PHYSICAL REVIEW A, VOLUME 64, 063603

Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams
in the Thomas-Fermi regime
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For a Bose-Einstein condensate placed in a rotating trap and strongly confined alangxteewe set a
framework of study for the Gross-Pitaevskii energy in the Thomas-Fermi regime for an effective two-
dimensional2D) situation in thex-y plane. We investigate an asymptotic expansion of the energy, the critical
angular velocities of nucleation of vortices with respect to a small pararagtend the location of vortices.

The limit ¢ going to zero corresponds to the Thomas-Fermi regime. The nondimensionalized energy is similar
to the Ginzburg-Landau energy for superconductors in the kigiigh-field limit and our estimates rely on
techniques developed for this latter problem. We also take advantage of this similarity to develop a numerical
algorithm for computing the Bose-Einstein vortices. Numerical results and energy diagrams are presented.
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. INTRODUCTION tities u,v and their complex conjugates,v, (u,v)=(uv

+Uv)/2. The terms in the energy correspond to the kinetic

Since the fl_rst expe_rlmental achievement qf Bose-Elnstelrénergy' the trapping potential energy, the interaction energy,
condensates in atomic gases, many properties of these SYS5 the inertia due to the change of frame

tems have been studied experimentally and theoretically, and \ye consider a situation in which the confinement along
particularly the existence of vorticgd—10]. Two different o, ayi is so strong that the motion of particles along this
groups have obtained .vortlces. expgnmentally n atpmlc CONzyis is frozen in the ground state of the strong harmonic
densates. In Rem optical engineering of th? experiment of potential: hence the wave functios is factorized into a
Refs.[8]f1nd[9] is used; a laser beam rotating with angularComponent purely dependent anand another one that
velocity {} is imposed on the magnetic trap holding the at-gepends on the radial coordinatesy) and minimizes
oms to create a harmonic anisotropic potential. Vortex nucle-
ation was observefB] as well as vortex arrayl9]. Let us b2 N
mention another type of experimdritl] where a laser beam . m 2.2
is stirred in a condensate. There is a critical velocity under Ea(Y)= J’ %|V¢|2+ Ea;y waralyl®+ §g|"/’|4
which the flow is dissipationless. Related analysis is given in
[12]. Here, we will be concerned with the experiment of — 1 Q- (i, VX X), (1.2
Refs.[8,9].

Theoretical studies of this type of experiment have often . .
been made in the framework of the nonlinear Gross-Whereg:93D(m‘”z/27h)1’2- The constra_llnf|¢|2= 1is also
Pitaevskii equation, well known for superfluids, but which imposed. Our study was originally motivated by the work of
provides a very good description of Bose-Einstein condenCastin and Dunj2], who studied the equilibrium configura-
sates: it is assumed that theparticles of the gas are con- tions by looking for the minimizers in a reduced class of
densed in the same state for which the wave funcigon functions for the two-dimension&2D) case and did numeri-
minimizes the Gross-Pitaevskii energy. By introducing a ro-al computations in 2D and 3D. Their analysis is in the

. L : Thomas-Fermi regime, where the mean interaction energy
tating frame for the angular velocit2=e,, the trapping

potential becomes time independent, and the wave functioR®" partu_:le IS larger thah“’xvy' .
& minimizes the energy Our aim is to provide a mathematical framework for a

rigorous study of the energ§,p and its minimizers in the

%2 m N Thomas-Fermi limit. We first observe that this energy has a
530(¢)=f%|v¢|2+ 52 @il 61>+ 5 gsol 4l* striking similarity with the highx, high-field limit of the
“ Ginzburg-Landau free energy used in the modeling of super-
— 1D (1, VhxX), (1.1) conductors. Thus, we expect the enedpy, will develop

similar behavior to that for the Ginzburg-Landau energy

under the constraint| ¢|?=1. Here, for any complex quan- studied in[13—15. In particular, the results obtained in the
context of the Ginzburg-Landau energy may be applied to

Ep, In the Thomas-Fermi regime, to yield an asymptotic
*Electronic address: aftalion@ann.jussieu.fr expansion of the energy as well as the critical angular veloci-
"Electronic address: madu@ust.hk ties for the nucleation of vortices and the location of these
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vortices. Due to the close resemblance, we will not be conwhere
cerned with detailed derivations in this paper, but rather fo-
cus on the conclusions one can draw from the asymptotic

1
= 2 (i — 1141272
expansions. To our knowledge, some of our estimates to beEE(u) JD|VU| 2@ (iu, Vuxr)+ ZsZ[a(r) U

presented later have not been given in the literature previ- (1.5
ously. Our method of computing the energy is also very dif- N . ) )
ferent from the ones in, for instande,4,10. Note that the critical pointi of E, is a solution of

Let d=(2/mw,)¥? be the characteristic length, and 1
—Au—2i(Q><r)~Vu=?u(a—|u|2)+,usu in D,
(1.6

=%2/(2Ngm).

In the Thomas-Fermi approximation,is small, which will

be our asymptotic regime. In the experiment of MadisonWith u=0 ondD and n, the Lagrange multiplier. The spe-
etal, & is of the order of 102. In fact, ¢ characterizes the cific choice ofa in Eq. (1.4) will imply that the termpu,u is
vortex size. We rescale the distanceRy d/\= and define negligible compared tau/e?, _

u(r)=Ry(x) wherex=Rr. We assume thab=w, and o, We want to study the behavior of miify(u) asz goes to 0.
—\o with 0= =1 and set)=0/ew. For a stable cloud, In Sec. Il, we compute an asymptotic expansion of the en-

the trapping potential is stronger than the inertial potentlalergy’ and in Sec. Ill, the critical angular velocities of nucle-

hence we havé)<1/e. The energy can be rewritten as ‘ation of vortices and the location of the vortices. In Sec. IV,
we study the evolution in imaginary time and construct some

1 1 numerical algorithms. In Sec. V, we present some computa-
Eop(u)= f =|Vul?+ = (x®+ N\%y?)|u|?+ —|u]* tional results and the energy diagrams.
8

+Q-(iu,Vuxr). 1.3 II. ASYMPTOTIC EXPANSION OF THE ENERGY

To study the behavior of the minimizer of the energy
whene goes to zero, we observe that the form of the energy
(1.5 is close to the Ginzburg-Landau functional studied in

1 1 [13,14), where the magnetic field has been replaced by a
f |[Vul?+2Q-(iu, Vu><r)+ |u| 2a(r)|u|2, rotating term, and similar t¢15] except for the trapping
potential and the minimization over a constraint. The main
wherea(r) = a— (x2+\2y?) for some constant to be de- idea is to decquple_the energy into three terms: a part coming
termined. LetD be the ellipsga> 0} ={x2+\2y?< a}. We from the solution W|Fhout vortices, a vortex contribution, a}nd
impose the following constraint oa: a term due to rotation. The estimate of the vortex contribu-
tion was developed if14,15,18,19

Due to the constrainf|u|?=1, we can add t&,p, any mul-
tiple of [|u|? so that it is equivalent to minimizing

fpa(r): 1. (1.9 A. The solution without vortices

We first consider solutions without vortices, thatushas
Indeed, as: tends to O, the minimizer will satisfy the con- no zero in the interior ofD. Given functions of the formy
straint that/u| will be close toa so that the constraint will = fe'S, wherey is in H}(D) andf is real and has no zero in
be satisfied automatically by if we impose Eq(1.4). Note  the interior of D, we consider minimizinge, over such func-
thata is the Thomas-Fermi limit ofu|%. Equation(1.4) leads  tions without imposing the constraint that th& norm is 1,
to a?=2\/m. If A\=1, that is,w,= wy, thenD is a disk, of  that is,f and S minimize
radiusR, with R=2/7.

To study the problem analytically, it is reasonable to mini-
mize the energy over the domalhwith zero boundary data
for u. Indeed, whera<0, the energy is convex so that the
minimizer u goes to zero exponentially at infinitisee the — 2022, 2.9
numerical observation if2] and the analysis of the behavior
near the boundary dP as well as the decay at infinity of the
order parameter ifil6,17]). Denote byH™(D) the space of 1
square integrable functions defined on the donRirthat —Af+fVS(VS—-2Qxr)=—f(a—f?) in D,
have square integrable derivatives up to ordgrand by &

&,(f,9)= J|Vf|2 ——(a—f2)2+ ff2|vs—n><r|2

We havef=0 ondD and

Hé(D) the space of functions irl*(D) satisfying the zero 2.2
boundary condition. Denote the norrfif{v|?) Y2 by |v| for div(F(VS— Qx1))=0 2.3
any square integrable functian We then consider the prob- ' '
lem From Eq.(2.3), there existst in H2(D) NH}(D) satisfying
minE,(u) subjectto ueHy(D), [ul=1, (P) f(VS—QXr)=QVie, (2.4
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whereVigz(—ayg,&xg). So ¢ is the unique solution of cancels whem =1, that is, in the case of the disk. This
s . computation is consistent with the one[itD], although it is
div(f"°V¢)=0inD, ¢=0o0ndD. (2.9 derived in a different way.
Note that Eq.(2.4) is the equation for the velocity, but we
prefer to write it as an orthogonal gradient for our later pur- B. Decoupling the energy

poses of integration by parts. In the special case witere

a disk, the minimum of Eq(2.1) is reached fo’VS=0 but
this is not the case iD is an ellipse and there is a nontrivial
solution of Eq.(2.3).

Let ,=f.e'S: be the vortex-free minimizer oE, dis-
cussed previously without imposing the constraint on the
norm ofu. Let u, be a minimizer ofg, under the constraint
[plul?=1 and letv,=u, /7, . Sincey, satisfies the Gross-
1. The case of the disk Pitaevskii equation$2.2) and(2.3), we have

Assume that =1 so thatD is a disk anda(r)= R(Z)— r2,
As discussed earliely S=0 in this case so that the energy
becomes

1 1 .
f (|v|2—1)< - EAfﬁ— S—Zfﬁ(a—fﬁ)+|Vf8e'Se|2
D

—2f4(VS,-Qxr)|=0.

1
58(f)=fD|Vf|2+ 5.2laln) 1212 (2.6)

Let , be the minimizer of Eq(2.6) in H3(D). Then, 7, has This implies that the energk,(u,) decouples as follows:
no vortex, is independent &, and satisfies
1 E.(U,) =E.(7,)+Gy(v,)
An,=—n.(n2-a) in D, 5,=0 on JD.
¢ +2f | 7.]2VS,— Q%) (iv,,Vv,), (2.9
When ¢ tends to 0,775 is close toa except on a boundary P

layer of sizes?® close todD. More precisely, using sub- and
supersolutions, one can verify that where
va(r)tan 8(va(r)]¥|In e]) n.=< Ja(r) ]
— 2 2 & _ 22
for [R3—r?|=Cs*3. In fact, one can construct a subsolution Gs(vg)_fp|778| Vo |*+ 5 7 (1=v[9*

of the type above in any regiofRi—r?|=Ce#" with B

<2. Then the value ob is less tharc(2— ). ) . . .
The boundary layer can be analyzed using the change dhis decoupling was used [i5] in the case of a disk where

variablesx=(Ry—r)/e23 and v, (x) = 7,(r)/e?3 v, satis- V=0

fies the Painlevequationv”=uv(v2—2Ryx) with v(0)=0

andv (X)=2Ryx for x large. The boundary behavior has al-

: - C. Estimate of the energy
ready been studied {i17] and[16] using matched asymptot-

ics. We now estimate the terms in E(R.9). The first term
The energy ofp, can also be estimated by a test functionE:(7.) is a constant depending only an and not on the
equal to\/a except on the boundary layer to get solution type, that is, with or without vortices. The second

term gives a contribution coming from the vortices and the

2 third term is due to the vortices and rotation.
Eo(7mo) < ?lln el[1+0(1)]. (2.7 We use the analysis of vortices developellif] and later
in [14,15,19. Let D.=D\{x, dist(x,dD)<e”}, with B<1.
2. The case of an ellipse Then in D it is possible to define vortices far, in the

: i i L= B :
As discussed before, the minimum =f,e'S: of Eq. (2.1) following way. There exist ball8;=B(p;,c” ) wherep; are

has a nontrivial phasé? tends toa in every compact subset POiNts in D, at mutual distance bigger thare8 and g’

of D and the functiorg, given by Eq.(2.4) or (2.5 tends to >/, such thajv [>1/2 in D,\U;B;. Moreover, the degree
the unique solutior¢ of d,=deg@./|v,|,dB;) is not zero and there is an estimate of
the energy ofv, in each ballB;. This analysis means that
vortices are in fact defined in the balls whergis less than
1/2 and has a nonzero degree. This allows us to compute
G,(v,) for which only the gradient term in the vortex balls
One can easily get tha(x,y) = —a?(x,y)/(2+2\?). Using  will give a contribution: each vortex gives a contribution in
Eqg.(2.4), we can defin&,, the limit of S, , to be the solution the amount of Zr|In ¢| due to its degree and a contribution
of a(VS,— Qxr)=QV* & with zero value at the origin. We of lower order that comes from the interaction with the other
have Sy=CQxy with C=(\2—1)/(\?+1). We see thaB, vortices. Moreover|7,|? is almosta:

1
div(gvg) =0inD, é&=0o0ndD. (2.8
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lll. CRITICAL ANGULAR VELOCITIES

G.(v)=2mwl|lne dila(p;
(V) l |2| | '| (P) A. Critical angular velocity for the existence of one vortex

Let u, be a minimizer of(P) with one vortex at a poinp
—2m >, didj\a(p)a(p;)in|p; —p;|+O(1). in D with coordinates X,y) and letAE, be the difference
1) betweenE,(u,) and the energy of a solution without vortex
(210  [E.(7.)+O(eline|)]:

QO

In order to estimate the third term in E@.9) we letX, be  AE,=2m(a—x*=\%?)| [Ing|- 1+)\2(a—X2—)\2y2)
the solution ofa(r)(VS,— Qxr)=QV'X, that is zero on

the boundary ofD, . That is, X, solves Eq.(2.8) but with X[1+0(1)]. (3.1
zero boundary data oaD, instead of9D. HenceX, con- _ ) ) o
verges to¢ the solution of Eq(2.8). An integration by parts 1 NiS expression was obtained by Svidzinsky and Fét6}
on the last term of Eq2.9) using the definition o, and ~ USing a different method. The form &fE, allows the com-
the definition of the degree of, on vortex balls and the fact Putation of two critical angular velocitieQs and(), for the

that the higher-order term comes from an integration on th&Xistence of vorticestl is the velocity for which the solu-
vortex balls yields tion with one vortex starts to be locally stable dd that for

which it starts to be globally stable. Fé¥<Qg, AE, is a
decreasing function ofp|, the position of the vortex}p|

. =0 is alocal maximum oAE, . ForQ,<Q<Q,, |p|=0is
2 _ A E S 1
jD| 76| (VS = QX)) (iv, Vo) a local minimum forAE, . Note thatAE,(pe dD)=0 and
AE,(|p|=0)>0.
_ . ForQ>Q4, |p|=0 is the global minimum foAE, . We
_fv(\uisiﬂ'('UvdXSXVv)[lJro(l)] thus have
1+\2 1+\2
=, 270d;X,(p)[1+0(1)] 0= lIne|= V2m|ing|,
i 2a 4\/K
— 7 Qd,
=2 7 (= X PP=22yi )1+ o(1)]. 1+)° 1+
S ! ! Q= lIng| = 5 V2rlingl,
(2.11) 2VA
that is,

Finally, one can derive from Eq&.9—(2.11) an asymptotic
expansion of the energy for a solution with vortices:

1+\? wh? (Ngm 172

0= In ,
* 4\/XU) Ngm | #?2

Es(us)_Es(ns):ZW“nle |d||a(p|) ﬁ 1+)\2 Wﬁz I (Ngm) 1/2
® n

! 2\ Ngm | %2

Note that Castin and Durf2] for the casex=1 find O,
= w (772 (Ngm)In[(C/\/7) (Ngm)/A#2]¥2 with C=1.8,

ngj didjva(pia(p))in|pi—pjl. and henceC/\Jw=1, which gives a value o}, very close
to ours. They also hav€),=2Q, for the caser=1. In-

creases in anisotropy yield high€); as already noticed in
[4] and experimentally confirmed i8,9], but as\ tends to
Note that the minimal energy for solutions without vorticesinfinity {2; becomes bigger than ko that vortices cannot
in D! is E,(7,)+O(e|Ine|): it is not exactlyE,(7,) since  be stabilized.

7, is @ minimizer without the constraifity,|=1, but it al- It can be proved that there exidtsthat tends to zero with
most equalsE,(7,) since[p a=1 and|7,|? approaches & such that fof)<Q;—k, the minimizer ofE, has no vor-
asymptotically. The above estimate illustrates that, physicallgex and forQQ>), +k, there exists a minimizer with a vor-
speaking, the energy of solutions havingvortices is ap- tex. Such a property rigorously justifies the physical meaning
proximately given by the energy of the vortexless solutionof {); as the critical angular velocity for the existence of a
and the sum of the self-energy of individual vortices and theminimizer with one vortex. Moreover, fd;+k,<Q<Q4
interaction energy of vortex pairs. This fact was also ob-+O(1), anyminimizer has one vortex of degree 1 tending to
served in[2] using a different approach. the origin. The proof consists in constructing a test function

27Q)
1z EI di(a—[x|>=N?y;|»)?

(2.12
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1/2

with a vortex at the origin and computing the energy of this (1+72) h2 Ngm
test function. This yields an upper bound for the energy. The Q.= ®
lower bound relies on estimates f@&,(v) from [18] and 2 NgmA h?
14,19
[14.19 (n—1) 1+)\2\/_ Ngm) 2
B. Critical angular velocity for n vortices * In 2\/X 2min h2 '

Similarly, one can comput€),,, the critical angular ve- L ) )
locity for the existence oh vortices. For this purpose, one Cléarly, this is in agreement with the experimental observa-
can prove that as goes to 0 the vortices tend to the origin fion that for largerx, that is, more intense anisotropy, the
and they are all singly quantized vortices, thatdjs-1. The ~ cfitical angular velocities have wider ban9].
proof goes as if14,15: to show it, one may define a test
function that consists in putting thevortices on a polygon C. Location of vortices

centered at the origin of size\if in x and 1A JQ iny, and Once() is close to),, the location of the vortices is

check that this has a lower energy than any configurationy,, acterized by the configuration of poirifs} that mini-
with multiple vortices. Using a special ansatz, it has beer}nizes the functiomw given by Eq.(3.3). In nondimensional-

demonstrated 2] that multiply quantized vortices are un- ized variables, the points are given By /y2in_a|. For
stable. In fact, it is a physical signature of harmonic trappmgconvenience ;Ne define '

potentials that the minimizers have only single vortices.
When other trapping potentials are used, it is possible to 2 lIne|
have minimizers with multiply quantized vorticed;&1); p= an? 0a-
see, for example, the discussion #0] for quartic potentials.

We let p; with coordinates %;,y;) be such thatx;  Note that, given the value o}, in Eq. (3.4), to leading
=X JQ and§i=7\Yi JQ. This allows us to estimate the en- order,p is equal_to\/zﬁl)\/(lJr )\2)_. We use the values af
ergy of a solution withn vortices centered gt; from Eqs.  @ndp to get a simplified expression fov.

(2.9-(2.12:
1 W(Py, - Pr)=— BN p2 (Y]
Es(u)zEs(ns)+27Tna(|lns|—mﬂa o
5 ~ ~ ~ ~ |Yi_Yj|2
+7(n“—n)aInQ+w(py, ...,p,)+C,+0(1) +§j In| [x—x;| +T .
(3.2 3.5
whereCy, is a constant that depends orand) and The critical points ofw, and thus the vortex positions, satisfy
~ ~ ~ ~ Vi—yil? 203 %
e P =2 In| X —X;|%+ ' ~ N2(X—X:)
W(py Pn) Waizﬂ (|x| il N2 pXi=D, ==, (3.9
e 0N X=X 2+ Yy
— o~ 2 Ine
2,72 _ - o~
+27m2i (X‘+yi)(1+)\2 Qa)' ~ Yi—Yj
(3.3 X =5+ yi—yg|

The first term in Eq.(3.3 gives the repulsive interaction AN immediate observation is that

between the vortices and the second term illustrates the com-

petition between the restoring and centrifugal for@$]. > %= yi=0. (3.9
Recall thata?=2\/a. For fixed\, w is of order 1, and i [

hence is of lower order than the previous terms. Then the _ ~

critical angular velocity for the existence ofvortices can be By multiplying the equations by; andy;, respectively, and

computed from Eq(3.2), adding the results together, one can obtain

o

Qn=(1+>\2)\/5
a

(1+)\2)\/ﬁ|lns|)

and the critical angular velocity in the original parameters is
Qn,

lIne| Z (x2+y?)=n(n—1)/(2p). 3.9

(n—1)
2

Similarly, multiplying the equations by; and —\%;, re-

In spectively, and adding the results together, one gets

, (3.9

p(l—v)z Xiy;i=0. (3.10
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Unlike Egs. (3.8 and (3.9 where the dependence anis y 1
implicit, Eq. (3.10 leads to the property A= . Q, and cssz(ﬁ[az(r)—aﬁ(r)] .
E X;y;=0, for N#1. (3.11) The above formulation of the energy has a striking similarity

i with the high« high-field Ginzburg-Landau energ}?22]

) ] o with a variable coefficienf23].
The above observations lead to more precise predictions of

the location of vortices.

For instance, in the case=2 we getx;=—x, andy;
=-Y,. ForA=1, we have an infinite set of solutions con-
sisting in two points on the circl&?+y?=1/p, symmetric
with respect to the origin. Fok#1, Eq. (3.11) leads to Ju

X;y;=0 for i=1,2, and we have a pair of solutions with ot
eitherx;=0, y;=*\1/2p, ory,;=0, X;= = \/1/2p. Checking
the corresponding values af, we get that forn#1 the in D with initial conditionu(r,0)=ug(r) in D and boundary
minimizer of w corresponds to having both vortices stayingconditionu=0 on JD. Here, u.(u) denotes the Lagrange
on the long axis of the ellipse in the original scalifigat is, multiplier. Assume thati, satisfies the constrairfug||=1.
on thex axis if A\>1 and on they axis if A<1). This esti- Then, by taking
mate of the location is in agreement with the numerical so-
lutions given later.

For the casen=3, we also get that the three vortices are pe(U)= JD
on the long axis of the ellipse: one centered at the origin
whereas the other pair stays symmetrically on the long axig,e get

with X;= = /3/2p if A>1. Similar discussions can be carried
out for other values of. In general, for the case of vorti- d 2
a |U| dD-1
D

ces, we leR2=n(n—1)/2p andx;=R;X;, y;=R;y; . It fol-
lows from Eq.(3.9) that the point{p;} are localized by the

A. Evolution in imaginary time

To numerically compute the minimizers of Ed..5), we
consider the time-dependent equation in imaginary time:

a,(r)

82

1
—(V—iA)2u+?|u|2u— u=pu.(uu (4.2

. 1 a(r)
[(V=iA)u[?+ —|u[*~—~[u*1d D,
& €

—,ua(u)( fD|u|2dD—1> =0.

Thus, the constraintp|u|2=1 is ensured at all times. More-

minimum of ) X
over, using (,u,) =0, we get the energy estimate
A A lyi—y;l? d oul?
2. In| [xi =] N 5 g o =0.

under the constrain;x’+y?=1. It is reasonable to expect ~ Thus, we easily get that for any (), if Upe H3(D) and

that this formula will lead to a vortex array as computed inlluol=1, there exists a unique strong solutiowf Eq. (4.2)

[21] and observed ifi9] containing a moderate number of satisfying the constrairjfuf = 1. Using an argument similar

vortices. Note that the minimizep;=R,p;} has no explicit © that in[24,25, we may also get that ds- u approaches

dependence ofd; thus, for a given\, we expect the vortex & steady state solution which is a critical point of the energy.
L} 7 1 2 . -y -

configuration to be of similar structure for values@fclose ~ WVell-posedness for” initial data may also be obtained.

to Q,. On the other hand, for a givemand (), we expect _

that for sufficiently large\, that is, for highly anisotropic B. Numerical schemes

traps, the minimizer ofv to be given by collinear solutions There are various ways to solve the time-dependent

with vortices all located on the long axis of the elliptical trap. gross-Pitaevskii equations; see, for examf®,or [4]. We
Our characterization of the location of the vortices is consisgye advantage of the striking similarity with the high-

tent with the numerical results given later. high-field time-dependent Ginzburg-Landau equatif28],
and adapt a code developed #8,26,27. Spatially, we use a
IV. EVOLUTION EQUATION AND NUMERICAL standard finite element approximation; 4&3,27] for de-
SCHEMES tails. Here, we focus on the time discretization and the treat-

ment of constraints. It has been observed that there are some
steady states exhibiting metastability; thus it is important to
get asymptotically stable schemes for large times, which in
general require the use of implicit schemes with no limita-
tions on the time step size.
f [|(V—iA)u|2+%[as(r)—|u|2]2 +c, (4.0 ~ Let{u,} be approximate solutions @fi(t,)} at discrete
D 2e time {t,} with time stepAt,=t,—t,_;. We discuss two
time-discretization schemes and also some results of numeri-
wherea,(r)=a(r) —s2Q?%r?, cal experiments.

To numerically compute the energy minimizers of Eg.
(1.5), we notice that the energy in E@L.5 can be rewritten
as
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VORTICES IN A ROTATING BOSE-EINSTEIN . . .
1. A first order backward Euler in time discretization
Givenu,_4, we first solve foru*:

u* —uUp_1 - 1 )
—— " (V=iA)2U* — u(U,_ ) U* + 5 |u* [Pu*
At, €

1
——2agu*=0. (4.3
&

Then, we apply the projection,=u*/|u*|. Both the back-

ward Euler step and the projection step give only first order

in time accuracy.

2. A norm-preserving, energy-decreasing second order scheme

For anyu,v and their complex conjugates,v, we let
f(u,v)=(Jul*+]v[?)(u+v)/2, which satisfies f(u,v)(u
—v)=(|u*~|v]|*/2. Givenu,_, we first solve foru*:

2(U* —Up-1)

i 2% _ *\ 1%
Aty (V=iA)cu* —v(u*)u

1 1
+—f(2u% —u,y_g, Uy 1) ——a,U* =0,
€ e

wherev(u*) is given by

v [ o= [ ev-imwe

|

a; *|2
82|U | ]

1
?f(Zu* —Up_1,Up_q)U*
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FIG. 1. Contour plots ofu| for Q=0 (first column, 15 (second
column 17.5(third column, and 20(fourth column.

are mostly interested in the minimizers of the Gross-
Pitaevskii energy, the time evolution is employed as a means
of marching to the steady state solutions. For this reason, we
have used variable time steps in order to accelerate the con-
vergence in time. The nonlinear systems are solved by a
Newton-like method at each step. Although such a method is
computationally costly per step, this drawback is offset by its
unconditional asymptotic stability for marching to the steady
state. We have also computed the solutions using refined
meshes to ascertain the numerical convergence.

To obtain solutions for various velocities, we have used a
number of different initial conditions. For example, we have
used|ug(r)|2=a(r) for r e D, which serves as a good ap-
proximation to the steady state solution, especially in the
case of vortex-free solutions. We note that for large values of
Q) this choice of initial condition can also lead to steady state
solutions with multiple vortices. Detailed solution branches
are described in the next section. In addition, we have also
used other initial conditions that manualhyant vortices in
the domain in order to find different solution branches. Fi-
nally, a continuation in the paramet@r has often been em-
ployed to follow a particular solution branch and to compute
the bifurcation diagrams. The continuation procedure also
provides a test for the local stability of the numerical solu-
tions: when one branch becomes unstable, the solution jumps
onto a different branch.

Then we letu,=2u* —u,_,. Taking the inner product of Eq.
(4.4) with u*, we get (* —u,_4,u*)=0, which leads to
[unll?=un—4||?. That is, the norm is preserved at each time
step. Taking the inner product of E@.4) with u* —u,,_4, it

is easy to get

V. NUMERICAL RESULTS AND BIFURCATION
DIAGRAMS

We now present some pictures of numerical solutions and

discuss the various solution branches.

ZHUn_ un—l”2

Atn +58(Un)—5s(un,1):0.

Thus, during the discrete time evolution, the energy de-

A. Description of solutions

1. The case of a disk

creases. This discrete scheme is second order in time and FOr any(, there is a vortex-free solution, which is close
unconditionally stable. It also preserves some essential fed0 a(x,y) except near the boundary. Far=0, in addition to

tures of the continuous dynamic system, making it suitable
for long time integration and for studies of metastabilities of
the solutions.

C. Description of the numerical experiments

We have used the above schemes to calculate various nu-
merical solutions for the parameter values 0.02, A=1,
and\ =1.5. The spatial finite element space is taken t€Be
piecewise quadratic elements on triangular meshes. As we

063603-7

FIG. 2. Surface plots ofu| for solutions atQ)=0.
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FIG. 3. Surface plots dfu| for solutions at()=20.

. . . . FIG. 5. Contour plots ofu| for Q=17.5\=1.5.
this vortex-free solution, there is also a one-vortex solution,

as i||UStI’ated in the fiI’St CO|umn Of F|g 1. The Square domain Note that there were two vortex Conﬁgurations W|th ﬁve
showing in each picture is of size 2.2 in both directions.  yortices for() =25, among which the nonsymmetric configu-
For larger(}, solutions with multiple vortices are shown ration corresponds to a solution with a lower free energy,
in the other columns of Fig. 1. For instance, solutions withajthough the difference in their energy values is very small.
two and three vortices fof)=15 are shown in the second The coexistence of vortex solutions with the same number of
column, solutions with four and five vortices fr=17.5 are  yortices but with different vortex configurations has been
shown in the third column, and solutions with six and severexperimentally observed i8,9].
vortices for() =20 are shown in the last column. The param-
eter values for which the single-vortex and multivortex solu-
tions exist are to be presented in the next section. Figures 2 ) o .
and 3 provide the surface plotand better viewof |u| for a An issue that we have studied is the existence of branches
vortex-free solution afl=0 and a solution af)=20 with  Of n-vortex solutions ag) is varied, and especially which
four vortices, respectively. Each solution has a top and boton€ is the minimizer.
tom view; the paraboloid shapes are easy to visualize from
the pictures. In Fig. 4, we have plotted a solution with 19
vortices corresponding t@ =31.5. There is a triangular ar- For =0, the solution with lowest energy is the vortex-
ray with one vortex at the origin, then six vortices in the free solution. We start with this solution as initial value for
inner circle, and 12 vortices on the side. the time-dependent problem for a slightly bigger This
device allows us to continue the branch of the vortex-free
2. The case of an ellipse solution as(} is increased. We find that the vortex-free solu-
nOE_ion is obtained as the limit of the .evolut.ion equation wien
ing toA=1.5. In Fig. 5, the contour plots of the magnitude of Is large up to)=19. For() =19, six vortices are nucleated
the solution|ul with 0=17.5 are drawn while in Fig. 6 0 11 boundary and eventually one wortex foves [0 the
=25. The rectangular domain showing in the individual pic (top right. Now if Q is decreased from the value 19 using

tures is of size 2.6 in the horizontal direction and 1.6 in the,[h ix-vortex solution as initial value. w that this six
vertical direction. Fol) =17.5, it is interesting to compare € six-vortex soiution as al vajue, we see that this Six-

the location of vortices with the analysis of Sec. Ill C: in this vortex solution branch exists down &= 16, when it jumps

casep=0.79, the long axis is 0.9887, and we find for theiﬁ fc])cur vortlfes.blf Wehddecreaﬁ _fulrtsher,hther_\t v(\j/e Sta¥ on
location of the vortexx=0.19 forn=2 andx=0.33 forn € four-vortex branch down =3, when It drops 1o a

=3. The picture shows that the vortex is about 1/5 of thelWo-vortex branch. Similarly, if we incread@ from 13, the

long axis for two vortices and 1/3 for three vortices, which js wo-vortex ;olutlon will persist up =21 As fqr the one-
consistent with the analysis. We believe that, for moderat ortex solution branch, it is computed by planting a vortex-

values ofn, the location ofn vortices corresponds to the 'r:(e furr:cu;)n atr:h_e center mdthbe |n|t|al_ conqn:%_n ft?):hl_o;
positions minimizing Eq(3.5). then the branch is computed by continuatior(in(both in-

creasing and decreasindt is interesting to observe the fact
that this branch extends all the way &=0; such persis-

B. Branches of solutions

1. The case of the disk

We now present some solutions for an ellipse correspo

FIG. 4. Contour and surface plots pf| for solutions with 19
vortices atQ) =31.5. FIG. 6. Contour plots ofu| for Q=25\=1.5.
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tence of the one-vortex solution even for zero velocity has
been elaborated by various authdeee[4] for instance.
Since implicit integration is used, we are indeed able to
march to the steady state and to ascertain that this persistence
is not due to metastability. On the other hand, if the vortex is
planted away from the origin, it disappears for snfalas we

will see later.

2. The case of an ellipse

The same kind of behavior occurs for the vortex-free so-
lution branch withA =1.5: when() is increased from 0, we
stay on the vortex-free branch up €=22.5 when the so-
lution jumps to the four-vortex branch of Fig. 6. If we de-
crease() starting from this four-vortex branch, the solution
will stay on it down toQ2 =15, when it jumps to two vortices
and atQ)=10 it jumps to the vortex-free solution. Similarly
to the case of the disk, if one vortex is planted at the center
at time 0, it will persist in time even down tQ=0.

For Q) large enough, several vortices are nucleated at the
same time. Both initial conditions and the round-off errors
contribute to the symmetry breaking, and a strong symmetry
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FIG. 7. The energy v$) curves forn=1.0.

presence often makes symmetry breaking much harder t@ide bands of angular velocities. It is interesting to compare
achieve. For the disk case, we expect an equal chance gfis result with the value found in Sec. Il whef®, =9.8.
vortex nucleation from any point of the boundary. It turns outsimilarly, we obtain from Eq(3.4) that Q,—Q,_,=2.0.
that, for =19, an unstable front produces oscillations of Ajthough the value of}, is slightly overestimated, the dif-
almost equal magnitude, and spins off six vortices at thgerence(),—Q,_, looks good for smalh: the numerics in-
same time. Had the disturbance being unevenly distributed, ficate (),=12.0, 0;=13.6, 0,=15.8 and our theoretical
would be possible for some vortices to get spun off ahead Oéomputations yield),=11.8, 0;=13.8, Q;=15.8.

others, and due to the repulsion the others may never have a pyowever, when( is increased from 0, we saw that we
chance to appear; thus we may see solutions with a smallggay on the vortex-free branch up = 19. This means that

number of vortices. The valu@ =19 corresponds té)/ w, the vortex-free solution is a local minimizer up to this value.
=0.38, which is less than 0.7, for which vortices are nucle-We do not have any theoretical estimate for this value of
ated in the experimeni®]. This may be due to our 2D sim- local minimum. Similarly, for multivortex solutions, hyster-

plification. For a theoretical investigation of this value, seeesis loops are present. For the solution with six vortices,
[28]. Nevertheless, we believe that the location of vortices ighere are two possible configurations, one with all six on a
well described by our theory. concentric circle, and one with only five on a concentric

-340 T T T T T T

. T
C. Energy diagrams i mfzg;:i _______
We now discuss the energy diagrams in relation to the a0k 2 vortloes |
discussion of the critical angular velocities given in the ear-

lier sections. In Figs. 7 and 8, we have plotted the energy
given by Eg. (1.3 as a function of() for the various

branches of solution@ccording to the number of vortices

Not all computed solution branches are plotted since some of
them are very close together. Agai¥y 0.02 in our compu-

tation. =

1. The case of the disk

As discussed earlier, the vortexless solution, in the case of
the disk, exists for all values d and is independent d;
we thus have a constant line for its eneftgge Fig. J. These
vortex-free solutions are the global energy minimizers for
small Q ((2<9.3) whereas fof)>9.3 they have larger en-
ergy than the one-vortex solution. For multivortex solutions, a0l v 0 N
we see that each becomes the global energy minimizer for a 6 8 10 1z 14 16 18 20 22
range of values of), which corresponds to the experimental ¢
observation that there exist multivortex configurations for
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FIG. 8. The energy v$) curves forn=1.5.
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FIG. 10. Perturbing vortex away from center far=7.9.

intermediate values df, the vortex moves back to the cen-
ter for small displacement but moves toward the boundary
for large displacement. Figures 9 and 10 show, in the case of
. a disk and a small displacement, the marching away of the
FIG. 9. Perturbing vortex away from center #6r=0. center vortex for the solution witf =0 (starting from the

_ _ o _ ~top row and then to the bottom rgwand the marching back
circle while the remaining vortex is at the center of the disk.tg the center for the solution with = 7.9.

This occurs for()=22.5. Although the difference in energy
is hardly noticeable, the solution with a center vortex does VI. CONCLUSION
have a smaller energy value.

We have presented an alternative framework for the study
2. The case of an ellipse of the Gross-Pitaevskii energy in the Thomas-Fermi limit:
: - . we defined a nondimensionalized parametand computed
Now, we discuss the elliptical case with=1.5. The en- o retically an asymptotic expansion of the energy, the criti-
ergy versus) curves are given in Fig. 8. } , cal thermodynamic angular velocities of nucleation of vorti-
The vortexless solution, in the case of the ellipse, iS NQgg ang the location of vortices. This extends the results of
longer independent dR as in th_e case of the disk, as illus- [2]. We have proposed and implemented time integration
trated by the dependence of its energy @n The energy  schemes that have norm-preserving and energy-decreasing
diagram also |Ilustr_ates that hystere§|s occurs as a universgdatures and thus are useful for studying the stability and
phenomenon both in the case of a disk and in the case of §fetastability of solutions. We also presented energy dia-
ellipse. L o grams computed numerically for the various vortex solu-
Our numerics indicate thdd, =12, Q,=15. Itis inter-  {ions We determined that our theoretical predictions for criti-
esting tq compare this result with the value found in Sec. Il:o5 thermodynamic angular velocities are quite consistent
we obtain from Eq(3.4) that2,=13 and thatQ,—Qn 1 ith the numerics, which encourages us to think that our
=2.88. Although the value of}, is slightly overestimated, 5pproximation of smalle is correct althoughine| is not
the difference(),—Q,_, looks good again since we find gma|. 1n our computation, we toak=0.02, and the number

1,=1409. of vortices we observed ranges from 0 to 19 fbbetween
0 and 31.5.
D. Disp|acement Of the vortex from the center |ﬂ Vel‘y recent WOl‘l{Zg], we Used thIS frameWOI‘k Of Study

and the results if30] for the Ginzburg-Landau free energy

in 3D to get results for rotating Bose-Einstein condensates in
3D, especially estimates of critical angular velocities and an
away from the center leads to the drop of enerfy<(4.9). ~ 55ymptotic expansion of the energy that is valid for any type

For slightly bigger() a vortex at the center is a local mini- ¢ \ortex line. We will also carry out further numerical simu-
mum ((1<9.8). Let us analyze the time-dependent equationations in 3D to compare with experimental data.
using a vortex off center as the initial condition and let us

examine how it evolves. We find that in the case of the disk,
for <7, a displacement of size one-tenth of the radius
causes the displaced center vortex in the one-vortex solution The authors are grateful to Y. Castin for very interesting

to move toward the boundary. Fér>10, the center vortex discussions. They would also like to thank T. Riviere, E.

in the one-vortex solution moves back toward the center ifSandier, and S. Serfaty. This work is supported in part by a
under a displacement of size one-third of the radius. Fojoint France—Hong Kong research grant.

Based on the earlier estimatg.1) for the one-vortex so-
lution, we see that for smald the displacement of the vortex
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