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Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams
in the Thomas-Fermi regime
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For a Bose-Einstein condensate placed in a rotating trap and strongly confined along thez axis, we set a
framework of study for the Gross-Pitaevskii energy in the Thomas-Fermi regime for an effective two-
dimensional~2D! situation in thex-y plane. We investigate an asymptotic expansion of the energy, the critical
angular velocities of nucleation of vortices with respect to a small parameter«, and the location of vortices.
The limit « going to zero corresponds to the Thomas-Fermi regime. The nondimensionalized energy is similar
to the Ginzburg-Landau energy for superconductors in the high-k high-field limit and our estimates rely on
techniques developed for this latter problem. We also take advantage of this similarity to develop a numerical
algorithm for computing the Bose-Einstein vortices. Numerical results and energy diagrams are presented.
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I. INTRODUCTION

Since the first experimental achievement of Bose-Eins
condensates in atomic gases, many properties of these
tems have been studied experimentally and theoretically,
particularly the existence of vortices@1–10#. Two different
groups have obtained vortices experimentally in atomic c
densates. In Ref.@7# optical engineering of the experiment o
Refs.@8# and @9# is used; a laser beam rotating with angu
velocity Ṽ is imposed on the magnetic trap holding the
oms to create a harmonic anisotropic potential. Vortex nu
ation was observed@8# as well as vortex arrays@9#. Let us
mention another type of experiment@11# where a laser beam
is stirred in a condensate. There is a critical velocity un
which the flow is dissipationless. Related analysis is given
@12#. Here, we will be concerned with the experiment
Refs.@8,9#.

Theoretical studies of this type of experiment have of
been made in the framework of the nonlinear Gro
Pitaevskii equation, well known for superfluids, but whi
provides a very good description of Bose-Einstein cond
sates: it is assumed that theN particles of the gas are con
densed in the same state for which the wave functionf
minimizes the Gross-Pitaevskii energy. By introducing a
tating frame for the angular velocityṼ5Ṽez , the trapping
potential becomes time independent, and the wave func
f minimizes the energy

E3D~f!5E \2

2m
u“fu21

m

2(
a

va
2r a

2 ufu21
N

2
g3Dufu4

2\Ṽ•~ if,“f3x!, ~1.1!

under the constraint* ufu251. Here, for any complex quan
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tities u,v and their complex conjugatesū,v̄, (u,v)5(uv̄
1ūv)/2. The terms in the energy correspond to the kine
energy, the trapping potential energy, the interaction ene
and the inertia due to the change of frame.

We consider a situation in which the confinement alo
the z axis is so strong that the motion of particles along t
axis is frozen in the ground state of the strong harmo
potential: hence the wave functionf is factorized into a
component purely dependent onz and another onec that
depends on the radial coordinates (x,y) and minimizes

E2D~c!5E \2

2m
u“cu21

m

2 (
a5x,y

va
2r a

2 ucu21
N

2
gucu4

2\Ṽ•~ ic,“c3x!, ~1.2!

whereg5g3D(mvz/2p\)1/2. The constraint* ucu251 is also
imposed. Our study was originally motivated by the work
Castin and Dum@2#, who studied the equilibrium configura
tions by looking for the minimizers in a reduced class
functions for the two-dimensional~2D! case and did numeri
cal computations in 2D and 3D. Their analysis is in t
Thomas-Fermi regime, where the mean interaction ene
per particle is larger than\vx,y .

Our aim is to provide a mathematical framework for
rigorous study of the energyE2D and its minimizers in the
Thomas-Fermi limit. We first observe that this energy ha
striking similarity with the high-k, high-field limit of the
Ginzburg-Landau free energy used in the modeling of sup
conductors. Thus, we expect the energyE2D will develop
similar behavior to that for the Ginzburg-Landau ener
studied in@13–15#. In particular, the results obtained in th
context of the Ginzburg-Landau energy may be applied
E2D , in the Thomas-Fermi regime, to yield an asympto
expansion of the energy as well as the critical angular velo
ties for the nucleation of vortices and the location of the
©2001 The American Physical Society03-1
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vortices. Due to the close resemblance, we will not be c
cerned with detailed derivations in this paper, but rather
cus on the conclusions one can draw from the asympt
expansions. To our knowledge, some of our estimates to
presented later have not been given in the literature pr
ously. Our method of computing the energy is also very d
ferent from the ones in, for instance,@2,4,10#.

Let d5(\/mvx)
1/2 be the characteristic length, and

«25\2/~2Ngm!.

In the Thomas-Fermi approximation,« is small, which will
be our asymptotic regime. In the experiment of Madis
et al., « is of the order of 1022. In fact, « characterizes the
vortex size. We rescale the distance byR5d/A« and define
u(r )5Rc(x) wherex5Rr . We assume thatv5vx andvy

5lv with 0<l<1 and setV5Ṽ/«v. For a stable cloud
the trapping potential is stronger than the inertial potent
hence we haveV,1/«. The energy can be rewritten as

E2D~u!5E 1

2
u“uu21

1

2«2 ~x21l2y2!uuu21
1

4«2 uuu4

1V•~ iu,“u3r !. ~1.3!

Due to the constraint* uuu251, we can add toE2D any mul-
tiple of * uuu2 so that it is equivalent to minimizing

E u“uu212V•~ iu,“u3r !1
1

2«2 uuu42
1

«2 a~r !uuu2,

wherea(r )5a2(x21l2y2) for some constanta to be de-
termined. LetD be the ellipse$a.0%5$x21l2y2,a%. We
impose the following constraint ona:

E
D

a~r !51. ~1.4!

Indeed, as« tends to 0, the minimizer will satisfy the con
straint thatuuu2 will be close toa so that the constraint wil
be satisfied automatically byu if we impose Eq.~1.4!. Note
thata is the Thomas-Fermi limit ofuuu2. Equation~1.4! leads
to a252l/p. If l51, that is,vx5vy , thenD is a disk, of
radiusR0 with R0

452/p.
To study the problem analytically, it is reasonable to mi

mize the energy over the domainD with zero boundary data
for u. Indeed, whena<0, the energy is convex so that th
minimizer u goes to zero exponentially at infinity~see the
numerical observation in@2# and the analysis of the behavio
near the boundary ofD as well as the decay at infinity of th
order parameter in@16,17#!. Denote byHm(D) the space of
square integrable functions defined on the domainD that
have square integrable derivatives up to orderm, and by
H0

1(D) the space of functions inH1(D) satisfying the zero
boundary condition. Denote the norm (*Duvu2)1/2 by ivi for
any square integrable functionv. We then consider the prob
lem

minE«~u! subject to uPH0
1~D!, iui51, ~P!
06360
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where

E«~u!5E
D

u“uu212V•~ iu,“u3r !1
1

2«2 @a~r !2uuu2#2.

~1.5!

Note that the critical pointu of E« is a solution of

2Du22i ~V3r !•“u5
1

«2 u~a2uuu2!1m«u in D,

~1.6!

with u50 on ]D andm« the Lagrange multiplier. The spe
cific choice ofa in Eq. ~1.4! will imply that the termm«u is
negligible compared toau/«2.

We want to study the behavior of minE«(u) as« goes to 0.
In Sec. II, we compute an asymptotic expansion of the
ergy, and in Sec. III, the critical angular velocities of nucl
ation of vortices and the location of the vortices. In Sec.
we study the evolution in imaginary time and construct so
numerical algorithms. In Sec. V, we present some compu
tional results and the energy diagrams.

II. ASYMPTOTIC EXPANSION OF THE ENERGY

To study the behavior of the minimizer of the ener
when« goes to zero, we observe that the form of the ene
~1.5! is close to the Ginzburg-Landau functional studied
@13,14#, where the magnetic field has been replaced b
rotating term, and similar to@15# except for the trapping
potential and the minimization over a constraint. The m
idea is to decouple the energy into three terms: a part com
from the solution without vortices, a vortex contribution, a
a term due to rotation. The estimate of the vortex contrib
tion was developed in@14,15,18,19#.

A. The solution without vortices

We first consider solutions without vortices, that is,u has
no zero in the interior ofD. Given functions of the formh
5 f eiS, whereh is in H0

1(D) andf is real and has no zero in
the interior ofD, we consider minimizingE« over such func-
tions without imposing the constraint that theL2 norm is 1,
that is,f andS minimize

E«~ f ,S!5E
D

u“ f u21
1

2«2 ~a2 f 2!21E f 2u“S2V3r u2

2 f 2V2r 2. ~2.1!

We havef 50 on ]D and

2D f 1 f“S~“S22V3r !5
1

«2 f ~a2 f 2! in D,

~2.2!

div„f 2~¹S2V3r !…50. ~2.3!

From Eq.~2.3!, there existsj in H2(D)ùH0
1(D) satisfying

f 2~“S2V3r !5V“

'j, ~2.4!
3-2
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VORTICES IN A ROTATING BOSE-EINSTEIN . . . PHYSICAL REVIEW A64 063603
where“'j5(2]yj,]xj). So j is the unique solution of

div~ f 22
“j!50 inD, j50 on]D. ~2.5!

Note that Eq.~2.4! is the equation for the velocity, but w
prefer to write it as an orthogonal gradient for our later p
poses of integration by parts. In the special case whereD is
a disk, the minimum of Eq.~2.1! is reached for“S50 but
this is not the case ifD is an ellipse and there is a nontrivia
solution of Eq.~2.3!.

1. The case of the disk

Assume thatl51 so thatD is a disk anda(r )5R0
22r 2.

As discussed earlier,“S50 in this case so that the energ
becomes

E«~ f !5E
D

u“ f u21
1

2«2 @a~r !2 f 2#2. ~2.6!

Let h« be the minimizer of Eq.~2.6! in H0
1(D). Then,h« has

no vortex, is independent ofV, and satisfies

Dh«5
1

«2 h«~h«
22a! in D, h«50 on ]D.

When « tends to 0,h«
2 is close toa except on a boundary

layer of size«2/3 close to]D. More precisely, using sub- an
supersolutions, one can verify that

Aa~r !tanh@d~Aa~r !#3u ln «u!h«<Aa~r !

for uR0
22r 2u>C«1/3. In fact, one can construct a subsolutio

of the type above in any regionuR0
22r 2u>C«b/3 with b

,2. Then the value ofd is less thanc(22b).
The boundary layer can be analyzed using the chang

variablesx5(R02r )/«2/3 and v«(x)5h«(r )/«2/3. v« satis-
fies the Painleve´ equationv95v(v222R0x) with v(0)50
andv(x).2R0x for x large. The boundary behavior has a
ready been studied in@17# and@16# using matched asymptot
ics.

The energy ofh« can also be estimated by a test functi
equal toAa except on the boundary layer to get

E«~h«!<
2p

3
u ln «u@11o~1!#. ~2.7!

2. The case of an ellipse

As discussed before, the minimumh«5 f «eiS« of Eq. ~2.1!
has a nontrivial phase.f «

2 tends toa in every compact subse
of D and the functionj« given by Eq.~2.4! or ~2.5! tends to
the unique solutionj of

divS 1

a
“j D50 in D, j50 on]D. ~2.8!

One can easily get thatj(x,y)52a2(x,y)/(212l2). Using
Eq. ~2.4!, we can defineS0, the limit of S« , to be the solution
of a(“S02V3r )5V“

'j with zero value at the origin. We
haveS05CVxy with C5(l221)/(l211). We see thatS0
06360
-

of

cancels whenl51, that is, in the case of the disk. Th
computation is consistent with the one in@10#, although it is
derived in a different way.

B. Decoupling the energy

Let h«5 f «eiS« be the vortex-free minimizer ofE« dis-
cussed previously without imposing the constraint on
norm of u. Let u« be a minimizer ofE« under the constrain
*Duuu251 and letv«5u« /h« . Sinceh« satisfies the Gross
Pitaevskii equations~2.2! and ~2.3!, we have

E
D

~ uvu221!S 2
1

2
D f «

22
1

«2 f «
2~a2 f «

2!1u“ f «eiS«u2

22 f «
2~“S«•V3r ! D50.

This implies that the energyE«(u«) decouples as follows:

E«~u«!5E«~h«!1G«~v«!

12E
D

uh«u2~“S«2V3r !•~ iv« ,“v«!, ~2.9!

where

G«~v«!5E
D

uh«u2u“v«u21
uh«u4

2«2 ~12uv«u2!2.

This decoupling was used in@15# in the case of a disk where
“S«50.

C. Estimate of the energy

We now estimate the terms in Eq.~2.9!. The first term
E«(h«) is a constant depending only on«, and not on the
solution type, that is, with or without vortices. The seco
term gives a contribution coming from the vortices and t
third term is due to the vortices and rotation.

We use the analysis of vortices developed in@18# and later
in @14,15,19#. Let D«85D\$x, dist(x,]D)<«b%, with b,1.
Then in D«8 it is possible to define vortices forv« in the

following way. There exist ballsBi5B(pi ,«b8) wherepi are
points in D«8 at mutual distance bigger than 8«b8 and b8
.b, such thatuv«u>1/2 in D«8\ø iBi . Moreover, the degree
di5deg(v« /uv«u,]Bi) is not zero and there is an estimate
the energy ofv« in each ballBi . This analysis means tha
vortices are in fact defined in the balls wherev« is less than
1/2 and has a nonzero degree. This allows us to comp
G«(v«) for which only the gradient term in the vortex bal
will give a contribution: each vortex gives a contribution
the amount of 2pu ln «u due to its degree and a contributio
of lower order that comes from the interaction with the oth
vortices. Moreover,uh«u2 is almosta:
3-3
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G«~v !52pu ln «u(
i

udi ua~pi !

22p(
iÞ j

didjAa~pi !a~pj !lnupi2pj u1O~1!.

~2.10!

In order to estimate the third term in Eq.~2.9! we let X« be
the solution ofa(r )(“S02V3r )5V“

'X« that is zero on
the boundary ofD«8 . That is,X« solves Eq.~2.8! but with
zero boundary data on]D«8 instead of]D. HenceX« con-
verges toj the solution of Eq.~2.8!. An integration by parts
on the last term of Eq.~2.9! using the definition ofX« and
the definition of the degree ofv« on vortex balls and the fac
that the higher-order term comes from an integration on
vortex balls yields

E
D

uh«u2~“S«2V3r !•~ iv,“v !

5E
D«8\ø iBi

V•~ iv,dX«3“v !@11o~1!#

5(
i

2pVdiX«~pi !@11o~1!#

5(
i

2pVdi

11l2 ~a2uxi u22l2uyi u2!2@11o~1!#.

~2.11!

Finally, one can derive from Eqs.~2.9!–~2.11! an asymptotic
expansion of the energy for a solution with vortices:

E«~u«!2E«~h«!.2pu ln «u(
i

udi ua~pi !

2
2pV

11l2 (
i

di~a2uxi u22l2uyi u2!2

22p(
iÞ j

didjAa~pi !a~pj !lnupi2pj u.

~2.12!

Note that the minimal energy for solutions without vortic
in D«8 is E«(h«)1O(«u ln«u): it is not exactlyE«(h«) since
h« is a minimizer without the constraintih«i51, but it al-
most equalsE«(h«) since*D a51 and uh«u2 approachesa
asymptotically. The above estimate illustrates that, physic
speaking, the energy of solutions havingn vortices is ap-
proximately given by the energy of the vortexless solut
and the sum of the self-energy of individual vortices and
interaction energy of vortex pairs. This fact was also o
served in@2# using a different approach.
06360
e
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III. CRITICAL ANGULAR VELOCITIES

A. Critical angular velocity for the existence of one vortex

Let u« be a minimizer of~P! with one vortex at a pointp
in D with coordinates (x,y) and letDE« be the difference
betweenE«(u«) and the energy of a solution without vorte
@E«(h«)1O(«u ln«u)#:

DE«52p~a2x22l2y2!S u ln «u2
V

11l2 ~a2x22l2y2! D
3@11o~1!#. ~3.1!

This expression was obtained by Svidzinsky and Fetter@10#
using a different method. The form ofDE« allows the com-
putation of two critical angular velocitiesVs andV1 for the
existence of vortices:Vs is the velocity for which the solu-
tion with one vortex starts to be locally stable andV1 that for
which it starts to be globally stable. ForV,Vs , DE« is a
decreasing function ofupu, the position of the vortex;upu
50 is a local maximum ofDE« . ForVs,V,V1 , upu50 is
a local minimum forDE« . Note thatDE«(pP]D)50 and
DE«(upu50).0.

For V.V1 , upu50 is the global minimum forDE« . We
thus have

Vs5
11l2

2a
u ln «u5

11l2

4Al
A2pu ln «u,

V15
11l2

a
u ln «u5

11l2

2Al
A2pu ln «u,

that is,

Ṽs5
11l2

4Al
vAp\2

Ngm
lnS Ngm

\2 D 1/2

,

Ṽ15
11l2

2Al
vAp\2

Ngm
lnS Ngm

\2 D 1/2

.

Note that Castin and Dum@2# for the casel51 find Ṽ1

5vA(p\2)/(Ngm)ln@(C/Ap)(Ngm)/\2#1/2 with C.1.8,
and henceC/Ap.1, which gives a value ofṼ1 very close
to ours. They also haveV152Vs for the casel51. In-
creases in anisotropy yield higherṼ1 as already noticed in
@4# and experimentally confirmed in@8,9#, but asl tends to
infinity V1 becomes bigger than 1/« so that vortices canno
be stabilized.

It can be proved that there existsk« that tends to zero with
« such that forV,V12k« the minimizer ofE« has no vor-
tex and forV.V11k« there exists a minimizer with a vor
tex. Such a property rigorously justifies the physical mean
of V1 as the critical angular velocity for the existence of
minimizer with one vortex. Moreover, forV11k«,V,V1
1O(1), anyminimizer has one vortex of degree 1 tending
the origin. The proof consists in constructing a test funct
3-4
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with a vortex at the origin and computing the energy of t
test function. This yields an upper bound for the energy. T
lower bound relies on estimates forG«(v) from @18# and
@14,15#.

B. Critical angular velocity for n vortices

Similarly, one can computeVn , the critical angular ve-
locity for the existence ofn vortices. For this purpose, on
can prove that as« goes to 0 the vortices tend to the orig
and they are all singly quantized vortices, that isdi51. The
proof goes as in@14,15#: to show it, one may define a tes
function that consists in putting then vortices on a polygon
centered at the origin of size 1/AV in x and 1/lAV in y, and
check that this has a lower energy than any configura
with multiple vortices. Using a special ansatz, it has be
demonstrated in@2# that multiply quantized vortices are un
stable. In fact, it is a physical signature of harmonic trapp
potentials that the minimizers have only single vortic
When other trapping potentials are used, it is possible
have minimizers with multiply quantized vortices (di.1);
see, for example, the discussion in@20# for quartic potentials.

We let p̃i with coordinates (x̃i ,ỹi) be such thatx̃i

5xiAV and ỹi5lyiAV. This allows us to estimate the en
ergy of a solution withn vortices centered atp̃i from Eqs.
~2.9!–~2.11!:

E«~u!5E«~h«!12pnaS u ln «u2
1

11l2 Va D
1p~n22n!a ln V1w~ p̃1 , . . . ,p̃n!1Cn1o~1!

~3.2!

whereCn is a constant that depends onn andl and

w~ p̃1 , . . . ,p̃n!522pa(
iÞ j

lnS ux̃i2 x̃ j u21
u ỹi2 ỹ j u2

l2 D
12pa(

i
~ x̃i

21 ỹi
2!S 2

11l2 2
u ln «u
Va D .

~3.3!

The first term in Eq.~3.3! gives the repulsive interactio
between the vortices and the second term illustrates the c
petition between the restoring and centrifugal forces@8,9#.

Recall thata252l/p. For fixedl, w is of order 1, and
hence is of lower order than the previous terms. Then
critical angular velocity for the existence ofn vortices can be
computed from Eq.~3.2!,

Vn5~11l2!A p

2lF u ln «u

1
~n21!

2
lnS ~11l2!A p

2l
u ln «u D G , ~3.4!

and the critical angular velocity in the original parameters
Ṽn ,
06360
e
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Ṽn5
~11l2!

2
vA p\2

NgmlH lnS Ngm

\2 D 1/2

1
~n21!

2
lnF11l2

2Al
A2p lnS Ngm

\2 D 1/2G J .

Clearly, this is in agreement with the experimental obser
tion that for largerl, that is, more intense anisotropy, th
critical angular velocities have wider bands@8,9#.

C. Location of vortices

Once V is close toVn , the location of the vortices is
characterized by the configuration of points$ p̃i% that mini-
mizes the functionw given by Eq.~3.3!. In nondimensional-
ized variables, the points are given byRpi /A2pu ln «u. For
convenience, we define

r5
2

~11l2!
2

u ln «u
Va

.

Note that, given the value ofVn in Eq. ~3.4!, to leading
order,r is equal toA2p/l/(11l2). We use the values ofa
andr to get a simplified expression forw:

w~ p̃1 , . . . ,p̃n!52A8plFr(
i

~ x̃i
21 ỹi

2!

1(
iÞ j

lnS ux̃i2 x̃ j u21
u ỹi2 ỹ j u2

l2 D G .

~3.5!

The critical points ofw, and thus the vortex positions, satis

r x̃i5(
j Þ i

l2~ x̃i2 x̃ j !

l2ux̃i2 x̃ j u21u ỹi2 ỹ j u2
, ~3.6!

r ỹi5(
j Þ i

ỹi2 ỹ j

l2ux̃i2 x̃ j u21u ỹi2 ỹ j u2
. ~3.7!

An immediate observation is that

(
i

x̃i5(
i

ỹi50. ~3.8!

By multiplying the equations byx̃i and ỹi , respectively, and
adding the results together, one can obtain

(
i

~ x̃i
21 ỹi

2!5n~n21!/~2r!. ~3.9!

Similarly, multiplying the equations byỹi and 2l2x̃i , re-
spectively, and adding the results together, one gets

r~12l2!(
i

x̃i ỹi50. ~3.10!
3-5
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Unlike Eqs. ~3.8! and ~3.9! where the dependence onl is
implicit, Eq. ~3.10! leads to the property

(
i

x̃i ỹi50, for lÞ1. ~3.11!

The above observations lead to more precise prediction
the location of vortices.

For instance, in the casen52 we get x̃152 x̃2 and ỹ1

52 ỹ2. For l51, we have an infinite set of solutions co
sisting in two points on the circlex̃i

21 ỹi
251/r, symmetric

with respect to the origin. ForlÞ1, Eq. ~3.11! leads to
x̃i ỹi50 for i 51,2, and we have a pair of solutions wi
eitherx̃i50, ỹi56A1/2r, or ỹi50, x̃i56A1/2r. Checking
the corresponding values ofw, we get that forlÞ1 the
minimizer of w corresponds to having both vortices stayi
on the long axis of the ellipse in the original scaling~that is,
on thex axis if l.1 and on they axis if l,1). This esti-
mate of the location is in agreement with the numerical
lutions given later.

For the casen53, we also get that the three vortices a
on the long axis of the ellipse: one centered at the ori
whereas the other pair stays symmetrically on the long a
with x̃i56A3/2r if l.1. Similar discussions can be carrie
out for other values ofn. In general, for the case ofn vorti-
ces, we letR1

25n(n21)/2r and x̂i5R1x̃i , ŷi5R1ỹi . It fol-

lows from Eq.~3.9! that the points$ p̃i% are localized by the
minimum of

2(
iÞ j

lnS ux̂i2 x̂ j u21
u ŷi2 ŷ j u2

l2 D
under the constraint( i x̂i

21 ŷi
251. It is reasonable to expec

that this formula will lead to a vortex array as computed
@21# and observed in@9# containing a moderate number o
vortices. Note that the minimizer$ p̂i5R1p̃i% has no explicit
dependence onV; thus, for a givenl, we expect the vortex
configuration to be of similar structure for values ofV close
to Vn . On the other hand, for a givenn andV, we expect
that for sufficiently largel, that is, for highly anisotropic
traps, the minimizer ofw to be given by collinear solution
with vortices all located on the long axis of the elliptical tra
Our characterization of the location of the vortices is cons
tent with the numerical results given later.

IV. EVOLUTION EQUATION AND NUMERICAL
SCHEMES

To numerically compute the energy minimizers of E
~1.5!, we notice that the energy in Eq.~1.5! can be rewritten
as

E
D
H u~“2 iA!uu21

1

2«2 @a«~r !2uuu2#2J 1c« ~4.1!

wherea«(r )5a(r )2«2V2r 2,
06360
of

-

n
is

.
-

.

A5S y

2xD V, and c«5E
D
H 1

2«2@a2~r !2a«
2~r !#J .

The above formulation of the energy has a striking similar
with the high-k high-field Ginzburg-Landau energy@22#
with a variable coefficient@23#.

A. Evolution in imaginary time

To numerically compute the minimizers of Eq.~1.5!, we
consider the time-dependent equation in imaginary time:

]u

]t
2~“2 iA!2u1

1

«2 uuu2u2
a«~r !

«2
u5m«~u!u ~4.2!

in D with initial conditionu(r ,0)5u0(r ) in D and boundary
condition u50 on ]D. Here, m«(u) denotes the Lagrang
multiplier. Assume thatu0 satisfies the constraintiu0i51.
Then, by taking

m«~u!5E
DH u~“2 iA!uu21

1

«2 uuu42
a«~r !

«2
uuu2J d D,

we get

d

dt S ED
uuu2dD21D 2m«~u!S ED

uuu2dD21D 50.

Thus, the constraint*Duuu251 is ensured at all times. More
over, using (u,ut)50, we get the energy estimate

1

2

d

dt
E«~u!1 I ]u

]t I
2

50.

Thus, we easily get that for any (0,T), if u0PH0
1(D) and

iu0i51, there exists a unique strong solutionu of Eq. ~4.2!
satisfying the constraintiui51. Using an argument simila
to that in@24,25#, we may also get that ast→` u approaches
a steady state solution which is a critical point of the ener
Well-posedness forL2 initial data may also be obtained.

B. Numerical schemes

There are various ways to solve the time-depend
Gross-Pitaevskii equations; see, for example,@2# or @4#. We
take advantage of the striking similarity with the high-k
high-field time-dependent Ginzburg-Landau equations@26#,
and adapt a code developed in@23,26,27#. Spatially, we use a
standard finite element approximation; see@23,27# for de-
tails. Here, we focus on the time discretization and the tre
ment of constraints. It has been observed that there are s
steady states exhibiting metastability; thus it is important
get asymptotically stable schemes for large times, which
general require the use of implicit schemes with no limi
tions on the time step size.

Let $un% be approximate solutions of$u(tn)% at discrete
time $tn% with time stepDtn5tn2tn21. We discuss two
time-discretization schemes and also some results of num
cal experiments.
3-6
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1. A first order backward Euler in time discretization

Given un21, we first solve foru* :

u* 2un21

Dtn
2~“2 iA!2u* 2m~un21!u* 1

1

«2 uu* u2u*

2
1

«2
a«u* 50. ~4.3!

Then, we apply the projectionun5u* /iu* i . Both the back-
ward Euler step and the projection step give only first or
in time accuracy.

2. A norm-preserving, energy-decreasing second order schem

For any u,v and their complex conjugatesū,v̄, we let
f (u,v)5(uuu21uvu2)(u1v)/2, which satisfies f (u,v)(ū
2 v̄)5(uuu42uvu4)/2. Givenun21, we first solve foru* :

2~u* 2un21!

Dtn
2~“2 iA!2u* 2n~u* !u*

1
1

«2 f ~2u* 2un21 ,un21!2
1

«2
a«u* 50,

~4.4!

wheren(u* ) is given by

n~u* !E
D

uu* u25E
D
$u~“2 iA!u* u2%

1E H 1

«2f ~2u* 2un21 ,un21!ū*

2
a«

«2 uu* u2J .

Then we letun52u* 2un21. Taking the inner product of Eq
~4.4! with u* , we get (u* 2un21 ,u* )50, which leads to
iuni25iun21i2. That is, the norm is preserved at each tim
step. Taking the inner product of Eq.~4.4! with u* 2un21, it
is easy to get

2
iun2un21i2

Dtn
1E«~un!2E«~un21!50.

Thus, during the discrete time evolution, the energy
creases. This discrete scheme is second order in time
unconditionally stable. It also preserves some essential
tures of the continuous dynamic system, making it suita
for long time integration and for studies of metastabilities
the solutions.

C. Description of the numerical experiments

We have used the above schemes to calculate various
merical solutions for the parameter values«50.02, l51,
andl51.5. The spatial finite element space is taken to beC0

piecewise quadratic elements on triangular meshes. As
06360
r

-
nd
a-

le
f

u-

e

are mostly interested in the minimizers of the Gros
Pitaevskii energy, the time evolution is employed as a me
of marching to the steady state solutions. For this reason
have used variable time steps in order to accelerate the
vergence in time. The nonlinear systems are solved b
Newton-like method at each step. Although such a metho
computationally costly per step, this drawback is offset by
unconditional asymptotic stability for marching to the stea
state. We have also computed the solutions using refi
meshes to ascertain the numerical convergence.

To obtain solutions for various velocities, we have use
number of different initial conditions. For example, we ha
useduu0(r )u25a(r ) for rPD, which serves as a good ap
proximation to the steady state solution, especially in
case of vortex-free solutions. We note that for large values
V this choice of initial condition can also lead to steady st
solutions with multiple vortices. Detailed solution branch
are described in the next section. In addition, we have a
used other initial conditions that manuallyplant vortices in
the domain in order to find different solution branches.
nally, a continuation in the parameterV has often been em
ployed to follow a particular solution branch and to compu
the bifurcation diagrams. The continuation procedure a
provides a test for the local stability of the numerical so
tions: when one branch becomes unstable, the solution ju
onto a different branch.

V. NUMERICAL RESULTS AND BIFURCATION
DIAGRAMS

We now present some pictures of numerical solutions
discuss the various solution branches.

A. Description of solutions

1. The case of a disk

For anyV, there is a vortex-free solution, which is clos
to a(x,y) except near the boundary. ForV50, in addition to

FIG. 1. Contour plots ofuuu for V50 ~first column!, 15 ~second
column! 17.5 ~third column!, and 20~fourth column!.

FIG. 2. Surface plots ofuuu for solutions atV50.
3-7
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this vortex-free solution, there is also a one-vortex soluti
as illustrated in the first column of Fig. 1. The square dom
showing in each picture is of size 2.2 in both directions.

For largerV, solutions with multiple vortices are show
in the other columns of Fig. 1. For instance, solutions w
two and three vortices forV515 are shown in the secon
column, solutions with four and five vortices forV517.5 are
shown in the third column, and solutions with six and sev
vortices forV520 are shown in the last column. The para
eter values for which the single-vortex and multivortex so
tions exist are to be presented in the next section. Figur
and 3 provide the surface plots~and better view! of uuu for a
vortex-free solution atV50 and a solution atV520 with
four vortices, respectively. Each solution has a top and b
tom view; the paraboloid shapes are easy to visualize f
the pictures. In Fig. 4, we have plotted a solution with
vortices corresponding toV531.5. There is a triangular ar
ray with one vortex at the origin, then six vortices in th
inner circle, and 12 vortices on the side.

2. The case of an ellipse

We now present some solutions for an ellipse correspo
ing tol51.5. In Fig. 5, the contour plots of the magnitude
the solutionuuu with V517.5 are drawn while in Fig. 6V
525. The rectangular domain showing in the individual p
tures is of size 2.6 in the horizontal direction and 1.6 in
vertical direction. ForV517.5, it is interesting to compar
the location of vortices with the analysis of Sec. III C: in th
caser50.79, the long axis is 0.9887, and we find for t
location of the vortexx50.19 for n52 andx50.33 for n
53. The picture shows that the vortex is about 1/5 of
long axis for two vortices and 1/3 for three vortices, which
consistent with the analysis. We believe that, for moder
values ofn, the location ofn vortices corresponds to th
positions minimizing Eq.~3.5!.

FIG. 3. Surface plots ofuuu for solutions atV520.

FIG. 4. Contour and surface plots ofuuu for solutions with 19
vortices atV531.5.
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Note that there were two vortex configurations with fi
vortices forV525, among which the nonsymmetric config
ration corresponds to a solution with a lower free ener
although the difference in their energy values is very sm
The coexistence of vortex solutions with the same numbe
vortices but with different vortex configurations has be
experimentally observed in@8,9#.

B. Branches of solutions

An issue that we have studied is the existence of branc
of n-vortex solutions asV is varied, and especially which
one is the minimizer.

1. The case of the disk

For V50, the solution with lowest energy is the vorte
free solution. We start with this solution as initial value f
the time-dependent problem for a slightly biggerV. This
device allows us to continue the branch of the vortex-f
solution asV is increased. We find that the vortex-free sol
tion is obtained as the limit of the evolution equation whet
is large up toV519. ForV519, six vortices are nucleate
from the boundary and eventually one vortex moves to
center and the final configuration is similar to that in Fig.
~top right!. Now if V is decreased from the value 19 usin
the six-vortex solution as initial value, we see that this s
vortex solution branch exists down toV516, when it jumps
to four vortices. If we decreaseV further, then we stay on
the four-vortex branch down toV513, when it drops to a
two-vortex branch. Similarly, if we increaseV from 13, the
two-vortex solution will persist up toV521. As for the one-
vortex solution branch, it is computed by planting a vorte
like function at the center in the initial condition forV510;
then the branch is computed by continuation inV ~both in-
creasing and decreasing!. It is interesting to observe the fac
that this branch extends all the way toV50; such persis-

FIG. 5. Contour plots ofuuu for V517.5,l51.5.

FIG. 6. Contour plots ofuuu for V525,l51.5.
3-8
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tence of the one-vortex solution even for zero velocity h
been elaborated by various authors~see @4# for instance!.
Since implicit integration is used, we are indeed able
march to the steady state and to ascertain that this persis
is not due to metastability. On the other hand, if the vortex
planted away from the origin, it disappears for smallV as we
will see later.

2. The case of an ellipse

The same kind of behavior occurs for the vortex-free
lution branch withl51.5: whenV is increased from 0, we
stay on the vortex-free branch up toV522.5 when the so-
lution jumps to the four-vortex branch of Fig. 6. If we d
creaseV starting from this four-vortex branch, the solutio
will stay on it down toV515, when it jumps to two vortices
and atV510 it jumps to the vortex-free solution. Similarl
to the case of the disk, if one vortex is planted at the cen
at time 0, it will persist in time even down toV50.

For V large enough, several vortices are nucleated at
same time. Both initial conditions and the round-off erro
contribute to the symmetry breaking, and a strong symm
presence often makes symmetry breaking much harde
achieve. For the disk case, we expect an equal chanc
vortex nucleation from any point of the boundary. It turns o
that, for V519, an unstable front produces oscillations
almost equal magnitude, and spins off six vortices at
same time. Had the disturbance being unevenly distribute
would be possible for some vortices to get spun off ahea
others, and due to the repulsion the others may never ha
chance to appear; thus we may see solutions with a sm
number of vortices. The valueV519 corresponds toṼ/vx
50.38, which is less than 0.7, for which vortices are nuc
ated in the experiment@9#. This may be due to our 2D sim
plification. For a theoretical investigation of this value, s
@28#. Nevertheless, we believe that the location of vortice
well described by our theory.

C. Energy diagrams

We now discuss the energy diagrams in relation to
discussion of the critical angular velocities given in the e
lier sections. In Figs. 7 and 8, we have plotted the ene
given by Eq. ~1.3! as a function ofV for the various
branches of solutions~according to the number of vortices!.
Not all computed solution branches are plotted since som
them are very close together. Again,«50.02 in our compu-
tation.

1. The case of the disk

As discussed earlier, the vortexless solution, in the cas
the disk, exists for all values ofV and is independent ofV;
we thus have a constant line for its energy~see Fig. 7!. These
vortex-free solutions are the global energy minimizers
small V (V,9.3) whereas forV.9.3 they have larger en
ergy than the one-vortex solution. For multivortex solutio
we see that each becomes the global energy minimizer f
range of values ofV, which corresponds to the experiment
observation that there exist multivortex configurations
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wide bands of angular velocities. It is interesting to comp
this result with the value found in Sec. II whereV159.8.
Similarly, we obtain from Eq.~3.4! that Vn2Vn21.2.0.
Although the value ofV1 is slightly overestimated, the dif
ferenceVn2Vn21 looks good for smalln: the numerics in-
dicate V2512.0, V3513.6, V4515.8 and our theoretica
computations yieldV2511.8, V3513.8, V3515.8.

However, whenV is increased from 0, we saw that w
stay on the vortex-free branch up toV519. This means tha
the vortex-free solution is a local minimizer up to this valu
We do not have any theoretical estimate for this value
local minimum. Similarly, for multivortex solutions, hyster
esis loops are present. For the solution with six vortic
there are two possible configurations, one with all six on
concentric circle, and one with only five on a concent

FIG. 7. The energy vsV curves forl51.0.

FIG. 8. The energy vsV curves forl51.5.
3-9
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circle while the remaining vortex is at the center of the di
This occurs forV522.5. Although the difference in energ
is hardly noticeable, the solution with a center vortex do
have a smaller energy value.

2. The case of an ellipse

Now, we discuss the elliptical case withl51.5. The en-
ergy versusV curves are given in Fig. 8.

The vortexless solution, in the case of the ellipse, is
longer independent ofV as in the case of the disk, as illus
trated by the dependence of its energy onV. The energy
diagram also illustrates that hysteresis occurs as a unive
phenomenon both in the case of a disk and in the case o
ellipse.

Our numerics indicate thatV1512, V2515. It is inter-
esting to compare this result with the value found in Sec.
we obtain from Eq.~3.4! that V1.13 and thatVn2Vn21
.2.88. Although the value ofV1 is slightly overestimated
the differenceVn2Vn21 looks good again since we fin
V2514.9.

D. Displacement of the vortex from the center

Based on the earlier estimate~3.1! for the one-vortex so-
lution, we see that for smallV the displacement of the vorte
away from the center leads to the drop of energy (V,4.9).
For slightly biggerV a vortex at the center is a local min
mum (V,9.8). Let us analyze the time-dependent equat
using a vortex off center as the initial condition and let
examine how it evolves. We find that in the case of the d
for V,7, a displacement of size one-tenth of the rad
causes the displaced center vortex in the one-vortex solu
to move toward the boundary. ForV.10, the center vortex
in the one-vortex solution moves back toward the cente
under a displacement of size one-third of the radius.

FIG. 9. Perturbing vortex away from center forV50.
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intermediate values ofV, the vortex moves back to the cen
ter for small displacement but moves toward the bound
for large displacement. Figures 9 and 10 show, in the cas
a disk and a small displacement, the marching away of
center vortex for the solution withV50 ~starting from the
top row and then to the bottom row! and the marching back
to the center for the solution withV57.9.

VI. CONCLUSION

We have presented an alternative framework for the st
of the Gross-Pitaevskii energy in the Thomas-Fermi lim
we defined a nondimensionalized parameter« and computed
theoretically an asymptotic expansion of the energy, the c
cal thermodynamic angular velocities of nucleation of vor
ces, and the location of vortices. This extends the result
@2#. We have proposed and implemented time integrat
schemes that have norm-preserving and energy-decrea
features and thus are useful for studying the stability a
metastability of solutions. We also presented energy d
grams computed numerically for the various vortex so
tions. We determined that our theoretical predictions for cr
cal thermodynamic angular velocities are quite consist
with the numerics, which encourages us to think that o
approximation of small« is correct althoughu ln«u is not
small. In our computation, we took«50.02, and the numbe
of vortices we observed ranges from 0 to 19 forV between
0 and 31.5.

In very recent work@29#, we used this framework of stud
and the results in@30# for the Ginzburg-Landau free energ
in 3D to get results for rotating Bose-Einstein condensate
3D, especially estimates of critical angular velocities and
asymptotic expansion of the energy that is valid for any ty
of vortex line. We will also carry out further numerical simu
lations in 3D to compare with experimental data.
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FIG. 10. Perturbing vortex away from center forV57.9.
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