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Feedback-stabilization of an arbitrary pure state of a two-level atom
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Unit-efficiency homodyne detection of the resonance fluorescence of a two-level atom collapses the quantum
state of the atom to a stochastically moving point on the Bloch sphere. Recently, Hofmann, Mahler, and Hess
@Phys. Rev. A57, 4877 ~1998!# showed that by making part of the coherent driving proportional to the
homodyne photocurrent one can stabilize the state to any point on the bottom-half of the sphere. Here we
reanalyze their proposal using the technique of stochastic master equations, allowing their results to be gen-
eralized in two ways. First, we show that any point on the upper- or lower-half, but not the equator, of the
sphere may be stabilized. Second, we consider nonunit-efficiency detection, and quantify the effectiveness of
the feedback by calculating the maximal purity obtainable in any particular direction in Bloch space.

DOI: 10.1103/PhysRevA.64.063810 PACS number~s!: 42.50.Lc, 42.50.Ct, 03.65.Ta
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I. INTRODUCTION

Although classical models of feedback schemes h
been used for a long time to control dynamical noise,
analogous quantum theory of feedback has been devel
only in the last 15 years@1–7#. Recently there has been co
siderable interest in quantum feedback as a way to fight
coherence in isolated quantum systems, using the appr
of Refs. @4,5#. The central idea is to use a continuous me
surement record, whose existence is due to the couplin
the system to a bath, to control the dynamics of the system
as to counteract the noise introduced by that bath and po
bly other baths. For example, it has been suggested as a
to create optical squeezed states@8#, to create micromase
number states@9#, to correct errors in quantum bits@10#, and
to protect optical and microwave Schro¨dinger cat states
against dissipation@11–13#.

Decoherence in quantum systems can be loosely defi
as loss of purity. Therefore the ultimate success in us
feedback to fight decoherence would be to create an arbit
stable pure state in the presence of dissipation. This goal
realized~better even that they realized! by Hoffman, Mahler,
and Hess~HMH! @14,15# for a very simple system: a reso
nantly driven two-level atom. They showed that by using
photocurrent derived from unit-efficiency homodyne det
tion of the atom’s fluorescence to control part of the drivi
field of the atom, it is possible to exactly cancel the no
introduced by the electromagnetic vacuum field when
atom is in a particular pure state. By choosing the driv
strength and feedback strength appropriately, any pure s
on the Bloch sphere may be picked out, although HM
claimed that only pure states on the lower-half of the sph
would be stable under their scheme.

HMH chose to describe detection and feedback in th
system in a way different from~but equivalent to! the stan-
dard approach in Refs.@4,5#. In this paper we reformulate
their theory using the latter approach. This has the advan
of enabling a number of generalizations of their results. Fi
we revisit the question of stability and find that, contrary
the claims of HMH, the states in the upper-half of the Blo
sphere can be stabilized as well as those in the lower-
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~this is what was better than they realized!. The only states
that cannot be stabilized, in the sense that an arbitrary in
state would not always end up in the desired state, are th
on the equator of the Bloch sphere; that is, those that
equal superpositions of excited and ground states.

Our second generalization is to consider how effect
feedback is withh,1; i.e., with nonunit-efficiency detec
tion. In this case it is not possible to stabilize the atom at a
pure state, except the ground state, which is trivially sta
by setting the driving and feedback to zero. Instead, we
to produce a steady state that is as close as possible
given pure state. For the two-level atom, this is equivalen
trying to create a state that is as pure as possible in a
ticular direction in Bloch space. Not surprisingly~given the
above result!, we find that states near the equator cannot
well protected against decoherence. We also find an ech
the distinction HMH found between the upper- and lowe
halves of the Bloch sphere, in that states in the upper-
sphere are affected much more by loss of detection efficie
that those in the lower-half.

The paper is organized as follows. In Sec. II we pres
the model of a driven two-level atom, including the stocha
tic Schrödinger equation for unit-efficiency homodyne dete
tion. In Sec. III we use this equation to derive the driving a
feedback required to stabilize the atom in an arbitrary p
state. These results agree with those of HMH. However,
stability analysis disagrees substantially with theirs. In S
IV we present entirely new analytical results relating to t
effect of nonunit-efficiency detection. In Sec. V we give n
merical simulations of the stochastic evolution equations,
lustrating the issues discussed in the preceding two secti
In Sec. VI we summarize and interpret our results, expl
their significance, and discuss the possibility of future wo

II. HOMODYNE DETECTION

A. Master equation

Consider an atom, with two relevant levels$ug&,ue&% and
lowering operators5ug&^eu. Let the decay rate beg, and let
it be driven by a resonant classical driving field with Ra
frequency 2a. This is as shown in Fig. 1, where for th
©2001 The American Physical Society10-1
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JIN WANG AND H. M. WISEMAN PHYSICAL REVIEW A 64 063810
moment we are omitting feedback by settingl50. This sys-
tem is well approximated by the master equation

ṙ5gD@s#r2 ia@sy ,r#, ~2.1!

where the Lindblad@16# superoperator is defined as usu
D@A#B[ABA†2$A†A,B%/2. In this master equation w
have chosen to define thesx5s1s† and sy5 is2 is†

quadratures of the atomic dipole relative to the driving fie
The effect of driving is to rotate the atom in Bloch spa
around they axis. The state of the atom in Bloch space
described by the three-vector (x,y,z). It is related to the state
matrix r by

r5 1
2 ~ I 1xsx1ysy1zsz!. ~2.2!

It is easy to show that the stationary solution of the mas
equation~2.1! is

xss5
24ag

g218a2
, ~2.3!

yss50, ~2.4!

zss5
2g2

g218a2
. ~2.5!

For g fixed, this is a family of solutions parametrized by th
driving strengthaP(2`,`). All members of the family are

FIG. 1. Diagram of the experimental apparatus. The laser b
is split to produce both the local oscillatorb and the fielda0, which
is modulated using the currentI (t). The modulated beam, with
amplitude proportional toa1lI (t), drives an atom at the center o
the parabolic mirror. The fluorescence thus collected is subjec
homodyne detection using the local oscillator, and gives rise to
homodyne photocurrentI (t).
06381
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in thex-z plane on the Bloch sphere. Thus, for this purpo
we can reparametrize the relevant states usingr andu by

x5r sinu, ~2.6!

z5r cosu, ~2.7!

whereuP@2p,p#. Since

Tr@r2#5 1
2 ~11x21y21z2! ~2.8!

is a measure of the purity of the Bloch sphere,r
5Ax21z2, the distance from the center of the sphere, is a
a measure of purity. Pure states correspond tor 51 and
maximally mixed states tor 50.

The locus of solutions in this plane~an ellipse! is shown
in Fig. 2. Sincezss,0, all solutions are in the lower-half o
the Bloch sphere. That is, we are restricted touuu.p/2.
Also, it is evident that the smalleruuu is ~i.e., the more ex-
cited the atom is! the smallerr is ~i.e., the less pure the atom
is!. At uuu5p, the stationary state is pure, but this is n
surprising as it is simply the ground state of the atom with
driving. As uuu→p/2 we haver→0. This can only be ap-
proached asymptotically asuau→`. In summary, the station
ary states we can reach by driving the atom are limited,
generally far from pure.

B. Homodyne detection

Now consider subjecting the atom to homodyne detecti
As shown in Fig. 1, we assume that all of the fluorescence
the atom is collected and turned into a beam~represented in
Fig. 1 by placing the atom at the focus of a mirror!. Ignoring
the vacuum fluctuations in the field, the annihilation opera
for this beam isAgs, normalized so that the mean intensi
g^s†s& is equal to the number of photons per unit time
the beam. This beam then enters one port of a 50:50 b
splitter, while a strong local oscillatorb enters the other. To

m

to
e

FIG. 2. Locus of the solutions to the Bloch equations. The
lipse in the lower-half plane is the locus for the equations w
driving only. The full circle~minus the points on the equator! is the
locus for the equations with optimal driving and feedback, as
fined in Sec. III.
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FEEDBACK-STABILIZATION OF AN ARBITRARY PURE . . . PHYSICAL REVIEW A 64 063810
ensure that this local oscillator has a fixed phase relation
with the driving laser used in the measurement, it would
natural to utilize the same coherent light field source in
driving process and as the local oscillator in the homod
detection. This is as shown in Fig. 1.

Again ignoring vacuum fluctuations, the two field oper
tors exiting the beam splitter,b1 andb2, are

bk5@Ags2~21!kb#/A2. ~2.9!

When these two fields are detected, the two photocurr
produced have means

Ī k5^ubu22~21!k~Agbs†1Agsb* !1gs†s&/2. ~2.10!

The middle two terms represent the interference between
system and the local oscillator.

Equation~2.10! gives only the mean photocurrent. In a
individual run of the experiment for a system, what is r
corded is not the mean photocurrent, but the instantane
photocurrent. This photocurrent will vary stochastically fro
one run to the next, because of the irreducible randomnes
the quantum measurement process. This randomness i
just noise, however. It is correlated with the evolution of t
system and thus tells the experimenter something abou
state of the system. In fact, if the detection efficiency is p
fect, the system is collapsed into a pure state, rather than
mixed state, which is the solution of the master equation.
stochastic evolution of the state of the system conditioned
the measurement record is called a ‘‘quantum trajecto
@17#. Of course, the master equation is still obeyed on av
age, so the set of possible quantum trajectories is calle
unraveling of the master equation@17#. It is the conditioning
of the system state on the photocurrent record that all
feedback of the photocurrent to control the system state.
application of an appropriate feedback loop to this conti
ous measurement process~to be considered in Sec. III! real-
izes an effective ‘‘reservoir engineering’’ to control the sy
tem at the quantum level.

The ideal limit of homodyne detection is when the loc
oscillator amplitude goes to infinity, which in practical term
meansubu2@g. In this limit, the rate of the photodetection
goes to infinity and thus it should be possible to change
point process of photocounts into a continuous photocur
with white noise. Also, the only relevant quantity is the d
ference between the two photocurrents. Suitably normaliz
this is @17,18#

I ~ t !5
I 1~ t !2I 2~ t !

ubu
5Ag^e2 iFs†1eiFs&c~ t !1j~ t !. ~2.11!

A number of aspects of Eq.~2.11! need to be explained. Firs
F5argb, the phase of the local oscillator~defined relative
to the driving field!. Second, the subscript c means con
tioned and refers to the fact that if one is making a hom
dyne measurement then this yields information about
system. Hence, any system averages will be conditioned
the previous photocurrent record. Third, the final termj(t)
represents Gaussian white noise, so that
06381
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j~ t !dt5dW~ t !, ~2.12!

an infinitesimal Wiener increment defined by@19#

dW~ t !25dt, ~2.13!

E@dW~ t !#50. ~2.14!

Since the stationary solution of the master equation confi
the state to thex-z plane, it makes sense to follow HMH b
settingF50. In that case,

I ~ t !5Ag^sx&c~ t !1j~ t !. ~2.15!

That is, the deterministic part of the homodyne photocurr
is proportional toxc5^sx&c . This should be useful for con
trolling the dynamics of the state in thex-z plane by feed-
back, as we will consider in Sec. III. Of course, all that rea
matters here is the relationship between the driving ph
and the local oscillator phase, not the absolute phase o
ther.

The conditioning process referred to above can be m
explicit by calculating how the system state changes in
sponse to the measured photocurrent. Assuming that the
at some point in time is pure~which will tend to happen
because of the conditioning anyway!, its future evolution can
be described by the stochastic Schro¨dinger equation~SSE!
@17,18#

ducc~ t !&5Âc~ t !ucc~ t !&dt1B̂c~ t !ucc~ t !&dW~ t !. ~2.16!

This is an Itôstochastic equation@19# with a drift term and a
diffusion term. The operator for the drift term is

Âc~ t !5
g

2
@2s†s1^sx&c~ t !s2^sx&c

2~ t !/4#2 iasy , ~2.17!

while that for the diffusion is

B̂c~ t !5Ag@s2^sx&c~ t !/2#. ~2.18!

Both of these operators are conditioned in that they dep
on the system average

^sx&c~ t !5^cc~ t !usxucc~ t !&. ~2.19!

As stated above, on average the system still obeys the m
equation~2.1!. This is easiest to see from the stochastic m
ter equation~SME!, which allows for impure initial condi-
tions. The SME can be derived from the SSE by construct

d~ ucc&^ccu!5~ducc&)^ccu1ucc&~d^ccu!1~ducc&!~d^ccu!,
~2.20!

using the Itoˆ rule ~2.13!, and then identifyingucc&^ccu with
rc . The result is

drc5dtgD@s#rc2 i dta@sy ,rc#1dW~ t !AgH@s#rc ,
~2.21!

where H@A#B[AB1BA†2Tr@AB1BA†#. Although this
has been derived assuming pure initial conditions, it is va
0-3
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JIN WANG AND H. M. WISEMAN PHYSICAL REVIEW A 64 063810
for any initial conditions@18#. This is also an Itoˆ equation,
which means the evolution for the ensemble average s
matrix

r~ t !5E@rc~ t !# ~2.22!

is found simply by averaging over the photocurrent no
term by using Eq.~2.14!. This procedure yields the origina
Master equation~2.1! again. The term ‘‘quantum trajectory
can be applied to any stochastic conditioned evolution of
system, be it described by a SSE or SME.

III. FEEDBACK WITH UNIT-EFFICIENCY DETECTION

A. SSE including feedback

We now include feedback onto the amplitude of the dr
ing on the atom, proportional to the homodyne photocurre
as done by HMH. This is as shown in Fig. 1, where t
driving field passes through an electro-optic amplitu
modulator controlled by the photocurrent, yielding a fie
proportional toa1lI (t). This means that the feedback ca
be described by the Hamiltonian

H fb5lsyI ~ t !. ~3.1!

In this paper we are assuming instantaneous feedback, w
the time delay in the feedback loop is negligible.

Since the homodyne photocurrent~2.11! is defined in
terms of system averages and the noisedW(t), the SSE in-
cluding feedback can still be written as an equation of
form ~2.16!. The effect of the feedback Hamiltonian can
shown@4,8# to change the drift and diffusion operators to

Âc~ t !5
g

2
@2s†s1^sx&c~ t !s2^sx&c

2~ t !/4#

2 iasy1
l

2
Ag@2 i ^sx&c~ t !sy22s†s#2l2/2, ~3.2!

B̂c~ t !5Ag@s2^sx&c~ t !/2#2 ilsy . ~3.3!

Say we wish to stabilize the pure state with Bloch angleu, as
defined in Eqs.~2.6! and~2.7!, with r 51 of course. In terms
of the ground and excited states, this state is

uu&5cos
u

2
ue&1sin

u

2
ug&. ~3.4!

Now for this state to be stabilized we must have

@Âc~ t !dt1B̂c~ t !dW~ t !#uu&}uu&. ~3.5!

We cannot say the left-hand side should equal zero becau
change in the overall phase still leaves the physical s
unchanged. However, we can work with this equation, a
simplify it by dropping all terms proportional to the identit
operator inÂc(t) and B̂c(t). We can also demand that it b
satisfied for the deterministic and noise terms separately,
causedW(t) can take any value. This gives the two equ
tions
06381
te

e

e

-
t,

e

ere

e

e a
te
d

e-
-

~Ags2 ilsy!uu&}uu&, ~3.6!

@g~2s†s1sinus!2 i2asy

1lAg~2 i sinusy22s†s!#uu&}uu&, ~3.7!

where we have put̂sx&c(t) equal to sinu, its value for the
stateuu&.

Solving the first equation easily yields the condition

l52
Ag

2
~11cosu!. ~3.8!

This is equivalent to the feedback condition derived
HMH, stated as Eq.~35! of Ref. @15#. Substituting this into
the second equation gives, after some trigonometric man
lation, the second condition

a5
g

4
sinu cosu. ~3.9!

Again, this agrees with the driving strength of HMH, give
as Eq.~44! of Ref. @15#. It is worth emphasizing that the
derivation given here is entirely different in detail from th
of HMH, and so is an independent verification of their resu
These functions are plotted in Fig. 3. Note that there are
points with the same values of bothl anda, at u56p/2.

B. Stability

The preceding derivation seems to show that any p
state can be stabilized by a suitable choice of driving a
feedback. Indeed our derivation proves that that if one p
pares a state in exactly the pure state one desires, then
feedback scheme of HMH, which we have analyzed, w
keep the system in that state. However, to discuss stab
we need to know what will happen for states that are

FIG. 3. Plot of the optimal driving (a, solid! and feedback (l,
dashed! required to produce a pure state with Bloch angleu. For
this plot we have setg51 so thata andl are dimensionless. The
purity (r 2, starred! is one except foru56p/2, where the feedback
is not stable.
0-4
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FEEDBACK-STABILIZATION OF AN ARBITRARY PURE . . . PHYSICAL REVIEW A 64 063810
initially in the desired state. To deal with this it is much mo
convenient to use the SME rather than the SSE, as will
come apparent.

The SME can be constructed from the SSE in the sa
way as before. The result is@4,8#

drc5dtgD@s#rc2 i dta@sy ,rc#2 i dtl@sy ,src1rcs
†#

1dt~l2/g!D@sy#rc1dW~ t !H@Ags2 ilsy#rc .

~3.10!

Also as before, this is an Itoˆ stochastic equation, which
means that the ensemble average can be found simpl
dropping the stochastic terms. This time, the result is not
original master equation, but rather the feedback-modi
master equation

ṙ52 i @asy ,r#1D@Ags2 ilsy#r[Lr. ~3.11!

Here we have put the Liouvillian superoperatorL in a mani-
festly Lindblad form.

Now we have shown already that the pure stater
5uu&^uu must be a solution of this master equation, for t
appropriate choices ofl @Eq. ~3.8!# and a @Eq. ~3.9!#. But
for it to be a stable solution we require all of the eigenvalu
of the resultingLu to have a negative real part~except for the
one eigenvalue that is always zero, as required forLu to be
normpreserving!. It is not difficult to find these eigenvalues
and in terms ofu they are

2g/2,2g/2,2g cos2u. ~3.12!

Evidently the stateuu& will be stable for allu exceptu5
6p/2. That is, all states are stable except those on the e
tor. This is contrary to the conclusion of HMH@15#, based
on a linearized stability analysis, that ‘‘long-term stabili
of . . . inverted states~i.e., states in the upper-half-plane!
cannot be achieved.’’ We emphasize that our stability ana
sis contains no approximations.

In hindsight, the lack of stability for pure states on t
equator could have been predicted from expressions~3.8!
and~3.9!. As discussed above and shown in Fig. 3, the val
for driving and feedback foru5p/2 are the same as thos
for u52p/2. This means that bothr5up/2&^p/2u and r
5u2p/2&^2p/2u are solutions ofLur50 for u5p/2 or
2p/2. By linearity, any mixture of up/2&^p/2u and
u2p/2&^2p/2u will be a solution also. Hence any deviatio
away from one of these pure states will not necessarily
suppressed, and the system lacks stability. With random
ternal perturbations, the system will eventually reach
equal mixture ofup/2&^p/2u andu2p/2&^2p/2u, which is a
state withr 50 ~minimum purity!. This is why we have plot-
ted a value ofr 50 in Fig. 3 for uuu5p/2. We also plotr as
a function ofu in Bloch space in Fig 2, giving the locus o
states that can be stabilized by feedback. This can comp
to the locus of the mixed states that are accessible by dri
alone. We will return to the stability issue in the context
stochastic dynamics in Sec. V.
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IV. FEEDBACK WITH NONUNIT-EFFICIENCY
DETECTION

We have seen that the stochastic master equation is a
useful representation of a quantum trajectory, as it allows
unconditioned~deterministic! master equation to be derive
easily, and this latter equation is all that is required for
completely rigorous stability analysis. The SME is also s
perior to the SSE in that it allows inefficient detection to
described. In a real experiment this has to be taken into
count. The effect of nonunith on feedback in the presen
system is of interest both in itself, and because of the
treme nonlinearity of the system dynamics as compared
other quantum optical feedback systems such as consid
in Ref. @8#.

As explained in Ref.@18#, the homodyne photocurren
from a detection scheme with efficiencyh is

I ~ t !5Ag^sx&c~ t !1j~ t !/Ah. ~4.1!

Here we have used a normalization such that the determ
istic part does not depend onh. The effect of decreased
efficiency is increased noise. This means that we can re
the same feedback Hamiltonian as above@Eq. ~3.1!#, without
changing the significance of the feedback parameterl. The
SME with h,1, including feedback, is@8#

drc5dtgD@s#rc2 i dta@sy ,rc#2 i dtl@sy ,src1rcs
†#

1dt~l2/gh!D@sy#rc1dW~ t !H
3@Aghs2 ilsy /Ah#rc . ~4.2!

The no-feedback SME, analogous to Eq.~2.21!, can be ob-
tained simply by settingl50, and was derived in Ref.@18#.

Once again, it is easiest for the moment to just consi
the ensemble-average evolution by averagingdW to zero.
The Lindblad form of the resulting master equation is

ṙ52 i @asy ,r#1D@Ags2 ilsy#r1~l2/h!D@sy#r.
~4.3!

We do not knowa priori what values ofl anda to choose
to give the best results with inefficient detection, as the S
analysis in Sec. III A obviously does not apply. Hence w
simply solve for the stationary matrix in terms ofa andl.
Using the Bloch representation we find

xss524ah2~g12Agl!/D, ~4.4!

yss50, ~4.5!

zss52Agh~Ag12l!~gh14Aghl14l2!/D, ~4.6!

where

D5g2h216g3/2h2l12gh~314h!l2116Aghl3

18~a2h21l4!. ~4.7!

The question now arises, what do we mean by ‘‘best resu
for the feedback system? We cannot hope anymore to
0-5
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JIN WANG AND H. M. WISEMAN PHYSICAL REVIEW A 64 063810
duce stable pure states anywhere on the Bloch sphere. H
ever, we can pick a directionu on the Bloch sphere and as
how close can we get to a pure state? That is, we use
radius r in Eqs. ~2.6! and ~2.7! as the quantity to be maxi
mized, for eachu. From these two equations we have

tanu5xss/zss. ~4.8!

From Eqs.~4.4! and ~4.6! we can immediately find the de
sired driving in terms ofl andu as

a5
Agh~Ag12l!~gh14Aghl14l2!tanu

4h2~g12Agl!
. ~4.9!

The aim is then, for eachu, to find the feedbackl that
maximizes

r 25xss
2 1zss

2 . ~4.10!

This was done numerically usingMATLAB .
The results of our calculations are shown in Fig. 4, wh

we plot the locus in Bloch space of the best~most pure!
stationary states that can be achieved by feedback f
nonunit-efficiency detection. We use a variety of values ofh.
A number of points are worth noting. First, and most ob
ously, the degree of purity~measured by ther, the distance
from the origin! decreases withh. Second, the gap at th
equator forh51 quickly widens, so that the purity of th
best states withu close top/2 is small. Third, the purity of
the best states in the upper-half of the Bloch sphere is
fected much more by loss of detection efficiency than th
in the lower-half. Fourth, in the limith50, the best solu-
tions correspond to the no-feedback solutions shown in
2. This is not surprising, since withh50 the photocurrent
contains no information about the system~as the noise is
infinitely large! and hence there is no point doing feedba
Since the stationary states with no feedback are confine
the lower-half of the Bloch sphere, this explains why the b

FIG. 4. Locus of the solutions to the Bloch equations with o
timal feedback for different values of detector efficiencyh. From
the outside in, we haveh51, 0.8, 0.6, 0.4, 0.2, 0.
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states with feedback in the lower-half are less affected ah
decreases than those in the upper-half.

For the particular valueh50.8 we plot in Fig. 5 the val-
ues ofa andl ~as well as purity, quantified asr 2) vs u. By
comparing this plot with Fig. 3 one obtains some idea of
effect of inefficient detection. A number of features rema
the same. First,a is antisymmetric inu, while l is symmet-
ric. Recalling that the deterministic part of the feedback
proportional tol^sx&c , the feedback itself is actually anti
symmetric as well as the driving. Second, the magnitude
the feedback is zero foruuu5p ~the ground state! and in-
creases monotonically to a maximum ofAg at u50 ~in the
direction of the excited state!. Third, the driving is zero at the
ground state and atu50, and also changes sign as o
passes through the equatorial place. The most obvious di
ence between the parameters forh51 and those forh
50.8 is that the latter have a discontinuity atuuu5p/2. The
feedback parameterl jumps as one crosses the equator
plane, while the drivinga asymptotes to1` on one side
and2` on the other. These extreme variations in the drivi
do not prevent the best purity from approaching zero in
equatorial plane.

V. STOCHASTIC DYNAMICS

A. Stochastic Bloch equations

So far we have considered the stochastic conditioned
namics for the system state in order to derive the parame
l anda such that forh51 those dynamics are banished
the steady state. In this section we will consider them
more detail, highlighting the difference between theh51
case and theh,1 case, and also looking in more detail
the special case ofuuu5p/2. The most convenient way to
treat the stochastic dynamics in general is through the
chastic Bloch equations~SBE!. These are simply the stocha
tic equations for the conditioned Bloch vector, defined by

-
FIG. 5. Plot of the optimal driving (a, solid! and feedback (l,

dashed! required to produce the most pure state with Bloch angleu.
For this plot we have setg51 so thata andl are dimensionless
The purity obtained is also plotted (r 2, starred!.
0-6
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rc5
1
2 ~ I 1xcsx1ycsy1zcsz!. ~5.1!

From the SME including feedback~4.2!, we find

S dxc

dyc

dzc

D 5dtS 2g/222k 0 2a

0 2g/2 0

22a 0 2g22k
D S xc

yc

zc

D
2dtS 0

0

2lAg1g
D 1dW~ t !

3S 2Aghxc
21~Agh12l/Ah!zc1Agh

2Aghxcyc

2~Agh12l/Ah!xc2Aghxczc

D ,

~5.2!

wherek5l2/h1lAg. If we ignore the final~noise! term,
we get the Bloch equations from the Master equation~4.3!.

B. Unit efficiency

In the caseh51, considered in Sec. III, both the dete
ministic and stochastic dynamics disappeared in the ste
state for the appropriate choice ofa and l. Because the
stationary solution of the SSE was a unique pure state,
was necessarily also the stationary solution of the ma
equation found by averaging over the noise in the equiva
SME. Thus there was no distinction between the uncon
tioned and conditioned states. There are two exception
this lack of distinction. The first is in the transients, befo
the system reaches its steady state. The second is fo
special caseuuu5p/2. In this section we investigate thes
exceptions.

To investigate these exceptions, we have to consider
stochastic dynamics as described by the stochastic Sc¨-
dinger equation~2.16!. Stochastic Schro¨dinger equations
have been used for some time now as an effective nume
tool to solve the time evolution of the state matrix for
open system@20,21#. Here we are interested in the stochas
Schrödinger equation because it generates a single-quan
trajectory that represents the actual evolution of a sys
undergoing continuous measurement of its environment. T
is of fundamental importance in understanding open qu
tum system behavior, as features of a single realization
measurement process can be obscured by Master equ
methods, which averages over the individual realizations

First, the transient behavior was simulated using the S
with h51. We chose the initial state to be the ground sta
and evolved the system stochastically fromt50 to t
510g21. With this choice of initial condition,yc50 for all
time. We verified that in each trajectoryxc

21zc
251 to a good

approximation~indicating a pure state!, but that the ensemble
averages over many trajectories

x5E@xc#, z5E@zc# ~5.3!
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obey the deterministic Bloch equations. A typical trajecto
for u5p/6 is shown in Fig. 6~a!. We see that the initial
evolution is very erratic, but that on a time scale of a fe
g21, the system relaxes towards a steady state that is
and stationary. Byt510g21 the system is locked in a stabl
pure state for all intents. We have also illustrated anot
typical trajectory in Bloch space, in Fig. 7.

It is easy to verify that by puttingh51 and

FIG. 6. Typical quantum trajectories for optimal feedback w
h51, shown byxc ~pluses! andzc ~dots! as functions of time.~a! A
single trajectory foru5p/6 and~b! two trajectories foru5p/2.

FIG. 7. Typical quantum trajectories in Bloch space fort
P@0,10g21# under optimal feedback foru5p/6, starting at the
ground state. The pluses are forh51 and the dots forh50.8. The
locus for the deterministic stationary states forh50.8 are also
shown; the relevant state for this quantum trajectory is at the in
section of the locus and the ray atu5p/6. Note that the quantum
trajectory forh50.8 wanders around this average position, wh
that for h51 stops precisely at the desired pure steady state.
0-7
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~xc ,yc ,zc!5~sinu,0,cosu! ~5.4!

on the right-hand side of the SBE~5.2!, we obtain complete
cancellation. If we wish, we can follow HMH and separa
the noise term into the contribution from feedback~propor-
tional to l) and the contribution present even without fee
back ~the rest!. We interpret the latter stochasticity as bei
due to the quantum measurement we are making, with
underlying probabilistic nature. Obviously the fluctuatio
due to measurement is canceled by the feedback, as H
point out. It is equally important that the deterministic d
namics are also canceled at this point.

The story for the special caseu5p/2 is quite different.
For this case the SBE’s are

S dxc

dyc

dzc

D 5dtS 0 0 0

0 2g/2 0

0 0 2g/2
D S xc

yc

zc

D 1Ag dW~ t !

3S 12xc
2

2xcyc

2xczc

D . ~5.5!

Here the three eigenvalues in Eq.~3.12! are clearly evident.
Both zc andyc will decay to zero~as required foru5p/2),
and their noise terms vanish at that point. By contrast,
equation forxc is independent of the others, and is pure
stochastic:

dxc5Ag dW~ t !~12xc
2!. ~5.6!

Clearly the equatorial pure states withxc561 are stationary
solutions to this problem. Also, the system will tend to one
these states. We can see this by calculating

dE@xc
2#5gdt E@~12xc

2!2#, ~5.7!

which is always positive. That is, on averagexc
2 always in-

creases. But it is also clear thatxc has no preference to go t
either of these states. Hence they are not stable. The
semble averagex is unchanging under this evolution. Thus
perturbation that moves the state fromxc51 to xc512e
say, will result in a proportione/2 of the states ending up a
xc521, and a proportion 12e/2 ending up atxc51.

We have illustrated these features by showing two typ
trajectories in Fig. 6~b!. Once again, the initial evolution i
highly erratic, but the system reaches a fixed point on a t
scale of a fewg21. However, with the same initial conditio
~the ground state!, one trajectory ends up atxc51 and the
other atxc521.

C. Nonunit efficiency

In the unit-efficiency case the stationary solution of t
master equation is~except foruuu5p/2) a pure state. This is
very special in that in means that every unraveling of
master equation as a SSE or SME must end up in this s
pure state also. For nonunit efficiency we have found
most pure stable state for eachu. In this case we must use
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SME to unravel the master equation, since the conditio
state will not be pure in general, because of the ineffici
detection. Since the deterministic steady state is not p
~except foruuu5p), the quantum trajectories need not e
up in this state. Instead, the quantum state in an individ
trajectory may continue to evolve stochastically even wh
the system is in steady state, and the equivalence to the
terministic evolution may hold only on average. On the oth
hand, it is also possible that the quantum trajectories all
up in the deterministic steady state, since we expect the c
ditioned state to be mixed anyway.

It turns out that with the optimal values ofa and l de-
fined in Sec. IV, the actual behavior is the first option d
scribed above. That is, the system state continues to
stochastically in the long-time limit, but is constrained
that the time-averaged state is equal to the solution of
deterministic master equation. We show this in Bloch spa
Fig. 7, for h50.8 andu5p/6. We see that the amount o
randomness in the system state in the long-time limit is qu
large even for fairly highh.

This result suggests another question: Would a differ
choice forl be able to reduce, or even eliminate, the ra
domness in the steady-state quantum trajectory, even tho
it would necessarily be at the expense of the purity of
deterministic stationary solution?@Recall that for a givenl,
a is still necessarily fixed by Eq.~4.9!.# To test this idea we
tried choosingl based not on maximizingr 2 as in Eq.
~4.10!, but on minimizing

Nu~l!5US 2Aghxss
2 1~Agh12l/Ah!zss1Agh

2Aghxssyss

2~Agh12l/Ah!xss2Aghxsszss

D U 2

.

~5.8!

That is, we minimize the noise terms in the SBE Eq.~5.2!.
Note that we have replaced the conditioned Bloch variab
xc , etc. with the deterministic stationary solutionsxss, etc.,
and that the dependence of these stationary solutions oa
and l add a further, implicit, dependence onl to Nu(l).
This is a sensible procedure if the aim is realizable, and
noise in the solutions is reduced or eliminated so that
conditioned states are approximately or exactly equal to
deterministic stationary solution.

It turns out that this procedure cannot significantly redu
the amount of steady-state randomness in the quantum
jectories below that resulting from minimizing the determi
istic stationary purity. In fact, for all values ofh we consid-
ered, the variation ofl ~as a function ofu) based on
minimizing the noise was indistinguishable by eye from th
based on maximizing the purity. This is not too surprisin
but could not have been predicteda priori.

VI. CONCLUSION

We have given a rigorous analysis of the antidecohere
feedback scheme proposed by Hofmannet al. @15#. They
proposed modulating the driving of a two-level atom usi
the instantaneous homodyne photocurrent, in order to st
0-8
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lize the atom in an arbitrary known pure state. We ha
shown that, for detection efficiencyh51, the pure states
thus produced are stable. This is contrary to the conclus
of HMH, that only pure states in the lower half of the Bloc
sphere would be stable. The one exception we found is
pure states on the equator. Although they are fixed point
the dynamics, they are not stable. A small perturbation aw
from one fixed pure state leads to a proportionally sm
fraction of the ensemble ending up in the diametrically o
posite pure state.

It is nevertheless possible to obtain an asymmetry
tween the upper and lower halves of the Bloch sphere, re
niscent of the conclusion of HMH, if one considers detect
efficiencies less than one. In this case, it is no longer poss
to stabilize the system in a given pure state, so we choose
feedback and driving so that the solution of the master eq
tion ~including feedback! is as close as possible to a give
pure state. We find that the purity~which measures this
closeness! of states thus produced decays to zero ash de-
creases to zero, for states in the upper half of the Bl
sphere. By contrast, those in the lower half do not deca
zero. This is readily understandable since in the absenc
feedback~which is the situation that must prevail when th
detection efficiency goes to zero! the master equation with
driving alone has stationary solutions in the lower half pla
with nonzero purity. The purity decays most rapidly withh
for states near the equator, which is unsurprising given
instability of states on the equator even forh51.

In the nonunit-efficiency case, the state of the system c
ditioned on the homodyne measurement results continue
evolve stochastically even in the long-time limit, where t
ensemble-average evolution has reached the desired m
pure state. Moreover, it seems that any other choice of d
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ing and feedback will result in more, not less, randomnes
the steady-state quantum trajectory.

Our results are significant in a number of ways. First, th
show the power of the quantum trajectory and master eq
tion techniques developed in Refs.@4,8,5#. Those techniques
were particularly useful for illuminating subtle questions r
garding the stability of pure states, and for treating inefficie
detection. Second, the physical system~the two-level atom!
may one day find application as a quantum bit in quant
information technology@22#. In that eventuality, the ability to
stabilize the atom against dissipation in an arbitrary~known!
pure state may be useful. Third, the system is a simple
nontrivial example of quantum feedback in a nonlinear s
tem~the two-level atom!. Thus the effectiveness of feedbac
and in particular the influence of nonunit-efficiency detecti
on this effectiveness, is of interest for what it may tell
about other more complicated nonlinear systems.

In this last context, it would be of interest to also consid
the effect of non-Markovian feedback; i.e., feedback with
time delay or nonflat loop response function. This is mu
more difficult to treat than Markovian feedback because
Lindblad master equations derived in Refs.@4,8,5# do not
apply. Analytical solutions for non-Markovian feedback a
possible for linear systems@8,23#. For a nonlinear system
like the two-level atom, numerical simulations, or differe
analytical approaches, are necessary. This is an issue we
to explore in future work.
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