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Feedback-stabilization of an arbitrary pure state of a two-level atom
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Unit-efficiency homodyne detection of the resonance fluorescence of a two-level atom collapses the quantum
state of the atom to a stochastically moving point on the Bloch sphere. Recently, Hofmann, Mahler, and Hess
[Phys. Rev. A57, 4877 (1998] showed that by making part of the coherent driving proportional to the
homodyne photocurrent one can stabilize the state to any point on the bottom-half of the sphere. Here we
reanalyze their proposal using the technique of stochastic master equations, allowing their results to be gen-
eralized in two ways. First, we show that any point on the upper- or lower-half, but not the equator, of the
sphere may be stabilized. Second, we consider nonunit-efficiency detection, and quantify the effectiveness of
the feedback by calculating the maximal purity obtainable in any particular direction in Bloch space.
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[. INTRODUCTION (this is what was better than they realize@he only states
that cannot be stabilized, in the sense that an arbitrary initial
Although classical models of feedback schemes haveétate would not always end up in the desired state, are those
been used for a long time to control dynamical noise, arPn the equator of the Bloch sphere; that is, those that are
analogous quantum theory of feedback has been develop&dlual superpositions of excited and ground states.
only in the last 15 yearkl—7]. Recently there has been con- Our second generalization is to consider how effective
siderable interest in quantum feedback as a way to fight dfeedback is withp<<1; i.e., with nonunit-efficiency detec-
coherence in isolated quantum systems, using the approagﬁn. In this case it is not possible to stabilize the atom at any
of Refs.[4,5]. The central idea is to use a continuous meaJure state, except the ground state, which is trivially stable
surement record, whose existence is due to the coupling d¥y setting the driving and feedback to zero. Instead, we aim
the system to a bath, to control the dynamics of the system s Produce a steady state that is as close as possible to a
as to counteract the noise introduced by that bath and posdg#iven pure state. For the two-level atom, this is equivalent to
bly other baths. For example, it has been suggested as a wiying to create a state that is as pure as possible in a par-
to create optical squeezed staf83, to create micromaser ticular direction in Bloch space. Not surprisinglgiven the

number statef9], to correct errors in quantum bif&0], and ~ above resu)t we find that states near the equator cannot be
to protect optical and microwave Schinger cat states Well protected against decoherence. We also find an echo of

against dissipatiop11-13. the distinction HMH found between the upper- and lower-

Decoherence in quantum systems can be loosely defindtplves of the Bloch sphere, in that states in the upper-half
as loss of purity. Therefore the ultimate success in usingPhere are affected much more by loss of detection efficiency
feedback to fight decoherence would be to create an arbitraipat those in the lower-half.
stable pure state in the presence of dissipation. This goal was The paper is organized as follows. In Sec. Il we present
rea”zed(better even that they rea”z)etjy Hoffman, Mabhler, the m0(318| of a driven two-level atom, inCIUding the stochas-
and HessHMH) [14,15 for a very simple system: a reso- ti¢ Schralinger equation for unit-efficiency homodyne detec-
nantly driven two-level atom. They showed that by using thetion. In Sec. Il we use this equation to derive the driving and
photocurrent derived from unit-efficiency homodyne detecfeedback required to stabilize the atom in an arbitrary pure
tion of the atom’s fluorescence to control part of the drivingstate. These results agree with those of HMH. However, our
field of the atom, it is possible to exactly cancel the noisestability analysis disagrees substantially with theirs. In Sec.
introduced by the electromagnetic vacuum field when thdV we present entirely new analytical results relating to the
atom is in a particular pure state. By choosing the drivingeffect of nonunit-efficiency detection. In Sec. V we give nu-
strength and feedback strength appropriately, any pure stafgerical simulations of the stochastic evolution equations, il-
on the Bloch sphere may be picked out, although HMHlustrating the issues discussed in the preceding two sections.
claimed that only pure states on the lower-half of the spherén Sec. VI we summarize and interpret our results, explain

would be stable under their scheme. their significance, and discuss the possibility of future work.
HMH chose to describe detection and feedback in their
system in a way different fronfbut equivalent tpthe stan- Il. HOMODYNE DETECTION

dard approach in Ref$4,5]. In this paper we reformulate
their theory using the latter approach. This has the advantage
of enabling a number of generalizations of their results. First, Consider an atom, with two relevant levé|g),|e)} and
we revisit the question of stability and find that, contrary tolowering operatorr=|g){e|. Let the decay rate bg, and let
the claims of HMH, the states in the upper-half of the Blochit be driven by a resonant classical driving field with Rabi
sphere can be stabilized as well as those in the lower-haffequency 2v. This is as shown in Fig. 1, where for the

A. Master equation
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FIG. 2. Locus of the solutions to the Bloch equations. The el-
lipse in the lower-half plane is the locus for the equations with
driving only. The full circle(minus the points on the equatas the

locus for the equations with optimal driving and feedback, as de-
fined in Sec. Ill.

FIG. 1. Diagram of the experimental apparatus. The laser beam .
is split to produce both the local oscillat@rand the fieldx,, which in the x-z plane on the Bloch sphere. Thus, for this purpose,

is modulated using the curremft). The modulated beam, with W€ Can reparametrize the relevant states usiagd 6 by
amplitude proportional ta.+\1(t), drives an atom at the center of

the parabolic mirror. The fluorescence thus collected is subject to X=rsin6, (2.6
homodyne detection using the local oscillator, and gives rise to the .
homodyne photocurren(t). Z=r cos#, 2.7

moment we are omitting feedback by setting 0. This sys- wherege[—m,m]. Since

tem is well approximated by the master equation T p?2]=1(1+x2+y2+73) 2.9
p=yDlolp—ialoy.p], (21 s a measure of the purity of the Bloch sphere,
= x>+ 72, the distance from the center of the sphere, is also

where the Lindblad16] superoperator is defined as usual ;3 measure of purity. Pure states correspond 4dl and

D[A]B=ABA'—{ATA,B}/2. In this master equation we maximally mixed states to=0.

have chosen to define the,=o+o' and o,=ioc—io" The locus of solutions in this plart@n ellipsg is shown
quadratures of the atomic dipole relative to the driving field.;,, Fig. 2. Sinceze<0, all solutions are in the lower-half of
The effect of driving is to rotate the atom in Bloch spaceihe Bloch sphere. That is, we are restricted| &> /2.
around they axis. The state of the atom in Bloch space is asq it is evident that the smalldp) is (i.e., the more ex-
described by the three-vector,§,z). Itis related to the state  jied the atom isthe smaller is (i.e., the less pure the atom

matrix p by is). At |6|=r, the stationary state is pure, but this is not
. surprising as it is simply the ground state of the atom with no
p=z(l+xoxtyoy+za,). (22 driving. As |6|— /2 we haver—0. This can only be ap-
Itis easy to show that the stationary solution of the masteproached asymptotically d&|— . In summary, the station-
equation(2.1) is ary states we can reach by driving the atom are limited, and
generally far from pure.
—4day
B 2.3 B. Homodyne detection
Now consider subjecting the atom to homodyne detection.
V=0, (2.4  Asshown in Fig. 1, we assume that all of the fluorescence of
the atom is collected and turned into a be@apresented in
2 Fig. 1 by placing the atom at the focus of a mijrdgnoring
zss=—y. (2.5 the vacuum fluctuations in the field, the annihilation operator
y*+8a? for this beam is\'yo, normalized so that the mean intensity
y(a'o) is equal to the number of photons per unit time in
For vy fixed, this is a family of solutions parametrized by the the beam. This beam then enters one port of a 50:50 beam
driving strengtha e (—,>). All members of the family are splitter, while a strong local oscillatgg enters the other. To
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ensure that this local oscillator has a fixed phase relationship E(t)dt=dW(t), (2.12

with the driving laser used in the measurement, it would be

natural to utilize the same coherent light field source in thean infinitesimal Wiener increment defined 9]

driving process and as the local oscillator in the homodyne )

detection. This is as shown in Fig. 1. dW(t)"=dt, (213
Again ignoring vacuum fluctuations, the two field opera-

tors exiting the beam splitteb, andb,, are E[dW(1)]=0. (2.14

_ Ak Since the stationary solution of the master equation confines
by [\/;U (=1 B]/\/E' 2.9 the state to the-z plane, it makes sense to follow HMH by
When these two fields are detected, the two photocurrent%ettmgd):o' In that case,
produced have means 1(t) = Vo) ol t) + E(L). (2.1

Le={|BI2— (—D*yBa "+ \yoB*)+ yo'a)2. (210  Thatis, the deterministic part of the homodyne photocurrent
is proportional tox.=(o).. This should be useful for con-
The middle two terms represent the interference between thgolling the dynamics of the state in thez plane by feed-
system and the local oscillator. back, as we will consider in Sec. Ill. Of course, all that really
Equation(2.10 gives only the mean photocurrent. In an matters here is the relationship between the driving phase
individual run of the experiment for a system, what is re-and the local oscillator phase, not the absolute phase of ei-
corded is not the mean photocurrent, but the instantaneouger.
photocurrent. This photocurrent will vary stochastically from  The conditioning process referred to above can be made
one run to the next, because of the irreducible randomness xplicit by calculating how the system state changes in re-
the quantum measurement process. This randomness is rgonse to the measured photocurrent. Assuming that the state
just noise, however. It is correlated with the evolution of theat some point in time is puréwhich will tend to happen
system and thus tells the experimenter something about thgecause of the conditioning anywaits future evolution can
state of the system. In fact, if the detection efficiency is perbe described by the stochastic Salirger equationSSB
fect, the system is collapsed into a pure state, rather than thje7 19
mixed state, which is the solution of the master equation. The
stochastic evolution of the state of the system conditioned o] (t))=A4(t)| (1) Ydt+B(t)]| (1) ydW(H). (2.1
the measurement record is called a “quantum trajectory”
[17]. Of course, the master equation is still obeyed on averThis is an Ifostochastic equatiofi9] with a drift term and a
age, so the set of possible quantum trajectories is called atiffusion term. The operator for the drift term is
unraveling of the master equatiph7]. It is the conditioning
of the system state on the photocurrent record that allow _ Y _ 2 .
feedback of the photocurrent to control the system state. Th%‘cm_ 2[ olot{ogdDo—(ogcO/]-iaoy, (.17
application of an appropriate feedback loop to this continu-
ous measurement procei$s be considered in Sec. Jiteal- ~ While that for the diffusion is
izes an effective “reservoir engineering” to control the sys- .
tem at the quantum level. B(t) =V o—(o)dD)/2]. (2.18
The ideal limit of homodyne detection is when the local
oscillator amplitude goes to infinity, which in practical terms
means 3|2>y. In this limit, the rate of the photodetections
goes to infinity and thus it should be possible to change the _
point process of photocounts into a continuous photocurrent (0D = (gl o (D). 219
with white noise. Also, the only relevant quantity is the dif- As stated above, on average the system still obeys the master
ference between the two photocurrents. Suitably normalizesquation(2.1). This is easiest to see from the stochastic mas-
this is[17,18 ter equation(SME), which allows for impure initial condi-
O 1,(t) tions. The SME can be derived from the SSE by constructing
—I2

1 —i i
(=g~ e Molrelo) b in. @11 ) = 16l e + Al 8.

Both of these operators are conditioned in that they depend
on the system average

A number of aspects of EqR.11) need to be explained. First,
d=argp, the phase of the local oscillatédefined relative
to the driving field. Second, the subscript ¢ means condi-
tioned and refers to the fact that if one is making a homo- — ;

dyne measurement then this yields informationgabout the dpc=dtyDlolpe Idta[ay'p°]+dw(t)\/;H[U]’Z§'23
system. Hence, any system averages will be conditioned on ’

the previous photocurrent record. Third, the final teftt)  where H[A]B=AB+BA'—Ti{AB+BA']. Although this
represents Gaussian white noise, so that has been derived assuming pure initial conditions, it is valid

using the Iforule (2.13), and then identifyind ) ( with
pc. The result is
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for any initial conditions[18]. This is also an [teequation, 1
which means the evolution for the ensemble average state r
matrix

p(O)=E[p(t)] (2.22 |

is found simply by averaging over the photocurrent noise a}é o

term by using Eq(2.14). This procedure yields the original :;.

Master equatior§2.1) again. The term “quantum trajectory” <

can be applied to any stochastic conditioned evolution of the . .
system, be it described by a SSE or SME. -0.5f N /

IIl. FEEDBACK WITH UNIT-EFFICIENCY DETECTION AN A .

A. SSE including feedback 3 2 a 0 1 2 3

We now include feedback onto the amplitude of the driv-

ing on the atom, proportional to the homodyne photocurrent, FIG. 3. Plot of the optimal driving4, solid) and feedbackX,
as done by HMH. This is as shown in Fig. 1, where theda}sheai required to produce a pure state with_ Bloch ang@lefFor
driving field passes through an electro-optic amplitudeth's_ pIotzwe have _sey=1 so thata and\ are dimensionless. The
modulator controlled by the photocurrent, yielding a field PUrity (r*, starredis one except fof =+ /2, where the feedback
proportional toa+ \1(t). This means that the feedback can 'S Nt stable.
be described by the Hamiltonian

(Vyo—iray)|6)=|6), (3.6

Hsz}\O'yl(t). (31)

_ 4t ; i
In this paper we are assuming instantaneous feedback, where (=o' o tsinbo)—i2aa,

the time delay in the feedback loop is negligible. +My(—isinbo,—2070)]|0)x|6), (3.7
Since the homodyne photocurref®.11) is defined in Y

terms of system averages and the na$t), the SSE in- \yhere we have puto,)(t) equal to sir, its value for the
cluding feedback can still be written as an equation of thestate|0>
form (2.16). The effect of the feedback Hamiltonian can be '

Solving the first equation easily yields the condition
shown[4,8] to change the drift and diffusion operators to g g vy

Vy

Adt)= 21~ ol o+ (oo () (1)/4] A= (1+cosh). 38

This is equivalent to the feedback condition derived by
HMH, stated as Eq(35) of Ref.[15]. Substituting this into
the second equation gives, after some trigonometric manipu-

Bc(t)= \/;[0'_<0'x>c(t)/2]_i)\0'y- (3.3 lation, the second condition

)
—iaoyty V= i{a)dt)oy—20 0] =\2/2, (3.2

Say we wish to stabilize the pure state with Bloch arfjlas Y
defined in Eqs(2.6) and(2.7), with r=1 of course. In terms a= Zsmacose. 3.9
of the ground and excited states, this state is

p p Again, this agrees with the driving strength of HMH, given
|9>:COQ7_|9>+Sin_|g>_ (3.4  as Eq.(44) of Ref. [15]. It is worth emphasizing that the
2 derivation given here is entirely different in detail from that
of HMH, and so is an independent verification of their result.
These functions are plotted in Fig. 3. Note that there are two
points with the same values of bokhand «, at 6= * 7/2.

Now for this state to be stabilized we must have
[ALt)dt+By(t)dW(t)]| )| 6). (3.5

We cannot say the left-hand side should equal zero because a B. Stability

change in the overall phase still leaves the physical state The preceding derivation seems to show that any pure
unchanged. However, we can work with this equation, andtate can be stabilized by a suitable choice of driving and
simplify it by dropping all terms proportional to the identity feedback. Indeed our derivation proves that that if one pre-
operator inA.(t) andB(t). We can also demand that it be pares a state in exactly the pure state one desires, then the
satisfied for the deterministic and noise terms separately, béeedback scheme of HMH, which we have analyzed, will
causedW(t) can take any value. This gives the two equa-keep the system in that state. However, to discuss stability
tions we need to know what will happen for states that are not
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initially in the desired state. To deal with this it is much more IV. FEEDBACK WITH NONUNIT-EFFICIENCY
convenient to use the SME rather than the SSE, as will be- DETECTION

come apparent. . L
The SME can be constructed from the SSE in the same We have seen that the stochastic master equation is a very

Useful representation of a quantum trajectory, as it allows the
way as before. The result j¢,8] unconditioned(deterministi¢ master equation to be derived

dp.=dtyD[a]p.—idta[oy,pc]—idt\[ oy, 0pct peo'] easily, and this latter equation is all that is required for a
Y Y completely rigorous stability analysis. The SME is also su-
+dt()\2/‘y)D[0'y]pc+ dWI(t)H[ \/;O'—i)\oy]pc. perior to the SSE in that it allows inefficient detection to be

(3.10 described. In a real experiment this has to _be taken into ac-
count. The effect of nonuniy on feedback in the present

Also as before, this is an ltstochastic equation, which system is .Of interest both in itself, and _because of the ex-

' ' treme nonlinearity of the system dynamics as compared to

means that the ensemble average can be found simply b . .
dropping the stochastic terms. This time, the result is not the hs;quJSa]lntum optical feedback systems such as considered

original master equation, but rather the feedback-modified” As explained in Ref[18], the homodyne photocurrent
master equation from a detection scheme with efficienayis

p=—ilaoy,pl+DVyo—iNa,lp=Lp. (3.1D ()= V() O)+ &7, (4.)

Here we have used a normalization such that the determin-
istic part does not depend on. The effect of decreased
efficiency is increased noise. This means that we can retain
the same feedback Hamiltonian as abfig. (3.1)], without
changing the significance of the feedback parameterhe
SSME with <1, including feedback, i3]

Here we have put the Liouvillian superoperatbin a mani-
festly Lindblad form.

Now we have shown already that the pure state
=]6)( 8| must be a solution of this master equation, for the
appropriate choices of [Eqg. (3.8)] and « [Eq. (3.9)]. But
for it to be a stable solution we require all of the eigenvalue
of the resultingC, to have a negative real paexcept for the

_ ; ’ dp.=dtyD| —idt P —idtN[oy,0pc+peo’
one eigenvalue that is always zero, as required(fpto be pe=dtyDlolpe aloy.pl Loy.apetpeo]

normpreserving It is not difficult to find these eigenvalues, +dt()\2/y7))D[0'y]pc+ dW(t)H
and in terms off they are _
X[\/yna'—l)\a'y/\/;]pc. 4.2
—¥2,=yl2,~y coso. (312 The no-feedback SME, analogous to Eg.21), can be ob-
) ) tained simply by setting =0, and was derived in Ref18].
Evidently the state ) will be stable for all6 exceptf= Once again, it is easiest for the moment to just consider

= /2. That is, all states are stable except those on the equghe ensemble-average evolution by averagitWy to zero.
tor. This is contrary to the conclusion of HMFL5], based  The Lindblad form of the resulting master equation is
on a linearized stability analysis, that “long-term stability
of ... inverted statesi.e., states_in the upper-ha_lf—pla)ne p=—ilaoy,,p]+D[ \/;,U_i)\gy]er()\Z/,])p[gy]p_
cannot be achieved.” We emphasize that our stability analy- 4.3
sis contains no approximations. o

In hindsight, the lack of stability for pure states on the We do not knowa priori what values o anda to choose
equator could have been predicted from expressi@® to give the best results with inefficient detection, as the SSE
and(3.9). As discussed above and shown in Fig. 3, the valuegnalysis in Sec. Ill A obviously does not apply. Hence we
for driving and feedback fop=m/2 are the same as those Simply solve for the stationary matrix in terms afand\.
for 6=—m/2. This means that botp=|7/2)(w/2| andp  Using the Bloch representation we find
=|—m/2)(—m/2| are solutions ofL,p=0 for 6=m/2 or

— 2
— /2. By linearity, any mixture of |#/2)(/2| and Xss= —4an?(y+2yy\)ID, (4.4
| = 7/2)(— m/2| will be a solution also. Hence any deviation
away from one of these pure states will not necessarily be =0, (4.9

suppressed, and the system lacks stability. With random ex-

ternal perturbations, the system will eventually reach an zs= —yn(\y+2N) (yn+4\ynh +40?)ID, (4.6)
equal mixture of 7r/2){ 7/2| and|— m/2){ — /2|, which is a
state withr =0 (minimum purity). This is why we have plot-
ted a value of =0 in Fig. 3 for| 8| = m/2. We also plot as a9 a2 2 2 3
a function of @ in Bloch space in Fig 2, giving the locus of D=y +6y™ "\ +2y7(3+4m)\ +16\/;77)\

states that can be stabilized by feedback. This can compared +8(a? P+ 1Y), 4.7

to the locus of the mixed states that are accessible by driving

alone. We will return to the stability issue in the context of The question now arises, what do we mean by “best results”
stochastic dynamics in Sec. V. for the feedback system? We cannot hope anymore to pro-

where
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FIG. 4. Locus of the solutions to the Bloch equations with op-

timal feedback for different values of detector efficiengy From FIG. 5. P_|°t of the optimal driving4, solid) and_ feedbackX,
the outside in, we have=1, 0.8, 0.6, 0.4, 0.2, O. dasheglrequired to produce the most pure state with Bloch axgle

For this plot we have sef=1 so thate and\ are dimensionless.

duce stable pure states anywhere on the Bloch sphere. Hovw e purity obtained is also plotted?, starred.

ever, we can pick a directio on the Bloch sphere and ask
how close can we get to a pure state? That is, we use trgiates with feedback in the lower-half are less affected as
radiusr in Egs.(2.6) and (2.7) as the quantity to be maxi- decreases than those in the upper-half.

mized, for eachy. From these two equations we have For the particular valug;=0.8 we plot in Fig. 5 the val-
ues ofa and\ (as well as purity, quantified ag) vs 6. By
tan 0= Xgg/ Zss. (4.8  comparing this plot with Fig. 3 one obtains some idea of the

effect of inefficient detection. A number of features remain
From Egs.(4.4) and (4.6) we can immediately find the de- the same. Firsty is antisymmetric ing, while \ is symmet-

sired driving in terms of and 6 as ric. Recalling that the deterministic part of the feedback is
proportional tox{oy)., the feedback itself is actually anti-
N ) N+ 4\2)tand symmetric as well as the driving. Second, the magnitude of
- Vya(Vy )(27/77 Vo ) . (4.9 the feedback is zero fog| == (the ground stajeand in-
492 (y+2N) creases monotonically to a maximum @ at =0 (in the

direction of the excited stateThird, the driving is zero at the
The aim is then, for eact¥, to find the feedback that ground state and a#=0, and also changes sign as one

maximizes passes through the equatorial place. The most obvious differ-
ence between the parameters fge=1 and those fory
r2=x2+ 2% (410  =0.8is that the latter have a discontinuity|at= /2. The
feedback parametex jumps as one crosses the equatorial
This was done numerically USINgATLAB . plane, while the drivinge asymptotes tot+ o on one side

The results of our calculations are shown in Fig. 4, whereand—oo on the other. These extreme variations in the driving
we plot the locus in Bloch space of the bdgstost pur¢  do not prevent the best purity from approaching zero in the
stationary states that can be achieved by feedback froraquatorial plane.
nonunit-efficiency detection. We use a variety of valueg of
A number of points are worth noting. First, and most obvi-
ously, the degree of puritymeasured by the, the distance V. STOCHASTIC DYNAMICS
from the origin decreases withy. Second, the gap at the
equator forp=1 quickly widens, so that the purity of the
best states witl close tow/2 is small. Third, the purity of So far we have considered the stochastic conditioned dy-
the best states in the upper-half of the Bloch sphere is aframics for the system state in order to derive the parameters
fected much more by loss of detection efficiency than thosa and « such that forp=1 those dynamics are banished in
in the lower-half. Fourth, in the limit)=0, the best solu- the steady state. In this section we will consider them in
tions correspond to the no-feedback solutions shown in Figmore detail, highlighting the difference between the 1
2. This is not surprising, since witlhy=0 the photocurrent case and they<1 case, and also looking in more detail at
contains no information about the systdas the noise is the special case dfg|=m/2. The most convenient way to
infinitely large) and hence there is no point doing feedback.treat the stochastic dynamics in general is through the sto-
Since the stationary states with no feedback are confined fchastic Bloch equation$SBE). These are simply the stochas-
the lower-half of the Bloch sphere, this explains why the bestic equations for the conditioned Bloch vector, defined by

A. Stochastic Bloch equations
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pe= (1 + X0+ Yooy +2,0). (5.1 1f %C_ 2=C0s(n/6) @)

From the SME including feedbadk.2), we find N 0-5; : x=sin(x/6)
o TS
dx, —yI2-2k 0 2a X s .
dy. | =dt 0 —yI2 0 Ve 050
dz, —2a 0 —y—2k Z; 1.‘,_ |
0 0 2 4 6 8 10
t
—dt 0 +dW(t) . . , ,
1F
2\ y+y i x=+1 (b)
Ny +(Nyn+2n izt yn 05«
— '.;‘ * z=0
X - ')’7]chc ) % OE;%‘: :wﬂ.— R At o i omtbrepe P
~(yn+2 M pxe—Jymxez. ek
(5.2 be [ 1
-1 i . . . ,
where k=A% 5+ \/y. If we ignore the final(noise term, 0 2 4 . 6 8 10

we get the Bloch equations from the Master equat®s).

FIG. 6. Typical quantum trajectories for optimal feedback with
e =1, shown b luseg andz, (dotg as functions of time(a) A
B. Unit efficiency gingle trajector));xfco(rg= 77/5)6 and(cb() tw?) trajectories forg= :52)

In the casep=1, considered in Sec. lll, both the deter-
ministic and stochastic dynamics disappeared in the steatypey the deterministic Bloch equations. A typical trajectory
state for the appropriate choice aof and \. Because the for 9=7/6 is shown in Fig. 6a). We see that the initial
stationary solution of the SSE was a unique pure state, thaivolution is very erratic, but that on a time scale of a few
was necessarily also the stationary solution of the mastey~1 the system relaxes towards a steady state that is pure
equation found by averaging over the noise in the equivalenind stationary. By=10y~* the system is locked in a stable
SME. Thus there was no distinction between the uncondipyre state for all intents. We have also illustrated another
tioned and conditioned states. There are two exceptions tgpical trajectory in Bloch space, in Fig. 7.
this lack of distinction. The first is in the transients, before |t js easy to verify that by puttingy=1 and
the system reaches its steady state. The second is for the
special caséf|=m/2. In this section we investigate these 1
exceptions.

To investigate these exceptions, we have to consider the
stochastic dynamics as described by the stochastic”Schro
dinger equation(2.16). Stochastic Schidinger equations
have been used for some time now as an effective numerical
tool to solve the time evolution of the state matrix for an
open systen20,21]. Here we are interested in the stochastic N of
Schralinger equation because it generates a single-quantum
trajectory that represents the actual evolution of a system 9
undergoing continuous measurement of its environment. This _o5}
is of fundamental importance in understanding open quan-
tum system behavior, as features of a single realization of a
measurement process can be obscured by Master equation ’
methods, which averages over the individual realizations. ar 05 0 05 1

First, the transient behavior was simulated using the SBE X
with »=1. We chose the initial state to be the ground state, FIG. 7. Typical quantum trajectories in Bloch space for

and e_vlolve_d the system stochastically from-0 to t _g10,-1] under optimal feedback fof=/6, starting at the
=10y~ ~. With this choice of initial conditiony.=0 for all  ground state. The pluses are fp=1 and the dots for=0.8. The
time. We verified that in each trajectoxy+z-=1to a good |ocus for the deterministic stationary states fgpr=0.8 are also
approximation(indicating a pure stajebut that the ensemble  shown; the relevant state for this quantum trajectory is at the inter-

0.5¢

averages over many trajectories section of the locus and the ray @t w/6. Note that the quantum
trajectory for »=0.8 wanders around this average position, while
x=E[Xc], z=E[z] (5.3 that for =1 stops precisely at the desired pure steady state.

063810-7



JIN WANG AND H. M. WISEMAN PHYSICAL REVIEW A 64 063810

(Xe,Ye,Zo) =(sin6,0,c0s0) (5.4) SME to unravel the master equation, since the conditioned
state will not be pure in general, because of the inefficient

on the right-hand side of the SBB.2), we obtain complete detection. Since the deterministic steady state is not pure
cancellation. If we wish, we can follow HMH and separate (except for| 8| =), the quantum trajectories need not end
the noise term into the contribution from feedb&agpkopor-  up in this state. Instead, the quantum state in an individual
tional to\) and the contribution present even without feed-trajectory may continue to evolve stochastically even when
back (the rest. We interpret the latter stochasticity as beingthe system is in steady state, and the equivalence to the de-
due to the quantum measurement we are making, with iteerministic evolution may hold only on average. On the other
underlying probabilistic nature. Obviously the fluctuation hand, it is also possible that the quantum trajectories all end
due to measurement is canceled by the feedback, as HMHp in the deterministic steady state, since we expect the con-
point out. It is equally important that the deterministic dy- ditioned state to be mixed anyway.

namics are also canceled at this point. It turns out that with the optimal values of and\ de-
The story for the special case= /2 is quite different. fined in Sec. IV, the actual behavior is the first option de-
For this case the SBE’s are scribed above. That is, the system state continues to vary
stochastically in the long-time limit, but is constrained so
dxe 0 ©0 0 Xc that the time-averaged state is equal to the solution of the
dy.|=dt| 0 —y2 0 Ye | +\ydW(t) deterministic master equation. We show this in Bloch space,
dz, 0 0 2 7 Fig. 7, for n=0.8 and6= 7/6. We see that the amount of
Y ¢ randomness in the system state in the long-time limit is quite
1—x§ large even for fairly highy. _ _
This result suggests another question: Would a different
X T XY | (59 choice for be able to reduce, or even eliminate, the ran-
—XcZe domness in the steady-state quantum trajectory, even though

_ ' ' it would necessarily be at the expense of the purity of the
Here the three eigenvalues in H§.12 are clearly evident.  deterministic stationary solutiorfRecall that for a given,
Both z; andy, will decay to zero(as required fod=/2), 4 is still necessarily fixed by Eq4.9).] To test this idea we

and their noise terms vanish at that point. By contrast, theried choosing\ based not on maximizing? as in Eq.
equation forx. is independent of the others, and is purely (4,10, but on minimizing

stochastic: )
e 5 AW (1) 56 Nyt (Nyn+ 20 zest v
Xe=\Y —X5). .
¢ ¢ Ng(N) = VY NXsY'ss
Clearly the equatorial pure states with= =1 are stationary —(Vyn+ 2)\/\/;)XSS— VY NXsZss
solutions to this problem. Also, the system will tend to one of (5.9

these states. We can see this by calculating

57 That is, we minimize the noise terms in the SBE Eg2).

' Note that we have replaced the conditioned Bloch variables
Xc, etc. with the deterministic stationary solutioxg, etc.,
and that the dependence of these stationary solutions on

nd A add a further, implicit, dependence anto N,(\).

his is a sensible procedure if the aim is realizable, and the
noise in the solutions is reduced or eliminated so that the
conditioned states are approximately or exactly equal to the
deterministic stationary solution.

It turns out that this procedure cannot significantly reduce
he amount of steady-state randomness in the quantum tra-
éectories below that resulting from minimizing the determin-
istic stationary purity. In fact, for all values of we consid-
ered, the variation of\ (as a function off) based on
minimizing the noise was indistinguishable by eye from that
based on maximizing the purity. This is not too surprising,
but could not have been predictadoriori.

dE[xZ]= ydt E[(1—x2)?],

which is always positive. That is, on avera;gfealways in-
creases. But it is also clear thathas no preference to go to
either of these states. Hence they are not stable. The e
semble averagr is unchanging under this evolution. Thus a
perturbation that moves the state frop=1 to x;=1—¢
say, will result in a proportiore/2 of the states ending up at
X.=—1, and a proportion * ¢/2 ending up ak.=1.

We have illustrated these features by showing two typica{
trajectories in Fig. @). Once again, the initial evolution is
highly erratic, but the system reaches a fixed point on a tim
scale of a fewy 1. However, with the same initial condition
(the ground stade one trajectory ends up ag=1 and the
other atx.=—1.

C. Nonunit efficiency

In the unit-efficiency case the stationary solution of the
master equation igexcept for| 6| = w/2) a pure state. This is
very special in that in means that every unraveling of the We have given a rigorous analysis of the antidecoherence
master equation as a SSE or SME must end up in this sanfeedback scheme proposed by Hofmeetral. [15]. They
pure state also. For nonunit efficiency we have found theproposed modulating the driving of a two-level atom using
most pure stable state for eaéhln this case we must use a the instantaneous homodyne photocurrent, in order to stabi-

VI. CONCLUSION
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lize the atom in an arbitrary known pure state. We haveng and feedback will result in more, not less, randomness in
shown that, for detection efficiency=1, the pure states the steady-state quantum trajectory.

thus produced are stable. This is contrary to the conclusion Our results are significant in a number of ways. First, they
of HMH, that only pure states in the lower half of the Bloch show the power of the quantum trajectory and master equa-
sphere would be stable. The one exception we found is fotion techniques developed in Refd,8,5. Those techniques
pure states on the equator. Although they are fixed points oere particularly useful for illuminating subtle questions re-
the dynamics, they are not stable. A small perturbation awagardln_g the stability of pure states, and for treating inefficient
from one fixed pure state leads to a proportionally smald€tection. Second, the physical systétre two-level atom
fraction of the ensemble ending up in the diametrically Op__may one day find application as a quantum bit in guantum
posite pure state. information technology22]. In that eventuality, the ability to

It is nevertheless possible to obtain an asymmetry peStabilize the atom against dissipation in an arbitréryowr)

tween the unper and lower halves of the Bloch sphere remEure state may be useful. Third, the system is a simple but
: PP . : n sp ' nontrivial example of quantum feedback in a nonlinear sys-
niscent of the conclusion of HMH, if one considers detectio

. n‘tem(the two-level atom Thus the effectiveness of feedback,

&nd in particular the influence of nonunit-efficiency detection

to stabilize the system in a given pure state, so we choose thg, 1his effectiveness, is of interest for what it may tell us
feedback and driving so that the solution of the master equaspout other more complicated nonlinear systems.

tion (including feedbackis as close as possible to a given | this last context, it would be of interest to also consider
pure state. We find that the puritwhich measures this the effect of non-Markovian feedback; i.e., feedback with a
closenessof states thus produced decays to zeronade-  time delay or nonflat loop response function. This is much
creases to zero, for states in the upper half of the Blochmore difficult to treat than Markovian feedback because the
sphere. By contrast, those in the lower half do not decay tdindblad master equations derived in Ref4,8,5 do not
zero. This is readily understandable since in the absence a@ipply. Analytical solutions for non-Markovian feedback are
feedback(which is the situation that must prevail when the possible for linear system8,23]. For a nonlinear system
detection efficiency goes to zerthe master equation with like the two-level atom, numerical simulations, or different
driving alone has stationary solutions in the lower half planeanalytical approaches, are necessary. This is an issue we plan
with nonzero purity. The purity decays most rapidly wigh ~ to explore in future work.
for states near the equator, which is unsurprising given the
instability of states on the equator even fpr 1. ACKNOWLEDGMENTS

In the nonunit-efficiency case, the state of the system con-  This work has been supported by the Australian Research
ditioned on the homodyne measurement results continues ©ouncil, the University of Queensland, and the Department
evolve stochastically even in the long-time limit, where theof Employment, Education, and Training, Australia. The au-
ensemble-average evolution has reached the desired mo#tors would like to acknowledge useful discussions with
pure state. Moreover, it seems that any other choice of drivGerard Milburn.

[1] H.A. Haus and Y. Yamamoto, Phys. Rev.34, 270(1986.

[2] Y. Yamamoto, N. Imoto, and S. Machida, Phys. Rev33
3243(1986.

[3] J.M. Shapircet al, J. Opt. Soc. Am. B}, 1604(1987).

[4] H.M. Wiseman and G.J. Milburn, Phys. Rev. Lefi0, 548
(1993.

[5] H.M. Wiseman, Phys. Rev. A9, 2133(1994.

[6] L. Plimak, Phys. Rev. &0, 2120(1994.

[7] A.C. Doherty and K. Jacobs, Phys. Rev68, 2700(1999.

[8] H.M. Wiseman and G.J. Milburn, Phys. Rev. 49, 1350

(19949.

[9] A. Liebman and G.J. Milburn, Phys. Rev.%4, 736 (1995.
[10] H. Mabuchi and P. Zoller, Phys. Rev. LeT, 3108(1996.
[11] P. Tombesi and D. Vitali, Phys. Rev. 30, 4253(1994).

[12] D.B. Horoshko and S.Ya. Kilin, Phys. Rev. Left8, 840
(1997.

[13] D. Vitali, P. Tombesi, and G.J. Milburn, Phys. Rev. L&t8,
2442 (1997).

[14] H.F. Hofmann, O. Hess, and G. Mahler, Opt. Expr2s839
(1998.

[15] H.F. Hofmann, G. Mahler, and O. Hess, Phys. Re87A4877
(1998.

[16] G. Lindblad, Commun. Math. Phy48, 199 (1976.

[17] H. J. CarmichaelAn Open Systems Approach to Quantum Op-
tics (Springer-Verlag, Berlin, 1993

[18] H.M. Wiseman and G.J. Milburn, Phys. Rev4&, 642(1993.

[19] C. W. Gardiner,Handbook of Stochastic MethodSpringer-
Verlag, Berlin, 1985

[20] R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. 45, 4879
(1992.

[21] K. MdImer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am1&
524 (1993.

[22] C. P. Williams and S. H. ClearwateExplorations in Quantum
Computing(Springer-Verlag, New York, 1998

[23] V. Giovannetti, P. Tombesi, and D. Vitali, Phys. Rev.68,
1549(1999.

063810-9



