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Momentum-state engineering and control in Bose-Einstein condensates
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We demonstrate theoretically the use of genetic-learning algorithms to coherently control the dynamics of a
Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by
two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter
that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy.
We illustrate this procedure in the coherent acceleration of a condensate and in the preparation of a superpo-
sition of prescribed relative phase.
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I. INTRODUCTION

Atomic Bose-Einstein condensates~BEC! are now gener-
ated almost routinely in the laboratory, and are resulting
numerous applications in fundamental and applied scienc
key element of this research is the ability to coherently
gineer and control the state of the condensate and its dyn
ics. This is, for example, the case in the generation of ato
solitons @1–3#, which requires that a precise phase be i
printed on the condensate, atomic four-wave mixing, wh
involves the splitting of a condensate into three moment
groups@4#, the mixing of optical and matter waves@5–9#,
which again requires the splitting of a condensate, mo
locked atom lasers@10#, where a condensate wave function
spatially modulated by a periodic optical potential, etc. It c
be expected that the preparation of condensate states o
creasing sophistication will be required in future applic
tions, including atom lithography@11,12# and atom hologra-
phy @13#.

The coherent manipulation and control of quantum sta
has been the subject of considerable work in many o
areas of physics. For example, it is now possible to precis
carve the electronic wave function of atoms or to excite
brational modes of molecules@14–16#, using precisely engi-
neered optical pulses. Similar techniques have lead to s
tacular advances in nonlinear optics.

A common tool to many of these developments is the
of genetic algorithms. These multidimensional optimizati
techniques proceed by parametrizing a control function
terms of a finite set of coefficients, or ‘‘genes,’’ a particul
set of genes being called a ‘‘chromosome.’’ The genetic
gorithm operates on a set of chromosomes, the ‘‘populatio
Its success in achieving a design goal is quantified by a ‘
ness function,’’ a measure of how close the action of a p
ticular chromosome is to the desired state. The algorit
proceeds by replacing an ill-fitted fraction of the populati
by new chromosomes, the ‘‘offsprings,’’ that result from t
mating of two parent chromosomes according to some se
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rules, see e.g., Refs.@17,18# for details. In addition to that
controlled combination of chromosomes, random mutatio
on single genes prevent the algorithm from getting trappe
local extrema. The process is iterated until one chromoso
reaches a prescribed fitness value.

Because of collisions, the dynamics of atomic BEC
intrinsically nonlinear. Hence, it is difficult in general to pre
cisely predict the effects of control fields on the condens
properties. Indeed, condensates are emerging as exce
test systems to study quantum chaos@19,20#. This is a clear
indication that straightforward analytical tools are genera
unlikely to be sufficient in the coherent manipulation a
control of BEC. It is therefore natural to turn instead to t
use of genetic algorithms. The main goal of this paper is
illustrate how they can be applied to the design of spec
momentum states of condensates.

We specifically consider two examples, the accelerat
of a condensate, and the preparation of a BEC in a cohe
superposition of two momentum states with a prescrib
phase difference. The external control is provided by t
counterpropagating laser fields of adjustable frequency
provide a time-dependent optical lattice interacting with t
condensate via Bragg scattering. This is a natural cho
since Bragg scattering is a well-established tool of atom
tics: It has been used in many applications such as in
determination of the coherence properties of condens
@21,22#, the implementation of Mach-Zehnder interferom
eters to image the condensate phase@23#, the splitting of
condensates@24#, and the creation of initial states appropria
for nonlinear mixing processes@4#. Optical lattices have also
been used to investigate physical effects such as ato
Landau-Zener tunneling@25,26#, Bloch oscillations@27–29#,
and the acceleration of BECs@30#. Also, a Josephson junc
tion array was experimentally realized with a BEC in
optical standing wave@10,31,42#.

The paper is organized as follows. Section II discusses
model, establishes our notation, and introduces the ‘‘qu
modes’’ of the condensate used in the subsequent anal
Section III briefly reviews important aspects of genetic alg
rithms. The main results are presented in Sec. IV, which
lustrates the usefulness of genetic algorithms in conden
©2001 The American Physical Society13-1
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acceleration and in the preparation of macroscopically se
rated momentum states of prescribed relative phase. Fin
Sec. V is a summary and conclusion. Appendix gives furt
details of the genetic algorithm.

II. MODEL

We consider a condensate consisting ofN atoms of mass
M at temperatureT50, and placed in a frequency-chirpe
optical lattice formed by two counterpropagating laser bea
of wave vectorkL and central frequencyv0. The electric
field is then given by

E~z,t !5
E0

2
@ei $kLz2[v01d(t)] t%1e2 i (kLz1v0t)1c.c.#, ~1!

where d(t) is a time-dependent frequency difference b
tween the two beams. We define the detuningD from the
atomic resonance asD5va2v0, with va being the atomic
transition frequency. In order to avoid spontaneous emiss
we use far-off resonance light, so thatuDu@G, with G the
spontaneous decay rate of the excited atomic level. We
sume that the coupling of the light field from Eq.~1! to the
atomic system is characterized by a Rabi frequencyV
5dE0 /\, whered is the dipole matrix element of the trans
tion. If the Rabi frequency is small compared to the detu
ing, uVu!uDu, we can adiabatically eliminate the excite
atomic level, which evolves on a much faster time scale t
the lower level. Making use of the rotating wave approxim
tion that neglects terms varying at twice the optical f
quencyv0, the resulting time-dependent optical potential f
the lower atomic level is then given by

V~z,t !5V0 cos@2kLz2d~ t !t#, ~2!

whereV05\uVu2/2D is the lattice depth~see also Ref.@32#
for details!. In order not to violate the adiabatic approxim
tion, the detuningd(t) must remain small compared to th
detuningD, and vary slow on the fast time scale,

udu!uDu, Udd

dtU!D2. ~3!

The instantaneous phase velocity of the lattice fringes
Eq. ~2!,

v lat~ t !'S 1

2kL
D ]@d~ t !t#

]t
, ~4!

must remain much smaller than the speed of light at all tim
in order to neglect any time dependence of the wave num
kL , as discussed in detail in Ref.@33#.

The control of the state of the BEC is achieved by imp
ing a time dependence on the detuningd(t) between the
counterpropagating laser beams. It is this time depende
that is to be determined by the genetic algorithm.

We assume that the condensate is tightly confined in
transverse direction, so that the system can be descr
semiclassically by a one-dimensional time-dependent Gr
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Pitaevskii equation~GPE!. The condensate evolution in th
optical lattice of Eq.~2! is then given by

i\
]

]t
c~z,t !5F2

\2

2M

]2

]z2
1V~z,t !Gc~z,t !

1NU0uc~z,t !u2c~z,t !, ~5!

where c(z,t) is the condensate wave function,U0
54p\2a/M , anda, thes-wave scattering length reduced
one dimension, is taken to be positive. In the presence
periodic potential, one needs to be aware of the poss
fragmentation of the condensate via a Mott-insulator tran
tion. Reference@34# investigates this problem, predicting th
onset of fragmentation when the lattice potential depths
in excess of 5–10 lattice recoil energies. Here we cons
only situations where the lattice potential is shallow enou
that such fragmentation does not occur. Superfluid effe
can likewise be ignored, since the critical velocity for typic
Bose-Einstein condensates was recently experimentally
termined to lie in the mm/s regime@35–37# and as we show
shortly, Bragg diffraction only populates momentum si
modes of the condensate, spaced by momenta 2\kL , corre-
sponding to velocities far exceeding the critical velocity.

Our goal in this paper is to manipulate the momentum
the condensate. It is therefore convenient to introduce
momentum-space condensate wave function

f~k,t !5
1

A2p
E

2`

`

dzc~z,t !e2 ikz. ~6!

Substituting these into Eq.~5! we obtain the correspondin
coupled difference-differential GPEs

i\
]

]t
f~k,t !5

\2k2

2M
f~k,t !1

V0

2
@f~k22kL!e2 id(t)t

1f~k12kL!eid(t)t#

1
NU0

2p E dk1 dk2 f~k2k11k2 ,t !

3f~k1 ,t !f!~k2 ,t !. ~7!

The spatial extent of the condensates that we have in m
is large compared to the lattice periodp/kL . Their initial
momentum distribution is therefore much narrower thankL ,
Dk!kL . From Eq. ~7!, we observe that the optical-lattic
couples states separated in momentum byk562kL , and
hence leads to a momentum distribution consisting in gen
of a ‘‘comb’’ of narrow peaks of widthDk. Ground-state
collisions lead to a broadening of these peaks, but for sm
enough particle numbersN, it can be expected that thi
broadening remains small compared to 2kL . This suggests
that it is useful to expand the momentum-space conden
3-2
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MOMENTUM-STATE ENGINEERING AND CONTROL IN . . . PHYSICAL REVIEW A64 063613
wave function on a basis of ‘‘quasimodes’’ described by
orthonormal mode functions

un~k!5
1

2kL
$Q„~2n21!kL…2Q„~2n11!kL…% ~8!

as

f~k,t !5(
n

zn~ t !un~k!, ~9!

where

zn~ t !5E
2`

`

dk un~k!f~k,t !5E
(2n21)kL

(2n11)kL
dk f~k,t !

~10!

and the step functionQ(x) is defined as

Q~x!5H 0, x,0

1, x>0.
~11!

The associated ‘‘quasimode’’ populationspn(t) are accord-
ingly

pn~ t !5uzn~ t !u25E
(2n21)kL

(2n11)kL
dkuf~k,t !u2. ~12!

In the following, we use a genetic algorithm to find a tim
dependent detuningd(t) leading to predetermined values
the probability amplitudeszn(t). Before presenting selecte
results of this study, though, we review for completen
some important aspects of this optimization technique.

III. GENETIC ALGORITHM

Genetic algorithms proceed by parametrizing a con
function in terms of a finite set of genes, a particular set
genes being called a chromosome. The genetic algorithm
erates on a set of chromosomes, the population, whose a
on the system to be controlled is quantified in terms o
fitness function. In the situation at hand, the control
achieved by the time-dependent detuningd(t), expressed by
a truncated Fourier series

d i~ t !5 (
n51

m

ain cos~nvRt !1bin sin~nvRt !, i 51, . . . ,N,

~13!

wherevR5\kL
2/M is the recoil frequency. Each detuningd i

is encoded in a chromosomeci consisting ofn52m genes
gi j , each gene corresponding to one-particular Fourier c
ficient,

ci~gi1 , . . . ,gin!5ci~ai1 , . . . ,aim ,bi1 , . . . ,bim!. ~14!

The indexi labels a specific chromosome, and the size of
chromosome population isN.

Starting from a randomly initialized population, the g
netic algorithm uses a set of mating rules, mutations, an
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problem-specific fitness functionf (ci) to create new genera
tions of chromosomes, as illustrated in Fig. 1.

The first step consists in selecting parent chromosom
that are to be combined by mating operators. This
achieved by ranking the initialN chromosomes according t
their fitness and using the so-called ‘‘roulette-wheel’’ meth
@17# to preferentially select parent chromosomes with a h
fitness.

In the next step mating operators are selected that ge
ate a group of ‘‘offspring’’ chromosomesci8 from the ‘‘par-
ent’’ populationci . As such, these operators are at the he
of the genetic algorithm.

Several mating operators may be considered. The ‘‘o
point-crossover’’ operator cuts the two parent chromosom
at a randomly chosen positionm and swaps the genes a
cording to

FIG. 1. Schematics of the genetic algorithm. In our problem,
fitness is evaluated by evolving an initial momentum-space w
functionf(0) according to the GPE from Eq.~5! for a timet f , the
dynamics of the optical lattice being determined by the detun
d i(t). The final wave function is then compared to the optimizati
goal.
3-3
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c1~g11, . . . ,g1n!

c2~g21, . . . ,g2n!

↓

one-point crossover ~15!

↓

c18~g11, . . . ,g1m ,g2,m11 , . . . ,g2n!

c28~g21, . . . ,g2m ,g1,m11 , . . . ,g1n!,

with 1<m<n. A slightly modified version of this operator i
the ‘‘two-point-crossover’’ operator that cuts the two pare
chromosomes at two random positionsm1 andm2 and then
exchanges the genes between these two positions

c1~g11, . . . ,g1n!

c2~g21, . . . ,g2n!

↓

two2point crossover ~16!

↓

c18~g11, . . . ,g1m1
,g2,m111 , . . . ,g2,m221 ,g1m2

, . . . ,g1n!

c28~g21, . . . ,g2m1
,g1,m111 , . . . ,g1,m221 ,g2m2

, . . . ,g2n!,

with 1<m1<m2<n.
Another type of mating operator, the ‘‘average-crossov

operator, produces just one offspring from the two par
chromosomes by averaging the genes between two rand
chosen positionsm1 andm2

c1~g11, . . . ,g1n!

c2~g21, . . . ,g2n!

↓

average crossover ~17!

↓

c18~g11, . . . ,g1m1
,gm1118 , . . . ,gm2218 ,g1m2

, . . . ,g1n!,

with 1<m1<m2<n andgk85(g1k1g2k)/2.
Except for the random location at which the splicing

the chromosome occurs, the mating algorithms discusse
far are deterministic. In addition, genetic algorithms also
quire the use of ‘‘mutation’’ and ‘‘creep.’’ These are rando
operators that produce one offspring from one parent by
tering any gene of the parent chromosome with a given pr
ability called the mutation rate, respectively, the creep ra
06361
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c~g1 , . . . ,gn!

↓

mutation, creep ~18!

↓

c8~g1 , . . . ,gm8 , . . . ,gn!.

The mutation operator choosesgm8 randomly within some
bounds, whereas the creep operator shifts the old valuegm by
a random amount,gm8 5gm1(0.52r )pcreep. Herepcreep is a
parameter that controls the range of the shift and 0<r<1 a
random number.

The operators discussed in this section are the only o
used in our analysis. When it comes to selecting a spec
mating operator, there are basically two possibilities. T
first one consists of assigning fixed weights to the availa
operators and then choosing randomly among them. This
straightforward approach, but it suffers from the problem
not discriminating against mating operators that do not p
form well for the optimization problem at hand. Thus, a se
ond possibility is to dynamically adjust the operator weigh
over the course of the optimization@17,38#. This guarantees
that the best-suited operators are applied and allows on
test the performance of new mating operators. This is d
by assigning an adjustable ‘‘operator fitness’’ to each mat
operator under consideration. As such, the mating opera
are selected according to their fitness the same way as
parent chromosomes are picked. The details of the proce
used in our simulations are discussed in the next section
also in the Appendix.

IV. RESULTS

A. Coherent acceleration

We now apply the genetic algorithm approach to the m
nipulation of the state of a BEC in a chirped optical lattic
As a first example, we consider the coherent transfer o
condensate population between the adjacent quasimodeu0
andu1. Our motivation here is the need to find efficient wa
to accelerate condensates for atom-optics applications.
problem was theoretically analyzed in Refs.@39,33# and ex-
perimentally demonstrated in Ref.@30# for the case of a lin-
ear dependence ofd(t), d(t)5ht. While this chirping of the
lattice detuning does lead to a large mean acceleration o
condensate, it unfortunately leaves a substantial fraction
the condensate in lower quasimodes. This translates in
loss in coherence that is unacceptable, e.g., in interferom
applications. The question, then, is whether an optimiz
time-dependent detuning determined by a genetic algori
can eliminate this problem.

For the sake of illustration, we assume that the conden
is initially in the zero-momentum quasimode,p0(t50)51,
and seek a time-dependent detuning such thatp1(t f)51 after
some predetermined timet f . In that case, the algorithm fit
ness has the simple form
3-4
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f ~ci !5p1~ t f !, ~19!

with an optimal value of unity.
Figure 2 summarizes the results of the optimization p

cedure. It compares the optimized population transfer o
fairly large condensate consisting of 106 atoms to the case o
the same condensate subject to on-resonance Bragg sc
ing. In this example, the genetic algorithm involved a on
point-crossover, a two-point-crossover, and an average-c
over mating operator. In addition, it included two mutati
operators with mutation rates of 0.8 and 0.4, and two cr
operators, both at a rate of 0.9, but different creep par
eters, a ‘‘coarse’’ creep withpcreep50.01 and a ‘‘finer’’ creep
operator withpcreep50.001. More details of the simulation
are given in the Appendix.

While it can be expected that resonant Bragg scatterin
the appropriate frequency transfers perfectly the popula
of a small condensate from modeu0 to modeu1, such is not
the case for the large condensate we investigated~dashed
line in Fig. 2!. In this case, the mean-field nonlinearity of th
condensate is no longer negligible. It dynamically shifts
Bragg resonance@40# so that the transfer efficiency drops
barely over 90% and the maximum transfer occurs late
time. It is in such nontrivial situations that genetic algorithm
are expected to be useful. Indeed, the optimal time-dep

FIG. 2. Momentum transfer of a Sodium condensate with
Gaussian spatial distribution of longitudinal width 50mm and
transverse width 5mm; lL5985 nm and V05\vR , M
53.82310226 kg andas54.9 nm. ~a! The solid line is the opti-
mized time-dependent detuning. The dotted lines label the first
second Bragg resonance for reference.~b! Temporal evolution of
the mode populationp1 for N523106 atoms: On resonanc
~dashed! and optimized~solid!. The vertical dotted line denotes th
time it takes to resonantly transfer all population to the quasim
u1 in a linear two-mode system.
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dent detuningd(t) found by the genetic algorithm is highl
nontrivial. The temporal dependence of the detuningd(t),
which transfers more than 99% of the population to t
quasimodeu1, reveals that while it is initially advantageou
to remain close to the Bragg-resonance frequency, as i
cated by the rather flat portion of the detuning, it eventua
becomes necessary to drastically couple the condensat
oms to higher momentum modes so as to drag the remai
population to the final stateu1 @41#.

The effect of the mean-field energy is further illustrated
Fig. 3, which shows the final momentum distributionf1(k)
within the quasimodeu1 for various numbers of atoms in th
condensate for optimal transfer. While this distribution r
mains extremely narrow compared to the quasimode w
2kL , collisions lead to a substantial reshaping and broad
ing within that mode.

B. Coherent superposition

In a second application, we set out to design an equ
weight superposition of the two quasimode statesu0 andu1

f~k,t f !5
1

A2
~u0eiw01u1eiw1!, ~20!

with a prescribed relative phaseDw5w12w0. In contrast to
the preceding example, we now want to control two prop
ties of the quantum state, the relative phase as well as
population in each state. The fitness function to be optimi
is therefore more complicated.

We choose to employ a so-called ‘‘penalty function
P(ci) for the optimization of the quasimode populatio
@18#. The goal ofP(ci) is to decrease the fitness of chrom
somes that do not fulfill the desired requirements, there
steering the population towards the target values. A protot
penalty function is

a

d

e

FIG. 3. Effect of the nonlinearity on the momentum-space wa
function: Momentum-space densities within quasimodeu1 after op-
timizing the transfer, so thatp1.0.99 after timet f543 ms; N
513105 ~solid!, N553105 ~dashed!, N513106 atoms~dotted!,
andN523106 ~dashed dotted!.
3-5
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P~ci !55
1.5, p0~ci !,p1~ci !.0.465

1.0, p0~ci !,p1~ci !.0.47

0, p0~ci !,p1~ci !.0.475

100, else.

~21!

The fitness function for this optimization problem is th
given by

f ~ci !512ua~ci !2Dwu2P~ci !, ~22!

where, as we recall,ci corresponds to a specific realization
the time-dependent detuningd(t) and a(ci) is the relative
phase corresponding to this realization. This fitness func
reaches its maximum, unity in this case, when the pop
tions are within the specified range and the phase differe
is exactly as prescribed. The results for the optimization

FIG. 4. Excitation of an equal-weight coherent superposition
momentum states with relative phases,Dw52p/4 ~solid! and
Dw52p/2 ~dashed!. The parameters are the same as in Fig.
except that the condensate has a Gaussian spatial distributio
longitudinal width 100mm and N553104. ~a! Optimized time-
dependent detuning is used to create the superposition.~b! Tempo-
ral evolution of the mode population of the two involved modes.~c!
Temporal evolution of relative phase of the two quasimodes at
center of their momentum distribution, see Fig. 5.
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the two casesDw52p/2 andDw52p/4 are shown in Fig.
4. For the genetic algorithm we used the same operators
their parameters as in Sec. IV A. More details of the sim
lations are given in the Appendix.

Figure 5 shows the momentum distributionsf0(k) and
f1(k) of the condensate within each of the two quasimod
u0 andu1, as well as the corresponding phases for the c
Dw52p/2. Clearly, the genetic algorithm converges to t
stated goal, and produces a condensate in the desired c
ent superposition.

In particular, we observe that the relative phase of the t
components is approximately constant in the region wh
the condensate wave function is different from zero. T
optimization goal ofDw52p/2 is achieved with an accu
racy of over 99% at the center of the mode. The curvature
the phase at the wings of the wave function is due to non
ear phase shifts accumulated during the Hamiltonian ev
tion. It could be reduced by decreasing the number of ato
in the condensate.

V. SUMMARY AND CONCLUSION

In summary, we have demonstrated the usefulness of
netic algorithms in the control and manipulation of the qua
tum states of Bose-Einstein condensates. This was illustr
in two examples, the coherent population transfer betw
momentum states in a large condensate where the mean
effects are important, and the creation of coherent supe
sitions of states of prescribed population and relative pha
We found that time-dependent Bragg scattering combi
with the powerful optimization capabilities of genetic alg
rithms, provides a different tool for quantum-state design a
coherent control in linear and nonlinear atom optics. T
extension of these ideas to integrated atom optics app
particularly promising. Future theoretical work will genera
ize these concepts to systems with more degrees of freed
such as multicomponent condensates, and to additional
trol mechanisms such as time-dependent magnetic fields.
extension of this work to quantum-degenerate Bose-Fe
mixtures also appears promising.
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APPENDIX: DETAILS OF THE GENETIC ALGORITHM

In this Appendix we give specific details of the impleme
tation of the genetic algorithm in the problem of BEC sta
engineering in an optical lattice.

Over the course of the optimization we monitor the ma
mum fitnessf max of a population,

f max5max$ f ~ci !: i 51, . . . ,N%. ~A1!
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Obviously, if at least the best chromosome is kept from
old generation, the maximum fitness is a monotonically
creasing function. This feature, called ‘‘elitism,’’ is use
throughout our simulations. Another observable of interes
the mean fitnessf meanof a population,

f mean5
1

N (
i 51

N
f ~ci !. ~A2!

A typical evolution of these two quantities is shown in Fi
6~a!. The maximum fitness increases monotonically to re
a value close to the optimum after about 40 generations
contrast, the mean fitness rises over the course of the firs
generations and then exhibits fluctuations due to the stoc
tic character of the genetic algorithm: Parts of the populat
are replaced by randomly created chromosomes from
generation to the next and randomize the mean-fitness va
In our simulations we used populations of sizeN550–100
and performed the optimization over 50–100 generatio
We always kept the best chromosomes of a generation
replaced 80% –90% of the population by newly genera
chromosomes. For the population transfer of Sec. IV A
used 16, and for the superposition state engineering of
IV B, 26 genes per chromosome. The gene boundaries w
chosen as20.7vR<ain ,bin<0.7vR .

As mentioned in Sec. III, we use an adaptive opera
technique, where the operators themselves are dynami
assigned a fitness based on their performance. Choosi
particular mating operator via a roulette–wheel method@17#
then assures that good operators are employed more oft
the mating process. If any operator produces an offsp
that is better than the best chromosome of the prece
generation, we reward this operator by giving it a credit p
portional to the increase in fitness it caused. Also, we p
half of this given credit back to the operator that created
parent chromosome involved in producing the better o
spring. Thus operators that perform well and also their dir
ancestors can accumulate credit over the run of the sim
tion. Passing credit back to preceding operators enables

FIG. 5. Density profiles and phases of the two moment
modes after the optimization att5t f . The lower abscissa corre
sponds to the momentum wave functionf0 with phasew0 centered
aroundk50, the upper tof1 with phasew1 centered aroundk
52kL . Note thatp1(t f),p2(t f)>0.475.
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reward pairs of operators that work well together at a cert
stage of the optimization process. In our simulations we
just the fitness of all operators every five generations ba
on the credit they accumulated during that period. The n
operator fitness is then a weighted sum of the old fitness~the
‘‘basis portion,’’ in our case 85%! and the accumulated cred
~the ‘‘adaptive portion,’’ in our case 15%). The more cred
an operator accumulates the higher will be its new fitn
and the more likely it is that it will be chosen in futur
mating processes. Since the total operator fitness is set
stant, we introduce a lower bound of 0.1 to the opera
fitness, thereby preventing operators that do not perform w
over several generations from being practically expel
from the pool of operators.

Figure 6~b! shows a typical evolution of the fitness of th
individual mating operators in the superposition sta
engineering problem from Sec. IV B. The creep and o
point-crossover operators perform well for the first-30 ge
erations. For subsequent generations the two-point-cross
and the average-crossover operators take over and hel
creasing the maximum fitness, which approaches its o
mum value~unity in the present example!. There is no fur-
ther improvement in the remaining 50 generations, the fitn
of the various operators staying constant. The rando
mutation operators never perform well in the problem
hand. Consequently their fitness is quickly reduced to
lower bound. The creep operators, which basically contro
mutations, perform much better and could replace the pu
mutation operators.

FIG. 6. A typical run of the genetic algorithm for the superp
sition state engineering.~a! Maximum fitness~solid! and mean fit-
ness~dashed! of the population as a function of the generation. W
started the optimization with preoptimized chromosomes from p
vious simulations, which explains the high-initial maximum fitne
of over 60%.~b! Operator fitness as a function of the generatio
starting with equal fitness for all operators. The minimum-opera
fitness is set equal to 0.1 for all operators.
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