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Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate
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We study the system of coupled atomic and molecular condensates within the two-mode model and beyond
mean-field theory. Large-amplitude atom-molecule coherent oscillations are shown to be damped by the rapid
growth of fluctuations near the dynamically unstable molecular mode. This result contradicts earlier predictions
about the recovery of atom-molecule oscillations in the two-mode limit. The frequency of the damped oscil-
lation is also shown to scale asAN/ ln N with the total number of atomsN, rather than the expected pureAN
scaling. Using a linearized model, we obtain analytical expressions for the initial depletion of the molecular
condensate in the vicinity of the instability, and show that the important effect neglected by mean-field theory
is an initially nonexponential ‘‘spontaneous’’ dissociation into the atomic vacuum. Starting with a small
population in the atomic mode, the initial dissociation rate is sensitive to the exact atomic amplitudes, with the
fastest~superexponential! rate observed for the entangled state formed by spontaneous dissociation.
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Recent photoassociation@1# and Feshbach resonance@2,3#
experiments suggest the possibility of producing molecu
Bose-Einstein condensates~BEC’s! @4–9#. Large-amplitude
coherent oscillations between an atomic BEC and a mole
lar BEC have been theoretically predicted@4–6#. A common
theme to these studies is the use of the Gross-Pitaevskii~GP!
mean-field theory~MFT!, reducing the full multibody prob-
lem into a set of two coupled nonlinear Schro¨dinger equa-
tions. These are then solved numerically to obtain
Josephson-type dynamics of the coupled atomic and mol
lar fields.

The simple GP dynamics is substantially affected by c
densate depletion due to inelastic collisions@5,7,10#, sponta-
neous emission, and the inclusion of noncondensate m
@10–14#. Consequently, the atom-molecule oscillations
expected to be strongly damped under current experime
conditions. The proposed remedy for this detrimental eff
involves a recovery of an effective two-mode dynamics@13#,
thereby preventing the buildup of thermal population.

In this article we point out that even in the perfect tw
mode limit, MFT fails to provide long-term predictions du
to strong interparticle entanglement near the dynamically
stable molecular mode. Quantum corrections to MFT app
in the vicinity of its dynamical instabilities on time scale
that grow only logarithmically with the numberN of conden-
sate particles@15–17#. Thus, even in the absence of
‘‘proper’’ thermal bath of noncondensate states, the me
field equations are coupled to a reservoir of Bogoliubov fl
tuations@16,18#. The rapid growth of these fluctuations ne
the instability is analogous to the rapid population of t
thermal cloud, similarly inhibiting the mean-field atom
molecule oscillations. Our results, obtained using the
merical solution of exact quantum equations, go beyond
Hartree-Fock-Bogoliubov approach@12#. The leading quan-
tum effect is identified as a nonexponential spontaneous
cay of the molecular condensate and the dynamics is sh
to be highly sensitive to the initial conditions. We note th
similar quantum corrections are well known for paramet
oscillations in quantum optics@19–22#.
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We consider the simplest model of the atom-molec
condensate, in which particles can only populate two seco
quantized modes: an atomic mode, associated with the
ation and annihilation operatorsâ and â† and a molecular
mode, associated with the creation and annihilation opera
b̂ and b̂†. The two modes are coupled by means of a ne
resonant two-photon transition or a Feshbach resona
with a coupling frequencyV and detuningD. Setting the
zero energy to the energy of the molecular mode the tw
mode Hamiltonian reads

Ĥ5
\D

2
â†â1

\V

2
~ â†â†b̂1b̂†ââ!. ~1!

For D50, the Hamiltonian of Eq.~1! is identical @4,23# to
the well-known Hamiltonian describing the optical proce
of parametric oscillations@24#, where dissociation is equiva
lent to parametric down-conversion and association is
analog of second-harmonic generation. We will takeV to be
real and positive without loss of generality, since the relat
phase between the modes is determined up to an add
constant and the overall sign ofH is insignificant.

We obtain a generalization of the Bloch representation
the two-mode system~similarly to the approach taken in
Refs.@16,17#! by introducing the three operators

L̂x[A2
â†â†b̂1b̂†ââ

N3/2
,

L̂y[A2
â†â†b̂2b̂†ââ

iN3/2
,

L̂z[
2b̂†b̂2â†â

N
, ~2!

where N denotes the total number of atoms. Discardi
c-number terms, the Hamiltonian of Eq.~1! then takes the
simple form
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Ĥ5\F S N

2 D 3/2

VL̂x2
N

4
DL̂zG , ~3!

and the Heisenberg equations of motion for the three op
tors of Eq.~2! read

d

dt
L̂x52DL̂y ,

d

dt
L̂y52

3

4
A2NVF ~L̂z21!S L̂z1

1

3D G1DL̂x1A2

N
V,

d

dt
L̂z52A2NVL̂y . ~4!

These three operators donot represent SU~2!, but all three
commute with the conserved total atom numberN5â†â

12b̂†b̂.
The mean-field approximation is invoked by approxim

ing second-order expectation values^L̂iL̂j& as products of
the first-order momentŝL̂i& and ^L̂j& @16,17#,

^L̂iL̂j&'^L̂i&^L̂j&. ~5!

Approximation~5! is correct toO(1/AN). Thus we can also
neglect thec-number termA2/NV in Eq. ~4!. Defining s¢

[(^L̂x&,^L̂y&,^L̂z&), rescaling the time ast5ANVt, and us-
ing Eq. ~5!, we obtain the mean-field equations

d

dt
sx52dsy ,

d

dt
sy52

3A2

4
~sz21!S sz1

1

3D1dsx ,

d

dt
sz52A2sy , ~6!

where the dimensionless rescaled detuningd is defined as
d[D/(ANV) @Eqs. ~6! are equivalent to Eqs.~32! of Ref.
@10# without the inelastic-collision terms#. Lyapunov analysis
of Eqs.~6! shows that as long asudu,A2 the stationary point
s¢5(0,0,1) corresponding to the entire population being
the molecular mode, is~as pointed out for the idler mode o
parametric oscillations@20,21#! dynamically unstable be
cause any small perturbation to the mean-field equations~6!
would trigger the parametric oscillation. In the vicinity o
this point, MFT is expected to break down on a time sc
that is only logarithmic inN @15–17#. In order to verify this
prediction, we solve the fullN-body problem by fixingN,
thereby restricting the available phase space to Fock stat
the type un,(N2n)/2& with n atoms and (N2n)/2 mol-
ecules, wheren50,2,4, . . . ,N. Thus we obtain an (N/2
11)-dimensional representation for the Hamiltonian and
N-body density operatorr̂. The quantum solution is the
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obtained by numerically propagatingr̂ according to the
Liouville–von Neumann equation

i\ṙ̂5@Ĥ,r̂ #, ~7!

and the expectation values of the three operators of Eq.~2!

are retrieved assi5Tr(rL̂i).
In what follows, we shall assume thatd50, as required to

obtain unit-amplitude atom-molecule oscillations. In Fig.
we plot the expectation valuesz corresponding to the popu
lation difference between the modes as a function of
rescaled timet for various values of the total particle num
ber. The initial conditions ares¢5(0,0,21) corresponding to
an initially populated atomic mode. The mean-field soluti
~dotted line! depicts the convergence ofsz to the unstable
fixed point. The quantum solutions~identical to the results of
Ref. @4# obtained by solving theN-particle Schro¨dinger equa-
tion! initially follow the mean-field evolution closely. How
ever, in the vicinity of the molecular mode (sz51) the quan-
tum trajectories break away from the mean-field predict
on a time scale that grows only logarithmically withN. Thus,
the oscillation frequency scales withAN/ ln(N) as opposed to
the expected scaling withAN. Moreover, the oscillations are
damped by the strong entanglement near the molec
mode, in complete analogy with the damping of oscillatio
when the two-mode system is coupled to external ther
modes. Full Rabi-type coherent oscillations can only be
served for a single pair of atoms.

We note that the results of Fig. 1 cannot be reproduced
a Hartree-Fock-Bogoliubov approach@12#. In order to obtain
the damping of coherent oscillations, one has to go dee
into the Bogoliubov-Born-Green-Kirkwood-Yvon hierarch
of equations of motion, and maintain a number of equatio
comparable to the total number of particlesN.

Equations~4! are equivalent to the equations of motio
for the two annihilation operatorsâ and b̂,

FIG. 1. Numerically calculated population imbalance betwe
atoms and molecules, as a function of the rescaled timet for 2 ~—!,
10 ~–––!, 100 ~- - -!, and 1000~-•-! particles, compared with the
mean-field prediction (•••).
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i ȧ̂5
D

2
â1Vb̂â†, ~8a!

i ḃ̂5
V

2
ââ. ~8b!

To appreciate why MFT fails as it does, we will now focu
our attention on the vicinity of the dynamically unstable a
molecule state, using a linearized model in which the m
lecular annihilation operatorb̂ is replaced by ac numberb of
O(AN/2). In this approximation, which is valid as long a
the population of the molecular state is large and the effec
its depletion on the atomic population growth rate can
neglected, Eq.~8a! becomes

i ȧ̂5
D

2
â1Vbâ†. ~9!

Equation~9! in combination with its complex conjugate pro
vides an autonomic set of two linear operator equatio
which can be solved using common methods reducing i
an eigenproblem. When the molecular mode is dynamic
unstable (udu,A2) we have

Vubu.uDu/2, ~10!

and the exact solution of Eq.~9! takes the rapidly growing
form

â~ t !5â~0!coshlt2
i

l FD2 â~0!1Vbâ†~0!Gsinhlt,

~11!

where

l5AV2ubu22~D/2!2. ~12!

The time dependence of the atom number operatorn̂a(t)
5â†(t)â(t) is thus given as

^n̂a~ t !&5nsp~ t !1nst~ t !, ~13!

where the term

nsp~ t !5
V2ubu2

l2 sinh2 lt, ~14!

not accounted for by MFT, corresponds to spontaneous
sociation into the atomic vacuum and the term

nst~ t !5^n̂a~0!&S cosh 2lt1
D2

2l2
sinh2 lt D

2
V

l
ImF ^â~0!â~0!&b* S sinh 2lt2 i

D

l
sinh2 lt D G

~15!
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depicts stimulated dissociation taking place when the ato
state is initially populated. The two terms on the right-ha
side of Eq.~15! correspond to noncoherent and coherent i
tial occupation, respectively.

Starting from the dynamical instability (ubu5AN/2) with
zero atomic occupation, and assuming zero detuning, the
tial evolution of the expectation valuesz(t) is given accord-
ing to Eqs.~13!–~15! by the purely spontaneous process,

sz~ t !512
2

N
sinh2~t/A2!. ~16!

According to Eq.~16! the initial decay of the atomic mode i
nonexponential as the leading decay term is quadratic ra
than linear int. This behavior is in accordance with the initia
nonexponential decay of a general spontaneous-emis
process@25#. The quadratic gain of the atomic population
confirmed by the results of Fig. 2, where we compare
initial depletion of the molecular mode according to Eq.~16!
with exact quantum results obtained for various values ofN.
The agreement is initially excellent until the occupation
the atomic mode becomes significant compared to the
lecular occupation. Moreover, it is evident from Eq.~16! and
confirmed by the results of Fig. 2, that the time at which t
quantum spontaneous-emission term will become signific
grows only logarithmically withN, in agreement with our
prediction.

Equation~14! was already obtained in Ref.@13#, as the
asymptotic expression att→`. However, at this limit, the
atomic occupation becomes comparable to the molec
population, and the depletion of the molecular mode sho
be taken into account. Nevertheless, Eq.~14! is an exact
solution to the model of Eq.~9!, applicable at smallt.

It is interesting to note that whenudu.A2 the molecular
mode is stabilized. Consequently, the exact solution of
~9!, when

Vubu,uDu/2, ~17!

is an oscillatory function of the form

FIG. 2. Depletion of the purely molecular mode forN510, 100,
and 1000 particles, according to Eq.~16! ~- - -!, compared with
‘‘exact’’ numerical results~—!.
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â~ t !5â~0!cosulut2
i

uluFD2 â~0!1Vbâ†~0!Gsinulut,

~18!

where now

ulu5A~D/2!22V2ubu2. ~19!

The watershed value ofudu5A2 agrees with previous result
obtained by analysis of the Bogoliubov spectrum of pho
association@23#. It is also worth noting that as shown in Fig
1, the evolution of a single molecule coupled to a sin
atomic mode is always described by an oscillating soluti
similar to Eq.~18! since Bose enhancement, depicted by
exponential gain of Eqs.~11! and ~13! is a collective effect,
analogous to lasing.

Finally, we consider the dependence of the stimulat
decay term, as described by Eq.~15!, on the exact initial
conditions. Starting with an initially small coherent atom
amplitude @ u^â(0)â(0)&u5^n̂a(0)&# and assuming exac
resonance (D50), the initial evolution ofnst can be varied
from exponential gain to exponential decay@nst(t)
;exp(6lt)# by controlling the relative phase between t
atomic and molecular modes@^â(0)â(0)& and b5^b̂&#.
Moreover, the squeezed state, formed by spontaneous d
ciation, always gains faster@ ṅsp(t)/nsp(t)52l cothlt.2l#,
due to its high degree of entangleme

@ u^â(t)â(t)&u/^n̂a(t)&5cothlt.1#. In Fig. 3 we compare the
predictions of Eq.~13! with exact quantum results for thre
initial amplitudes, corresponding to the same initial atom
occupation of 4/3N. The ~a! and ~b! curves correspond to
states of the form c0u0,N/2&1c2u2,N/221& with (c0

5A2/3,c25 iA1/3) and (c05A2/3,c252 iA1/3), respec-
tively, giving b̂* ^â(0)â(0)&56 i ubu^n̂a(0)& ~in equivalence
to coherent states!. The ~c! lines depict the continued deca
of a squeezed state with the same^n̂a(0)&, formed by the
purely spontaneous process, starting att520.53. As ex-
pected, an initial exponential atomic loss is observed w
c25 iA1/3 and an exponential atomic gain is observed wh
c252 iA1/3. The gain of the spontaneously produc
squeezed state, depicted by Eq.~14!, is as we pointed ou
before—initially nonexponential, becoming so only at la
times.
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In conclusion, due to the dynamical instability of the m
lecular mode, the atomic ensemble produced by the disso
tion stage of the parametric oscillation is highly entangle
Consequently, atom-molecule coherent oscillations are
dicted to be damped even in the two-mode limit. The lead
quantum correction is an initially nonexponential sponta
ous decay, becoming significant on a timescale that o
grows as lnN. Stimulated processes taking place when th
is an initial atomic population are sensitive to different initi
conditions corresponding to the samesz(0). Thefastest~su-
perexponential! decay rate is obtained for the initial sta
formed by spontaneous dissociation. This dependence o
nates in the parametric-oscillation phase, driving it towa
the molecular mode or away from it. It has significant imp
cations on the case of multiple atomic modes, suggesting
the rapid growth observed when these modes are initi
partially populated@13# would be sensitive to the exac
atomic amplitudes.

We are grateful to Vladimir Akulin for helpful discus
sions. This work was supported by the National Scien
Foundation through a grant from the Institute for Theoreti
Atomic and Molecular Physics at Harvard University and t
Smithsonian Astrophysical Observatory.

FIG. 3. Depletion of the molecular mode for three 100-parti
states with the same initial value ofsz(0)574/75: ~a!
(2/3)1/2u0,N/2&1 i (1/3)1/2u2,N/221&, ~b! (2/3)1/2u0,N/2&
2 i (1/3)1/2u2,N/221&, and~c! the state created by the spontaneo
process starting from the pure molecular mode, according to
~15! ~- - -!. Corresponding solid lines are ‘‘exact’’ numerical resul
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