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Rotating vortex lattice in a Bose-Einstein condensate trapped in combined quadratic and quartic
radial potentials

Alexander L. Fetter
Geballe Laboratory for Advanced Materials and Departments of Physics and Applied Physics, Stanford University, Stanford

California 94305-4045
~Received 3 August 2001; published 14 November 2001!

A dense vortex lattice in a rotating dilute Bose-Einstein condensate is studied with the Thomas-Fermi
approximation. The upper critical angular velocityVc2 occurs when the intervortex separationb becomes
comparable with the vortex-core radiusj. For a radial harmonic trap, the loss of confinement asV→v'

implies a singular behavior. In contrast, an additional radial quartic potential provides a simple model for
which Vc2 is readily determined. Unlike the case of a type-II superconductor at fixed temperature, the onset of
Vc2 arises not only from decreasingb but also from increasingj caused by the vanishing of the chemical
potential asV→Vc2.

DOI: 10.1103/PhysRevA.64.063608 PACS number~s!: 03.75.Fi, 67.40.Vs, 32.80.Pj
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I. INTRODUCTION

The recent observations@1–4# of vortex arrays and vortex
lattices in rotating dilute trapped Bose-Einstein condens
~BEC! raise the question of analogies with type-II superco
ductors. What limits the number of vortices? Is there an
per critical rotation speedVc2 similar to the upper critical
field Hc2 @5# familiar from type-II superconductors? In th
superconducting case, the fieldHc2 occurs when the distanc
b;AF0 /pB between vortices becomes comparable with
vortex-core sizej;10–100 nm in typical conventional su
perconducting alloys. The measured flux quantumF0

5h/2e then impliesHc2;F0 /pj2;0.1–10 T~in this limit,
the distinction betweenH and B becomes negligible!. For
rotating superfluid4He, wherej; a few angstrom andb
;A\/M4V @6#, essentially the same condition yields the u
attainably large valueVc2;\/M4j2;1015 rad/s.

A similar criterion also applies to rotating Bose conde
sates. In this case, the vortex-core radiusj5\/A2Mm
;0.1 mm is macroscopic, wherem is the chemical poten
tial, suggesting that experimental study ofVc2 might well be
possible. As seen below, the situation in rotating dilute c
densates is even more favorable, because the chemica
tential decreases at large rotation speeds, increasing
vortex-core size and thus reducingVc2.

For a trap with a radial harmonic potentialV'(r')
5 1

2 Mv'
2 r'

2 , the behavior becomes singular whenV→v'

because the outward centrifugal force counteracts the inw
force from the harmonic trap@7–9#. Specifically, the effec-
tive radial trap frequency (v'

2 2V2)1/2 produces an observ
able centrifugal distortion of the condensate@10–12# for cur-
rently attainable values ofV/v'&1. As seen below, this
behavior means thatv' effectively acts likeVc2 for pure
harmonic radial confinement, and direct experimental st
of the limiting behavior forV→v' would be difficult. Thus,
it is convenient to consider an additional stiffer radial pote
tial, which eliminates the singularity whenV5v' . In this
case,Vc2 exceedsv' and the limit V→Vc2 is relatively
smooth. The analysis is especially simple for a quartic ra
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potentialV4(r')5 1
4 kr'

4 and this example is analyzed in de
tail.

Section II introduces the basic Gross-Pitaevskii free
ergy and condensate wave functionC5uCueiS for a rotating
vortex lattice in a trapped BEC. In equilibrium, the vorte
lattice must experience self-consistent solid-body rotati
which means that neither the phaseS nor the superfluid ve-
locity vs5(\/M )“S can be spatially periodic in the labora
tory frame. The transformation to the frame rotating w
angular velocityV yields a solid-body velocityvsb5V3r
that cancels the overall rotation. Thus, the resulting rela
velocity vs2vsb is, indeed, spatially periodic for an un
bounded vortex lattice. This feature facilitates a simple
scription of the vortex lattice in a large trapped BEC. T
case of a trap with harmonic radial confinement is studied
Sec. III, and the more interesting case of an additional qu
tic radial confining potential is studied in Sec. IV.

II. GENERAL FORMALISM

It is convenient to start from the Gross-Pitaevskii~GP!
@13,14# free energy in the rotating frame

F5E dVF \2

2M
u“Cu21V'~r'!uCu21 1

2 Mvz
2z2uCu2

1 1
2 guCu42C* V•r3pCG , ~1!

whereV'(r') is the transverse radial confining potential a
g54pa\2/M relates the interparticle coupling constant
the s-wave scattering lengtha ~here assumed positive!. The
representationC5uCueiS emphasizes the hydrodynamic a
pects of the behavior, with condensate densityn05uCu2 and
superfluid velocity vs5\“S/M . The quantity 2C* V•r
3pC can be written as12 i\V]uCu2/]f2Mvsb•vsuCu2 and
the first term makes no contribution to the spatial integr
Straightforward manipulations of Eq.~1! yield
©2001 The American Physical Society08-1
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F5E dVF 1
2 M ~vs2vsb!

2uCu21
\2

2M
~“uCu!21V'~r'!uCu2

1Vcent~r'!uCu21 1
2 Mvz

2z2uCu21 1
2 guCu4G , ~2!

whereVcent(r')52 1
2 MV2r'

2 is an effective repulsive cen
trifugal potential.

The simplest variational model is to take the phaseS as
that for a classical unbounded vortex lattice~with vortices
aligned alongẑ), which has been analyzed in detail b
Tkachenko@15# ~as a model for a vortex lattice in rotatin
superfluid 4He). In this case, the total superfluid veloci
includes the divergent locally axisymmetric circulating flo
near each vortex core. The resulting singular kinetic ene
in Eq. ~2! is cut off by a self-consistent core structure
characteristic dimensionj5\/A2Mm, where m is the
chemical potential@13,14,16#.

This classical hydrodynamic phaseScannot be a spatially
periodic function in thex-y plane because the vortex arra
induces a self-consistent rotation. Instead, this phase o
definite quasiperiodic conditions@15,17# that depend on the
details of the lattice structure. For the same reasonsvs
}“S is also not spatially periodic. In contrast, the quant
vs2vsb ~namely, the superfluid velocity as seen in the rot
ing frame! is spatially periodic, because the subtracted te
vsb cancels the effect of the quasiperiodic terms in“S, con-
siderably simplifying the subsequent analysis.

According to Feynman’s picture of a rotating superflu
@18#, the vortices have a uniform areal densitynv52MV/h,
ensuring that the mean vorticity of the vortex lattice mim
that of solid-body rotation“3vsb52V. Thus, the area pe
vortexnv

21[pb2 can be taken to define an intervortex sep
rationb5A\/MV; this characteristic length sets the scale
the vortex lattice. For the present purposes, the detailed
tice structure is unimportant@for example, the free energie
of the triangular and square configurations have the s
logarithmic contributions} ln(b/j) and differ only in the ad-
ditive constants@19##; it will be convenient to use a Wigner
Seitz approximation in which each polygonal unit cell is r
placed by an equivalent circular cell of radiusb. Evidently,
the ratioj2/b2 characterizes the fractional volume occupi
by the ‘‘normal’’ vortex cores.

For any reasonable transverse confining potentialV'(r'),
the single particle ground state will have some character
transverse dimensiond' , along with the characteristic axia
dimensiondz5A\/Mvz that is set by the axial harmoni
confining potential in Eqs.~1! and~2!. Let N0 be the number
of atoms in the condensate at low temperature. In
Thomas-Fermi~TF! limit @20#, the condensate density
taken as locally constant, which holds when the dimensi
less interaction parameterN0a/d' is large. In this case, the
repulsive Hartree~mean-field! interactions expand the con
densate relative to its noninteracting transverse and axia
mensionsd' anddz . In particular, the radial and axial con
densate radiiR' and Rz are simply the classical turnin
points for a particle of energym. Thus,Rz5A2m/Mvz

2 de-
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pends only onm, but R' also depends onV because of the
repulsive centrifugal potentialVcent(r') in Eq. ~2!.

For a rotating condensate with chemical potentialm, the
GP equation derived from Eq.~2! implies the corresponding
TF density

uC~r' ,z!u25
m

g F12
V'~r'!

m
1

V2r'
2

2m
2

Mvz
2z2

2m

2
M ~vs2vsb!

2

2m G , ~3!

obtained by omitting the gradient of the condensate dens
If the vortex cores do not overlap significantly~so that
j2/b2!1), the condensate density can be approximated b
productuC(r' ,z)u2'uCTF(r' ,z)u2u2(r') of the TF density

uCTF~r' ,z!u25
m

g F12
V'~r'!

m
1

V2r'
2

2m
2

Mvz
2z2

2m G ~4!

in the absence of the vortex lattice and a factor

u2~r'!512
M ~vs2vsb!

2

2m
~5!

that is spatially periodic in the transverse plane and mus
cut off near the vortex core to ensure thatu2 remains posi-
tive. In any given unit cell, it has the local form

u2~r'!512
j2

r'
2

1
2j2

b2
2

j2r'
2

b4
, ~6!

where a circular Wigner-Seitz cell has been used withj
<r'<b. In effect, the resulting density is that of a vorte
free condensate with narrow holes along the axes of the
tex lattice@4,12,21#.

The chemical potential is determined by the general c
dition that N05*dVuC(r' ,z)u2. Here the factorized form
yields

N0'E dVuCTF~r' ,z!u2u2~r'!

5
mMRz

3pa\2E d2r'F11
MV2r'

2

2m
2

V'~r'!

m G3/2

u2~r'!.

~7!

For a dense vortex lattice, the intervortex separationb is
small compared to the TF transverse radiusR' , so that the
first factor varies slowly on the length scaleb. Thus,u2 can
be averaged over any single unit cell, and the Wigner-S
approximation@17# in Eq. ~6! yields

^u2&5
1

pb2Ecell
d2r'u2~r'!'122

j2

b2 F lnS b

j D2 3
4 G ; ~8!
8-2
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as anticipated,̂u2&'1 for j!b. In the limit of a large con-
densate with many vortices, Eq.~7! can, therefore, be ap
proximated by

N05
mMRz^u

2&

3pa\2 E d2r'F11
MV2r'

2

2m
2

V'~r'!

m G3/2

. ~9!

III. RADIAL HARMONIC CONFINING POTENTIAL

The simplest situation is the harmonic radial poten
V'(r')5 1

2 Mv'
2 r'

2 , in which case Eq.~9! implies the TF
condensate radius

R'5A 2m

M ~v'
2 2V2!

. ~10!

Familiar manipulations yield

m

\v'

5
1

2 S 15N0al

d'^u2&
D 2/5S 12

V2

v'
2 D 2/5

, ~11!

wherel5vz /v' is the axial anisotropy parameter.
Except for a very narrow regionV/v'&1 close to the

singular limit, the vortex cores occupy negligible volume,
that^u2&'1. In this case, the condensate particle numberN0
remains essentially constant and Eq.~11! shows how the
chemical potential decreases with increasing rotation sp
V̄[V/v' . In this same large interval, Eq.~10! implies that

R'
2 ~V!

d'
2

5S 15N0al

d'
D 2/5

~12V̄2!23/5. ~12!

Equivalently,

R'~V!

R'~0!
5~12V̄2!23/10, ~13!

as seen in recent experiments@10#.
The fraction of depleted condensate occupied by the v

tex cores is given quite generally byj2/b25\V/2m and use
of Eq. ~11! gives the specific result

j2

b2
5

\V

2m
5

V̄

2

e2/5

~12V̄2!2/5
, ~14!

where

e[
d'^u2&
15N0al

'
d'

5

R'
5 ~0!

!1 ~15!

is small in the TF limit. Equation~14! shows that the ratio
j2/b2 increases linearly withV̄ but remains small~of order
e2/5) until 12V̄&e/8A2, when the ratio grows rapidly to
ward 1. If Vc2 is defined likeHc2 for a type-II supercon-
ductor, Vc2 corresponds to the limitj;b. As a result, a
radial harmonic trap potential leads to singular behav
whenV→v' @9#. Specifically, the disappearance of the co
06360
l
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r-
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densate associated with the sudden expansion of the ‘‘
mal’’ vortex cores presumably implies a phase transitio
which occurs essentially simultaneously with the loss of c
finement asV̄→1 @7–9,12#.

This straightforward analysis indicates that any study o
dense vortex lattice nearVc2 for a radial-harmonic trap will
encounter significant difficulties arising from the softening
the effective trap potential. As a result, it is interesting
consider a stiffer radial potential, and the next section tre
one possible example.

IV. RADIAL QUARTIC CONFINING POTENTIAL

As a specific example, letV'(r') include a quartic-
radial-trap potentialV4(r')5 1

4 kr'
4 in addition to the qua-

dratic potential12 Mv'
2 r'

2 ; Lundh@22# has recently examined
this and other power-law potentials in a theoretical study
the formation of a multiply quantized vortex in a rotatin
condensate. For a two-dimensional ideal gas confined w
pure V4(r'), the balance between the ground-state kine
energy;\2/Md4

2 and ground-state potential energy;kd4
4

implies a ground-state mean radiusd4;(\2/Mk)1/6 and
ground-state energyE45\v4;(\4k/M2)1/3. For definite-
ness, it is convenient to ignore numerical constants of or
unity and take

E45\v45
\2

Md4
2

5kd4
4 ~16!

as the relevant dimensional quantities.
For a rotating condensate in this combined radial trap,

~9! becomes

N05
mMRz^u

2&

3a\2 E
0

R'
2

duF12
M ~v'

2 2V2!

2m
u2

k

4m
u2G3/2

,

~17!

whereu5r'
2 , and R'

2 is the turning point, where the inte
grand vanishes. The presence of the quartic potential me
that the external rotation speedV can now exceedv' . In
this regime (V̄.1), the particle density actually attains
local minimum on the axis of symmetry, but this effect
probably difficult to detect.

The integral in Eq.~17! can be expressed in terms of
dimensionless parameter

h[
M ~v'

2 2V2!

2Akm
. ~18!

A detailed analysis yields the final form

E
0

R'
2

duF12
M ~v'

2 2V2!

2m
u2

k

4m
u2G3/2

52Am

k
f ~h!,

~19!

where
8-3
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f ~h!5
3p

16
~11h2!2F12

2

p
arcsinS h

A11h2D G2
3h3

8
2

5h

8
.

~20!

It has the limiting forms

f ~h!'5
~5h!21 for h@1,

3

16
p2h for uhu!1,

3

8
ph4 for h!21.

~21!

Equations ~17! and ~19! can be combined withRz

5A2m/Mvz
2 to express the chemical potential in terms

the parameterh

S m

\v'
D 2

5
N0a

d'^u2&

vz

v'

3

2A2 f ~h!
S d'

d4
D 3

, ~22!

where d' /d4 is a dimensionless measure of the relat
strength of the quartic potential~note thatd' /d4→0 in the
limit that the quartic coupling constantk becomes small!. In
addition, Eq.~18! can be rewritten to express the rotatio
speed as a function ofm andh

V̄2[
V2

v'
2

5122hA m

\v'
S d'

d4
D 3

. ~23!

Note thath is large and positive for a nonrotating condens
(V50), h vanishes forV̄51, andh becomes negative fo
V̄.1 ~this limit can occur only for nonzero positived' /d4).
These two equations provide a parametric representatio
the dependence of the dimensionless chemical potentiam̄
5m/\v' on the rotation speed, generalizing the result in E
~11! for a pure harmonic potential to include the effect of
additional quartic potential.

It is not difficult to see from Eqs.~21! and ~22! that m
vanishes likeh22 ash→2`, so that the right-hand side o
Eq. ~23! remains finite in the same limit. Thus, the chemic
potential vanishes when the rotation frequency attains
maximum value. This maximum rotation speed can be id
tified as the upper critical valueVc2 because the vortex-cor
sizej5\/A2Mm diverges asm→0. A detailed analysis~ap-
proximating^u2&'1) shows that

Vc2
2 'v'

2 1v4
2S 32A2

p

N0a

d4

vz

v4
D , ~24!

where the positive quantityVc2
2 2v'

2 has been expresse
solely in terms of the parameters associated with the qua
term in the confining potential. Figure 1 shows the dime
sionless chemical potentialm̄ as a function of the dimension
less rotation speedV̄ for two illustrative cases~note thatm̄
remains positive forV̄51).

In the presence of the additional quartic confining pot
tial, the TF radiusR' is given by
06360
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R'
2

d'
2

52A m

\v'
S d4

d'
D 3 1

A11h21h
. ~25!

A combination with Eq.~23! provides a parametric relatio
for R'(V). Figure 2 shows the dimensionless ratioR'

2 /d'
2 as

a function of the dimensionless rotation speedV̄ ~note that
R'

2 /d'
2 remains finite asV̄→V̄c2).

Finally, the ratio of the vortex-core radius to the intervo
tex separation follows from

j2

b2
5V̄

\v'

2m
5

V̄

2m̄
, ~26!

and use of Eq.~23! to eliminateh in favor of V̄ gives the
generalization of Eq.~14! for the case of a combined qua
dratic and quartic confining potential. Figure 3 shows theV̄

FIG. 1. Dimensionless chemical potentialm̄[m/\v' for the
combined quadratic and quartic radial confining potential as a fu

tion of the dimensionless angular velocityV̄5V/v' with
(N0a/d')(vz /v')5104. The two curves correspond to the valu

~a! d4 /d'55 ~b! d4 /d'52. Note thatm̄ remains finite atV̄51 for
both values ofd4 /d' .

FIG. 2. Dimensionless squared radiusR'
2 /d'

2 for the combined
quadratic and quartic radial confining potential as a function of

dimensionless angular velocityV̄5V/v' with (N0a/d')(vz /v')
5104. The two curves correspond to the values~a! d4 /d'55 ~b!
d4 /d'52. In contrast to the behavior seen in Eq.~10! for a rotating
harmonic radial potential, the squared radius here remains finite
both values ofd4 /d' asV→Vc2 given in Eq.~24!.
8-4
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dependence ofj2/b2 for two illustrative cases; the sharp in
crease nearV̄c2 and the finite limiting value are particularl
evident.

V. DISCUSSION AND CONCLUSIONS

The behavior of a dense vortex lattice in a dilute trapp
rotating Bose-Einstein condensate has acquired a new i
est because of recent observations of such lattices@2–4#. The
experiments use radial harmonic traps, and the loss of c
finement as the external rotation speedV approaches the tra
frequencyv' implies that the behavior becomes singular@9#.
As a result, it would be difficult to study the approach
what is effectively the upper critical angular velocityVc2
;\/Mj2 when the vortex cores overlap. The present ana
sis considers the addition of a stiffer quartic potent
V'(r')5 1

4 kr'
4 , which ensures confinement for anyV. Thus,

the approach toVc2 is more gradual and could well be ob
served. In particular,Vc2 /v' exceeds 1 and should be a
cessible to experiments. In principle, a similar analysis
possible for other stiff radial confining potentials, for e
ample, other power laws or an optical dipole wavegu
made from a hollow blue-detuned laser beam@23#.

The Thomas-Fermi approximation assumes that the t
kinetic energy of the condensate is much smaller than
energies associated with the external trapping potential
the interparticle Hartree potential. This picture certainly a

FIG. 3. Fraction of volumej2/b2 occupied by the vortex core
for the combined quadratic and quartic radial confining potentia

a function of the dimensionless angular velocityV̄5V/v' with
(N0a/d')(vz /v')5104. The two curves correspond to the valu
~a! d4 /d'55 ~b! d4 /d'52. Note thatj2/b2 remains finite for both
values ofd4 /d' asV→Vc2 given in Eq.~24!.
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plies for a relatively small number of vortices whenj!b
!R' , but it fails nearVc2 whenj&b because of the densit
gradient near the many vortex cores. This effect will n
qualitatively, alter the value ofVc2 determined for the quar
tic potential, but it will affect the detailed description forV
&Vc2. This interesting question remains open.

Another question concerns the number of atomsN0 in the
condensate, which here has been assumed to remain fi
This picture also must fail sufficiently nearVc2 because the
vortex cores fill the entire volume. For type-II supercondu
ors @5# at a given temperature, the vortex-core sizej remains
fixed. In that system, an increased applied magnetic fi
reduces the intervortex separationb, leading to the disap-
pearance of the superconducting component because
‘‘normal’’ cores eventually overlap. In a dilute Bose-Einste
gas, however, the core sizej5\/A2Mm itself increases and
diverges asV→Vc2 because of the decreasing chemical p
tential. Thus, the approach to the upper critical angular
locity is more sudden in a dilute trapped gas. Unfortunate
inclusion of the quantum depletion is fairly complicated for
spatially nonuniform medium@24–28# although the genera
formalism is well known@29,30#.

At zero temperature in the grand canonical ensemble f
rotating system in equilibrium at chemical potentialm and an
angular velocityV, for example, the ground-state expect
tion value of the operatorK̂5Ĥ2mN̂2VL̂z is the thermo-
dynamic potentialF̃(m,V)5^K̂&. In the presence of a Bose
Einstein condensate withN0 condensate atoms, this functio
also depends onN0, so that^K̂&5F̃(m,V,N0). The usual
thermodynamic relationN(m,V,N0)52(]F̃/]m)VN0

deter-
mines the mean number of particles, which here depends
only on m andV, but also onN0. This latter parameter can
be fixed by adjusting N0 to minimize F̃, so that
(]F̃/]N0)mV50. For a uniform Bose gas in a stationary bo
of volume V, it is straightforward to verify that this proce
dure yields the familiar zero-temperature depletion of
condensate (N2N0)/N' 8

3 (na3/p)1/2 as well as the first cor-
rection to the chemical potential@29–31#. It should be fea-
sible to extend this analysis to a dilute rotating trapped B
condensate, and this problem definitely merits further stu
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