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Trapped-atom interferometer in a magnetic microtrap

W. Hänsel,* J. Reichel, P. Hommelhoff, and T. W. Ha¨nsch
Max-Planck-Institut fu¨r Quantenoptik and Sektion Physik der Ludwig-Maximilians-Universita¨t, Schellingstrasse 4,

D-80799 München, Germany
~Received 17 June 2001; published 14 November 2001!

We propose a configuration of a magnetic microtrap that can be used as an interferometer for three-
dimensionally trapped atoms. The interferometer is realized via a dynamic splitting potential that transforms
from a single well into two separate wells and back. The ports of the interferometer are neighboring vibrational
states in the single-well potential. We present a one-dimensional model of this interferometer and compute the
probability of unwanted vibrational excitations for a realistic magnetic potential. We optimize the speed of the
splitting process in order to suppress these excitations, and conclude that such interferometer device should be
feasible with currently available microtrap technique.
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I. INTRODUCTION

Since the first realization of magnetic traps@1,2# and
guides @3,4# with current-carrying conductors on a chip,
large variety of magnetic potentials have become experim
tally accessible, which would be impractical or even impo
sible to realize with macroscopic coils. The splitting of tw
dimensionally trapped atom clouds has been demonstr
@5,6#, and recently, we were able to split and unite a thr
dimensionally trapped cloud of rubidium atoms in a chip tr
@7#.

Current experiments aim at populating single quant
states of such microtrap potentials with either an atomic
semble~i.e., creating a Bose-Einstein condensate!, or indeed
with a single atom. One promising application of such
system would be an integrated atom interferometer on a
@8#. The small size and monolithic construction of such
device suggests its suitability for ‘‘real-word’’ application
Moreover, the fact that magnetic potentials may be ‘‘en
neered’’ on the chip enables novel interferometer sche
with features quite different from more traditional atom i
terferometers@9#. Here we study a scheme in which the pa
ticle wave of a single, trapped atom is coherently split up a
reunited by a time-varying magnetic potential~Fig. 1!. Split-
ting occurs in one dimension, while a tight confinement
the remaining two dimensions leads to an effective o
dimensional~1D! situation. This is in contrast to Ref.@8#
where the dynamics of the splitting is in two dimensions.
depicted in Fig. 1, interference occurs between the low
two vibrational states,uw0& and uw1&, of the splitting poten-
tial ~the internal atomic state remains unchanged!. A phase-
changing interaction in one ‘‘arm’’~stage II in Fig. 1! trans-
lates into a change of the relative populations inuw0& and
uw1& when the potential is recombined. As in other interf
ometers, a longer duration of stage II leads to a larger ac
mulated phase~i.e., a larger arm length!. However, unlike the
situation in most free-atom schemes and the guided-a
scheme proposed in Ref.@8#, in our scheme the atom doe
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not move nor does its wave function spread during this sta
the propagation along the traditional interferometer path
replaced by the evolution in a constant potential~stage II!,
which leaves the position and the physical size of the w
function unchanged. This interferometer is thus particula
well suited to measure local fields and interactions, wh
presents an advantage over experiments with propaga
atoms.1 One could, for instance, measure the phase shift a
ing from a two-body collision@11# or the amount of deco-
herence induced from a nearby surface@12#.

In this paper, we present a detailed analysis of this in
ferometer scheme, employing a realisitic magnetic poten
that can be implemented with currently available microtr
technique. We consider the case of an individual trapp

FIG. 1. Scheme of the trapped atom interferometer: one or s
eral atoms are prepared in the vibrational ground state of the sin
well potential ~I!. When the well separates, the wave functi
evolves adiabatically into a symmetric delocalized state~IIa!. The
phase of the wave function in each potential well can be assume
evolve independently and monitors sensitively external electric
magnetic field gradients~IIb!. As the potential wells reunite, the
antisymmetric state transforms into the first excited vibratio
state, whereas the symmetric one retransforms into the ground
~III !.

1There is a subtle difference between atom interferometers w
beams and with trapped atoms: in spatial beam splitters, atoms
slowed down when the energy of the transverse state increa
Currently studies are on the way as to how this effect can be
plored for enhanced detection schemes of the outgoing state@10#.
©2001 The American Physical Society07-1



d
a

e
en

e
in

ell
e
r

n
lit
th
s
e

tia
, u
W

a
a
ia
nt
m
th
hi
n
i

nt
d
ra

d
in
el
na
A
th
s
o

ll

the
e-
zed
sur-
o-

on
de-
m-
ba-
al

a-
en-
still

es
ate

r-
ent
ing
this
, at
re

m-
Fig.
he

ta-

e

c-
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atom, a situation that is also targeted by experiments un
way ~for a study of a Bose-Einstein condensate in an ide
ized 1D potential, see@13#!. The potential is created by th
simple conductor configuration shown in Fig. 2. The curr
I 0 together with the external fieldB0,y provides a tight con-
finement in theyz plane. The two currentsI ext together with
the homogeneous field componentB0,x close this 2D trap in
axial direction, completing the single-well potential@Fig.
3~a!, left#. The currentI c creates an adjustable ‘‘bump’’ in th
center of this trap, and thus induces the splitting. Increas
I c transforms the potential from single-well to double-w
@Fig. 3~a!, right#, in loose analogy with the first passag
through the beam splitter of a Michelson-Moreley interfe
ometer for light.

To achieve a good fringe contrast, it is essential that
higher-lying vibrational states be excited during this sp
ting. Therefore, the crucial part of the interferometer is
quantum dynamics during the splitting and merging proce
The splitting~merging! of the wave functions occurs as th
quantum states adiabatically evolve in the varying poten
We analyze these dynamics in a one-dimensional model
ing analytic expressions for the microtrap magnetic field.
numerically determine the energy eigenstates of87Rb atoms
in the given potential and then trace the dynamics of
initial state, using the eigenstates as a time-dependent b

We show that successive vibrational levels in the init
trap evolve into pairs of degenerate states when the pote
is split. In this ‘‘sensing state,’’ the wave functions are co
posed of two identical oscillator states in the left and in
right well. Either of the two parts can acquire a phase s
independent of the other one, reflecting, e.g., an additio
small field gradient or the presence of an additional atom
one of the wells. When the potential is transformed back i
a single well, the population of the vibrational levels depen
on the phase difference that is picked up in the degene
states. Figure 1 illustrates this process: first, the system~i.e.,
one or several atoms! is prepared in the vibrational groun
state. Upon separation of the potential, this state evolves
a symmetric state that spreads over the two potential w
In an analogous manner, the antisymmetric first vibratio
level transforms into an antisymmetric delocalized state.
the system’s Hamilton operator is symmetric throughout
whole process, it cannot induce transitions between state
opposite symmetry, and the eigenstates can always be ch
of well-defined parity.

If the symmetric and antisymmetric states are spatia
separated far enough, they degenerate, and the left~right!
localized state can be constructed as difference~sum! of the

FIG. 2. Layout of the interferometer conductor pattern.
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symmetric and antisymmetric states. A perturbation of
potential, which does not have even parity, will lift this d
generacy in favor of the localized states. These locali
states make up for the classical interferometer arms, mea
ing very sensitively deviations from an ideal symmetric p
tential or interactions with other atoms.

In the following section, we investigate the separati
process using the 1D potential taken from the microtrap
vice sketched in Fig. 2. We establish the quantu
mechanical equation of motion and use first-order pertur
tion theory to determine the amount of vibration
excitations. Assuming a linear variation of the currentI c , we
find the excitation probability lower than 1% if the separ
tion takes 60 ms or longer. This indicates that an experim
tal realization should be possible, and the situation can
be improved when an arbitrary variation ofI c is allowed.
We, therefore, dedicate Sec. III to a method that minimiz
nonadiabatic excitations by finding the most-appropri
time dependence for the shape of the potential~here con-
trolled via I c). Such method is of interest not only for inte
ferometers, but it also applies to all cases of time-depend
potentials, and it can even be transferred to spatially vary
potentials such as beam splitters. For our interferometer,
method helps to reduce the splitting time by a factor of 2
the same time reducing the excitation probability by mo
than a factor of 10.

II. THE TRAPPED ATOM INTERFEROMETER

The microtrap device that we propose for the interfero
eter is a symmetric arrangement of wires as depicted in
2. Its potential is similar to the one that we used in t
merging experiment with thermal atoms@7#, but it is scaled
down to a wire distance of 20mm and simplified to produce
a strictly symmetric potential. The quantum-state compu
tions are made for87Rb atoms in theuF52,mF52& ground
state, the effective potential beingU(x)'h3(1.4 MHz)
3Bmin(x), whereBmin(x) is the transverse minimum of th
magnetic field amplitude and is measured in gauss.

FIG. 3. ~a! Shape of the magnetic splitting potential for chara
teristic values of the control parameters @see Eqs.~4! and~5!#; ~b!
eigenstates of87Rb atoms in the specified potential.
7-2
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The currentI 0 in the central wire and the homogeneo
field B0,y create a two-dimensional quadrupole field th
strongly confines the atoms in theyz plane. Each of the
crossing wires contributes a longitudinal field modulation
Lorentzian shape~see@14#!.

The two currentsI ext together with the field componen
B0,x generate two valleys along the longitudinal axis, whi
do not appear separate if the trap is located far enough f
the surface. The currentI c with its direction opposite to the
two external currents is used to split the Ioffe-Pritchard p
tential into two neighboring wells@Fig. 3~a!#. Choosing the
parameters as

I 05525 mA, ~1!

B0,y520 G, ~2!

B0,x516 G, ~3!

I ext5140 mA1~2.91 mA!3s, ~4!

I c50.25 mA1~4.4 mA!3s, ~5!

the trap is located 35mm above the surface, yielding
transversal oscillation frequency ofv trans'2p 353.7 kHz.
The parameters determines the shape of the trap, runni
from 0 for one single well to 1 for separated wells. The po
s51 has been chosen such that the two lowest vibratio
levels of each well are clearly separated~i.e., the two lowest
sets of states are both degenerate!. The time dependence o
the system’s Hamiltonian is expressed via the functions(t).
In a simple approach,s may be chosen to vary linearly i
time, but as we will discuss in Sec. III, an optimized functi
s(t) can be found that minimizes vibrational excitations d
ing the splitting~merging! process.

In Fig. 3~a!, the resulting magnetic field along the long
tudinal axisex is displayed for characteristic values ofs; the
transverse potential minimum is plotted against the long
dinal position. The plots below show the eigenstates of87Rb
atoms (uF52,mF52&) in this field as they are numericall
computed from the Schro¨dinger equation@Eq. ~6! below#.
The corresponding energy eigenvalues, measured relativ
the minimum value of the potential, are given in Fig. 4.

FIG. 4. Energy eigenvalues of the system’s Hamilton operato
the trapping potential is divided into two wells. Neighboring sta
of opposite symmetry form pairs and degenerate as the pote
wells separate.
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For s50, the four lowest levels correspond to the sta
of a harmonic oscillator with quantum numbern50, . . . ,3
and oscillation frequencyvs50'2p3(190 Hz). We use the
quantum numbern to identify the eigenstates asuwn(s)&
throughout the whole evolution. As the value ofs is raised,
the vibrational levels evolve into symmetric and antisymm
ric delocalized states. Ats51, the four lowest levels form
two sets of degenerate states, their energy beingE2k
5E2k115\vs51(k1 1

2 ), k5$0,1%, vs51'2p3(240 Hz).
At each stage, the separation of the transverse le
(.50 kHz) is much larger than the separation of longitu
nal states involved. For this reason, the longitudinal states
not intermingle with the transverse levels, even if the s
tem’s symmetry is slightly disturbed. The quantum dynam
is, therefore, adequately described by a one-dimensio
model.

In order to make the interferometer work properly, t
atomic wave function should follow ideally the~time-
dependent! eigenstatesuwk(t)& of the system. If the potentia
is varied too fast, the evolution is nonadiabatic, i.e., vib
tional excitations are generated. For the investigation
these excitations, we will focus on the first half of the inte
ferometer cycle: we use a time-dependent interaction pic
to compute the time scale on which the separation proc
can be lead adiabatically.

The ~time-dependent! basis for the computation is foun
by solving the time-independent Schro¨dinger equation

Ĥ~s!uwk~s!&5\vk~s! uwk~s!& ~6!

with the Hamilton operator

Ĥ~s!5
p̂2

2m
1mB gF mF uB~s, r̂ !u, ~7!

where s takes the role of a mere parameter. For the giv
magnetic-field, the eigenfunctions have been computed
merically and are displayed in Fig. 3~b!.

The natural phase evolution of the eigenstates can be
cluded into the basis and yields the ansatz

uc~ t !&5(
k

ck~ t ! expF2 i E
0

t

vk~ t8! dt8G uwk~ t !&. ~8!

The equation of motion for the coefficientsck(t) is obtained
when Eq.~8! is inserted in the time-dependent Schro¨dinger
equation with the Hamiltonian~7!2

d

dt
ck~ t !52(

n
cn~ t ! expH i E

0

t

@vk~ t8!2vn~ t8!#dt8J
3^wk~ t !u

d

dt
uwn~ t !&. ~9!

2The time dependence ofvk(t) anduwk(t)& is explicit through the
control parameters: vk(t)[vk„s(t)…, etc.
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Given that a single eigenstateuw i(t50)& is prepared in the
beginning, and further assuming that the transition proba
ity into other vibrational states is small, first-order perturb
tion theory can be used to determine the coefficientscf and
the corresponding transition probabilitiesPi f

cf~ t !5E
0

t

expH i E
0

t

@v f~ t8!2v i~ t8!#dt8J
3^w f~ t !u

d

dt
uw i~ t !& dt ~10!

Pi f ~ t !5ucf~ t !u2. ~11!

The coupling

^w f~ t !ud/dtuw i~ t !&5^w f~s!ud/dsuw i~s!& ds/dt

to higher levels is directly proportional to the rateds/dt at
which the control parameters is changed. Therefore, if al
levels are separated by a minimum energy\v0, the transi-
tion amplitudes can be made negligible by choosing an
propriate duration for the process. Conversely, if at cert
instants some energy levels degenerate, this will create l
transition amplitudes unless the coupling coefficie
^w f(s)ud/dsuw i(s)& between these levels vanishes at t
points of degeneration. In the trapped atom interferome
presented here, we encounter such degenerate levels. B
the states that degenerate are of opposite symmetry thro
out the complete evolution, the coupling between them
mains zero for all times. Therefore, the excitation probabi
can be made arbitrarily small by choosing the process d
tion long enough.

This consideration is confirmed by numerically evaluati
expressions~10! and ~11! for either of the interferomete
levels (uw0&,uw1&). In the first approach, the separation p
rameter has been chosen linear in times5t/T. Figure 5
shows the transition probabilities into the neighboring int
ferometer levels which contribute largest to all vibration
excitations. The data indicate that the excitation probabi
is less than 1% if the separation process takes longer tha
ms.

This is an encouraging result, as it seems experiment
realizable. Moreover, as the time dependence of the pote
can be freely chosen, one can adjust the speed of the s

FIG. 5. Excitation probability for the transitionsuw0&→uw2& and
uw1&→uw3& for a linear increase of the separations with time.
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ration processds/dt in order to further reduce excitations
This is of general interest, because a linear variation of
control parameters is not necessarily the best choice. Indee
one wishes to find a method that optimizes the process
spective of its parametrization.

III. OPTIMIZATION

In this section, we develop a scheme that minimizes
brational excitations in time-dependent potentials. In a sli
variant, this method can equally be used to find an adeq
shape for a beam-splitter potential.

In order to optimize the adiabaticity of the separation p
cess we first take a look at the coupling term from Eq.~10!

^w f~ t !u
d

dt
uw i~ t !&5^w f~s!u

d

ds
uw i~s!&

ds

dt
, ~12!

which is proportional to the process speedds/dt and to the
coupling coefficienta(s)[^w f(s)ud/dsuw i(s)&.

Intuitively, one can increase the process speedds/dt if
a(s) is small, and decrease it in the opposite case. Furt
more, the process speed should be adapted to the en
difference of the levels involved; the more the energy lev
lie apart from each other, the more the process speed ma
increased. Last but not the least, one has to avoid disco
nuities in the process speed including the start and the en
the separation. In the following, these intuitive rules will b
substantiated into a set of differential equations to yield
optimized process controls(t).

We assume that the process is lead during 0<t<T and
that the separation parameter att5T is s(t5T)51. Indeed,
we want to fix a shape of the control parameters that does
not depend on the process duration. Therefore, we implic
assume thats(t)[s(t,T) can be written as

s~ t,T!5s~ t/T,1!. ~13!

The goal is then to fix some maximum excitation probabil
e2 and to find an appropriate shape for the functions(t,T)
which minimizesTadiab fulfilling the condition

ucf~T!u<e ; T>Tadiab. ~14!

If, by some chance, the distance of energy lev
Dv„s(t8)…[v f2v i is constant throughout the process, t
transition amplitudecf(T) appears as the Fourier transfor
of a(s) ds/dt,

cf~T!5E
0

T

expF i E
0

t

Dv~ t8! dt8Ga„s~ t !…
ds

dt
dt ~15!

5E
0

T

eiDv ta~s!
ds

dt
dt for Dv5const. ~16!

If, in addition,a(s) happens to be constant over the proce
the solution of the problem is simple: the shape of the p
cess speedds/dt should be chosen such that it produces
7-4
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least amount of side lobes possible in a Fourier transfor
tion. An appropriate shape would, e.g., be a Blackman pu
@15#:

ds

dt
5

1

T F12
25

21
cosS 2p

t

TD1
4

21
cosS 4p

t

TD G , ~17!

which can be directly integrated to yields(t).
The idea of the Fourier transform can be extended to

more general case. A substitution of the time variablet by
some new variablet can be made in a way that the argume
of the exponential in Eq.~15! becomes linear int

E
0

t

Dv~ t8! dt85
T

T0
t~ t !, ~18!

and thatt runs from 0 to 1 during the process. The time sc
T0 will be part of the optimization result. Equation~15! then
assumes the form of a Fourier transform of some n
expression3 u(t),

cf~T!5E
0

1

expF i
T

T0
tGu~t! dt, ~19!

u~t![a~s!
dst

dt
. ~20!

The expressionu(t) is a generalized coupling term, ac
ing in the transformed time framet. As above, one can now
choose a shape for this coupling termu(t) ~however, not its
amplitude! and will obtain the probability amplitude as it
Fourier transform.

Once the optimization strategy is chosen, it remains
solve the equations~18! and ~20!. One might be tempted to
deduce the relationdt/dt from Eq.~18! and insert it into Eq.
~20! to solve directly fors(t). Unfortunately, this results in
an intractable problem. Instead, one can take advantag
the substitution already made and first solve forst(t). The
relation betweent andt is then established in a second ste
This way, the problem is split into two differential equation
the first of which yields the amplitude ofu(t), and the sec-
ond of which determines the time scaleT0 used in the sub-
stitution. These two values determine size and scale of
probability amplitudecf(T).

The first differential equation involves the shape of t
function that is chosen for the generalized coupling te
u(t), and it is a direct consequence of Eq.~20!,

dst

dt
5

u~t!

a„st~t!…
. ~21!

It is important to note, that although the timedst /dt is used
to shape the coupling termu(t), its amplitude does not cor
respond to the overall process speed. Instead, the ampl
of u(t) has to be adjusted such that the solution matches

3In the following equations, the indext marks the fact that the
functional dependence of the parameters is on t, not ont.
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boundary conditionss(t50)50, s(t51)51. This can for
instance be done by iteratively solving Eq.~21! for different
amplitudes ofu(t).

The second differential equation establishes the rela
betweent and t and arises from the substitution oft @Eq.
~18!#, once thatst(t) has been determined,

dt

dt
5Dv„st~t!…

T

T0
. ~22!

ChoosingT5T0, this equation can be solved numerical
and one findsT0 as the point in time, for whicht(t) reaches
its boundaryt(T0)51.

The result for the transition amplitude is now complete
described by Eq.~19!, the amplitude ofu(t), and the time
scale resulting from the choice of the pulse shape. The o
mized evolution of the control parameter is computed fro
the concatenation ofst(t) andt(t),

s~ t !5stXtS t
T0

T D C. ~23!

If this optimization is applied to the trapped atom inte
ferometer, the probability for nonadiabatic excitations can
considerably reduced. Figure 6 shows the excitation pr
abilities for a process speed that has been optimized to
press the transitionuw0&→uw2&. With the optimized control,
the separation can be accomplished within 30 ms, thus
ducing the complete interferometer cycle to 60 ms with
overall excitation probability of less than 1023.

These parameters suggest that an experimental realiz
of the scheme is indeed feasible. Direct Bose-Einstein c
densation in microtraps, which has been demonstrated
recently @16,17#, can be used to provide an initial atom
sample in the vibrational ground state. The density in
condensate has to be reduced such that phase shifts from
mean-field interaction are avoided. With a sufficient numb
of atoms, one can determine the final state from the ato
velocity distribution using time-of-flight imaging@18#. Alter-
natively, the interferometer output can be determined a
spatial separation of the final states, e.g., using approp
potential changes as proposed in Ref.@8#. For sensitive de-
tection, one could then use established techniques suc
fluorescence imaging.

FIG. 6. Excitation probabilityuw0&→uw2& and uw1&→uw3& for
an optimized processs(t) ~see inset!. Note that the ordinate is
scaled up by a factor of 10 compared to Fig. 5.
7-5
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Another issue is stability against gradients of magne
stray fields. In our case, the sensing states of the interfer
eter lie ;6 mm apart. During a sensing time of 60 ms,
gradientbx5]Bx /]x would lead to an additional dephasin
of DF'2p3503bx , where bx is measured in G/cm. A
suppression of stray gradients to less than 1 mG/cm wo
therefore, reduce the dephasing toDf<2p/20.

IV. CONCLUSION

In conclusion, we have studied a dynamic potential int
ferometer working with three-dimensionally trapped atom
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We have used a time-dependent interaction picture to
scribe the quantum-state evolution and we have compu
probabilities for nonadiabatic transitions into neighbori
levels. For a realistic magnetic microtrap we find paramet
that suggest an experimental implementation in the near
ture. Based on the theoretical results, we have develope
optimization scheme for the reduction of vibrational exci
tions that is independent of the system’s parametrization.
plying the optimization to our interferometer potential, w
have found a cycle of durationT560 ms with excitation
probability less than 1023.
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