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Momentum-state engineering and control in Bose-Einstein condensates
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We demonstrate theoretically the use of genetic-learning algorithms to coherently control the dynamics of a
Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by
two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter
that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy.
We illustrate this procedure in the coherent acceleration of a condensate and in the preparation of a superpo-
sition of prescribed relative phase.
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I. INTRODUCTION rules, see e.g., Ref§l17,1§ for details. In addition to that
controlled combination of chromosomes, random mutations
Atomic Bose-Einstein condensat@3EC) are now gener- on single genes prevent the algorithm from getting trapped in
ated almost routinely in the laboratory, and are resulting ilocal extrema. The process is iterated until one chromosome
numerous applications in fundamental and applied science. feaches a prescribed fitness value.
key element of this research is the ability to coherently en- Because of collisions, the dynamics of atomic BEC is
gineer and control the state of the condensate and its dynarirtrinsically nonlinear. Hence, it is difficult in general to pre-
ics. This is, for example, the case in the generation of atomicisely predict the effects of control fields on the condensate
solitons[1-3], which requires that a precise phase be im-properties. Indeed, condensates are emerging as excellent
printed on the condensate, atomic four-wave mixing, whichtest systems to study quantum ch&b8,20. This is a clear
involves the splitting of a condensate into three momentunindication that straightforward analytical tools are generally
groups[4], the mixing of optical and matter wavé¢5-—9], unlikely to be sufficient in the coherent manipulation and
which again requires the splitting of a condensate, modeeontrol of BEC. It is therefore natural to turn instead to the
locked atom laserfsl0], where a condensate wave function is use of genetic algorithms. The main goal of this paper is to
spatially modulated by a periodic optical potential, etc. It canillustrate how they can be applied to the design of specific
be expected that the preparation of condensate states of imomentum states of condensates.
creasing sophistication will be required in future applica- We specifically consider two examples, the acceleration
tions, including atom lithographj11,12] and atom hologra- of a condensate, and the preparation of a BEC in a coherent
phy [13]. superposition of two momentum states with a prescribed
The coherent manipulation and control of quantum statephase difference. The external control is provided by two
has been the subject of considerable work in many othetounterpropagating laser fields of adjustable frequency that
areas of physics. For example, it is now possible to preciselprovide a time-dependent optical lattice interacting with the
carve the electronic wave function of atoms or to excite vi-condensate via Bragg scattering. This is a natural choice,
brational modes of molecul§¢44—16, using precisely engi- since Bragg scattering is a well-established tool of atom op-
neered optical pulses. Similar techniques have lead to speties: It has been used in many applications such as in the
tacular advances in nonlinear optics. determination of the coherence properties of condensates
A common tool to many of these developments is the us¢21,27, the implementation of Mach-Zehnder interferom-
of genetic algorithms. These multidimensional optimizationeters to image the condensate phf28], the splitting of
techniques proceed by parametrizing a control function ircondensatel24], and the creation of initial states appropriate
terms of a finite set of coefficients, or “genes,” a particular for nonlinear mixing processg4]. Optical lattices have also
set of genes being called a “chromosome.” The genetic albeen used to investigate physical effects such as atomic
gorithm operates on a set of chromosomes, the “population.Landau-Zener tunnelin5,26], Bloch oscillationd27-29,
Its success in achieving a design goal is quantified by a “fit-and the acceleration of BEG80]. Also, a Josephson junc-
ness function,” a measure of how close the action of a partion array was experimentally realized with a BEC in an
ticular chromosome is to the desired state. The algorithnoptical standing wav§10,31,43.
proceeds by replacing an ill-fitted fraction of the population The paper is organized as follows. Section Il discusses the
by new chromosomes, the “offsprings,” that result from the model, establishes our notation, and introduces the “quasi-
mating of two parent chromosomes according to some set ahodes” of the condensate used in the subsequent analysis.
Section Il briefly reviews important aspects of genetic algo-
rithms. The main results are presented in Sec. IV, which il-
*Email address: sierk.poetting@optics.arizona.edu lustrates the usefulness of genetic algorithms in condensate
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acceleration and in the preparation of macroscopically sepditaevskii equatiofGPE). The condensate evolution in the
rated momentum states of prescribed relative phase. Finallgptical lattice of Eq(2) is then given by

Sec. V is a summary and conclusion. Appendix gives further
details of the genetic algorithm.

'ﬁﬁdf( t) o +V(z,t) | 4(z,t)
ih—p(zt)=| — =— — Z, Z,

Il. MODEL ot 2M yz2

We consider a condensate consistingNoditoms of mass + NU0|¢(z,t)|2¢/x(z,t), (5)

M at temperaturdl =0, and placed in a frequency-chirped
optical lattice formed by two counterpropagating laser beams

of wave vectork, and central frequencyw,. The electric Wherezw(z,t) is the condensate \wave functior)
field is then given by =4s7h“alM, anda, the swave scattering length reduced to

one dimension, is taken to be positive. In the presence of a

& _ periodic potential, one needs to be aware of the possible

E(z,t)ZE[e'{"LZ*[‘”fJ”(t)“}ﬂL e '(izted +cc], (1)  fragmentation of the condensate via a Mott-insulator transi-
tion. Referenc¢34] investigates this problem, predicting the

where 5(t) is a time-dependent frequency difference be_pnset of fragmentation when the lattice potential depths are

. ) in excess of 5-10 lattice recoil energies. Here we consider
2’;’;?\?0 tpeig\ggnggags_" u\)Ne Sefl\rl]\l?tl’;[hj dbeetiL:]r;Algreor:totrr:]eic only situations where the lattice potential is shallow enough
— W™ Wy, a

o . .. that such fragmentation does not occur. Superfluid effects
transition frequency. In order to avoid spontaneous emission

; . can likewise be ignored, since the critical velocity for typical
we use far-off resonance light, so FWN’ W'th I" the Bose-Einstein condensates was recently experimentally de-
spontaneous decay rate of the excited atomic level. We a

Yermined to lie in the mm/s regin®@5-37 and as we show
sume that the coupling of the light field from E(.) to the . : :
atomic system is characterized by a Rabi frequesy shortly, Bragg diffraction only populates momentum side

- ; . . . modes of the condensate, spaced by momefitq 2 corre-
tT er]goh{f:ﬁ wgersidflrs ther(]jlpoile n:nat“x elrtre]merntdo:‘ tk;ﬁ trgnts"n_sponding to velocities far exceeding the critical velocity.
on. € Rabi lrequency 1S small compared to the detu Our goal in this paper is to manipulate the momentum of

Ing, |.Q|<|A|’ we can adiabatically ehmmate_ the excited the condensate. It is therefore convenient to introduce the
atomic level, which evolves on a much faster time scale tharﬂnomentum-space condensate wave function

the lower level. Making use of the rotating wave approxima-
tion that neglects terms varying at twice the optical fre-

guencywy, the resulting time-dependent optical potential for 1 (o _
the lower atomic level is then given by qb(k,t):—J dzy(z,t)e 2 (6)
V2m) -
V(z,t)=V,cog 2k z— 8(t)t], (2)

Substituting these into Ed5) we obtain the corresponding

whereV,=%|Q|?/2A is the lattice depttisee also Ref32] coupled difference-differential GPEs

for details. In order not to violate the adiabatic approxima-
tion, the detuningd(t) must remain small compared to the

detuningA, and vary slow on the fast time scale, 9 h2k? Vo _
i — (K1) = (K, 1)+ [ p(k— 2k )e o0
45 at 2M 2
|ol<al, ‘a <A2 3 + g(ke+ 2k el 301
The instantaneous phase velocity of the lattice fringes in +%I dk; dk, p(K—Kq+Ks 1)
Eq. (2), 2m
Vjalt)~ 2k )t 4

The spatial extent of the condensates that we have in mind
must remain much smaller than the speed of light at all time¢s large compared to the lattice periadk, . Their initial
in order to neglect any time dependence of the wave numbenomentum distribution is therefore much narrower than
k_, as discussed in detail in R¢B3]. Ak<k, . From Eq.(7), we observe that the optical-lattice
The control of the state of the BEC is achieved by impos-couples states separated in momentumkby=2k, , and
ing a time dependence on the detuniift) between the hence leads to a momentum distribution consisting in general
counterpropagating laser beams. It is this time dependencd a “comb” of narrow peaks of widthAk. Ground-state
that is to be determined by the genetic algorithm. collisions lead to a broadening of these peaks, but for small
We assume that the condensate is tightly confined in thenough particle numberbl, it can be expected that this
transverse direction, so that the system can be describdifoadening remains small compared tky 2 This suggests
semiclassically by a one-dimensional time-dependent Grosghat it is useful to expand the momentum-space condensate
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wave function on a basis of “quasimodes” described by the a a b b
orthonormal mode functions 1 [T e | %lm) P11 1m)
1
Un(K) = Z{O(2n-Dk)-O(@n+ Dk} (® L _ _
as : . :
kD=2 Zr(Dun(k), )
Cy |a a (b . b
where N [*N1 Nm|UN1 Nm
w (2n+1)k,
§n(t)=f dk uy(k) &(k,t)= f( . dk ¢(k,t)
Cw n—1)k,
(10) Propagate GPE:
and the step functio® (x) is defined as Ci
o0 —— ¢;(t¢)
0, x<0
®00= 1, x=0. ) ¢
The associated “quasimode” populatiopg(t) are accord- Evaluate fitness f(c ;) based
ingl 1
9y on ¢;(tf) ,rank allc;
21k by increasing fitness
pn(t):|§n(t)|2:f dk| ¢(klt)|2' (12 y g
(2n—1)k,
In the following, we use a genetic algorithm to find a time- ¢
dependent detuning(t) leading to predetermined values of Select mating operator

the probability amplitudeg,,(t). Before presenting selected
results of this study, though, we review for completeness
some important aspects of this optimization technique.

select parents ¢; and c;
according to ranking.

Produce new offspring matrix ¢j

IIl. GENETIC ALGORITHM

Genetic algorithms proceed by parametrizing a control FIG. 1. Schematics of the genetic algorithm. In our problem, the
function in terms of a finite set of genes, a particular set ofitness is evaluated by evolving an initial momentum-space wave
genes being called a chromosome. The genetic algorithm opunction ¢(0) according to the GPE from E¢p) for a timet;, the
erates on a set of chromosomes, the population, whose actiginamics of the optical lattice being determined by the detuning
on the system to be controlled is quantified in terms of a%i(t). The final wave function is then compared to the optimization
fitness function. In the situation at hand, the control is9°8
achieved by the time-dependent detuné{t), expressed by
a truncated Fourier series problem-specific fithess functidi{c;) to create new genera-
tions of chromosomes, as illustrated in Fig. 1.

The first step consists in selecting parent chromosomes

m

N,

S.(t)= Z}l a;, cog vort) + b, sin(vogt), i=1,...
(13

WherewR=th/M is the recoil frequency. Each detuniag
is encoded in a chromosonwg consisting ofn=2m genes

that are to be combined by mating operators. This is
achieved by ranking the initial/ chromosomes according to
their fitness and using the so-called “roulette-wheel” method
[17] to preferentially select parent chromosomes with a high
fitness.

g;, each gene corresponding to one-particular Fourier coef- | the next step mating operators are selected that gener-

ficient,

Ci(Gi1, - - - Gin)=Ci(Qi1, - . . @im,0j1, ... Dim). (14)

ate a group of “offspring” chromosomes’ from the “par-
ent” populationc; . As such, these operators are at the heart
of the genetic algorithm.

The indexi labels a specific chromosome, and the size of the Several mating operators may be considered. The “one-

chromosome population is'.

point-crossover” operator cuts the two parent chromosomes

Starting from a randomly initialized population, the ge- at a randomly chosen positiom and swaps the genes ac-
netic algorithm uses a set of mating rules, mutations, and aording to
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c1(911, - - - G1n) c(g1, - --9n)
C2(921, - - - Y2n) 1
l mutation, creep (18
one-point crossover (15 |
1

C'(91, - Gus - - Gn)-

C1(911s -+ - Q192415 - - - G2n) i .
The mutation operator choosgi randomly within some

Cy(a1s - - G2u Oty - - O1n)s bounds, whereas the creep operator shifts the old \gg|usy

_ _ _ _' _ _ ! random amoung/;:g#Jr(O.S—r)pcreep. Here pereepis @

with 1< u<n. A slightly modified version of this operator is parameter that controls the range of the shift asekr&1 a
the “two-point-crossover” operator that cuts the two parentrandom number.

chromosomes at two random positions and u, and then The operators discussed in this section are the only ones
exchanges the genes between these two positions used in our analysis. When it comes to selecting a specific
mating operator, there are basically two possibilities. The
C1(911, - - - J1n) first one consists of assigning fixed weights to the available
operators and then choosing randomly among them. This is a
C2(921, - - - G2n) straightforward approach, but it suffers from the problem of
not discriminating against mating operators that do not per-
! form well for the optimization problem at hand. Thus, a sec-
ond possibility is to dynamically adjust the operator weights
two—point crossover (16)  over the course of the optimizatida7,3§. This guarantees
that the best-suited operators are applied and allows one to
! test the performance of new mating operators. This is done
by assigning an adjustable “operator fitness” to each mating
C1(911s - - - G192, 410 - - 92uy-1. 91410 - - - Gin) operator under consideration. As such, the mating operators
are selected according to their fitness the same way as the
ch(9o1, - - - 200y 11 -+ - G1puy 199200 - - - Oon)s paren} chrom'osomt'as are picked. The c_ietails of the prqcedure
used in our simulations are discussed in the next section and
with 1< u;<u,<n. also in the Appendix.
Another type of mating operator, the “average-crossover”
operator, produces just one offspring from the two parent IV. RESULTS

chromosomes by averaging the genes between two randomly _
chosen positiong; and A. Coherent acceleration
We now apply the genetic algorithm approach to the ma-
€1(911, - - - 1n) nipulation of the state of a BEC in a chirped optical lattice.
As a first example, we consider the coherent transfer of a
C2(921, - - - G2n) condensate population between the adjacent quasimggdes
andu,. Our motivation here is the need to find efficient ways
! to accelerate condensates for atom-optics applications. This
problem was theoretically analyzed in R€f39,33 and ex-
average crossover (17) perimentally demonstrated in R¢B0] for the case of a lin-
ear dependence @i(t), &(t) = nt. While this chirping of the
! lattice detuning does lead to a large mean acceleration of the
condensate, it unfortunately leaves a substantial fraction of
(911, - - - 791M1,9L1+1v ce :9,22—1-91;@ .+ G1n), the condensate in lower quasimodes. This translates into a
loss in coherence that is unacceptable, e.g., in interferometric
with 1<y ;<pu,<n andg.=(g1,+Jo.)/2. applications. The question, then, is whether an optimized
Except for the random location at which the splicing of time-dependent detuning determined by a genetic algorithm
the chromosome occurs, the mating algorithms discussed s@n eliminate this problem.
far are deterministic. In addition, genetic algorithms also re- For the sake of illustration, we assume that the condensate
quire the use of “mutation” and “creep.” These are random is initially in the zero-momentum quasimodgy(t=0)=1,
operators that produce one offspring from one parent by aland seek a time-dependent detuning suchghét) =1 after
tering any gene of the parent chromosome with a given probsome predetermined tinte. In that case, the algorithm fit-
ability called the mutation rate, respectively, the creep rate:ness has the simple form
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7 : FIG. 3. Effect of the nonlinearity on the momentum-space wave
Q 05r A 7 function: Momentum-space densities within quasimaogdeafter op-

- 2 : timizing the transfer, so thap,>0.99 after timet;=43 us; N
0.25 - : =1x10° (solid), N=5x10° (dasheldl N=1x 10° atoms(dotted,

) : andN=2x 10 (dashed dotted

0 10 20 30 40 dent detunings(t) found by the genetic algorithm is highly
tlpsl nontrivial. The temporal dependence of the detundi(y),

FIG. 2. M wum transfer of a Sodi d e with which transfers more than 99% of the population to the

. 2. Momentum transfer of a Sodium condensate with a . D
im reveals that while it is initiall vant

Gaussian spatial distribution of longitudinal width %0m and quasimodeuy, reveals tha enis ally advantageous

transverse width 5um: A, =985 nm and Vo=hwg, M to remain close to the Bragg-resonance fr_equgncy, as indi-
=3.82x10 % kg anda,=4.9 nm. (a) The solid line is the opti- cated by the rather flat port|o_n of the detuning, it eventually
mized time-dependent detuning. The dotted lines label the first anB€COMES necessary to drastically couple the condensate at-
second Bragg resonance for referend®. Temporal evolution of ~OmMSs to higher momentum modes so as to drag the remaining
the mode populationp, for N=2x10° atoms: On resonance population to the final state; [41].

(dashedl and optimizedsolid). The vertical dotted line denotes the The effect of the mean-field energy is further illustrated in
time it takes to resonantly transfer all population to the quasimodé=ig. 3, which shows the final momentum distributién(k)

u; in a linear two-mode system. within the quasimode, for various numbers of atoms in the
condensate for optimal transfer. While this distribution re-
f(ci)=pi(ts), (29 mains extremely narrow compared to the quasimode width
2k, , collisions lead to a substantial reshaping and broaden-
with an optimal value of unity. ing within that mode.

Figure 2 summarizes the results of the optimization pro-
cedure. It compares the optimized population transfer of a
fairly large condensate consisting of®1&oms to the case of B. Coherent superposition
the same condensate subject to on-resonance Bragg scatter-|n 3 second application, we set out to design an equal-

ing_. In this example, the _genetic algorithm involved a One-yeight superposition of the two quasimode statgandu,
point-crossover, a two-point-crossover, and an average-cross

over mating operator. In addition, it included two mutation 1 _ _

operators with mutation rates of 0.8 and 0.4, and two creep d(k,t;) =—=(uge' o+ u,e'%1), (20

operators, both at a rate of 0.9, but different creep param- V2

eters, a “coarse” creep Witpee=0.01 and a “finer” creep

operator withpgee=0.001. More details of the simulations _ _

are given in the Appendix. with a prescribed relative phagep= ¢, — ¢q. In contrast to
While it can be expected that resonant Bragg scattering dhe preceding example, we now want to control two proper-

the appropriate frequency transfers perfectly the populatioties of the quantum state, the relative phase as well as the

of a small condensate from modg to modeu,, such is not population in each state. The fithess function to be optimized

the case for the large condensate we investigétledhed is therefore more complicated.

line in Fig. 2. In this case, the mean-field nonlinearity of the We choose to employ a so-called “penalty function”

condensate is no longer negligible. It dynamically shifts theP(c;) for the optimization of the quasimode populations

Bragg resonancki0] so that the transfer efficiency drops to [18]. The goal ofP(c;) is to decrease the fitness of chromo-

barely over 90% and the maximum transfer occurs later irsomes that do not fulfill the desired requirements, thereby

time. It is in such nontrivial situations that genetic algorithmssteering the population towards the target values. A prototype

are expected to be useful. Indeed, the optimal time-deperpenalty function is
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the two cased ¢ = — 7/2 andA¢= — 7/4 are shown in Fig.

4. For the genetic algorithm we used the same operators and
their parameters as in Sec. IV A. More details of the simu-
lations are given in the Appendix.

Figure 5 shows the momentum distributiotg(k) and
¢1(k) of the condensate within each of the two quasimodes
Up andu,, as well as the corresponding phases for the case
Ag=—m/2. Clearly, the genetic algorithm converges to the
stated goal, and produces a condensate in the desired coher-
ent superposition.

PN (b) In particular, we observe that the relative phase of the two
08 l components is approximately constant in the region where
e the condensate wave function is different from zero. The
0.6 SN . ) optimization goal ofA¢o= —7/2 is achieved with an accu-
TRA racy of over 99% at the center of the mode. The curvature of
04 | PN the phase at the wings of the wave function is due to nonlin-
g ear phase shifts accumulated during the Hamiltonian evolu-
02 e 1 tion. It could be reduced by decreasing the number of atoms
p, _ = in the condensate.

3(t) [kHz]

p,®

T
_
o
~

1

V. SUMMARY AND CONCLUSION

In summary, we have demonstrated the usefulness of ge-
netic algorithms in the control and manipulation of the quan-
tum states of Bose-Einstein condensates. This was illustrated
in two examples, the coherent population transfer between
momentum states in a large condensate where the mean-field
effects are important, and the creation of coherent superpo-
] sitions of states of prescribed population and relative phase.
. . : . ' We found that time-dependent Bragg scattering combined
10 15 20 3 with the powerful optimization capabilities of genetic algo-

tlpsl rithms, provides a different tool for quantum-state design and

FIG. 4. Excitation of an equal-weight coherent superposition of¢oherent control in linear and nonlinear atom optics. The
momentum states with relative phasese=— /4 (solid) and  €xtension of these ideas to integrated atom optics appears
Ag=—m/2 (dashedl The parameters are the same as in Fig. 2,particularly promising. Future theoretical work will general-
except that the condensate has a Gaussian spatial distribution € these concepts to systems with more degrees of freedom,
longitudinal width 100 um andN=5x 10", (a) Optimized time-  such as multicomponent condensates, and to additional con-
dependent detuning is used to create the superposibpifempo-  trol mechanisms such as time-dependent magnetic fields. The
ral evolution of the mode population of the two involved modes.  extension of this work to quantum-degenerate Bose-Fermi
Temporal evolution of relative phase of the two quasimodes at thenixtures also appears promising.
center of their momentum distribution, see Fig. 5.

Ap(t) [rad]

=5m/2

(=
(9.1
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APPENDIX: DETAILS OF THE GENETIC ALGORITHM
f(ci)=1—]a(c)—Ap|—P(c), (22)

In this Appendix we give specific details of the implemen-
where, as we recalt; corresponds to a specific realization of tation of the genetic algorithm in the problem of BEC state
the time-dependent detuning(t) and «(c;) is the relative  engineering in an optical lattice.
phase corresponding to this realization. This fithess function Over the course of the optimization we monitor the maxi-
reaches its maximum, unity in this case, when the populamum fitnessf ., of a population,
tions are within the specified range and the phase difference
is exactly as prescribed. The results for the optimization for fnaemaxf(c):i=1,... N} (A1)
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FIG. 5. Density profiles and phases of the two momentum ‘é 0.2 T
modes after the optimization at=t;. The lower abscissa corre- & ]
sponds to the momentum wave functigg with phasep, centered [N~ mmm ™7 S N\
aroundk=0, the upper top, with phase¢, centered around 0.1 .
=2k, . Note thatp(ts),p,(t;)=0.475.
20 40 60 80 100

0
Obviously, if at least the best chromosome is kept from the generation
old generation, the maximum fitness is a monotonically in- . ) .
creasing function. This feature, called “elitism,” is used _FIG. 6. Atypical run of the genetic algorithm for the superpo-

throughout our simulations. Another observable of interest iSition state engineeringa) Maximum fitness(solid) and mean fit-
the mean fithess of a population ness(dashedl of the population as a function of the generation. We
mean 1

started the optimization with preoptimized chromosomes from pre-

1 N vious simulations, which explains the high-initial maximum fitness
fmean:NE f(c). (A2) of over 60%.(b) Operator fitness as a function of the generation,
=1 starting with equal fithess for all operators. The minimum-operator

A typical evolution of these two quantities is shown in Fig. tNess is set equal to 0.1 for all operators.

6(a). The maximum fitness increases monotonically to reacheward pairs of operators that work well together at a certain
a value close to the optimum after about 40 generations. I8tage of the optimization process. In our simulations we ad-
contrast, the mean fitness rises over the course of the first-tgiist the fitness of all operators every five generations based
generations and then exhibits fluctuations due to the stochasen the credit they accumulated during that period. The new
tic character of the genetic algorithm: Parts of the populatioroperator fitness is then a weighted sum of the old fitritres
are replaced by randomly created chromosomes from onthasis portion,” in our case 85%and the accumulated credit
generation to the next and randomize the mean-fitness valughe “adaptive portion,” in our case 15%). The more credit
In our simulations we used populations of sjxe&=50—-100 an operator accumulates the higher will be its new fitness
and performed the optimization over 50-100 generationsand the more likely it is that it will be chosen in future
We always kept the best chromosomes of a generation anglating processes. Since the total operator fitness is set con-
replaced 80%—-90% of the population by newly generategtant, we introduce a lower bound of 0.1 to the operator
chromosomes. For the population transfer of Sec. IV A wefitness, thereby preventing operators that do not perform well
used 16, and for the superposition state engineering of Seover several generations from being practically expelled
IV B, 26 genes per chromosome. The gene boundaries weffeom the pool of operators.
chosen as-0.7wg<a,,,b;,<0.7wg. Figure 6b) shows a typical evolution of the fitness of the
As mentioned in Sec. lll, we use an adaptive operatoindividual mating operators in the superposition state-
technique, where the operators themselves are dynamicalbhgineering problem from Sec. IV B. The creep and one-
assigned a fitness based on their performance. Choosingpaint-crossover operators perform well for the first-30 gen-
particular mating operator via a roulette—wheel metfibd  erations. For subsequent generations the two-point-crossover
then assures that good operators are employed more oftenamd the average-crossover operators take over and help in-
the mating process. If any operator produces an offspringreasing the maximum fitness, which approaches its opti-
that is better than the best chromosome of the precedingium value(unity in the present exampleThere is no fur-
generation, we reward this operator by giving it a credit pro-ther improvement in the remaining 50 generations, the fitness
portional to the increase in fitness it caused. Also, we pasef the various operators staying constant. The random-
half of this given credit back to the operator that created thenutation operators never perform well in the problem at
parent chromosome involved in producing the better off-hand. Consequently their fitness is quickly reduced to the
spring. Thus operators that perform well and also their directower bound. The creep operators, which basically controlled
ancestors can accumulate credit over the run of the simulanutations, perform much better and could replace the pure-
tion. Passing credit back to preceding operators enables us tautation operators.
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