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Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate
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We study the system of coupled atomic and molecular condensates within the two-mode model and beyond
mean-field theory. Large-amplitude atom-molecule coherent oscillations are shown to be damped by the rapid
growth of fluctuations near the dynamically unstable molecular mode. This result contradicts earlier predictions
about the recovery of atom-molecule oscillations in the two-mode limit. The frequency of the damped oscil-
lation is also shown to scale a8V/In N with the total number of atomi, rather than the expected puy@l
scaling. Using a linearized model, we obtain analytical expressions for the initial depletion of the molecular
condensate in the vicinity of the instability, and show that the important effect neglected by mean-field theory
is an initially nonexponential “spontaneous” dissociation into the atomic vacuum. Starting with a small
population in the atomic mode, the initial dissociation rate is sensitive to the exact atomic amplitudes, with the
fastest(superexponentiakate observed for the entangled state formed by spontaneous dissociation.
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Recent photoassociatif] and Feshbach resonar{@3] We consider the simplest model of the atom-molecule
experiments suggest the possibility of producing moleculacondensate, in which particles can only populate two second-
Bose-Einstein condensatéBEC’s) [4—-9]. Large-amplitude quantized modes: an atomic mode, associated with the cre-
coherent oscillations between an atomic BEC and a molecuation and annihilation operatoes anda’ and a molecular
lar BEC have been theoretically predicfed-6]. Acommon  mode, associated with the creation and annihilation operators
theme to these studies is the use of the GrOSS'Pitad@Rji 6 and BT_ The two modes are Coup|ed by means of a near-
mean-field theoryMFT), reducing the full multibody prob- resonant two-photon transition or a Feshbach resonance,
lem into a set of two coupled nonlinear ScHiger equa-  with a coupling frequency) and detuningA. Setting the

tions. These are then solved numerically to obtain thesero energy to the energy of the molecular mode the two-
Josephson-type dynamics of the coupled atomic and molecynode Hamiltonian reads

lar fields.
The simple GP dynamics is substantially affected by con- - hAATA nQ Apatp L pan
densate depletion due to inelastic collisi¢bs7,10, sponta- H= 73 a+7(a a'b+b'aa). €y

neous emission, and the inclusion of noncondensate modes
[10-14. Consequently, the atom-molecule oscillations are=or A=0, the Hamiltonian of Eq(1) is identical[4,23] to
expected to be strongly damped under current experimentdéhe well-known Hamiltonian describing the optical process
conditions. The proposed remedy for this detrimental effecof parametric oscillationg24], where dissociation is equiva-
involves a recovery of an effective two-mode dynanit3], lent to parametric down-conversion and association is the
thereby preventing the buildup of thermal population. analog of second-harmonic generation. We will tékeo be

In this article we point out that even in the perfect two- real and positive without loss of generality, since the relative
mode limit, MFT fails to provide long-term predictions due phase between the modes is determined up to an additive
to strong interparticle entanglement near the dynamically uneonstant and the overall sign bf is insignificant.
stable molecular mode. Quantum corrections to MFT appear We obtain a generalization of the Bloch representation for
in the vicinity of its dynamical instabilities on time scales the two-mode systenisimilarly to the approach taken in
that grow only logarithmically with the numbét of conden-  Refs.[16,17)) by introducing the three operators
sate particles[15—-17. Thus, even in the absence of a o
“proper” thermal bath of noncondensate states, the mean- . a'a’b+b'aa
field equations are coupled to a reservoir of Bogoliubov fluc- Ly=N2 N2
tuations[16,18. The rapid growth of these fluctuations near
the instability is analogous to the rapid population of the

arathb—hTas
thermal cloud, similarly inhibiting the mean-field atom- ZyE ZM,
molecule oscillations. Our results, obtained using the nu- iN3/2

merical solution of exact quantum equations, go beyond the

Hartree-Fock-Bogoliubov approa¢h2]. The leading quan- 2b’b—a’a
tum effect is identified as a nonexponential spontaneous de- TN
cay of the molecular condensate and the dynamics is shown

to be highly sensitive to the initial conditions. We note thatwhere N denotes the total number of atoms. Discarding
similar quantum corrections are well known for parametricc-number terms, the Hamiltonian of E¢l) then takes the
oscillations in quantum optids9—-22. simple form

o
i

2
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and the Heisenberg equations of motion for the three opera-
tors of Eq.(2) read

3/2

N . .
QOL,— —AL, 3

N
4

d. -
b= —ALy,
.1 . \/5
a y——Z\IZNQ (ﬁz—l) £Z+§ +A£x+ NQ,
d. -
&Ez: - \IZNQ,Cy (4)

These three operators dmt represent S(2), but all three
commute with the conserved total atom numiéra’a
+2b'b.

The mean-field approximation is invoked by approximat-
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FIG. 1. Numerically calculated population imbalance between

atoms and molecules, as a function of the rescaled tifoe 2 (—),
10 (——-), 100¢(- - -), and 1000Q(-- -) particles, compared with the
mean-field prediction (- -).

ing second-order expectation valugg Z;) as products of obtained by numerically propagating according to the

the first-order momentéZ;) and(Z;) [16,17,

(LiLyy=~(Li)(L;). )
Approximation(5) is correct toO(1/y/N). Thus we can also
neglect thec-number termy2/NQ in Eq. (4). Defining§
E((ﬁx%(ﬁy),(ﬁz)), rescaling the time as= NQt, and us-
ing Eq. (5), we obtain the mean-field equations

dex=—5sy,

d 32 1
E‘Sy: — T(SZ_ 1)| s, + § + 65y,
d
d—TSZZ—\/ESy, (6)

where the dimensionless rescaled detunéhgs defined as
5=A/(\JNQ) [Egs. (6) are equivalent to Eqg32) of Ref.
[10] without the inelastic-collision termisLyapunov analysis
of Egs.(6) shows that as long d8|< \/2 the stationary point
§=(0,0,1) corresponding to the entire population being i
the molecular mode, i&s pointed out for the idler mode of
parametric oscillationd20,21]) dynamically unstable be-

Liouville—von Neumann equation

ifp=[H,p], 7

and the expectation values of the three operators of(Hqg.

are retrieved as;=Tr(pL;).
In what follows, we shall assume thét 0, as required to

obtain unit-amplitude atom-molecule oscillations. In Fig. 1
we plot the expectation valug, corresponding to the popu-
lation difference between the modes as a function of the
rescaled timer for various values of the total particle num-
ber. The initial conditions ar§=(0,0,—1) corresponding to

an initially populated atomic mode. The mean-field solution
(dotted ling depicts the convergence sf to the unstable
fixed point. The quantum solutioriglentical to the results of
Ref.[4] obtained by solving thal-particle Schrdinger equa-
tion) initially follow the mean-field evolution closely. How-
ever, in the vicinity of the molecular mods & 1) the quan-
tum trajectories break away from the mean-field prediction
on a time scale that grows only logarithmically wkh Thus,

the oscillation frequency scales witfiN/In(N) as opposed to
the expected scaling witkiN. Moreover, the oscillations are
ndamped by the strong entanglement near the molecular
mode, in complete analogy with the damping of oscillations
when the two-mode system is coupled to external thermal

cause any small perturbation to the mean-field equati6ns modes. Full Rabi-type coherent oscillations can only be ob-

would trigger the parametric oscillation. In the vicinity of served for a single pair of atoms.
this point, MFT is expected to break down on a time scale We note that the results of Fig. 1 cannot be reproduced by

that is only logarithmic irN [15—17. In order to verify this
prediction, we solve the fulN-body problem by fixingN,

a Hartree-Fock-Bogoliubov approaft?]. In order to obtain
the damping of coherent oscillations, one has to go deeper

thereby restricting the available phase space to Fock states pfto the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy

the type|n,(N—n)/2) with n atoms and K—n)/2 mol-
ecules, wheren=0,2,4... N. Thus we obtain an N/2

of equations of motion, and maintain a number of equations
comparable to the total number of particlds

+ 1)-dimensional representation for the Hamiltonian and the Equations(4) are equivalent to the equations of motion

N-body density operatop. The quantum solution is then

for the two annihilation operatos andb,
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|a=5a+QbaT,

(8a)

(8b) 0.9

N2

To appreciate why MFT fails as it does, we will now focus
our attention on the vicinity of the dynamically unstable all-
molecule state, using a linearized model in which the mo-
lecular annihilation operatdr is replaced by & numberb of
O(+/N/2). In this approximation, which is valid as long as
the population of the molecular state is large and the effect of R 3 .
its depletion on the atomic population growth rate can be 0 0.5 1 15 2 2.5

neglected, Eq(8a) becomes

. AL -
|a=§a+QbaT. 9)

rescaled time

FIG. 2. Depletion of the purely molecular mode fér= 10, 100,
and 1000 particles, according to E4.6) (- - -), compared with
“exact” numerical resultg—).

Equation(9) in combination with its complex conjugate pro- depicts stimulated dissociation taking place when the atomic
vides an autonomic set of two linear operator equationsstate is initially populated. The two terms on the right-hand
which can be solved using common methods reducing it tgide of Eq.(15) correspond to noncoherent and coherent ini-
an eigenproblem. When the molecular mode is dynamicallyial occupation, respectively.

unstable [8|< 2) we have
Qlb|>|Al/2, (10

and the exact solution of E@9) takes the rapidly growing
form

é(t)=é(0)cosh)\t—;\—

A, - .
5a(0)+ﬂba*(0)}smh)\t,

(11
where

A=Q7[b]>—(A/2)2.

The time dependence of the atom number operégﬁt)
=af(t)a(t) is thus given as

12

(Na())=nggt) +ng(t), (13
where the term
Q2?|b|?
Nl t) = )\|2| sint? At, (14

Starting from the dynamical instabilitylf| = \/N/2) with
zero atomic occupation, and assuming zero detuning, the ini-
tial evolution of the expectation valig(t) is given accord-
ing to Egs.(13)—(15) by the purely spontaneous process,

s,(t)=1— %sinhz( 712). (16)

According to Eq.(16) the initial decay of the atomic mode is
nonexponential as the leading decay term is quadratic rather
than linear int. This behavior is in accordance with the initial
nonexponential decay of a general spontaneous-emission
procesq25]. The quadratic gain of the atomic population is
confirmed by the results of Fig. 2, where we compare the
initial depletion of the molecular mode according to ELp)
with exact quantum results obtained for various valuell.of
The agreement is initially excellent until the occupation of
the atomic mode becomes significant compared to the mo-
lecular occupation. Moreover, it is evident from E#6) and
confirmed by the results of Fig. 2, that the time at which the
guantum spontaneous-emission term will become significant,
grows only logarithmically withN, in agreement with our
prediction.

Equation(14) was already obtained in Ref13], as the
asymptotic expression at-o. However, at this limit, the
atomic occupation becomes comparable to the molecular

not accounted for by MFT, corresponds to spontaneous digsopulation, and the depletion of the molecular mode should

sociation into the atomic vacuum and the term

- A%
Ng(t)= (na(0)>( coshat+ ﬁsmh2 )\t)

"~ o~ A
(a(O)a(O))b*(sinh 2At—i—sink? At”

2
m N

(19

be taken into account. Nevertheless, Et{) is an exact
solution to the model of Eq9), applicable at smal.

It is interesting to note that wheb|> 2 the molecular
mode is stabilized. Consequently, the exact solution of Eq.
(9), when

Q[bl<A|72, (17)

is an oscillatory function of the form
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“ “ i [A. R 1
a(t)=a(0)cos|\|t— |)I\—| 5a(0)+QbaT(0)}sin|)\|t,
(18
where now
IN|= V(A2 27— Q7[b]2. (19) @

The watershed value ¢8| = \/2 agrees with previous results
obtained by analysis of the Bogoliubov spectrum of photo-
associatiof23]. It is also worth noting that as shown in Fig.
1, the evolution of a single molecule coupled to a single

atomic mode is always described by an oscillating solution, 0.95; 02 : o v Y 1
similar to Eq.(18) since Bose enhancement, depicted by the ’ rescaled time )
exponential gain of Eqg11) and(13) is a collective effect, ) )
analogous to lasing. FIG. 3. Depletion of the molecular mode for three 100-particle
Finally, we consider the dependence of the stimulatedStates with ‘the same initial value 08,(0)=74/75: (a
(2/3)Y30,N/2) +i(1/3)¥32 N/2— 1), (b) (2/3)20,N/2)

decay term, as described by Ed5), on the exact initial
conditions. Starting with an initially small coherent atomic
amplitude [|(a(0)a(0))|=(n,(0))] and assuming exact
resonance £ =0), the initial evolution ofng can be varied
from exponential gain to exponential decajng(t) In conclusion, due to the dynamical instability of the mo-
~exp(EAt)] by controlling the relative phase between thelecular mode, the atomic ensemble produced by the dissocia-
atomic and molecular modeb(é(O)é(O)) and b=<6>] tion stage of the parametric oscillation is highly entangled.
Moreover, the squeezed state, formed by spontaneous dissggnsequently, atom-molecule coherent oscillations are pre-

- | ins f . / _> A2 icted to be damped even in the two-mode limit. The leading
ciation, always gains ast¢ns(t)/Ns(t) = 2\ COthAt>2\], guantum correction is an initially nonexponential spontane-
due to its high degree  of  entanglement

Z - - ous decay, becoming significant on a timescale that only
[[{a(t)a(t))|/{na(t))=cothat>1]. In Fig. 3 we compare the grows as IrN. Stimulated processes taking place when there
predictions of Eq(13) with exact quantum results for three js an initial atomic population are sensitive to different initial
initial amplitudes, corresponding to the same initial atomicconditions corresponding to the sas$0). Thefastest(su-
occupation of 4/Bl. The (a) and (b) curves correspond to perexponential decay rate is obtained for the initial state
states of the formco|ON/2)+¢,[2N/2—1) with (Co  formed by spontaneous dissociation. This dependence origi-
=\2/3c,=i\1/3) and €o=+2/3,c,=—i\1/3), respec- nates in the parametric-oscillation phase, driving it towards
tively, giving b*(a(0)a(0))= *i|b|(n,(0)) (in equivalence the molecular mode or away from it. It has significant impli-
to coherent stat¢sThe (c) lines depict the continued decay cations on the case of multiple atomic modes, suggesting that
of a squeezed state with the sakmg(0)), formed by the the rapid growth observed when these modes are initially
purely spontaneous process, startingrat—0.53. As ex- partially populated[13] would be sensitive to the exact
pected, an initial exponential atomic loss is observed wheRtomic amplitudes.

c,=i+/1/3 and an exponential atomic gain is observed when We are grateful to Vladimir Akulin for helpful discus-

c,=—i\1/3. The gain of the spontaneously producedsions. This work was supported by the National Science
squeezed state, depicted by Ef4), is as we pointed out Foundation through a grant from the Institute for Theoretical
before—initially nonexponential, becoming so only at later Atomic and Molecular Physics at Harvard University and the

—i(1/3)Y42N/2— 1), and(c) the state created by the spontaneous
process starting from the pure molecular mode, according to Eqg.
(15) (- - -). Corresponding solid lines are “exact” numerical results.
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