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Trapped-atom interferometer in a magnetic microtrap
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We propose a configuration of a magnetic microtrap that can be used as an interferometer for three-
dimensionally trapped atoms. The interferometer is realized via a dynamic splitting potential that transforms
from a single well into two separate wells and back. The ports of the interferometer are neighboring vibrational
states in the single-well potential. We present a one-dimensional model of this interferometer and compute the
probability of unwanted vibrational excitations for a realistic magnetic potential. We optimize the speed of the
splitting process in order to suppress these excitations, and conclude that such interferometer device should be
feasible with currently available microtrap technique.
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[. INTRODUCTION not move nor does its wave function spread during this stage:
the propagation along the traditional interferometer path is
Since the first realization of magnetic traps,2] and replaced by the evolution in a constant potentgthge I),
guides[3,4] with current-carrying conductors on a chip, a Which leaves the position and the physical size of the wave
large variety of magnetic potentials have become experimerfunction unchanged. This interferometer is thus particularly
tally accessible, which would be impractical or even impos-We” suited to measure local fields and interactions, which
sible to realize with macroscopic coils. The splitting of two- presents an advantage over experiments with propagating
dimensionally trapped atom clouds has been demonstratéoms: One could, for instance, measure the phase shift aris-
[5,6], and recently, we were able to split and unite a threeing from a two-body collisior{ 11] or the amount of deco-
dimensionally trapped cloud of rubidium atoms in a chip trapherence induced from a nearby surfat].
[7]. In this paper, we present a detailed analysis of this inter-
Current experiments aim at populating single quantunferometer scheme, employing a realisitic magnetic potential
states of such microtrap potentials with either an atomic enthat can be implemented with currently available microtrap
semble(i.e., creating a Bose-Einstein condengate indeed  technique. We consider the case of an individual trapped
with a single atom. One promising application of such a
system would be an integrated atom interferometer on a chip |
[8]. The small size and monolithic construction of such a
device suggests its suitability for “real-word” applications.
Moreover, the fact that magnetic potentials may be “engi-

I Com
a) b) !

neered” on the chip enables novel interferometer schemes i /w : @/
with features quite different from more traditional atom in- ~ .
terferometer$9]. Here we study a scheme in which the par- | \PO/
ticle wave of a single, trapped atom is coherently split up and o _ .
reunited by a time-varying magnetic potentilg. 1). Split- i I o R
ting occurs in one dimension, while a tight confinement in
the remaining two dimensions leads to an effective one- FIG. 1. Scheme of the trapped atom interferometer: one or sev-
dimensional(1D) situation. This is in contrast to Ref8] eral atoms are prepared in the vibrational ground state of the single-
where the dynamics of the splitting is in two dimensions. Aswell potential (I). When the well separates, the wave function
depicted in Fig. 1, interference occurs between the lowesgVolves adiabatically into a symmetric delocalized sté®). The
two vibrational statesl,goo> and|<pl>, of the splitting poten- phase qf the wave function in gach poten_tl_al well can be assumed to
tial (the internal atomic state remains unchangédphase- evolve |.nde.pendentl'y and monitors sensmvgly external eI.ectrlc and
changing interaction in one “arm(stage Il in Fig. 1 trans- magnetic field gradient¢llb). As the potential wells reunite, the

lates into a change of the relative populationsq ) and antisymmetric state transforms into the first excited vibrational
9 Pop ¢ state, whereas the symmetric one retransforms into the ground state

|¢1) when the potential is recombined. As in other interfer-(m)
ometers, a longer duration of stage Il leads to a larger accu-
mulated phasé€.e., a larger arm lengjhHowever, unlike the

situation in most free-atom schemes and the guided-atom———
scheme proposed in Rd#8], in our scheme the atom does

There is a subtle difference between atom interferometers with
beams and with trapped atoms: in spatial beam splitters, atoms are
] _ slowed down when the energy of the transverse state increases.

*Corresponding author: FAXs +49-89/285192, Email address: cyrrently studies are on the way as to how this effect can be ex-
Wolfgang.Haensel@mpg.mpg.de plored for enhanced detection schemes of the outgoing [sté}e
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atom, a situation that is also targeted by experiments under a) single well intermediate two wells

way (for a study of a Bose-Einstein condensate in an ideal- . (s=0) (=07 =1

ized 1D potential, sefl3]). The potential is created by the 2 B[G) B[G) B[G]

simple conductor configuration shown in Fig. 2. The current g 955 \_3955 / =

lo together with the external fielB,, provides a tight con- 2

finement in theyz plane. The two currents,,; together with B 3950 3950 3950

the homogeneous field compondy, close this 2D trap in §’ 2 20y T e Y O AL

axial direction, completing the single-well potentigfig. b)

3(a), left]. The current, creates an adjustable “bump” in the - . e

center of this trap, and thus induces the splitting. Increasing A\ W[L_AV

|, transforms the potential from single-well to double-well € R 2

[Fig. 3(a@), right], in loose analogy with the first passage %

through the beam splitter of a Michelson-Moreley interfer- g .

ometer for light. : AYA AN
To achieve a good fringe contrast, it is essential that no | Psim E | ® sum

higher-lying vibrational states be excited during this split-

ting. Therefore, 'the erCIaI part O.f 'the Interferometer is the FIG. 3. (a) Shape of the magnetic splitting potential for charac-
quantum _dynamlcs_ during the splitting a_nd MErging ProCeSSyistic values of the control parametefsee Eqs(4) and(5)]; (b)
The splitting(merging of the wave functions occurs as the eigenstates of’Rb atoms in the specified potential.

guantum states adiabatically evolve in the varying potential.

We analyze these dynamics in a one-dimensional model, Ugymmetric and antisymmetric states. A perturbation of the
ing analytic expressions for the microtrap magnetic field. Wepotential, which does not have even parity, will lift this de-

; H H 7, . . .
numerically determine the energy eigenstateS'®b atoms  generacy in favor of the localized states. These localized
in the given potential and then trace the dynamics of anyiates make up for the classical interferometer arms, measur-

initial state, using the eigenstates as a time-dependent basjgg very sensitively deviations from an ideal symmetric po-
We show that successive vibrational levels in the initialiantial or interactions with other atoms.

trap evolve into pairs of degenerate states when the potential |, the following section, we investigate the separation

is split. In this "sensing state,” the wave functions are com-process using the 1D potential taken from the microtrap de-
posed of two identical oscillator states in the left and in the\jce sketched in Fig. 2. We establish the quantum-

right well. Either of the two parts can acquire a phase shiftyechanical equation of motion and use first-order perturba-
mdependent of_the other one, reflecting, e.g., an addltlon_auOn theory to determine the amount of vibrational
small field gradient or the presence of an additional atom inyycitations. Assuming a linear variation of the currentwe

one of the wells. When the potential is transformed back intGing the excitation probability lower than 1% if the separa-
a single well, the population of the vibrational levels depends;op, takes 60 ms or longer. This indicates that an experimen-
on the phase difference that is picked up in the degenerafg) realization should be possible, and the situation can stil
states. Figure 1 illustrates this process: first, the syst€m e jmproved when an arbitrary variation bf is allowed.
one or several atomss prepared in the vibrational ground \ye ' therefore, dedicate Sec. Ill to a method that minimizes

state. Upor_l separation of the potential, this state evqlves iNtQonadiabatic excitations by finding the most-appropriate
a symmetric state that spreads over the two potential wellgjme dependence for the shape of the potertfi@re con-

In an analogous manner, the antisymmetric first vibrational,)jeq vial,). Such method is of interest not only for inter-

level transforms iqto an antisym'metric delo_calized state. Asferometers, but it also applies to all cases of time-dependent
the system's Hamilton operator is symmetric throughout the,qentials, and it can even be transferred to spatially varying

whole process, it cannot induce transitions between states Ofentials such as beam splitters. For our interferometer, this
opposite symmetry, and the eigenstates can always be chosgfhod helps to reduce the splitting time by a factor of 2, at

of well-defined parity. _ , _the same time reducing the excitation probability by more
If the symmetric and antisymmetric states are spatiallyhan a factor of 10.

separated far enough, they degenerate, and therigfit)

I liz tat n nstruct iffer f th
ocalized state can be constructed as differefsoer) o € Il. THE TRAPPED ATOM INTERFEROMETER

Boy &y The microtrap device that we propose for the interferom-
eter is a symmetric arrangement of wires as depicted in Fig.
20 20um % 2. Its potential is similar to the one that we used in the

BO,X | a

a merging experiment with thermal atorfig], but it is scaled
| down to a wire distance of 2Qum and simplified to produce
a strictly symmetric potential. The quantum-state computa-
h h h L tions are made pr”Rb atoms in théF =2mg=2) ground
I I, I state, the effective potential beind(x)~hXx (1.4 MHz)
X Bmin(X), whereB,i,(X) is the transverse minimum of the
FIG. 2. Layout of the interferometer conductor pattern. ~ magnetic field amplitude and is measured in gauss.

ext ext
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E/h [Hz] For s=0, the four lowest levels correspond to the states
e 03 of a harmonic oscillator with quantum numbe+0, . ..,3
600} and oscillation frequencygs— g~27 X (190 Hz). We use the

quantum numben to identify the eigenstates d%,(s))
throughout the whole evolution. As the value ofs raised,
the vibrational levels evolve into symmetric and antisymmet-
ric delocalized states. Ad=1, the four lowest levels form
two sets of degenerate states, their energy bding
=Ep1=hwe1(k+3), k={0,1}, ws_1~27X(240 Hz).
At each stage, the separation of the transverse levels
) 0.2 04 06 0.8 1s (>50 kHz) is much larger than the separation of longitudi-
nal states involved. For this reason, the longitudinal states do
FIG. 4. Energy eigenvalues of the system’s Hamilton operator agiot intermingle with the transverse levels, even if the sys-
the trapping potential is divided into two wells. Neighboring statestem’s symmetry is slightly disturbed. The quantum dynamics
of opposite symmetry form pairs and degenerate as the potentig} therefore, adequately described by a one-dimensional
wells separate. model.

. . In order to make the interferometer work properly, the
The currentl in the central wire and the homogeneous 4iomic wave function should follow ideally thétime-

field Boy create a two-dimensional quadrupole field thatdepender)teigenstatei;cpk(t)) of the system. If the potential
strongly confines the atoms in thez plane. Each of the s yaried too fast, the evolution is nonadiabatic, i.e., vibra-
crossing wires contributes a longitudinal field modulation ofijonal excitations are generated. For the investigation of

Lorentzian shapésee[14]). _ _ these excitations, we will focus on the first half of the inter-
The two currentd e, together with the field component ferometer cycle: we use a time-dependent interaction picture

Box generate two valleys along the longitudinal axis, whichtg compute the time scale on which the separation process

do not appear separate if the trap is located far enough froay pe lead adiabatically.

the surface. The curremt with its direction opposite to the The (time-dependeptbasis for the computation is found

two external currents is used to split the loffe-Pritchard po+yy solving the time-independent Séhinger equation

tential into two neighboring wellgFig. 3@]. Choosing the

parameters as

500
400
300
200
100

H(s)|ei(s))=hwy(s) |ex(s)) (6)
l0=525 mA, (1)
with the Hamilton operator
Boy=20 G, 2)
. p? .
Box=16 G, (€) H(s)= 5=+ ue 9 Mk [B(s, 1], @)
loxe=140 MA+(2.91 mA Xs, (4)

wheres takes the role of a mere parameter. For the given
1.=0.25 mA+ (4.4 mA Xs, (5) magnetic-field, the eigenfunctions have been computed nu-
merically and are displayed in Fig(l3.
the trap is located 35um above the surface, yielding a  The natural phase evolution of the eigenstates can be in-
transversal oscillation frequency ef,,,s~2m X53.7 kHz. cluded into the basis and yields the ansatz
The parametes determines the shape of the trap, running
from O for one single well to 1 for separated wells. The point [t
s=1 has been chosen such that the two lowest vibrational |l//(t)>:; Ck(t) eXF{—I fowk(t') dt’
levels of each well are clearly separatgé., the two lowest
sets of states are both degeneraide time dependence of
the system’s Hamiltonian is expressed via the functgn).
In a simple approachs may be chosen to vary linearly in
time, but as we will discuss in Sec. Ill, an optimized function
s(t) can be found that minimizes vibrational excitations dur-
ing the splitting(merging process.

In Fig. 3(a), the resulting magnetic field along the longi-
tudinal axise, is displayed for characteristic values $fthe
transverse potential minimum is plotted against the longitu- X (t)|g| (1) ©)
dinal position. The plots below show the eigenstate&’Bb Py ent)7
atoms (F=2,m:=2)) in this field as they are numerically
computed from the Schdinger equatiofEg. (6) below].

The corresponding energy eigenvalues, measured relative tGThe time dependence af,(t) and|¢y(t)) is explicit through the
the minimum value of the potential, are given in Fig. 4. control parametes. w,(t)=w,(s(t)), etc.

len(®). (8)

The equation of motion for the coefficientg(t) is obtained
when Eq.(8) is inserted in the time-dependent Satirmer
equation with the Hamiltoniafi7)?

d t
Fe=-3 cn<t>exp[iJo[wka')—wn(t')]dt’}
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025 4 ration procesgls/dt in order to further reduce excitations.
This is of general interest, because a linear variation of the
control parametes is not necessarily the best choice. Indeed,
one wishes to find a method that optimizes the process irre-
spective of its parametrization.

0.20 |

excitation probability p
=
o

0.10
I1l. OPTIMIZATION
0.05 -
In this section, we develop a scheme that minimizes vi-
000 brational excitations in time-dependent potentials. In a slight
0 Tme] variant, this method can equally be used to find an adequate
shape for a beam-splitter potential.
FIG. 5. Excitation probability for the transitiongq)—|¢,) and In order to optimize the adiabaticity of the separation pro-
|@1)—|@3) for a linear increase of the separatiswith time. cess we first take a look at the coupling term from Ed)

Given that a single eigenstate;(t=0)) is prepared in the d d ds
beginning, and further assuming that the transition probabil- (erO] gl ei)=(e(s)| gclei(s) 5 (12
ity into other vibrational states is small, first-order perturba-

tion theory can be used to determine the coefficientand  \yhich is proportional to the process spegsidt and to the

the corresponding transition probabiliti®g coupling coefficienta(s)=( g;(s)|d/ds| ¢;(s)).
¢ ¢ Intuitively, one can increase the process spdettt if
cf(t):f exp{if [ws(t")— w;(t")]dt’ a(s) is small, and decrease it in the opposite case. Further-
0 0 more, the process speed should be adapted to the energy

d difference of the levels involved; the more the energy levels
X(ei(D] 5 lei(1)) dt (10)  lie apart from each other, the more the process speed may be
dt increased. Last but not the least, one has to avoid disconti-
) nuities in the process speed including the start and the end of
Pir(t)=|ce(D)[%. 1) the separation. In the following, these intuitive rules will be
substantiated into a set of differential equations to yield an
optimized process contra((t).
(er(D)]d/dt|@i(1)) =(p¢(s)|d/ds| ¢i(s)) ds/dt We assume that the process is lead durirgt&T and
that the separation parametertatT is s(t=T)=1. Indeed,
to higher levels is directly proportional to the rade/dt at we want to fix a shape of the control paramedehat does
which the control parametes is changed. Therefore, if all not depend on the process duration. Therefore, we implicitly
levels are separated by a minimum enefgy,, the transi- assume thas(t)=s(t,T) can be written as
tion amplitudes can be made negligible by choosing an ap-
propriate duration for the process. Conversely, if at certain s(t,T)=s(t/T,1). (13
instants some energy levels degenerate, this will create large
transition amplitudes unless the coupling coefficientThe goal is then to fix some maximum excitation probability
(@¢(s)|d/ds|¢;(s)) between these levels vanishes at thee? and to find an appropriate shape for the functigtT)
points of degeneration. In the trapped atom interferometewhich minimizesT .44 fulfilling the condition
presented here, we encounter such degenerate levels. But as
the states that degenerate are of opposite symmetry through- [ci(T)|<e VT=Tgian (14
out the complete evolution, the coupling between them re-
mains zero for all times. Therefore, the excitation probabilitylf, by some chance, the distance of energy levels
can be made arbitrarily small by choosing the process duraA w(s(t'))=w;— w; is constant throughout the process, the
tion long enough. transition amplitudec;(T) appears as the Fourier transform
This consideration is confirmed by numerically evaluatingof a(s) ds/dt,
expressiong10) and (11) for either of the interferometer

levels , . In the first approach, the separation pa- T [t
q‘PO> |‘)Dl>) pp p p Cf(T):f eXF{'J A(I)(t,) dt’
0 0

The coupling

ds
rameter has been chosen linear in tiset/T. Figure 5 a(s(t))adt (15)
shows the transition probabilities into the neighboring inter-
ferometer levels which contribute largest to all vibrational T
excitations. The data indicate that the excitation probability :f gdeoty(s)
is less than 1% if the separation process takes longer than 60 0
ms.

This is an encouraging result, as it seems experimentallif, in addition,a(s) happens to be constant over the process,
realizable. Moreover, as the time dependence of the potentiéihe solution of the problem is simple: the shape of the pro-
can be freely chosen, one can adjust the speed of the sepzess speeds/dt should be chosen such that it produces the

ds

T dt for Aw=const. (16)
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least amount of side lobes possible in a Fourier transforma- 0.025 - . 5
tion. An appropriate shape would, e.g., be a Blackman pulse ! 08
[15]: o 0.020 :l iE
£ ! ,
ds 11 25 5 t+4 4 t . goms- i 2:
—_—— —_— — — —_ 1 o
gt 7|1 2100927 7) Y oreegAy) ) (4D B | Pro
.§ 0.010 4 || 02 04 06 08 YT
which can be directly integrated to yieg{t). o Po2 | | s(t) optimized
The idea of the Fourier transform can be extended to the § G Vo
more general case. A substitution of the time variabhgy — VTN
some new variable can be made in a way that the argument o ' 20 ' 40 ’

of the exponential in Eq(15) becomes linear irr Time]

. T FIG. 6. Excitation probabilit}{<po)—>|<p2) and|¢l>—>\go.3> for.
f Aw(t') dt’ = — (1), (18) an optimized process(t) (see inset Note that the ordinate is
0 To scaled up by a factor of 10 compared to Fig. 5.

and thatr runs from 0 to 1 during the process. The time scaleboundary conditions(7=0)=0, s(r=1)=1. This can for

To will be part of the optimization result. Equati@h5) then  instance be done by iteratively solving Eg1) for different
assumes the form of a Fourier transform of some nevamplitudes ofu(7).

expressionu(r), The second differential equation establishes the relation
) - betweent and 7 and arises from the substitution dfEq.
Cf(T):f ex;{i =7 u(r) dr, (19 (18)], once thats(7) has been determined,
0 0
dr T
ds a=Aw(ST(T))T—O. (22)
u(r)=a(s) ar (20

ChoosingT=T,, this equation can be solved numerically,
The expressiom(7) is a generalized coupling term, act- and one findS , as the point in time, for which(t) reaches
ing in the transformed time frame As above, one can now tS boundaryr(To)=1.

choose a Shape for this Coup"ng teu('n—) (however, not its The I’esult fOI’ the transition amp|ltude iS now Complete|y
amplitude and will obtain the probability amplitude as its described by Eq(19), the amplitude ofl(7), and the time
Eourier transform. scale resulting from the choice of the pulse shape. The opti-

Once the optimization strategy is chosen, it remains tgnized evolutior_1 of the control parameter is computed from
solve the equation&l8) and (20). One might be tempted to the concatenation of(7) and 7(t),
deduce the relatiodt/d~ from Eq.(18) and insert it into Eq.

(20) to solve directly fors(t). Unfortunately, this results in s(t)=s (,.(»[E ) (23
an intractable problem. Instead, one can take advantage of ! T
the substitution already made and first solve $gf7). The If this optimization is applied to the trapped atom inter-

relation between andt is then established in a second step.ferometer, the probability for nonadiabatic excitations can be
This way, the problem is split into two differential equations, considerably reduced. Figure 6 shows the excitation prob-
the first of which yields the amplitude af(7), and the sec- abilities for a process speed that has been optimized to sup-
ond of which determines the time scdlg used in the sub- press the transitiofpg)— | ¢,). With the optimized control,
stitution. These two values determine size and scale of ththe separation can be accomplished within 30 ms, thus re-
probability amplitudec¢(T). ducing the complete interferometer cycle to 60 ms with an
The first differential equation involves the shape of theoverall excitation probability of less than 18
function that is chosen for the generalized coupling term These parameters suggest that an experimental realization

u(r), and it is a direct consequence of Eg0), of the scheme is indeed feasible. Direct Bose-Einstein con-
densation in microtraps, which has been demonstrated very
ds, u(r) 21) recently[16,17], can be used to provide an initial atomic

dr  a(s/(7)’ sample in the vibrational ground state. The density in the

condensate has to be reduced such that phase shifts from the

It is important to note, that although the tids_./dris used mean-field interaction are avoided. With a sufficient number

to shape the coupling teron(7), its amplitude does not cor- of atoms, one can determine the final state from the atomic

respond to the overall process speed. Instead, the amplitudelocity distribution using time-of-flight imaginidL8]. Alter-

of u(7) has to be adjusted such that the solution matches theatively, the interferometer output can be determined after
spatial separation of the final states, e.g., using appropriate
potential changes as proposed in R&f. For sensitive de-

3In the following equations, the index marks the fact that the tection, one could then use established techniques such as
functional dependence of the parametés on 7, not ont. fluorescence imaging.

063607-5



W. HANSEL, J. REICHEL, P. HOMMELHOFF, AND T. W. HNSCH PHYSICAL REVIEW A64 063607

Another issue is stability against gradients of magnetide have used a time-dependent interaction picture to de-
stray fields. In our case, the sensing states of the interferonscribe the quantum-state evolution and we have computed
eter lie ~6 um apart. During a sensing time of 60 ms, a probabilities for nonadiabatic transitions into neighboring
gradientb,= B, /dx would lead to an additional dephasing |evels. For a realistic magnetic microtrap we find parameters
of ACD%Z_WX 50X by, Whe_re by is measured in G/lcm. A gt suggest an experimental implementation in the near fu-
suppression of stray gradients to less than 1 mG/cm wouldyre Based on the theoretical results, we have developed an
therefore, reduce the dephasinghih<2/20. optimization scheme for the reduction of vibrational excita-
tions that is independent of the system'’s parametrization. Ap-
plying the optimization to our interferometer potential, we

In conclusion, we have studied a dynamic potential interhave found a cycle of duratiom=60 ms with excitation
ferometer working with three-dimensionally trapped atomsprobability less than 10°.

IV. CONCLUSION
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