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Rotating vortex lattice in a Bose-Einstein condensate trapped in combined quadratic and quartic
radial potentials
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A dense vortex lattice in a rotating dilute Bose-Einstein condensate is studied with the Thomas-Fermi
approximation. The upper critical angular velocii},, occurs when the intervortex separatibrbecomes
comparable with the vortex-core radigs For a radial harmonic trap, the loss of confinementOas o,
implies a singular behavior. In contrast, an additional radial quartic potential provides a simple model for
which Q, is readily determined. Unlike the case of a type-Il superconductor at fixed temperature, the onset of
0., arises not only from decreasifigbut also from increasing caused by the vanishing of the chemical
potential as)— Q.

DOI: 10.1103/PhysRevA.64.063608 PACS nuntber03.75.Fi, 67.40.Vs, 32.80.Pj

I. INTRODUCTION potentialV,(r, )= %kr? and this example is analyzed in de-
tail.

The recent observatiof$—4] of vortex arrays and vortex Section Il introduces the basic Gross-Pitaevskii free en-
lattices in rotating dilute trapped Bose-Einstein condensatesrgy and condensate wave functidn=|¥|e'S for a rotating
(BEC) raise the question of analogies with type-Il supercon-vortex lattice in a trapped BEC. In equilibrium, the vortex
ductors. What limits the number of vortices? Is there an uplattice must experience self-consistent solid-body rotation,
per critical rotation spee€l., similar to the upper critical Which means that neither the phaSeor the superfluid ve-
field Hg, [5] familiar from type-Il superconductors? In the locity vs=(#/M)VS can be spatially periodic in the labora-
superconducting case, the fidt, occurs when the distance ©ry frame. The transformation to the frame rotating with
b~ ®,/7B between vortices becomes comparable with the2ngular velocityQ yields a solid-body velocityg,=€xr
vortex-core size&~10—~100 nm in typical conventional su- that c_ancels the_ovgrall rotatlon._Thus, th_e r_esultmg relative
perconducting alloys. The measured flux quantuby velocity vs— Vs, is, _mdeed_, spatially pe_r_|0d|c for an un-

— h/2e then impliesH 'Nq) /7£2~0.1-10 T(n this limit bounded vortex lattice. This feature facilitates a simple de-

the distinction betwecérh-l z;)nd B bec.omes negligible Fo,r scription of the _vortex Iatt|pe n a Iarge_ trapped_ BEC._Thg
: fuid® h ; g9 o case of a trap with harmonic radial confinement is studied in

rotating superfluid”He, where{~ a few angstrom an Sec. lll, and the more interesting case of an additional quar-

~ 1M, [6], essentially the same condition yields the un-tic radial confining potential is studied in Sec. IV.

attainably large valu€),~#/M &2~ 10" rad/s.

A similar criterion also applies to rotating Bose conden-
sates. In this case, the vortex-core radigisf/2M u Il. GENERAL FORMALISM

~0.1 uwm is macroscopic, wherg is the chemical poten- It ) ¢ he G pi ip
tial, suggesting that experimental study(df, might well be [13t1|j] fconvenlent to tshtart t“’tfn tfe ross-PitaevsidP)
possible. As seen below, the situation in rotating dilute con+="" ree energy In the rotating frame

densates is even more favorable, because the chemical po-
tential decreases at large rotation speeds, increasing the 72
vortex-core size and thus reducifi,,. sz dv[—|V\If|2+Vi(rL)|‘I'|2+%M<u§zz|\lf|2
For a trap with a radial harmonic potentid, (r ) 2M
=1Mw?r?, the behavior becomes singular wh&n— o,
because the outward centrifugal force counteracts the inward
force from the harmonic trap7—9]. Specifically, the effec-
tive radial trap frequencyd® —Q?)*2 produces an observ-
able centrifugal distortion of the condensft@—-12 for cur-  whereV, (r,) is the transverse radial confining potential and
rently attainable values of)/w, <1. As seen below, this g=4ma%?/M relates the interparticle coupling constant to
behavior means thab, effectively acts likeQ)., for pure  the swave scattering length (here assumed positixeThe
harmonic radial confinement, and direct experimental studyepresentation =|¥|e'S emphasizes the hydrodynamic as-
of the limiting behavior fo)— w, would be difficult. Thus, pects of the behavior, with condensate densjy:|¥|? and
it is convenient to consider an additional stiffer radial poten-superfluid velocityv,=%VS/M. The quantity —¥V*Q-r
tial, which eliminates the singularity whe@ =w, . In this ~ XpW¥ can be written agi%#Qd|¥|%/d¢d—Mvg, v ¥|? and
case, ()., exceedsw, and the limitQ)—Q., is relatively the first term makes no contribution to the spatial integral.
smooth. The analysis is especially simple for a quartic radiaStraightforward manipulations of E¢L) yield

+30| V4=V Q- rxp¥|, (1)
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. S h2 ) ) pends only onu, butR, also depends of2 because of the
F:f dV| 2M (Vs =V | W [*+ 5 (VW) 24+ Vo (r)[ W] repulsive centrifugal potential ce,(r,) in Eq. (2).
For a rotating condensate with chemical potentialthe

GP equation derived from E@2) implies the corresponding
+Vcen£rL)|‘P|2+%Mw322|\P|2+%g|‘P|4 ) ) TF density

L Vi(r,)) Q%2 Mw?z?
— + —
2u 2u

)2
, . . Y(r, ,z)|?==
whereVen(r,)=—3MQ?r? is an effective repulsive cen- ¥(r..2) g

trifugal potential. )
The simplest variational model is to take the ph&sas ~ M(vs—Vsp)

that for a classical unbounded vortex lattiggith vortices 2u

aligned alongz), which has been analyzed in detail by

Tkachenko[15] (as a model for a vortex lattice in rotating obtained by omitting the gradient of the condensate density.

superfluid “He). In this case, the total superfluid velocity If the vortex cores do not overlap significantlgo that

includes the divergent locally axisymmetric circulating flow £§%/b?<1), the condensate density can be approximated by a

near each vortex core. The resulting singular kinetic energproduct|W(r, ,z)|>~|W(r, ,2)|?u?(r,) of the TF density

in Eq. (2) is cut off by a self-consistent core structure of

, ()

characteristic dimensioré=%#/\2Mu, where u is the , M Vi(r)) Q%% MoiZ?

chemical potential13,14,18. [Wre(r, )" =] 1~ m 2n 2w )
This classical hydrodynamic phaSeannot be a spatially

periodic function in thex-y plane because the vortex array in the absence of the vortex lattice and a factor

induces a self-consistent rotation. Instead, this phase obeys

definite quasiperiodic conditiorf45,17] that depend on the M (Ve— Vgp)2

details of the lattice structure. For the same reasegs, uz(ri)zl—% (5)

«VS is also not spatially periodic. In contrast, the quantity
Vs— Vg (namely, the superfluid velocity as seen in the rotat- ) ) o
ing frame is spatially periodic, because the subtracted ternfN@t iS spatially periodic in the transverse plane and must be
v, cancels the effect of the quasiperiodic term&is, con-  Ccut off near the vortex core to ensure thétremains posi-
siderably simplifying the subsequent analysis. tive. In any given unit cell, it has the local form

According to Feynman'’s picture of a rotating superfluid

[18], the vortices have a uniform areal dengity=2MQ/h, ) g2 282 &’
ensuring that the mean vorticity of the vortex lattice mimics us(r)=1- (2 + b2 pt’ ©®
that of solid-body rotatiorV X vg,=2€Q. Thus, the area per +

vortexn, '=mb? can be taken to define an intervortex sepa-

. R v oo - where a circular Wigner-Seitz cell has been used with
rationb = yA/M<}; this characteristic length sets the scale Ofsrisb. In effect, the resulting density is that of a vortex-
the vortex lattice. For the present purposes, the detailed Ia*—

. . . . ree condensate with narrow holes along the axes of the vor-
tice structure is unimportariffor example, the free energies tex lattice[4,12,21
of the triangular and square configurations have the same The chemical potential is determined by the general con-

logarithmic contributionscIn(b/€) and differ only in the ad- ... _ P >
ditive constant$19]]; it will be convenient to use a Wigner- S:glcéns that No=/dV|¥(r. ,2)|". Here the factorized form

Seitz approximation in which each polygonal unit cell is re-
placed by an equivalent circular cell of radibsEvidently,
the ratio£%/b? characterizes the fractional volume occupied No”f dV|We(r, ,2)|2u¥(r,)
by the “normal” vortex cores.

For any reasonable transverse confining potemijdr | ),

2.2 3/2
the single particle ground state will have some characteristic =~ — wM sz d?r |1+ MOTrL _ Vi(r) u2(r,).
transverse dimensiot, , along with the characteristic axial 3mah? 2u
dimensiond,= Vi/Mw, that is set by the axial harmonic @

confining potential in Eqg.1l) and(2). Let Ny be the number

of atoms in the condensate at low temperature. In th
Thomas-Fermi(TF) limit [20], the condensate density is
taken as locally constant, which holds when the dimension
less interaction paramet&ta/d, is large. In this case, the

repulsive Hartregmean-field interactions expand the con-

densate relative to its noninteracting transverse and axial d
mensionsd, andd,. In particular, the radial and axial con- )
densate radiR, and R, are simply the classical turning (u2>—i d2r u¥(r,)~1-2>=
points for a particle of energy. Thus,R,= y2u/M wzz de- * . 2

%or a dense vortex lattice, the intervortex separatiois
small compared to the TF transverse radiys, so that the
first factor varies slowly on the length scdleThus,u? can

be averaged over any single unit cell, and the Wigner-Seitz

quproximatior{l?] in Eq. (6) yields
b
o2-1]

3

b2 cel
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as anticipated(u?)~1 for £&<b. In the limit of a large con- densate associated with the sudden expansion of the “nor-
densate with many vortices, E/) can, therefore, be ap- mal” vortex cores presumably implies a phase transition,

proximated by which occurs essentially simultaneously with the loss of con-

finement ad)—1 [7-9,19.

This straightforward analysis indicates that any study of a
dense vortex lattice nedl, for a radial-harmonic trap will
encounter significant difficulties arising from the softening of
the effective trap potential. As a result, it is interesting to
consider a stiffer radial potential, and the next section treats

The simplest situation is the harmonic radial potentialone possible example.

V. (r)=%iMw?r?, in which case Eq(9) implies the TF

312

QZ
Vi(ri) 9

yu

_ kM Rz<uz>f

3mah?

Ill. RADIAL HARMONIC CONFINING POTENTIAL

condensate radius IV. RADIAL QUARTIC CONFINING POTENTIAL
21 As a specific example, IeVL(rL) include a quartic-
Ri=\—"> - (100 radial-trap potential\/4(rL)— kr? in addition to the qua-
M(w?—Q°)

dratic potentiak M w?r? ; Lundh[22] has recently examined
this and other power-law potentials in a theoretical study of
the formation of a multiply quantized vortex in a rotating
P 1/ 15N an 2/5 02\?° condensate. For a two-dimensional ideal gas confinecj with
a.(u?) , (11)  pureV,(r,), the balance between the ground-state kinetic
J_ u

energy ~%%/Md2 and ground-state potential energykd;
T ) s (32 1/6
wherel=w,/w, is the axial anisotropy parameter. implies a ground-state mean radiuly—(4%/Mk) ™ and
Except for a very narrow regiof}/w, =1 close to the

ground-state energ¥,=%w,~ (A*kIM?)Y3. For definite-
singular limit, the vortex cores occupy negligible volume, sozﬁists’;ngtgigvemem to ignore numerical constants of order
that(u?)~1. In this case, the condensate particle nuntgr y
remains essentially constant and El) shows how the

Familiar manipulations yield

2

ho, 2
L !

chemical potential decreases with increasing rotation speed =hw,= h? —kd? (16)
0=0/w, . In this same large interval, E¢LO) implies that 1
R?(Q) C[18Ngan |\ as the relevant dimensional quantities.
a2 d, (1-0% 7> (12 For a rotating condensate in this combined radial trap, Eq.
+ (9) becomes
Equivalently,
MM RZ<U2> QZ) Kk , 3/2
R.(©) 02)-3/10 0~ 2 f Hdulm—— U
=(1-0?) 310 (13 3afi A
R, (0) 17

as seen in recent experimefid].

The fraction of depleted condensate occupied by the vor
tex cores is given quite generally B/b?=%Q/2u and use
of Eq. (11) gives the specific result

Wwhereu=r?, andR? is the turning point, where the inte-
grand vanishes. The presence of the quartic potentlal means
that the external rotation speddl can now exceed ) .

this regime (1>1), the particle density actually attains a
I X¢) Q 25 local minimum on the axis of symmetry, but this effect is
2 25 2 1027 (14 probably difficult to detect.
The integral in Eq.(17) can be expressed in terms of a
dimensionless parameter

where
2 2
Cdy(u?) A} _ M(0f-0?%
=—— " 18
= T5Ngan R5(0)<1 (15) 7 2k (19

is small in the TF limit. Equatior{14) shows that the ratio A detailed analysis yields the final form
£2/b? increases linearly witlf) but remains smallof order

2/5 : Y : : 2 M (w2 -0?) k

€?® until 1-Q=<¢/8y2, when the ratio grows rapidly to- ledu 1— L 2
ward 1. If Q, is defined likeH., for a type-ll supercon- 0 2u 4
ductor, ., corresponds to the limiE~b. As a result, a (19
radial harmonic trap potential leads to singular behavior
whenQ— w, [9]. Specifically, the disappearance of the con-where
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70
3w 2 7 37° 5y
=—(1+ 7%)? 1— —arcsi _—— -
f(n) 16(1 7)1 7TarCS|r'(\/1+_7]2 5 5 ﬂsu
(20 50
It has the limiting forms 40 b
a
(57"t for p>1, 30
3 for || 20
— T or <1,
fp~q 16”7 7 7 (21) 10
3
577774 for p<—1. 02 0.4 0.6 0.8 1 1.2 1.4 &

ol -

Equations (17) and (19) can be combined withR,

— 2u/M&? to express the chemical potential in terms of /G- 1. Dimensionless chemical potentia=p/Aw, for the
combined quadratic and quartic radial confining potential as a func-
the parametenr,

tion of the dimensionless angular velocitﬁ= Qlw, with
u 2 Noa o, 3 d, 3 (Noa/d, )(w,/w,)=10% The two curves correspond to_the values
= N @ (22 (@ d,/d, =5 (b) dy/d, =2. Note thatu remains finite af2=1 for
d, (u?) @1 2,2f(7) !\ da both values ofl,/d, .

where d, /d, is a dimensionless measure of the relative

ﬁwL

strength of the quartic potenti@hote thatd, /d,—0 in the R_i_ [ K /%)3 1 o5
limit that the quartic coupling constaktbecomes small In d? B ho,\d, i+ 93+ q (25
addition, Eq.(18) can be rewritten to express the rotation
speed as a function qf and » A combination with Eq.(23) provides a parametric relation
, , for R, (©2). Figure 2 shows the dimensionless re&/d? as
02= Q—=1—277 [ M (d_L) ' 23 @ function of the dimensionless rotation spe&ednote that
w? hw,\dy R?/d? remains finite af)— Q.,).

) . i Finally, the ratio of the vortex-core radius to the intervor-
Note thatz is large and positive for a nonrotating condensate,g, separation follows from

(Q2=0), » vanishes ford=1, andn becomes negative for -
Q>1 (this limit can occur only for nonzero positive /d,). £ e, Q
These two equations provide a parametric representa_tion of @_ 2u _ﬁ' (26)
the dependence of the dimensionless chemical potential

= ulfiw, on the rotation speed, generalizing the resultin Eqand use of Eq(23) to eliminate 5 in favor of Q gives the
(11) for a pure harmonic potential to include the effect of angeneralization of Eq(14) for the case of a combined qua-

additional quartic potential. . . - . . —
It is not difficult to see from Eqs(21) and (22) that x dratic and quartic confining potential. Figure 3 shows ¢he

vanishes likez 2 as — —, so that the right-hand side of 1600
Eq. (23) remains finite in the same limit. Thus, the chemical R 1400
potential vanishes when the rotation frequency attains its ~/;
maximum value. This maximum rotation speed can be iden- ~ 2%
tified as the upper critical valu@ ., because the vortex-core 1000 "
sizeé=nh/\2M u diverges ag.— 0. A detailed analysigap- 800
proximating(u?)~1) shows that 600
400
32J2 Npa w b
Q§2~wf+wi(7\/—d—o4w—z), (24 200

b2 04 06 08 1 12 1.4 16
where the positive quantitf2?,—»? has been expressed ol
solely in terms of the parameters associated with the quartic _ ' ) _
term in the confining potential. Figure 1 shows the dimen- FIG. 2. Dimensionless squared radi$/d? for the combined
sionless chemical potentiHas a function of the dimension- guadratic and quartic radial confining potential as a function of the

. — . . — dimensionless angular velocify=Q/w, with (Nya/d /
less rotation speef) for two illustrative casegnote thatu —10". The two cugrves correspond t(:)uthe va?t(;)s dﬁé(w_ZSw(lb))
=104 =

remains positive fof2=1). N _ o d,/d, =2. In contrast to the behavior seen in EtQ) for a rotating
In the presence of the additional quartic confining potentarmonic radial potential, the squared radius here remains finite for
tial, the TF radiusR, is given by both values ofd,/d, asQ—Q, given in Eq.(24).
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2.5 plies for a relatively small number of vortices wheér<b
5/ <R, , but it fails nea)., whené=<b because of the density
by & ] gradient near the many vortex cores. This effect will not,
a qualitatively, alter the value df}., determined for the quar-
1.5 : tic potential, but it will affect the detailed description for
=(,. This interesting question remains open.
1 . Another question concerns the number of atdgsn the
b condensate, which here has been assumed to remain fixed.
0.5 ] This picture also must fail sufficiently ne&x., because the
_J vortex cores fill the entire volume. For type-Il superconduct-
a ] ors[5] at a given temperature, the vortex-core sjzemains
0.2 0.¢ 06 08 1 1.2 1.4 1.6 fixed. In that system, an increased applied magnetic field
O reduces the intervortex separatibnleading to the disap-
pearance of the superconducting component because the
FIG. 3. Fraction of volume?/b? occupied by the vortex cores “normal” cores eventually overlap. In a dilute Bose-Einstein
for the combined quadratic and quartic radial C(Efining potential aﬁas, however, the core siZe- ﬁ/m itself increases and
a function of the dimensionless angular velocidy= Q/w, with diverges a€)— (), because of the decreasing chemical po-
(Noa/d,)(w,/w,)=10". The two curves correspond to the values tential. Thus, the approach to the upper critical angular ve-
(2 dy/d, =5 (b) d,/d, =2. Note thaig?/b? remains finite for both locity is more sudden in a dilute trapped gas. Unfortunately,
values ofd,/d, asQ—{, given in Eq.(24). inclusion of the quantum depletion is fairly complicated for a
dependence of?/b? for two illustrative cases; the sharp in- %)r?;l;lilgr: (i)snsvr;nl‘lo Lr:ovmvre{dzlgrgg' 24 although the general
crease neafl, and the finite limiting value are particularly At zero temperature in the grand canonical ensemble for a
evident. rotating system in equilibrium at chemical potentiabnd an
angular velocityQ), for example, the ground-state expecta-

V. DISCUSSION AND CONCLUSIONS tion value of the operatak=H— uN—QL, is the thermo-

The behavior of a dense vortex lattice in a dilute trappedlynamic potentiaF (u,Q)=(K). In the presence of a Bose-
rotating Bose-Einstein condensate has acquired a new inteinstein condensate wit, condensate atoms, this function
est because of recent observations of such latied]. The  also depends oMy, so that(K)=F(u,Q,Ny). The usual
experiments use radial harmonic traps, and the loss of corhermodynamic relatiolN(,Q,Ng) = _((9|”:/(;M)QNO deter-
finement as the external rotation spéeapproaches the rap ines the mean number of particles, which here depends not
frequencyw, implies that the behavior becomes singdBt o1y on 1, and Q, but also orN,. This latter parameter can
As a result, it would be difficult to study the approach to be fixed b diustinaN. to minimize E that
what is effectively the upper critical angular veloci€y., - y adus g_ o 10 _e ' S_O a
~#IM & when the vortex cores overlap. The present analy{?F/?No) .o =0. For a uniform Bose gas in a stationary box
sis considers the addition of a stiffer quartic potentialOf volumeV, itis straightforward to verify that this proce-
V,(r,)=1%kr* , which ensures confinement for afly Thus, dure yields the fam|I|ar8 zerso—teq)zperature depletion of the
the approach td)., is more gradual and could well be ob- con_ciensateN—No)/l_\lwg(na /7.7) as well as the first cor-
served. In particularf),/w, exceeds 1 and should be ac- rection to the che_zmlcal po_tent|é29_—3]]. I ShOUId be fea-
cessible to experiments. In principle, a similar analysis jSible to extend this gnalyss toa d}lgte rotating trapped Bose
possible for other stiff radial confining potentials, for ex- condensate, and this problem definitely merits further study.

ample, other power laws or an optical dipole waveguide
made from a hollow blue-detuned laser bel#].

The Thomas-Fermi approximation assumes that the total |thank D. Feder, M. Linn, and A. Svidzinsky for valuable
kinetic energy of the condensate is much smaller than theomments and suggestions. This work was supported in part
energies associated with the external trapping potential anly the National Science Foundation under Grant No. DMR
the interparticle Hartree potential. This picture certainly ap-99-71518.
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