,

^:~DF̂ !2:&outuminH ,0 if l , l S,

>0 if l> l S.
~53!

Therefore, measurement of squeezing corresponds, in s
sense, to an entanglement measurement.
1-6



-
tp

t
e
o

e

R
is

y
a

m
g

is
th
t
n
f

ti
u

m
er

an
m
e
vic
eg
re
tru
r

t
in
a
th

on-
ss-
a

ort

he
ts

ng

ans-
nse
g-
rop
s
ber
le
uch
f

ut
the
ni-

in
ec.
e
able

tte
n V

-

of

pu-

ENTANGLEMENT GENERATION AND DEGRADATION BY . . . PHYSICAL REVIEW A64 063811
In order to obtain~for l , l S) a measure of the entangle
ment degradation, we compute the distance of the ou
quantum state to the set of all Gaussian states satisfying
equality in ~49!, since they just represent the boundary b
tween separability and inseparability. These states are c
pletely specified by only three real parameters@one of the
parameters in the equality in~49! can be computed from th
other three#. With regard to Eq.~41!, minimization is thus
performed only in a three-dimensional parameter space.
sults of our numerical analysis are shown in Fig. 6. It
clearly seen that the entanglement content~relative to the
entanglement in the initial TMSV state! decreases noticeabl
faster for larger squeezing, or, equivalently, for higher me
photon number@the relation between the mean photon nu
ber n̄ in one mode and the squeezing parameters beinn̄
5sinh2uju5uqu2/(12uqu2)#.

It is very instructive to know how much entanglement
available after transmission of the TMSV state through
fibers. Examples of the~maximally! available entanglemen
for different transmission lengths are shown in Fig. 7. O
observes that a chosen transmission length allows only
transport of a certain amount of entanglement. The satura
value, which is quite independent of the value of the inp
entanglement, decreases drastically with increasing trans
sion length~compare the upper curve with the two low
curves in the figure!.

The reason for the saturation effect is rather general
not restricted to the TMSV state under study. The quantu
state transformation~14! corresponds to a convolution of th
phase-space functions of the incoming field and the de
noise@18#, the latter being responsible for entanglement d
radation. Eventually, the width of the noise Gaussian p
vents recovery, after transmission, of the phase-space s
ture that is typical of a~strongly! entangled state. Fo
example, an infinitely squeezed TMSV state gives rise
infinitely narrow Wigner functions along certain directions
the phase space. Thus, after transmission finite widths
observed which are solely determined by the noise of
device.

FIG. 6. Entanglement degradation of a TMSV state transmi
through absorbing fibers (T15T2) as a function of the transmissio

length l for the ~initial! mean photon numbersn̄51 (uqu
.0.7071) ~topmost curve!, n̄510 (uqu.0.9535), n̄5102 (uqu
.0.9950), andn̄5103 (uqu.0.9995) ~lowest curve!.
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Obviously, saturation of entanglement has dramatic c
sequences for applications in quantum information proce
ing. For example, in continuous-variable teleportation
highly squeezed TMSV state is required in order to telep
an arbitrary quantum state with sufficiently high fidelity@2#.
Even if the input TMSV state were infinitely squeezed, t
available ~low! saturation value of entanglement preven
one from high-fidelity teleportation ofarbitrary quantum
states over finite distances@29–32#.

A very illustrative example is quantum dense codi
where a classical bit is encoded in a coherent shiftD̂(6a) of
one mode of a TMSV state. The analysis given in@6# shows
that, when the state is subject to decoherence during tr
mission through a symmetric channel, then quantum de
coding is superior to classical coding only if, in the stron
squeezing limit, the transmission coefficient does not d
below uTu250.75. Looking at Fig. 7 and noting that thi
value of the transmission coefficient corresponds to a fi
length of l'0.14l A , one realizes that the maximal possib
amount of entanglement that can be transmitted through s
fibers is roughlyE'0.7. But this is precisely the amount o
~quantum! information needed to transmit one bit of~classi-
cal! information encoded in an infinitely squeezed inp
TMSV state. That means that it is impossible to transmit
information even of a single classical bit quantum mecha
cally over distances longer thanl'0.14l A , thereby render-
ing this type of quantum information processing useless.

C. Comparison of the methods

In Fig. 8 the entanglement degradation as calculated
Sec. III B is compared with the estimate obtained in S
III A 1 and the bound obtained in Sec. III A 2. The figur
reveals that the distance of the output state to the separ
Gaussian states~lower curve! is much smaller than might be
expected from the bound on the entanglement~upper curve!
calculated according to Eq.~24! together with Eqs.~21! and

d
FIG. 7. Available entanglement after transmission of a TMS

state through absorbing fibers (T15T2) as a function of the squeez
ing parameterj for various transmission lengthsl @ l 50 ~topmost
curve!, l 51022l A ~middle curve!, l 51021l A ~lowest curve!#. For
uju&0.5 andl / l A&1022, the numerical accuracy of the values

E(%̂out
(F)) decreases due to low accuracy in the eigenvector com

tation.
1-7
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S. SCHEEL AND D.-G. WELSCH PHYSICAL REVIEW A64 063811
~37!, as well as the estimate~middle curve! derived by ex-
tracting a single pure state according to Eq.~33!. Note that
the entanglement of the single pure state~31! comes closes
to the distance of the actual state to the separable Gau
states, whereas the convex sum~37! of density operators in
Schmidt decomposition can give much higher values. B
methods, however, overestimate the entanglement. S
with increasing mean photon number the convex sum c
tains more and more terms, the bound gets worse@and sub-
stantially slower on the computer, whereas computation
the distance measure~41! does not depend on it#.

Thus, in our view, the distance to the separable Gaus
states should be the measure of choice for determining
entanglement degradation of entangled Gaussian states.
ertheless, it should be pointed out that the distance to s
rable Gaussian states has been considered, and not th
tance to all separable states. We have no proof yet that t
does not exist an inseparable non-Gaussian state th
closer than the closest Gaussian state.

IV. CONCLUSIONS

In the present article the interferometric generation a
transmission of entangled light have been studied, with s
cial emphasis on Gaussian states. Optical devices suc
beam splitters and fibers are regarded as being dispersing
absorbing dielectric four-port devices as typically used
practice. In particular, their action on light is described
terms of the experimentally measurable transmission, refl
tion, and absorption coefficients.

An entangled two-mode state can be generated by mix
single-mode nonclassical light at a beam splitter. Depend
on the phases of the impinging light beams and the be
splitter transformation, the amount of entanglement c
tained in the outgoing light can be controlled. For squee
vacuum input states and appropriately chosen phases, m
mal entanglement is obtained for lossless, symmetrical b
splitters. In realistic experiments, however, losses such
material absorption prevent one from realizing that value

When entangled light is transmitted through optical d

FIG. 8. Comparison of the upper bound on entanglement~upper
curve! according to Eq.~37!, the entanglement estimate~middle
curve! according to Eq.~33!, and the distance measure~lower

curve! according to Eq.~41! for the mean photon numbern̄
51 (uqu.0.7071).
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vices, losses always give rise to entanglement degrada
In particular, after propagation of the two modes of a tw
mode squeezed vacuum through fibers the available
tanglement can be drastically reduced. Unfortunately, qu
tifying the entanglement of mixed states in an infinit
dimensional Hilbert spaces has been close to imposs
Therefore, estimates and upper bounds for the entanglem
content have been developed.

The analytical estimate employed in this article is bas
on extraction of a single pure state from the output Gauss
state, using its reduced von Neumann entropy as an estim
for the entanglement. However, this method is not uniq
since there are many different ways of extracting pure sta
nor is it an upper bound, since nothing is said about
residual entanglement contained in the state that is left o
In principle, more and more pure states could be extrac
until the residual state becomes separable.

Instead, an upper bound can be calculated by decom
ing the output Gaussian state into a convex sum of Schm
states as proposed in@9#. The disadvantage of this method
that the bound gets worse for increasing~statistical! mixing.
In particular, it may give hints of large entanglement even
the quantum state under consideration is almost separab

In order to overcome this disadvantage, the distance of
output Gaussian state to the set of separable Gaussian s
measured by the relative entropy is considered. It has
advantage that separable states obviously correspond to
distance. Although one has yet no proof that there does
exist a non-Gaussian separable state that is closer to
Gaussian state under consideration than the closest sepa
Gaussian state, one has good reason to think that it is eve
entanglement measure. In any case, it is a much better bo
than the one obtained by convexity. In particular, it clea
demonstrates the drastic decrease of entanglement of the
put state with increasing entanglement of the input sta
Moreover, one observes saturation of entanglement tran
that is, the amount of entanglement that can maximally
contained in the output state is solely determined by
transmission length and does not depend on the amoun
entanglement contained in the input state.
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APPENDIX A: FOCK-STATE EXPANSION
OF MULTIMODE SQUEEZED VACUUM STATES

Let us consider an incoming field prepared in t
squeezed vacuum state~4! and an absorbing beam splitter
the ground state. The quantum-state transformation form
~14! then leads to

%̂out
(F)5 (

g1 ,g250

`

^g1 ,g2uŜa
18
~j1!Ŝa

28
~j2!u0,0,0,0&

^ ^0,0,0,0uŜa
28

†
~j2!Ŝa

18
†

~j1!ug1 ,g2& ~A1!
1-8
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ENTANGLEMENT GENERATION AND DEGRADATION BY . . . PHYSICAL REVIEW A64 063811
where the transformed operatorsâi8 are defined by

âi85(
j 51

4

L j i* â j ~A2!

according to the rules of quantum-state transformati
Equivalently, the Fock-state expansion of the density ma
reads

^m1 ,m2u%̂out
(F)un1 ,n2&

5^m1 ,m2u^g1 ,g2uŜa
18
~j1!Ŝa

28
~j2!u0,0,0,0&

^ ^0,0,0,0uŜa
28

†
~j2!Ŝa

18
†

~j1!ug1 ,g2&un1 ,n2&. ~A3!

Expanding the Fock states in terms of coherent states
using the squeeze operator in the form given in the sec
equality in Eq.~5!, we obtain after performing all integrals

^m1 ,m2u%̂out
(F)un1 ,n2&

5A~12uq1u2!~12uq2u2!

m1!m2!n1!n2!
~21!m11m21n11n2

3 (
g1 ,g250

`
1

g1!g2!
Hm1 ,m2 ,g1 ,g2

M ~0!Hn1 ,n2 ,g1 ,g2
* M ~0!,

~A4!

where the Hermite polynomials of four variables are gen
ated by the symmetric matrixM with elements

Mi j 5q1L i1L j 11q2L i2L j 2 . ~A5!

Using the relation between Hermite polynomials of one va
able and those of several variables@33#,

(
m11•••1mn5m

a1
m1

m1!
•••

an
mn

mn!
Hm1 , . . . ,mn

M ~x1 , . . . ,xn!

5

F1

2
f~a!Gm/2

m!
HmS f~a,x!

A2f~a!
D , ~A6!

where

f~a,x!5(
i , j

aiM i j xj ~A7!

and f(a)[f(a,a), we get for the multivariable Hermite
polynomial of zero argument
06381
.
ix

nd
d

r-

-

~A8!

(m5m11m21g11g2). Here, the P sum runs over all
m!/(m1!m2!g1!g2!) possible combinations to distributem1
indices 1, m2 indices 2, g1 indices 3, andg2 indices 4
among the indicesi 1 , j 1 , . . . ,i m/2 , j m/2 .

In particular, if we restrict ourselves to two dimension
Eq. ~A8! simplifies to

Hm1 ,m2

M ~0!

5
Hm~0!

2m/2
M11

(m12m22n)/4M22
(m22m12n)/4m1!m2! S m

2 D !

3 (
n5n/2

[m/2]
1

n! ~m22n!! S n2
1

2
n D !

M11
n ~2M12!

m22nM22
n

~A9!

@m5max(m1,m2),n5um12m2u#. The sum can also be calcu
lated, leading to Gegenbauer, Jacobi, or associated Lege
polynomials@34#.

Another way of writing this is the one we used for th
numerical calculation of the density matrix elements. T
method, however, is applicable only in cases where the n
ber of variables the Hermite polynomial depends on is su
ciently small. The multivariable Hermite polynomial~now in
four variables! of zero argument can be written as

~21!m11m21g11g2Hm1 ,m2 ,g1 ,g2

M ~0!

5
]m11m21g11g2

]l1
m1]l2

m2]l3
g1]l4

g2
expF2

1

2
lTMlG

l50

, ~A10!

with M being given by Eq.~A5!. Expanding the right hand
side of Eq.~A10!, the only surviving term is the one propo
tional to (lTMl)(m11m21g11g2)/2. Multinomial expansion of
this term then leads to Eq.~17!.

APPENDIX B: MULTIMODE GAUSSIAN DENSITY
OPERATORS AND WIGNER FUNCTIONS

We start with the Wigner function of anN-mode Gaussian
state of the form as

WN~z!5
1

~2p!NAdetV
expS 2

1

2
zTV21zD , ~B1!
1-9
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wherez5(x1 ,p1 , . . . ,xN ,pN) is the 2N-dimensional ‘‘vec-
tor’’ of the quadrature components of theN ~complex! vari-
ablesâi andV is the 2N32N variance matrix of the quadra
ture components. The characteristic function defined by
Fourier transform reads

xN~h!5expS 2
1

2
hTVhD . ~B2!

Alternatively, the quantum state can be given by the den
operator

%̂5

expF2
1

2
~ â†â!M S â

â†D G
TrH expF2~ â†â!M S â

â†D G J
~B3!

~whereâ is actually anN-dimensional ‘‘vector’’ with ‘‘com-
ponents’’âi).

In order to relate the matrixM to the matrixV, we intro-
duce a unitary transformation

S â

â†D 8
5ÛS â

â†D Û215US â

â†D , ~B4!

where the matrixU is chosen such that it diagonalizesM ;
henceU1MU5Q ~with Q being diagonal!. Note thatU sat-
isfies the generalized unitary relation

UJU15J with J5diag~ IN ,2IN!. ~B5!

Then, the characteristic function of the density operator~B2!
is
f

, H

un

06381
e

ty

xN~l,l* !5Tr@%̂D̂~l!#5TrH %̂expF ~ â†â!S l

2l* D G J
5TrH Û%̂Û21Û expF ~ â†â!S l

2l* D G Û21J
5expF2

1

2 S l

2l* D 1

US 1

2
coth

1

2
QDU1S l

2l* D G
5expF2

1

2 S l

l* D 1

DS l

l* D G ~B6!

with an obvious definition of the matrixD, thus establishing
a relation between the matrixM in the exponential of the
density operator and the matrixD in the exponential of the
characteristic function. From the third to the fourth equal
in Eq. ~B6! we have used the expression for the characteri
function of a thermal state@35#. In due course, the normal
ization of the density operator is obtained as

N5)
i 51

N

2 sinh
Q i

2
. ~B7!

The above description shows a way to compute the
tropy of a Gaussian quantum state%̂ as well as the relative
entropy between two Gaussian quantum states%̂ and ŝ as

Tr~ %̂ ln %̂ !5(
i 51

N

lnS 2 sinh
Q i

2 D2
1

2
Tr~M%D%!, ~B8!

Tr~ %̂ ln ŝ !5(
i 51

N

lnS 2 sinh
q i

2 D2
1

2
Tr~MsD%!, ~B9!

where Q i and q i are, respectively, the eigenvalues ofM%

andMs .
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@20# L. Knöll, S. Scheel, and D.-G. Welsch, inCoherence and Sta

tistics of Photons and Atoms~Ref. @1#!.
@21# S. Parker, S. Bose, and M. B. Plenio, Phys. Rev. A61, 032305

~2000!.
@22# E. M. Rains, Phys. Rev. A60, 179 ~1999!.
@23# S. Wu and Y. Zhang, Phys. Rev. A63, 012308~2001!.
1-10



.

.

ev

nt

i,

ENTANGLEMENT GENERATION AND DEGRADATION BY . . . PHYSICAL REVIEW A64 063811
@24# T. Gruner and D.-G. Welsch, Phys. Rev. A54, 1661~1996!.
@25# S. Scheel, L. Kno¨ll, T. Opatrný, and D.-G. Welsch, Phys. Rev
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