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Vortex state in superfluid trapped Fermi gases at zero temperature
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We discuss various aspects of the single vortex state of a dilute superfluid atomic FermiTga8.afhe
energy of the vortex in a trapped gas is calculated and we provide an expression for the thermodynamic critical
rotation frequency of the trap for its formation. Furthermore, we propose a method to detect the presence of a
vortex by calculating the effect of its associated velocity field on the collective mode spectrum of the gas.
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[. INTRODUCTION vortex influences the collective mode spectrum of the gas.
Finally, we summarize our results in Sec. VI. Given the un-
Inspired by the impressive progress in recent years in theertainties intrinsic in any simple model of the vortex, such
field of Bose-Einstein condensatidBEC) in dilute atomic ~ as the one presented in Sec. lll, in the Appendix we briefly
gases, increasing attention is being devoted to examining tHéiscuss another possible way of describing a vortex in a uni-
behavior of a gas of fermionic atoms at the same ultralowWform gas, based on an approximate zero-temperature
temperatures. Experimentally, the trapping and cooling ofinzburg-Landau approad]. We then calculate what this
fermionic alkali-metal atoms has been demonstrated, react@lternative method gives for the energy of the vortex, and
ing temperatures as low asT/4 for *°%K [1] and bLi [2—4] compare the two results to show that they do not differ in any
with T¢ denoting the Fermi temperature. It is well known Significant way.
from condensed matter and nuclear physics that a gas com-
posed of two different internal states of the same fermionic
particle, which interact via an attractive interaction, is un-
stable to formation of so-called Cooper pairs, thus becoming In the dilute ultracold limit the effective interaction be-
a superfluid. Since the possibility of such a superfluid trantween identical fermionic atoms vanishes due to the Pauli
sition for trapped Fermi gases was propo$6¢l a lot of  principle, and that between different ones can be well de-
theoretical work has focused on various properties of thiscribed by one parameter only, teevave scattering length
system[6]. At the same time a major experimental goal hasa. For a negative scattering length, the interaction is attrac-
become to observe the formation of the superfluid state. tive and if the number of particles in the two internal states is
One of the intriguing properties of a superfluid is the pos-the same th& =0 ground state of the gas is a superfluid. The
sibility of forming quantized vortices. For a Bose-Einstein critical temperaturd . for the transition to such a superfluid
condensate, the study of vortices has produced several intestate in a dilute gas was first determined for a uniform sys-
esting result§7]. Recently, some aspects of the vortex stateiem by Gorkov and Melik-Barkhudaropl0], and using a
of a trapped superfluid Fermi gas close to the critical temimore modern approach by Heiselbesgal. [11]. The pre-
peratureT. of the superfluid phase transition were consid-dicted value is
ered[8]. In this paper we are interested in the properties of
the single vortex state of clouds of trapped Cooper-paired y[2\7R
fermions atT=0, and in particular in understanding under kBTC=—(—) ece N (D)
which conditions a vortex forms, what is its energy, and how m\€e
it can be detected. We consider large systems where the co-
herence lengtl§ of the superfluid is much smaller than the where\ stands for Rg|a|/m, e is the Fermi energy com-
extent of the cloud. In this limit, we are able to derive anmon to the two species of fermionkg is the associated
analytical estimate of the energy of a vortex in a trap, thereby-ermi wave number, angi=1.781 is related to Euler’s con-
predicting the critical rotation frequency for its formation. stantC by y= €. The pairing gap\ at T=0 is, as usual in
Also, we propose a way of observing the vortex by calculat-BCS theory, related to the critical temperature by the relation
ing its effect on the collective mode spectrum of the gas. The\g= 7y *kgT¢ [12,13.
paper is organized as follows. First, in Sec. Il, we examine When applying this result to a gas trapped by a harmonic
for which values of the characteristic parameters the vortewscillator potential, as in the cases of experimental interest
is well localized within the gas. In Sec. Il we present atoday, some requirements have to be met. The first one, just
simple model for calculating the energy of a vortex in aas for the uniform case, is that the density is everywhere so
uniform superfluid Fermi system. Using the result of Sec. lIl,low that the gas is dilute, i.ekg(r)|a]<1. We have intro-
in Sec. IV we calculate the energy of a singly quantizedduced a local Fermi wavenumblet(r). This corresponds to
vortex in a trapped gas and use the result to obtain the valugsing the Thomas-Fermi approximation, which is valid if
of the thermodynamic critical rotation frequency for its for- eg>f w1, wherew+ is the frequency of the oscillatéwhich
mation. The problem of observing the vortex state is considfor the time being we assume to be isotrgpithis condition
ered in Sec. V, where we calculate how the presence of & always satisfied if the particle number is sufficiently large,

II. BASIC CONSIDERATIONS
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since for a harmonic potential:= (6N )% wr, with N,
being the number of particles of one species.

Another condition for applicability of Eq(l) is that
kgT:>hwr [14]. When this latter condition is not satisfied,
the shell structure of the harmonic oscillator is crucial when
determining the superfluid properties of the gas, and(Eq.
in general breaks down.

In a superfluid Fermi gas at zero temperature the size of
the vortex core of a singly quantized vortex is given approxi-
mately by the BCS coherence lengpcs=rhve/mAy, 100 ‘ - s - ‘
wherev g =#fikg /m, is the Fermi velocity andn, the mass of 01 015 02 025 03 035 04
a single atom. It is clear that in order for a vortex to appear Kl
at all the BCS coherence lengtsize of the vortex copeat FIG. 1. Critical number of atoms per spin species for which
the center of the cloud has to be smaller than the size of thg, . ./R;-=1 in an isotropic trap. Well above the line the local
cloud itself, which in the Thomas-Fermi approximation is density approximation, and thus Eq), applies; below the line the
given byRre= (2er /m,w3) Y2 If this were not so the super- system is intrinsically finite sized.
fluid properties of the system would be more like those of a
nucleus(for which £=R) than those of a bulk superfluid. In the remainder of this work we assume that we are in

Substituting the appropriate expressions one can immedthe upper region of Fig. 1 and therefore tigts<<Rrg. In
ately see thatégcs/Rie=7 lhwr/A,, so that requiring this region a vortex forms in the cloud if it is stirred at an
éscs<Rre corresponds to demanding thap> 7 Ywr. angular velocity greater than a critical olag, which we
This condition is automatically satisfied kkT.>7% wt, but  shall calculate using a thermodynamic approach.
is not at all obviously realized in possible practical circum-

stances. Indeed, if we assume the validity of Eg.and of IIl. VORTEX IN A UNIFORM GAS
the related value ofAy, and we use the expressiost _ )
=(6N,) Y3 w for the Fermi energy, we obtain Let us for the time being suppose that the vortex we want

to describe is in a uniform gas. In particular, we may take the
(el2)’ n system to be in a cylinder of radil&.> &gcs.
Ny> 673 e 2 Associated with the vortex there is a superfluid velocity
T flow which decreases with the distanpefrom the vortex

We may then immediately see that unléssand therefore ~axis:V,(p) =e€,«fi/2myp, wherex is the number of quanta
ke|al, is sufficiently close to 1, the exponential is very IargeOf circulation of the vortex. In a simple model this velocity
and the condition in E¢(2) is not satisfied, implying that the field extends fromp~«£gcsto p=R.. At distances shorter
coherence length is much larger than the radius of the clouthan—~ «&gcs, the kinetic energy associated with the rotation
and the rotation pattern very different from a vortex state. If,pecomes high enough to break the Cooper pairs, and thus the
however, kg|a| is too close to 1 £0.3-0.4 or morgthe  fluid inside a cylinder of radius- k£gcs about the vortex
formula becomes unreliable because the gas is no longer diXis can be thought of as being in a nornrnsuperfluid

lute and effects due to induced interactions, which stronglhyptate. The energy per unit length associated with the vortex is
modify the value ofA, obtained in the dilute limit, must be then given by the sum of two contributions. One is the ki-
taken into account. Determining the corrections to the diluté'€tic energy due to the flow,
gas results due to these strong coupling effects is a compli-

cated issue and some preliminary studies have been pre- & ZJRC 27p dp myn wh_|?

sented only recentlf15]. It is not the purpose of the present kin kéBCS 7 2mgp

paper to consider these effects and we thus limit our study to 2,2

regions of densities in which E@l) is reasonably reliable, _TK h n”ln Rc &)
keepingkg|a|=0.4. There is then a range of applicability of 2m, Kképes'

Eq. (1) for a trapped gas which depends on the number of ) ) )

particlesN,, and the scattering length. In order to find this @hd the other is the loss in condensation energy about the
region we impose the equality in E(), and we plot in Fig.  VOrtex axis,

1 the critical number of atomsl, . for which &gcs/Rrr 2.2

=1 as a function okg|a|. Well above the curve we are in the €cond™ Tk EBcsEcond
regime where the local density approximation can be applied 2p2, 3
and a vortex may form, and below it the superfluid has a Tk e S
character more related to that of a nucleus. Since the value of 2m, 2
kela] can be simply increased by keeping the number of

particles fixed and tightening the external trapping potentialwhereegqnq= 3A§ng/4eF is the condensation energy per unit
we see that iN,, is sufficiently large £10°) these systems volume due to the pairinflL2], and the usual expression for
have the interesting possibility of going from one regime toégcs has been employed. Notice that we have introduced
the other. here the one-species patrticle density, and we have sup-

(4)
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posed that this is a constant throughout the system, sinanalogous if the mass of a single bosonic atom is replaced
contrary to the boson case it is not the particle density butith that of a Cooper pair (,), and the boson coherence
only the pairing field that changes close to the vortex axidength by the BCS one.

[12]. Notice that sincetgcs*A,* from the measurement of
The total energy per unit length of a vortex is thereforew , one could in principle deduce the value &f if D is
given in this simple model by known. This possibility is usually lost, however, in a nonuni-

form system since several values/of are integrated over.
mr’h2n, R.
5U=5kin+gcond22—%|n< 1.36@ . (5)

IV. VORTEX FORMATION IN TRAPPED GASES

The important feature of this result is that for large systems
(i.e., for whichR > k&g the most relevant contribution is

the logarithmic one arising from the kinetic integration. The
value of the constant inside the logarithm will depend on th

In this section we calculate the energy of a vortex in a
trapped gas, specializing to the trapping configurations used
in a typical experiment. Since our goal is to calculate the
hermodynamic critical frequenay.; for a trapped gas, we

reliable value would be obtained from a numerical solutior:eShaII consider only the singly quantized vortex case. Exten-
sion to the more general case of a vortex with circulakda

of the Bogoliubov—de Gennes equations, although it is un-

X AU L straightforward for thosec for which k&g is still much
likely that it will differ significantly from the one found here, smaller than the extent of the cloud.

since one expects It In any case to be of .orde_r L. As an The atoms are generally confined in a cylindrically sym-
example of what a different approach may yield, in the Ap—metric harmonic potential of the form

pendix we show the result for the total energy of the vortex
obtained using a zero-temperature Ginzburg-Landau model.
As we shall see one obtains, as foreseen, the same expression 1 .,
as in Eq.(5), with coefficient 1.65 instead of 1.36 inside the Vext(1) = 5Maz[ 27+ A (X" +y7)] (8)
logarithm.

For what follows we shall not need to know the precise
value of this coefficient, which may be better determined in@nd the density profile of the gas is, within the Thomas-
the future, and we shall therefore leave it unspecified andermi approximation, given by
state our result as

e WKZﬁanI b R.
v2m, " képcs/’

(€)

3/2
)\%pz-l— 22)

(6) no’(pvz):na,0< 1- R2

with the understanding thd is some constant of order 1. Heren, s=n,(0,0) is the density at the center of the cloud

From Eq.(6) it is already clear that one vortex with=x 34 we have taken the profiles of the two species to be iden-
#1 has greater energy thanvortices withk=1 since in  tical. The anisotropy of the trap is controlled by the coeffi-
any case we need to havefgcs<R.. This implies that cient\;. The energy of a cloud with a vortex along the
vortices withkx# 1 are unstable for a homogeneous systemaxis can be calculated with the procedure devised by Lundh
[16]. In analogy with the results for Bose-Einstein conden-et al. [19]. One can divide the cloud into vertical slices of
sateg17], we expect that a vortex with multiple circulation heightdz and use the resul6) for a cylinder of radiusp;
is unstable toward the formation of several vortices with unitsych thatégcs<p;<R, =R,/\t, within which one can as-
circulation also in the presence of a trap, but specific checksume that the gas is approximately uniform. The energy per
which are beyond the scope of this work, may be needed ipnit length associated with the vortex in a slicezas then
particular whenégcs becomes comparable tout still less  given by
than the size of the cloud.

With this solution, recalling that the thermodynamic criti-

2
cal velocity for formation of a first vortex is given by, £(2)= 7hn,(02) In( Pt )
=&,1L, [18], and using the fact that the total angular mo- Y 2m, égcd2)
mentum per unit length of the system with a vortex with unit 2
. = 2 : R (2)
C|r_culat|on |st/;vth-.rRCn,,, corresponding td@ per Cooper +f 27p dp myn,(p,z) 5 . (10
pair, we can immediately state what the critical velocity is in 1 Mgp

a uniform system, which is of course a well known result:

whereR, (2)=(1—2z%/R2)¥?R,/\+ is the value ofp up to
_ 7) which the cloud extends for a givenn andn,(0,z) is the
éecs density on thez axis at heightz. The second term in Eq410)
gives the kinetic energy of the superfluid outside the cylinder
The result should be compared with the critical velocity of radiusp;.
found for a Bose-Einstein condensate. This is completely With n (p,z) given by Eq.(9) we then get

h

We1= In
m,R?

C

R
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ah2n, o n,(02) p1 with |, = V#A/mw, being the harmonic oscillator length in
E(2)= 5 22 ———"ZIn| D ) the radial direction. For realistic parameters of the gas, this
Ma Moo €acd2) critical frequency is rather small: choosing fbrthe value

obtained in the Appendix, takinkgoa|=0.4, w, =w,
(11) =or (i'.e., A=1), .and eg=2007 wt corresponding to an

isotropic  trap with N,~1.3x10°, we obtain w¢

=0.0035», . The reason for the critical frequency being so
This result differs from the boson case in REE9] in the  small is that the angular momentum per atori/i2, yielding
power 3/2 instead of 1 in the density distribution. Using theL,= N %, whereas the energy given by E45) only scales

3/2
dp

R, (2) A2p2+ 22
L[ (1_TP_
P1

R;

fact that asN?®, The Fermi pressure expands the cloud and reduces
the density at the center of the trap. Since the energy of the
dx X vortex mainly comes from regions close to the vortex axis
f (1—X2)3/2?: Vl_XZH”(m) where the salperfluid velocity ?s high, the energy of the vor-
tex is correspondingly reduced.
1 2\3/2
+ §(1_X )75 (12) V. OBSERVATION OF THE VORTEX

As we already mentioned, contrary to the situation for
Bose-Einstein condensates, the presence of a vortex in the
Fermi gas does not alter the density profile significafitBj.
2, R, (2) One cannot the_refore reveal the vortex s?mply by looking at

Inl =——p —* . (13 the density profile. Use of the laser probing method of Ref.

e*? " &pcd2) [20] has been suggested to detect the local decrease of the
pairing near the center of the vortgg]. Here we examine a
In order to proceed with the integration we need to know different method based on measuring the collective mode
the explicit dependence d@fzcs on z In the dilute gas ap- spectrum of the gas. In the case of no vortex present, exci-
proximation where Eq(l) is valid this is given by tations of the gas carrying equal and opposite angular mo-
mentum along the axis are degenerate in energy. The ve-
7/3( 72
1_ J—

and that unlesg is very close toR, one can assumg;
<R, (2), we finally obtain

Z2

R;

Wﬁzn(rvo
&E(2)= om

a

1

“12 locity field associated with a vortex aligned with this axis

lifts the degeneracy since the rotational symmetry is re-
moved; the velocity flow of the excitation is either parallel or
antiparallel to that of the vortex giving rise to an energy
k;%, (14) splitting of the modeg21-23. Since the collective mode
' frequencies of the gas can be measured with a fairly high
precision, the possibility of detecting the presence of the vor-
wherekg o= (2m,er /7%) Y2 and \ o= 2kg gal/ 7 are the lo-  tex by its spectroscopic signatures is a promising method.
cal Fermi wave number and, respectively, evaluated at the |ndeed, this method has proven to be very useful in the case
center of the cloud. Inserting this value into E3), using  of a vortex in a Bose-Einstein condensf2d]. The calcula-
the expression foR, (z), and integrating ovez, we get after  tions will be carried out for an isotropic trap wilR, =R,
some cumbersome but straightforward calculations =R andw, = w,= wr.
In the égc<<Rrg limit considered in this paper, the col-
97 2P er lective modes of the superfluid gas foe=0 can be calcu-
ﬁln €52 & lated using a hydrodynamic theory. The relevant continuity
+ and superfluid velocity equations refb|

e

2
fscs(z):;(z

—1/2

thn(ro 4
EU: - = Z
2m, 3

Nol|’

Note that Eq(15) predicts the energy cost of the vortex to be
negative for smalkg glal andeg /fiw, not too large. This is
clearly an unphysical result reflecting the fact that, in the
limit of relatively few particles trapped and smk.H,o| a.|, the dvg(r )= — iv[ma|vs| 212+ e+ Vey] 17)
condition égcs<R, is violated, making Eq(15) invalid. In my

the regimeégzcs<R, , Eq. (15 yields positive vortex ener-

gies as expected. If we ignore the nonrotating particles at th@ith ns(r,t), n(r.t), and n(r,t) =ny(r,t) +n,(r,t) being
core of the vortex, the total angular momentum of a unitthe superfluid, normal, and total density of the gas, respec-
circulation vortex state it,=N,% and the critical rotation tively. The total current is j(r,t)=ng(r t)v(r,t)

frequencyw,;=E, /L, for the formation of a vortex in atrap +Na(r t)Va(r,t), wherevy(r,t) is the superfluid velocity and
given by Eq.(8) is v, (r,t) the velocity of the normal fluid. Fofgcs<Rtg, the
extent of the vortex core is small compared to the size of the

an(r,t)=—=V-.j(r,t),

16 12 [97 [ 213;D R2 1 cloud, and the main effect of the vortex on the collective
wcl=wL3——L2 Eln 5 —ZL -—1, (16 mode spectrum is the presence of the vortex velocity field
T RT € 7 Mo V, (1) =eykfil2m,p. Writing n(r,t)=ng(r)+én(r,t) and
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vg(r,t)=v,(r)+u(r,t), wherengy(r) is the equilibrium den-
sity profile with the vortex alonéwhich we take to be coin-
cident with the Thomas-Fermi one without vorteand lin-

PHYSICAL REVIEW A 64 063606

per atom #/2 in the case of a vortexand(p?) is the
expectation value ot?+y? (equal toRy¢/4 for an isotropic
cloud with a Thomas-Fermi density profilé-rom the latter

result one can immediately see that the splitting of the modes
of a Fermi superfluid is in general smaller than in the BEC
case, the reason being that, given the same number of atoms,
the radius of a fermionic cloud is usually larger due to the
Pauli repulsion and thus the expectation valueioﬁs also
correspondingly larger, and the splitting reduced. Fbt;, 2
=10P particles trapped, then=+2 quadrupole modes are
Here,w is the frequency of the collective modey(r) is the  split by ~1%. Although this is a rather small shift, it should
equilibrium pressure profile, and is the magnetic quantum be measurable assuming that the same high spectroscopic
number of the mode. The velocity field associated with theprecision demonstrated for BEC's can be obtained for
mode has been written ag(r,t)=V®(r,t) with d(r,t) trapped Fermi gasd7].

=d(r, ) exdi(mo— wt)]. The termxhim/2m,p? in Eq. (18)
comes from the presence of the vortex velocity fig|d
Without this term, Eq(18) has been solved for a spherical
symmetric trap by writingD ,; (1) =®,,(r) Yim( 6, ¢), yield- In this paper we considered various aspects of the vortex
ing the spectrumo,;o=2w7y(N*+2n+In+31/4)/3 withn  state of a dilute superfluid Fermi gasTet 0. For a trapped
=0,1,2 ... [26]. From Eq.(18), we see that the frequency system, we found that a large number of particles and a not
shift of a given mode induced by the vortex can be calculatedoo small scattering length yielés - s< Ry and the vortex is
perturbatively as well confined within the gas. We then used a simple model to
calculate the energy of a vortex in a uniform medium. Sub-
sequently, using the fact that the structure of the vortex near
the rotation axis is essentially unaffected by the trapping po-
tential we derived an expression for the vortex energy in a
average trap, and we employed this energy expression to calculate the
thermodynamic critical rotation frequency for the formation
of a vortex. Finally, we suggested a way of observing the
presence of the vortex by calculating perturbatively its influ-
ence on the collective mode spectrum of the gas. In the Ap-
pendix we report an alternative, less naive, description of the
vortex in a uniform medium and find a slightly different
value for its energy compared to the one obtained in Sec. Ill.

earizing inén(r,t) andu(r,t), Eqg. (17) can be written as

2
khm

w—
( 2map2

==V -[ng(r)Ve(r,t)].

ano(r)

manO(r)[—&Po(r)

D(r,t)
T=0

(18

VI. CONCLUSION

2 :Kﬁmwmo <(I)nlm|p72|q)n|m>
@nim ™ @nio my <(Dn|m|q)n|m>

Here (@, mlf(r)|®,m denotes the spatial
fgzw(r)drfdQ <I>ﬁ|m(r)f(r) with the weight functionw(r)
=r2(1-r?/R3;) "2 This anomalous weight has to be intro-
duced in place of simply? because the operator in Ed.8)
without the perturbation is not Hermitian.

As pointed out in Ref[23], the perturbative procedure
works for |[m|=2; for |m|<2 it predicts an unphysicab
—0 divergence in the density fluctuation of the mode. With
no vortex present, the lowest mode for a given angular mo-
mentuml is the surface mod®,,_o,(r)er' with frequency
Jlwr. Recalling thatp=r sind and using the fact that
(47) " 1[dQ|Y m(Q)|?sirP6=(21+1)/2m|, the matrix ele-
ments in Eq.(19) can be calculated analytically for these
surface modes and we obtain for the frequency shift

19
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APPENDIX: A GINZBURG-LANDAU DESCRIPTION

2 OF THE VORTEX CORE

2
Wy~ Wig

2
@|g

k(1+2) 20

=sgnm) In this Appendix, we present a Ginzburg-Landau descrip-

241(6N,) Y’

tion of the vortex core in a uniform gas, and the consequent
with |m|=2. As expected, the vortex splits the21 degen- result for the total energy of a vortex in a cylindrical bucket
erate modes depending on the direction of the projection off radiusR.. As is well known, Ginzburg-Landau theory is
their angular momentum on ttzaxis. Not all the modes are only valid for temperatures such that—T¢|/T.<1 but the
split, however, since the splitting is independent|wf in  following calculation can be used for a qualitative estimate at
analogy with the equivalent result for bosdi®8]. Particu- T=0 [9].
larly important is the result d.,— w30/ w5= The extension of the Ginzburg-Landau theory to zero
+\2x/(6N,)'? for the quadrupolar modé=2, m=+2, temperature for a uniform system can be done by imposing
since this mode is easily excited in trapped gases and hdBat the free energjl3]
already been employed for a precise determination of the
critical frequency for vortex nucleation in Bose gases.

The same result can be obtained following the sum rule
approach of Ref{21]. From that the splitting is found to be
given byw, ,— wy o= 2(1,)/(My(p?)), where(l,) is the ex-
pectation value of the angular momentum along zhexis

FeL= f d3r fou(r)

[PV L avvree Bl
—” am,  TATE Il d (AL
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be equal to the condensation energy density, which in a unialong thez direction if the system is uniform, and we defined

form system is given by, ong= — 3A3n,/4er [12). i is here

the Ginzburg-Landau coherence leng#f, =%2/4m,A,

the well known Ginzburg-Landau order parameter. Uponwhich implieség, = 7%vg/2y/3A,=0.90%gcs. This equation

minimization of Eq.(Al) with respect to/* we obtain the
Ginzburg-Landau equation

2

—ﬁ—V2¢+A¢+ B|y|?¢=0 (A2)
am, ’

For a uniform system the solution |ig|>= — A/B, and from

has exactly the same form as the Gross-Pitaevskii equation
for a vortex in a uniform boson cloufll6,2§. It can be
solved numerically and the results for the lowest(«
=1,2,3) was first obtained by Ginzburg and Pitaevgké].

A very good approximate solution for=1 can be obtained

by a variational calculation yielding =x/(2+ x?)Y? [29].
Using this solution in Eq(A1), one finds that the energy cost

the fact that the Ginzburg-Landau free energy then coincidegsggciated with the vortex is given by

with the condensation onk;, = —3A§n,,/4e,: we obtainA
=—3A3/2¢x andB=—A/n,,.

We now calculate the structure and energy of the vortex.
A vortex along thez axis is described by writing the order

parameter in cylindrical coordinates #¢r)=f(p)e'“?. Re-
placing this expression into E¢A2) we find

1d/( dy
x dx| " dx

K2

+—2)(+X3—)(=0, (A3)
X

where we introduced the dimensionless quantitigs
= /]| andx=p/ &g, . We used the fact thdtdoes not vary

ﬁ2 e3/4 Rc
E(D)=m5—n,In| —=—]. A4
@)= (ﬁga (A4)

This result is now identical with that for a Bose-Einstein
condensate, with the mass of a single bosonic atom replaced
by that of a Cooper pair (2,), and the boson coherence
length replaced by the Ginzburg-Landau one. Usiig
=0.90%gcs, We obtaing, = 742n, In(D R./&gc9/2m, with
D=1.65.
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