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Vortex state in superfluid trapped Fermi gases at zero temperature
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We discuss various aspects of the single vortex state of a dilute superfluid atomic Fermi gas atT50. The
energy of the vortex in a trapped gas is calculated and we provide an expression for the thermodynamic critical
rotation frequency of the trap for its formation. Furthermore, we propose a method to detect the presence of a
vortex by calculating the effect of its associated velocity field on the collective mode spectrum of the gas.
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I. INTRODUCTION

Inspired by the impressive progress in recent years in
field of Bose-Einstein condensation~BEC! in dilute atomic
gases, increasing attention is being devoted to examining
behavior of a gas of fermionic atoms at the same ultra
temperatures. Experimentally, the trapping and cooling
fermionic alkali-metal atoms has been demonstrated, re
ing temperatures as low as;TF/4 for 40K @1# and 6Li @2–4#
with TF denoting the Fermi temperature. It is well know
from condensed matter and nuclear physics that a gas c
posed of two different internal states of the same fermio
particle, which interact via an attractive interaction, is u
stable to formation of so-called Cooper pairs, thus becom
a superfluid. Since the possibility of such a superfluid tr
sition for trapped Fermi gases was proposed@5#, a lot of
theoretical work has focused on various properties of
system@6#. At the same time a major experimental goal h
become to observe the formation of the superfluid state.

One of the intriguing properties of a superfluid is the po
sibility of forming quantized vortices. For a Bose-Einste
condensate, the study of vortices has produced several i
esting results@7#. Recently, some aspects of the vortex st
of a trapped superfluid Fermi gas close to the critical te
peratureTc of the superfluid phase transition were cons
ered@8#. In this paper we are interested in the properties
the single vortex state of clouds of trapped Cooper-pa
fermions atT50, and in particular in understanding und
which conditions a vortex forms, what is its energy, and h
it can be detected. We consider large systems where the
herence lengthj of the superfluid is much smaller than th
extent of the cloud. In this limit, we are able to derive
analytical estimate of the energy of a vortex in a trap, ther
predicting the critical rotation frequency for its formatio
Also, we propose a way of observing the vortex by calcu
ing its effect on the collective mode spectrum of the gas. T
paper is organized as follows. First, in Sec. II, we exam
for which values of the characteristic parameters the vo
is well localized within the gas. In Sec. III we present
simple model for calculating the energy of a vortex in
uniform superfluid Fermi system. Using the result of Sec.
in Sec. IV we calculate the energy of a singly quantiz
vortex in a trapped gas and use the result to obtain the v
of the thermodynamic critical rotation frequency for its fo
mation. The problem of observing the vortex state is cons
ered in Sec. V, where we calculate how the presence
1050-2947/2001/64~6!/063606~6!/$20.00 64 0636
e

he

f
h-

m-
c
-
g
-

is
s

-

er-
e
-

-
f
d

o-

y

t-
e
e
x

,
d
ue

-
a

vortex influences the collective mode spectrum of the g
Finally, we summarize our results in Sec. VI. Given the u
certainties intrinsic in any simple model of the vortex, su
as the one presented in Sec. III, in the Appendix we brie
discuss another possible way of describing a vortex in a u
form gas, based on an approximate zero-tempera
Ginzburg-Landau approach@9#. We then calculate what this
alternative method gives for the energy of the vortex, a
compare the two results to show that they do not differ in a
significant way.

II. BASIC CONSIDERATIONS

In the dilute ultracold limit the effective interaction be
tween identical fermionic atoms vanishes due to the P
principle, and that between different ones can be well
scribed by one parameter only, thes-wave scattering length
a. For a negative scattering length, the interaction is attr
tive and if the number of particles in the two internal states
the same theT50 ground state of the gas is a superfluid. T
critical temperatureTc for the transition to such a superflui
state in a dilute gas was first determined for a uniform s
tem by Gorkov and Melik-Barkhudarov@10#, and using a
more modern approach by Heiselberget al. @11#. The pre-
dicted value is

kBTc5
g

p S 2

eD 7/3

eFe21/l, ~1!

wherel stands for 2kFuau/p, eF is the Fermi energy com
mon to the two species of fermions,kF is the associated
Fermi wave number, andg.1.781 is related to Euler’s con
stantC by g5eC. The pairing gapD at T50 is, as usual in
BCS theory, related to the critical temperature by the relat
D05pg21kBTc @12,13#.

When applying this result to a gas trapped by a harmo
oscillator potential, as in the cases of experimental inte
today, some requirements have to be met. The first one,
as for the uniform case, is that the density is everywhere
low that the gas is dilute, i.e.,kF(r )uau!1. We have intro-
duced a local Fermi wavenumberkF(r ). This corresponds to
using the Thomas-Fermi approximation, which is valid
eF@\vT , wherevT is the frequency of the oscillator~which
for the time being we assume to be isotropic!. This condition
is always satisfied if the particle number is sufficiently larg
©2001 The American Physical Society06-1
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since for a harmonic potentialeF5(6Ns)1/3\vT , with Ns

being the number of particles of one species.
Another condition for applicability of Eq.~1! is that

kBTc@\vT @14#. When this latter condition is not satisfie
the shell structure of the harmonic oscillator is crucial wh
determining the superfluid properties of the gas, and Eq.~1!
in general breaks down.

In a superfluid Fermi gas at zero temperature the size
the vortex core of a singly quantized vortex is given appro
mately by the BCS coherence lengthjBCS5\vF /pD0,
wherevF5\kF /ma is the Fermi velocity andma the mass of
a single atom. It is clear that in order for a vortex to app
at all the BCS coherence length~size of the vortex core! at
the center of the cloud has to be smaller than the size of
cloud itself, which in the Thomas-Fermi approximation
given byRTF5(2eF /mavT

2)1/2. If this were not so the super
fluid properties of the system would be more like those o
nucleus~for which j*R) than those of a bulk superfluid.

Substituting the appropriate expressions one can imm
ately see thatjBCS/RTF5p21\vT /D0, so that requiring
jBCS!RTF corresponds to demanding thatD0@p21\vT .
This condition is automatically satisfied ifkBTc@\vT , but
is not at all obviously realized in possible practical circu
stances. Indeed, if we assume the validity of Eq.~1! and of
the related value ofD0, and we use the expressioneF
5(6Ns)1/3\vT for the Fermi energy, we obtain

Ns@
~e/2!7

6p3
e3/l. ~2!

We may then immediately see that unlessl, and therefore
kFuau, is sufficiently close to 1, the exponential is very lar
and the condition in Eq.~2! is not satisfied, implying that the
coherence length is much larger than the radius of the cl
and the rotation pattern very different from a vortex state.
however,kFuau is too close to 1 (;0.3–0.4 or more! the
formula becomes unreliable because the gas is no longe
lute and effects due to induced interactions, which stron
modify the value ofD0 obtained in the dilute limit, must be
taken into account. Determining the corrections to the dil
gas results due to these strong coupling effects is a com
cated issue and some preliminary studies have been
sented only recently@15#. It is not the purpose of the prese
paper to consider these effects and we thus limit our stud
regions of densities in which Eq.~1! is reasonably reliable
keepingkFuau&0.4. There is then a range of applicability
Eq. ~1! for a trapped gas which depends on the numbe
particlesNs and the scattering length. In order to find th
region we impose the equality in Eq.~2!, and we plot in Fig.
1 the critical number of atomsNs,c for which jBCS/RTF
51 as a function ofkFuau. Well above the curve we are in th
regime where the local density approximation can be app
and a vortex may form, and below it the superfluid has
character more related to that of a nucleus. Since the valu
kFuau can be simply increased by keeping the number
particles fixed and tightening the external trapping potent
we see that ifNs is sufficiently large (*105) these systems
have the interesting possibility of going from one regime
the other.
06360
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In the remainder of this work we assume that we are
the upper region of Fig. 1 and therefore thatjBCS!RTF . In
this region a vortex forms in the cloud if it is stirred at a
angular velocity greater than a critical onevc1, which we
shall calculate using a thermodynamic approach.

III. VORTEX IN A UNIFORM GAS

Let us for the time being suppose that the vortex we w
to describe is in a uniform gas. In particular, we may take
system to be in a cylinder of radiusRc@jBCS.

Associated with the vortex there is a superfluid veloc
flow which decreases with the distancer from the vortex
axis: vv(r)5efk\/2mar, wherek is the number of quanta
of circulation of the vortex. In a simple model this veloci
field extends fromr;kjBCS to r5Rc . At distances shorter
than;kjBCS, the kinetic energy associated with the rotati
becomes high enough to break the Cooper pairs, and thu
fluid inside a cylinder of radius;kjBCS about the vortex
axis can be thought of as being in a normal~nonsuperfluid!
state. The energy per unit length associated with the vorte
then given by the sum of two contributions. One is the
netic energy due to the flow,

Ekin5E
kjBCS

Rc
2pr dr mansF k\

2marG2

5
pk2\2ns

2ma
ln

Rc

kjBCS
, ~3!

and the other is the loss in condensation energy about
vortex axis,

E cond;pk2jBCS
2 econd

5
pk2\2ns

2ma

3

p2
, ~4!

whereecond53D0
2ns/4eF is the condensation energy per un

volume due to the pairing@12#, and the usual expression fo
jBCS has been employed. Notice that we have introduc
here the one-species particle densityns , and we have sup-

FIG. 1. Critical number of atoms per spin species for whi
jBCS/RTF51 in an isotropic trap. Well above the line the loc
density approximation, and thus Eq.~1!, applies; below the line the
system is intrinsically finite sized.
6-2
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VORTEX STATE IN SUPERFLUID TRAPPED FERMI . . . PHYSICAL REVIEW A 64 063606
posed that this is a constant throughout the system, s
contrary to the boson case it is not the particle density
only the pairing field that changes close to the vortex a
@12#.

The total energy per unit length of a vortex is therefo
given in this simple model by

Ev5Ekin1Econd.
pk2\2ns

2ma
lnS 1.36

Rc

kjBCS
D . ~5!

The important feature of this result is that for large syste
~i.e., for whichRc@kjBCS! the most relevant contribution i
the logarithmic one arising from the kinetic integration. T
value of the constant inside the logarithm will depend on
choice of the model used to describe the vortex. A m
reliable value would be obtained from a numerical solut
of the Bogoliubov–de Gennes equations, although it is
likely that it will differ significantly from the one found here
since one expects it in any case to be of order 1. As
example of what a different approach may yield, in the A
pendix we show the result for the total energy of the vor
obtained using a zero-temperature Ginzburg-Landau mo
As we shall see one obtains, as foreseen, the same expre
as in Eq.~5!, with coefficient 1.65 instead of 1.36 inside th
logarithm.

For what follows we shall not need to know the prec
value of this coefficient, which may be better determined
the future, and we shall therefore leave it unspecified
state our result as

E v.
pk2\2ns

2ma
lnS D

Rc

kjBCS
D , ~6!

with the understanding thatD is some constant of order 1
From Eq.~6! it is already clear that one vortex withk5k̃

Þ1 has greater energy thank̃ vortices withk51 since in
any case we need to havekjBCS!Rc . This implies that
vortices withkÞ1 are unstable for a homogeneous syst
@16#. In analogy with the results for Bose-Einstein conde
sates@17#, we expect that a vortex with multiple circulatio
is unstable toward the formation of several vortices with u
circulation also in the presence of a trap, but specific che
which are beyond the scope of this work, may be neede
particular whenjBCS becomes comparable to~but still less
than! the size of the cloud.

With this solution, recalling that the thermodynamic cri
cal velocity for formation of a first vortex is given byvc1
5Ev /Lv @18#, and using the fact that the total angular m
mentum per unit length of the system with a vortex with u
circulation isLv.\pRc

2ns , corresponding to\ per Cooper
pair, we can immediately state what the critical velocity is
a uniform system, which is of course a well known resul

vc15
\

2maRc
2

lnS D
Rc

jBCS
D . ~7!

The result should be compared with the critical veloc
found for a Bose-Einstein condensate. This is comple
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analogous if the mass of a single bosonic atom is repla
with that of a Cooper pair (2ma), and the boson coherenc
length by the BCS one.

Notice that sincejBCS}D0
21 from the measurement o

vc1 one could in principle deduce the value ofD0 if D is
known. This possibility is usually lost, however, in a nonun
form system since several values ofD0 are integrated over.

IV. VORTEX FORMATION IN TRAPPED GASES

In this section we calculate the energy of a vortex in
trapped gas, specializing to the trapping configurations u
in a typical experiment. Since our goal is to calculate t
thermodynamic critical frequencyvc1 for a trapped gas, we
shall consider only the singly quantized vortex case. Ext
sion to the more general case of a vortex with circulationk is
straightforward for thosek for which kjBCS is still much
smaller than the extent of the cloud.

The atoms are generally confined in a cylindrically sy
metric harmonic potential of the form

Vext~r !5
1

2
mvz

2@z21lT
2~x21y2!# ~8!

and the density profile of the gas is, within the Thoma
Fermi approximation, given by

ns~r,z!5ns,0S 12
lT

2r21z2

Rz
2 D 3/2

. ~9!

Herens,05ns(0,0) is the density at the center of the clou
and we have taken the profiles of the two species to be id
tical. The anisotropy of the trap is controlled by the coef
cient lT . The energy of a cloud with a vortex along thez
axis can be calculated with the procedure devised by Lu
et al. @19#. One can divide the cloud into vertical slices
height dz and use the result~6! for a cylinder of radiusr1
such thatjBCS!r1!R'5Rz /lT , within which one can as-
sume that the gas is approximately uniform. The energy
unit length associated with the vortex in a slice atz is then
given by

Ev~z!5
p\2ns~0,z!

2ma
lnS D

r1

jBCS~z! D
1E

r1

R'(z)

2pr dr mans~r,z!F \

2marG2

, ~10!

whereR'(z)5(12z2/Rz
2)1/2Rz /lT is the value ofr up to

which the cloud extends for a givenz, and ns(0,z) is the
density on thez axis at heightz. The second term in Eq.~10!
gives the kinetic energy of the superfluid outside the cylin
of radiusr1.

With ns(r,z) given by Eq.~9! we then get
6-3
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G. M. BRUUN AND L. VIVERIT PHYSICAL REVIEW A 64 063606
Ev~z!5
p\2ns,0

2ma
Fns~0,z!

ns,0
lnS D

r1

jBCS~z! D
1E

r1

R'(z)S 12
lT

2r21z2

Rz
2 D 3/2

dr

r G . ~11!

This result differs from the boson case in Ref.@19# in the
power 3/2 instead of 1 in the density distribution. Using t
fact that

E ~12x2!3/2
dx

x
5A12x21 lnS x

11A12x2D
1

1

3
~12x2!3/2, ~12!

and that unlessz is very close toRz one can assumer1
!R'(z), we finally obtain

Ev~z!5
p\2ns,0

2ma
S 12

z2

Rz
2D 3/2

lnS 2

e4/3
D

R'~z!

jBCS~z!D . ~13!

In order to proceed with thez integration we need to know
the explicit dependence ofjBCS on z. In the dilute gas ap-
proximation where Eq.~1! is valid this is given by

jBCS~z!5
2

p S e

2D 7/3S 12
z2

Rz
2D 21/2

3expF 1

l0
S 12

z2

Rz
2D 21/2GkF,0

21 , ~14!

wherekF,05(2maeF /\2)1/2 and l052kF,0uau/p are the lo-
cal Fermi wave number andl, respectively, evaluated at th
center of the cloud. Inserting this value into Eq.~13!, using
the expression forR'(z), and integrating overz, we get after
some cumbersome but straightforward calculations

Ev5
p\2ns,0

2ma

4

3
RzF9p

32
lnS D

24/3peF

e5/2\v'

D 2
1

l0
G . ~15!

Note that Eq.~15! predicts the energy cost of the vortex to
negative for smallkF,0uau andeF /\v' not too large. This is
clearly an unphysical result reflecting the fact that, in t
limit of relatively few particles trapped and smallkF,0uau, the
conditionjBCS!R' is violated, making Eq.~15! invalid. In
the regimejBCS!R' , Eq. ~15! yields positive vortex ener
gies as expected. If we ignore the nonrotating particles at
core of the vortex, the total angular momentum of a u
circulation vortex state isLv5Ns\ and the critical rotation
frequencyvc15Ev /Lv for the formation of a vortex in a trap
given by Eq.~8! is

vc15v'

16

3p

l'
2

R'
2 F9p

32
lnS 21/3pD

e5/2

R'
2

l'
2 D 2

1

l0
G , ~16!
06360
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with l'5A\/mv' being the harmonic oscillator length i
the radial direction. For realistic parameters of the gas,
critical frequency is rather small: choosing forD the value
obtained in the Appendix, takingkF,0uau50.4, v'5vz
5vT ~i.e., lT51), and eF5200\vT corresponding to an
isotropic trap with Ns;1.33106, we obtain vc1
.0.0035v' . The reason for the critical frequency being
small is that the angular momentum per atom is\/2, yielding
Lv5Ns\, whereas the energy given by Eq.~15! only scales
asNs

2/3. The Fermi pressure expands the cloud and redu
the density at the center of the trap. Since the energy of
vortex mainly comes from regions close to the vortex a
where the superfluid velocity is high, the energy of the v
tex is correspondingly reduced.

V. OBSERVATION OF THE VORTEX

As we already mentioned, contrary to the situation
Bose-Einstein condensates, the presence of a vortex in
Fermi gas does not alter the density profile significantly@12#.
One cannot therefore reveal the vortex simply by looking
the density profile. Use of the laser probing method of R
@20# has been suggested to detect the local decrease o
pairing near the center of the vortex@8#. Here we examine a
different method based on measuring the collective m
spectrum of the gas. In the case of no vortex present, e
tations of the gas carrying equal and opposite angular
mentum along thez axis are degenerate in energy. The v
locity field associated with a vortex aligned with this ax
lifts the degeneracy since the rotational symmetry is
moved; the velocity flow of the excitation is either parallel
antiparallel to that of the vortex giving rise to an ener
splitting of the modes@21–23#. Since the collective mode
frequencies of the gas can be measured with a fairly h
precision, the possibility of detecting the presence of the v
tex by its spectroscopic signatures is a promising meth
Indeed, this method has proven to be very useful in the c
of a vortex in a Bose-Einstein condensate@24#. The calcula-
tions will be carried out for an isotropic trap withR'5Rz
5RTF andv'5vz5vT .

In the jBCS!RTF limit considered in this paper, the co
lective modes of the superfluid gas forT50 can be calcu-
lated using a hydrodynamic theory. The relevant continu
and superfluid velocity equations read@25#

] tn~r ,t !52“• j ~r ,t !,

] tvs~r ,t !52
1

ma
“@mauvsu2/21mF1Vext# ~17!

with ns(r ,t), nn(r ,t), and n(r ,t)5ns(r ,t)1nn(r ,t) being
the superfluid, normal, and total density of the gas, resp
tively. The total current is j (r ,t)5ns(r ,t)vs(r ,t)
1nn(r ,t)vn(r ,t), wherevs(r ,t) is the superfluid velocity and
vn(r ,t) the velocity of the normal fluid. ForjBCS!RTF , the
extent of the vortex core is small compared to the size of
cloud, and the main effect of the vortex on the collecti
mode spectrum is the presence of the vortex velocity fi
vv(r )5efk\/2mar. Writing n(r ,t)5n0(r )1dn(r ,t) and
6-4
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VORTEX STATE IN SUPERFLUID TRAPPED FERMI . . . PHYSICAL REVIEW A 64 063606
vs(r ,t)5vv(r )1u(r ,t), wheren0(r ) is the equilibrium den-
sity profile with the vortex alone~which we take to be coin-
cident with the Thomas-Fermi one without vortex!, and lin-
earizing indn(r ,t) andu(r ,t), Eq. ~17! can be written as

S v2
k\m

2mar2D 2

man0~r !F ]n0~r !

]P0~r !G
T50

F~r ,t !

52“•@n0~r !“F~r ,t !#. ~18!

Here,v is the frequency of the collective mode,P0(r ) is the
equilibrium pressure profile, andm is the magnetic quantum
number of the mode. The velocity field associated with
mode has been written asu(r ,t)5“F(r ,t) with F(r ,t)
5F(r ,u)exp@i(mf2vt)#. The termk\m/2mar2 in Eq. ~18!
comes from the presence of the vortex velocity fieldvv .
Without this term, Eq.~18! has been solved for a spheric
symmetric trap by writingFnlm(r )5Fnl(r )Ylm(u,f), yield-
ing the spectrumvnl052vTA(n212n1 ln13l /4)/3 with n
50,1,2, . . . @26#. From Eq.~18!, we see that the frequenc
shift of a given mode induced by the vortex can be calcula
perturbatively as

vnlm
2 2vnl0

2 5
k\mvnl0

ma

^Fnlmur22uFnlm&

^FnlmuFnlm&
. ~19!

Here ^Fnlmu f (r )uFnlm& denotes the spatial averag
*0

Rzw(r )dr*dV Fnlm
2 (r ) f (r ) with the weight functionw(r )

5r 2(12r 2/RTF
2 )1/2. This anomalous weight has to be intr

duced in place of simplyr 2 because the operator in Eq.~18!
without the perturbation is not Hermitian.

As pointed out in Ref.@23#, the perturbative procedur
works for umu>2; for umu,2 it predicts an unphysicalr
→0 divergence in the density fluctuation of the mode. W
no vortex present, the lowest mode for a given angular m
mentuml is the surface modeFn50lm(r )}r l with frequency
AlvT . Recalling thatr5r sinu and using the fact tha
(4p)21*dVuYlm(V)u2/sin2u5(2l11)/2umu, the matrix ele-
ments in Eq.~19! can be calculated analytically for thes
surface modes and we obtain for the frequency shift

v lm
2 2v l0

2

v l0
2

5sgn~m!
k~ l 12!

2Al ~6Ns!1/3
, ~20!

with umu>2. As expected, the vortex splits the 2l 11 degen-
erate modes depending on the direction of the projection
their angular momentum on thez axis. Not all the modes are
split, however, since the splitting is independent ofumu in
analogy with the equivalent result for bosons@23#. Particu-
larly important is the result (v2,62

2 2v20
2 )/v20

2 5

6A2k/(6Ns)1/3 for the quadrupolar model 52, m562,
since this mode is easily excited in trapped gases and
already been employed for a precise determination of
critical frequency for vortex nucleation in Bose gases.

The same result can be obtained following the sum r
approach of Ref.@21#. From that the splitting is found to b
given byv2,22v2,2252^ l z&/(ma^r

2&), where^ l z& is the ex-
pectation value of the angular momentum along thez axis
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per atom (k\/2 in the case of a vortex!, and ^r2& is the
expectation value ofx21y2 ~equal toRTF/4 for an isotropic
cloud with a Thomas-Fermi density profile!. From the latter
result one can immediately see that the splitting of the mo
of a Fermi superfluid is in general smaller than in the BE
case, the reason being that, given the same number of at
the radius of a fermionic cloud is usually larger due to t
Pauli repulsion and thus the expectation value ofr'

2 is also
correspondingly larger, and the splitting reduced. For 2Ns

5106 particles trapped, them562 quadrupole modes ar
split by ;1%. Although this is a rather small shift, it shou
be measurable assuming that the same high spectrosc
precision demonstrated for BEC’s can be obtained
trapped Fermi gases@27#.

VI. CONCLUSION

In this paper we considered various aspects of the vo
state of a dilute superfluid Fermi gas atT50. For a trapped
system, we found that a large number of particles and a
too small scattering length yieldjBCS!RTF and the vortex is
well confined within the gas. We then used a simple mode
calculate the energy of a vortex in a uniform medium. Su
sequently, using the fact that the structure of the vortex n
the rotation axis is essentially unaffected by the trapping
tential we derived an expression for the vortex energy i
trap, and we employed this energy expression to calculate
thermodynamic critical rotation frequency for the formatio
of a vortex. Finally, we suggested a way of observing
presence of the vortex by calculating perturbatively its infl
ence on the collective mode spectrum of the gas. In the
pendix we report an alternative, less naive, description of
vortex in a uniform medium and find a slightly differen
value for its energy compared to the one obtained in Sec.
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APPENDIX: A GINZBURG-LANDAU DESCRIPTION
OF THE VORTEX CORE

In this Appendix, we present a Ginzburg-Landau descr
tion of the vortex core in a uniform gas, and the consequ
result for the total energy of a vortex in a cylindrical buck
of radiusRc . As is well known, Ginzburg-Landau theory i
only valid for temperatures such thatuT2Tcu/Tc!1 but the
following calculation can be used for a qualitative estimate
T50 @9#.

The extension of the Ginzburg-Landau theory to ze
temperature for a uniform system can be done by impos
that the free energy@13#

FGL5E d3r f GL~r !

5E F\2u¹cu2

4ma
1Aucu21

B

2
ucu4Gd3r ~A1!
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be equal to the condensation energy density, which in a
form system is given byecond523D0

2ns/4eF @12#. c is here
the well known Ginzburg-Landau order parameter. Up
minimization of Eq.~A1! with respect toc* we obtain the
Ginzburg-Landau equation

2
\2

4ma
¹2c1Ac1Bucu2c50. ~A2!

For a uniform system the solution isuc0u252A/B, and from
the fact that the Ginzburg-Landau free energy then coinc
with the condensation onef GL523D0

2ns/4eF we obtainA
523D0

2/2eF andB52A/ns .
We now calculate the structure and energy of the vort

A vortex along thez axis is described by writing the orde
parameter in cylindrical coordinates asc(r )5 f (r)eikf. Re-
placing this expression into Eq.~A2! we find

2
1

x

d

dx S x
dx

dxD1
k2

x2
x1x32x50, ~A3!

where we introduced the dimensionless quantitiesx
5 f /uc0u andx5r/jGL . We used the fact thatf does not vary
et,

n

s

-

D

06360
i-

n

es

x.

along thez direction if the system is uniform, and we define
the Ginzburg-Landau coherence lengthjGL

2 5\2/4maA,
which impliesjGL5\vF/2A3D050.907jBCS. This equation
has exactly the same form as the Gross-Pitaevskii equa
for a vortex in a uniform boson cloud@16,28#. It can be
solved numerically and the results for the lowestk (k
51,2,3) was first obtained by Ginzburg and Pitaevskii@16#.
A very good approximate solution fork51 can be obtained
by a variational calculation yieldingx5x/(21x2)1/2 @29#.
Using this solution in Eq.~A1!, one finds that the energy cos
associated with the vortex is given by

Ev~z!5p
\2

2ma
ns lnS e3/4

A2

Rc

jGL
D . ~A4!

This result is now identical with that for a Bose-Einste
condensate, with the mass of a single bosonic atom repla
by that of a Cooper pair (2ma), and the boson coherenc
length replaced by the Ginzburg-Landau one. UsingjGL
50.907jBCS, we obtainEv5p\2ns ln(D Rc /jBCS)/2ma with
D51.65.
. A
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