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Giant dipole states of multielectron atoms in crossed electric and magnetic fields
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Giant dipole states of singly and excited doubly multielectron atoms in crossed electric and magnetic fields
are investigated. A gauge-independent approach to the pseudoseparation of the center of mass yields a gener-
alized multielectron potential in crossed fields that serves as a basis for the study of the dipole states. For
doubly excited systems, a class of highly symmetric decentered configurations is found and the properties of
the corresponding resonances are determined. An outline on multiply excited systems is given.
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I. INTRODUCTION

External fields strongly influence the structural as well
dynamical properties of matter and, in particular, of atoms
molecules. Unexpected phenomena have been found fo
most fundamental atomic system, i.e., the hydrogen a
exposed to magnetic and electric fields~see Refs.@1–4# and
references therein!. Beyond the specific phenomena induc
by the external field, the hydrogen atom represents a p
digm of a complex and nonintegrable system, whose deta
understanding influenced a number of modern theoretica
well as experimental developments. Examples are the s
classical theory of classically chaotic systems and the exp
mental technique called scaled energy spectroscopy.

More recently, it has become evident that the nonsep
bility of the center of mass~CM! and electronic motion for
the hydrogen atom in a magnetic field leads to a variety
two-body phenomena@5# such as the chaotic diffusion of th
CM @6,7#. Due to a gauge-independent approach to the se
ration of the CM and electronic motion of the atom, it w
possible to prove@8# that there exists a generalized gaug
independent potentialV for the electronic motion. In addition
to the Coulomb potential,V contains linear and quadrati
terms with respect to the electronic coordinates perpend
lar to the magnetic field, plus a constant associated with
electric field being either of motional or external origin.
the electric field exceeds a certain threshold value, the c
bined action of these potential terms leads to the existenc
an outer well, whose minimum is strongly shifted from t
Coulomb singularity at the origin. This outer well accom
dates typically a huge number of weakly bound states
possess, at laboratory field strengths, a very large ele
dipole moment ~so-called decentered states@9,10#! and
which are inherently different from the ‘‘traditional’’ hydro
genic Rydberg states in a magnetic field located in the C
lomb well. For low-lying energetical excitations, the eige
states in the outer well may be approximated by those o
charged anisotropic harmonic oscillator in a magnetic fie
With an increasing degree of excitation, however, anharm
nicity effects become relevant and ‘‘exact’’ numerical calc
lations are indispensable in order to gain insight into
properties of the system@8#. A detailed description of an
experimentally feasible scheme allowing for the preparat
of the hydrogenic giant dipole states was provided in R
1050-2947/2001/64~6!/063412~10!/$20.00 64 0634
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@11#. It is based on the population of a Coulomb-Rydbe
state by laser excitation, followed by a two-step switching
an external electric field, thereby capturing the electron
nuclear relative motion in the outer well. In an application
matter-antimatter systems, it could be shown@12# that for the
outer-well states of the positronium atom, the positron a
electron are prevented from annihilation for time scales
long as several years, i.e., an isolated quasistable pos
nium atom exists in crossed fields.

In the present paper, we investigate giant dipole state
multielectron atoms in crossed electric and magnetic fie
To do this, we first derive in Sec. II, the generalized poten
for neutral multielectron atoms by performing a gaug
independent pseudoseparation of their CM. Section III is
voted to the treatment of singly excited decentered ato
Section IV contains an investigation of doubly excited sy
tems that yields a class of resonances in crossed fields
responding to highly correlated decentered configuration
the atoms.

II. THE GENERALIZED POTENTIAL FOR
MULTIELECTRON ATOMS IN CROSSED FIELDS

Since the above-summarized results have been obta
in the framework ofone-electron atoms, the question arises
whether there exist decentered structures ofmultielectron
systemsand what their properties are. Since the gau
independent approach to the separation of the CM is the
ingredient for the derivation of both the outer well as well
the giant dipole states, our first major step is to prove
existence of a generalized gauge-independent multielec
potential. To do so, we start with the atomic Hamiltonian
the presence of external magnetic and electric fields in
laboratory frame

H5
1

2m (
i 51

N

~pi82eA i8!21
1

2M0
~p081ZeA08!2

2e(
i 51

N

E•r i81ZeE•r081Vc~ ur i82r j8u,ur i82r08u!, ~1!

where the indicesi ,0 refer to the electrons and the nucleu
respectively. Vc contains all Coulomb interaction terms
©2001 The American Physical Society12-1
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P. SCHMELCHER PHYSICAL REVIEW A 64 063412
E, A are the electric field and vector potential, respective
The ~total! pseudomomentumK̂ is a constant of motion o
the above Hamiltonian. It possesses the following gau
independent appearance@13#

K̂5(
i

~pi82eA i81eB3r i8!1p081ZeA082ZeB3r08 ~2!

Due to its conservation, the pseudomomentum ob

@K̂ ,H#50 and its components commute, i.e.,@K̂a ,K̂b#50
for a neutral system.B is the magnetic-field vector andM is
the total mass of the atom. Using a specific gauge~the sym-
metric one, see below! it has been shown already sever
decades ago@14,15# that the pseudomomentum may be as
ciated with the CM motion and may in particular be used
perform a so-called pseudoseparation of the CM motion.
deed, for vanishing external fields, it becomes identical w
the total canonical momentum of the atom. The conserva
of the latter allows for a complete separation of the CM a
electronic motion in field-free space. In the general form~1!
of the Hamiltonian, the vector potentialA generates the ho
mogeneous magnetic-fieldB5¹3A. Without loss of gener-
ality, the vector potential can therefore be parametrized
A(r i8)5(1/2)B3r i81¹8L(r i8) whereL is an arbitrary scalar
function. As a first step towards a gauge-independent p
doseparation for multielectron systems, we perform a co
dinate transformation from the laboratory frame to the C
frame. Specifically, we introduce the CM of the atom and
relative coordinates of the electrons with respect to
nucleus

Rat5
1

M S m(
i 51

N

r i81M0r08D ; r i5r i82r08 ~3!

and the corresponding canonically conjugated mome
Pat ,pi , respectively. Applying this change of coordina
frame to the Hamiltonian~1! yields the following trans-
formed Hamiltonian

H5
1

2m (
i 51

N F m

M
Pat1pi2

e

2
B3S r i1Rat2

m

M (
j

r j D
2eS m

M
¹Rat

1¹ i DL i G2

1
1

2M0
FM0

M
Pat2(

i
pi1

Ze

2
B

3S Rat2
m

M (
i

r i D 1ZeS M0

M
¹Rat

2(
i

¹ i DL0G2

2eE(
i

r i1Vc~ ur i2r j u;ur i u!, ~4!

where¹Rat
,¹ i are the derivative operators with respect to t

CM and electronic relative coordinates, respectively. Furth
more, L i5L(r i1Rat2(m/M )(r j ) and L05L(Rat
2(m/M )(r j ). The pseudomomentum~2! reads then as fol-
lows:
06341
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K̂5Pat1
e

2
B3(

i
r i2e(

i
S m

M
¹Rat

1¹ i DL i

1ZeS M0

M
¹Rat

2(
i

¹ i DL0

5Pat1
e

2
B3(

i
r i2eS (

i
Li82ZL08D , ~5!

where the prime indicates the derivatives of the scalar fu
tion ¹L(r )5L8. The second equality in Eq.~5! arises from
the particular dependence of the functionsL i andL0 on the
argumentsr i andRat . Since the pseudomomentum is a co
served quantity and since its components commute, it is
sirable to construct the common eigenfunctions of
Hamiltonian and the pseudomomentum. To this end, let
decompose the eigenfunctions of the Hamiltonian~4! accord-
ing to

C tot~$r i%;Rat!5U~$r i%;Rat!C~$r i%!, ~6!

U~$r i%;Rat!5expS 1 iK•Rat2 i
e

2 S B3(
i

r i DRat

1 iex~$r i%;Rat! D ~7!

with a so-far unknown functionx($r i%;Rat). K is designed
to be an eigenvalue of the operatorK̂ ~see below!. The re-
quirement thatK̂C tot5KC tot yields the most general ex
pression for the functionx

x~$r i%;Rat!5S (
i

Li2ZL0D 1 f ~$r i%!. ~8!

As a next step, we unitarily transform the Hamiltonian~4!
according toH→U21HU with U from Eq.~7! together with
Eq. ~8!. After some algebra and rearrangement of the ter
involved, we arrive at the HamiltonianH5T1V with

T5
1

2m (
i

S pi2
e

2
B3r i1ebB3(

i
r i1e¹ i f D 2

1
1

2M0
S (

i
pi1egB3(

i
r i1e(

i
¹ i f D 2

, ~9!

V5
1

2M FK2NeB3S 1

N (
i

r i D G2

2eE(
i

r i1Vc~$r i%!,

~10!

where b5m/M and g5Nm2M0/2M . The partT of the
Hamiltonian represents the kinetic energy of the electron
the presence of the magnetic field and this term is, as
pected, explicitly gauge dependent via the scalar functiof.
Indeed, expressingT in terms of the electronic degrees o
freedom ~coordinates and velocities! with respect to the
nucleus we arrive at
2-2
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T5
m

2 (
j

ṙ j
22

m2

2M S (
j

ṙ j D 2

, ~11!

which confirms the above statement thatT is the kinetic en-
ergy of the electrons with respect to the nucleus. Furth
more, the final HamiltonianH contains the important partV
that is independent of the chosen gauge~no scalar functionf
occurs inV) and may therefore be interpreted as a a gener-
alized potential. Besides the Coulomb interaction termsVc
and the electric Stark term due to the external electric fi
the first quadratic term of the potentialV is of particular
relevance. Apart from the trivial constantK2/2M , it gives
rise to a motional electric-field term (e/M )(B3K )(r i and a
diamagnetic term (e2/2M )(B3(r i)

2. The relevant quantity
occuring in the latter two potential terms is the electro
center of mass~ECM!, i.e., R5(1/N)(r i in the internal co-
ordinate frame. It is therefore the ECM that experiences
teractions beyond the Coulomb potential and that enters
generalized potential for multielectron systems. In case
one-electron systems, the above potential reduces to the
derived in @8#, and in particular, the ECM reduces to th
coordinate vector of the single electron. We remark, that
first quadratic term in Eq.~10!, which is according to the
above an important part of the total potentialV, may be
shown to represent the kinetic energy of the CM of the ato
Therefore, the CM kinetic energy of a neutral atom provid
a potential for the internal motion of the electrons of t
atom. This kinetic energy is due to the vanishing net cha
of the system~we are dealing with a neutral atom! indepen-
dent of any chosen gauge of the external vector potentia

In the following sections, we analyze the abov
generalized potentialV and identify the geometrical gian
dipole configurations corresponding to singly and multip
excited atoms in crossed fields.

III. GIANT DIPOLE CONFIGURATIONS OF SINGLY
EXCITED MULTIELECTRON ATOMS

For one-electron atoms (N51), it is well understood how
the decentered giant dipole states arise@8–10#. Above some
critical electric-field strength of motional~⇔pseudomomen-
tum! and/or external origin, the generalized potentialV in
Eq. ~10! develops for finite magnetic-field strength simult
neously a saddle point and an outer minimum. Concern
the potentialV, three regions have then to be distinguish
Close to the origin, the Coulomb potential is dominatin
With increasing distance from the origin, the linear Sta
terms become important and cause the appearance o
saddle point. Finally, for large distances, the diamagn
term of V becomes significant and an outer minimu
evolves. Due to the diamagnetic term, we encounter asy
totically a quadratic confinement perpendicular to the m
netic field. An outer potential well located far from the Co
lomb singularity therefore develops and becom
increasingly deeper with increasing electric-field stren
@8#. This three-dimensional outer well bears bound states
correspond to highly excited Rydberg states of the atom
which the electron is located far from the proton. As a co
sequence, these decentered states possess a huge elec
06341
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From a physical point of view, the above scenario may
imagined to exist also for multielectron atoms. Assumi
that only one of the electrons is excited in the presence
crossed electric and magnetic fields~for an experimental
preparation see@11#! one would then expect that it is cap
tured in an outer well due to the generalized potential
crossed fields. Formally, however, this is less evident si
the generalized potential in Eq.~10! acts upon the ECM of
the atom and not on a single electron. In the following,
will provide a rigorous background on the existence a
properties of giant dipole states for singly excited multiele
tron atoms.

Having identified the generalized gauge-independent
tential V and the kinetic-energyT, we are now allowed to
choose a suitable gauge in order to perform further inve
gations. For reasons of simplicity, we choosef 50 in T. To
further prepare the HamiltonianH( f 50) in Eqs.~9,10! for
an investigation of singly excited giant dipole states, seve
transformations are required that we shall describe in
following. First, we note that the relative kinetic energy
the electrons with respect to the nucleus contains terms
volving the velocities of different electrons@see Eq.~11!#. If
we deal with singly excited systems, it is however reco
mendable to formally separate the excited electron from
electrons of the remaining positively charged core as m
as possible. To this end, we perform the coordinate trans
mation

r i5r i81arN8 rN5rN8 ~12!

with a5@m/(N21)m2M #. In Eq. ~12!, the primed and
unprimed variables denote the coordinates before and a
the transformation, respectively. Starting with the relative
ordinates of the electrons with respect to the nucleus Eq.~12!
shows that in the coordinate system the coordinates of
Nth electron remain unchanged whereas the coordinate
the remaining (N21) electrons are now shifted by a sma
fraction of the position of theNth electron. This leads to the
desired simplification with respect to the kinetic-energyT,
which then reads

T5
m~M2m!

2M (
i

N21

ṙ i
22

m2

M (
i , j ; i , j

N21

~ ṙ i• ṙ j !1
mM0

2~M01m!
ṙN

2 .

~13!

TheNth electron is now kinetically decoupled from the oth
(N21) electrons. The kinetic-energyT and the generalized
potentialV of the new HamiltonianH take on the following
appearance:

T5
1

2m (
i

N21 S pi2
e

2
B3r i1

em

M
B3 (

i

N21

r i

1
em

2~m1M0!
B3rND 2

1
1

2~m1M0!

3S (
i

N21

pi1
e@~N22!m2M0#

2M
B3 (

i

N21

r i
2-3
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1
e~N21!m

2~m1M0!
B3rND 2

1S m1M0

2mM0
D

3S pN1
e~Nm22M0

2!

2~m1M0!2
B•rN1

em

2~m1M0!
B3 (

i

N21

r i D 2

,

~14!

V5
1

2M FK2eB3S (
i

r i1@12a~N21!#rND G2

2eES (
i

r i1@12a~N21!#rND 1Vc~$r i%,rN!.

~15!

The kinetic-energy term for theNth electron@third quadratic
term in Eq.~14!# may be simplified by performing the un
tary transformationU21HU with

U5expF2
iem

2~m1M0! S B3 (
i

N21

r i D rNG , ~16!

which yields then

T5
1

2m (
i

N21 S pi2
e

2
B3r i1

em

M
B3 (

i

N21

r i

1
em

~m1M0!
B3rND 2

1
1

2~m1M0! S (
i

N21

pi

1
e@~N22!m2M0#

2M
B3 (

i

N21

r i1
e~N21!m

~m1M0!
B3rND 2

1S m1M0

2mM0
D S pN1

e~Nm22M0
2!

2~m1M0!2
B3rND 2

. ~17!

Having separated the kinetic energy of theNth electron from
that of the remainingN21 electrons we are now at an e
cellent starting point in order to perform an adiabatic se
ration of the motion of theNth electron from that of theN
21 electrons. This is motivated by the fact that theNth
electron is highly excited and possesses a small kinetic
ergy and low velocity compared to the remainingN21 elec-
trons that constitute the tightly bound atomic core. Forma
we therefore perform an adiabatic expansion of the to
wave functionC($r i%,rN), which is an eigenfunction of the
HamiltonianH

C~$r i%,rN!5(
k

ck~$r i%;rN!•xk~rN!, ~18!

whereck($r i%;rN) are the eigenfunctions of
06341
-

n-

,
l

H085H2TN with

TN5S m1M0

2mM0
D S pN1

e~Nm22M0
2!

2~m1M0!2
B3rND 2

, ~19!

i.e., we haveH 08ck($r i%;rN)5ek(rN)ck($r i%,rN). TN is the
kinetic energy of the excited slow electron. The eigenfun
tions ck are therefore solutions to the problem of the inte
acting core and a static, i.e., spatially fixed external charg
the positionrN in the presence of the external fields.ek(rN)
are the eigenvalues that depend parametrically on the p
tion rN of the Nth electron. We remark that the expansio
~18! does not take into account the proper antisymmetri
tion between theNth and theN21 electrons. However, ex
change effects due to this antisymmetrization are expecte
be extremely small due to the large distance between the
and excited electrons. The core HamiltonianH 08 may be fur-
ther simplified by applying the unitary transformation

U5expF iem

m1M0
S B3 (

i

N21

r i D rNG , ~20!

i.e., by transformingH05U21H 08U which yields the signifi-
cantly simplified core Hamiltonian

H05T01V5
1

2m (
i

N21 S pi2
e

2
B3r i1

em

M
B3 (

i

N21

r i D 2

1
1

2~m1M0! S (
i

N21

pi1
e~~N22!m2M0!

2M
B

3 (
i

N21

r i D 2

1V. ~21!

Inserting the expansion Eq.~18! into the Schro¨dinger equa-
tion HC5EC, projecting on the eigenfunctionc l of the
core HamiltonianH0 and using the orthonormality of th
eigenfunctions yields the coupled channel equation of m
tions for the wave functions of the slowNth electron

@TN1e l~rN!2E#x l52(
k

^c l uTNuck&xk . ~22!

Performing an adiabatic approximation means to neglec
nonadiabatic coupling elements^c l uTNuck& occuring in Eq.
~22!. This assumes the validity of the approximation of t
true eigenfunction of the total system by a single product
a core eigenfunctionc l to H0 and a solutionx l to the fol-
lowing equation of motion for the excitedNth electron

@TN1e l~rN!2E#x l50, ~23!

i.e., we restrict the motion of the slow electron to a sing
potential-energy surfacee l(rN) created by the fast motion o
the core electrons. This potential-energy surface takes on
following appearance:
2-4
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e l~rN!5
1

2M
~K2eB3@12a~N21!#rN!2

2eE@12a~N21!#rN2
e

M
~B3P!~K2eB

3@12a~N21!#rN!2eEP

1K c lUT01Vc1
e2

2M S B3(
k

r kD 2Uc l L , ~24!

wherePl5^c l u(r i uc l& is the electric dipole moment of th
electronic statec l in the presence of the crossed fields. T
reader should note that the potentiale l(rN) in Eq. ~24! de-
pends both explicitly and implicitly viac l on the positionrN
of the excitedNth electron. In the following, we restrict our
selves to the electronic ground statec0 of the atomic core. A
careful look at Eq.~24! reveals that the terms depending
P are negligible compared to, e.g., the first quadratic te
Additionally, the last quadratic term occuring in the expec
tion value with respect toc0 may safely be neglected. Th
implicit dependence of the potential energy~24! on rN may
be obtained by performing a multipole expansion of the C
lomb potentialVc with respect to the outer electron. This
justified by the fact that the excited outer electron is loca
far from the atomic core, i.e., we haveurNu@ur i u. The leading
term in this multipole expansion describes the Coulomb
teraction of the distantNth electron with a single positive
charge located at the position of the atomic core@see Eq.~25!
below#. In other words, the atomic core is represented b
positive net charge. Finally, we arrive at the following go
approximation to the potential energye0:

e0~rN!'
1

2M
~K2eB3@12a~N21!#rN!2

2eE@12a~N21!#rN2
e2

urNu
1C, ~25!

whereC is an irrelevant constant. The Stark-like term due
the external electric-fieldE may be combined with the firs
quadratic term in Eq.~25! by redefining the pseudomomen
tum K 85K1Mvd wherevd is the drift velocity of charged
particles in the crossed external fields (E,B). Thereby, an
additional constant appears that may be included inC, i.e.,
we have

e0~rN!'
1

2M
~K 82eB3@12a~N21!#rN!22

e2

urNu
1C.

~26!

Including the term of the next higher order with respect
the multipole expansion would give rise to the interaction
the outer charge with the permanent dipole of the ato
core that results in an interaction term2e(PrN /urNu3). How-
ever, due to the strong decay of this interaction with incre
ing distance of the outer electron from the remaining atom
core, it is safely assumed to be of very minor importance
the properties of the excited atom. Additionally, it turns o
06341
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that the adiabatic approximation and the approximations
troduced above by neglectingP-dependent terms introduc
errors that are of the same order of magnitude as the ene
associated with the dipole interaction.

Basing ourselves on Eq.~26!, we immediately realize tha
the resulting equation of motion~23! is very similar to that
obtained for the hydrogen atom in Refs.@8#. The correspond-
ing results obtained in these references may therefore be
rectly transfered to the case of the singly excited multiel
tron atom investigated here.

Above some critical value of the electric-field strength~of
motional or external origin! and correspondingly the absolu
value of the pseudomomentumK8, an outer well is formed in
the potentiale0. This well bears weakly bound states fo
which theNth electron is located at a large distance from t
remaining positively charged atomic core and therefore th
states possess a large electric dipole moment. In analog
Refs. @8#, the condition for the existence of the outer we
readsK83.(27/4)MB8 whereB85@12a(N21)#B. If we
specialize to the situationB5(0,0,B),K 85(0,K8,0), i.e., the
electric field points along the negativex direction, we obtain
the position of the saddle point, and in particular, of t
minimum of the outer well as solutions to the third-ord
polynomial (B82/M )x0

31(B8K8/M )x0
22150. Expanding

the potential energye0 up to second order around the pos
tion of the outer minimum and solving the correspondi
equation of motion@see Eq.~23!# for an anisotropic charged
oscillator in a magnetic field yields the frequencies

v65
1

A2
~~vx

21vy
21vc

2!6@~vx
22vy

2!212~vx
21vy

2!

3vc
21vc

4#1/2!1/2;

vz5S 1

mux0u3D 1/2

, ~27!

wherem5@mM0 /(m1M0)# and

vx5F 2

m S B82

2M
1

1

x0
3D G 1/2

;

vy5F 1

m S B82

M
2

1

x0
3D G 1/2

;

vc5S eB~Nm22M0
2!

m~m1M0!2 D . ~28!

The spectrum is that of a three-dimensional harmonic os
lator with the above frequencies, i.e.,En1n2nz

5(n1

11/2)v11(n211/2)v21(nz11/2)vz1C 8. This approxi-
mation to the exact spectrum of the giant dipole states is o
valid for sufficiently low-energetical excitations. With in
creasing energy in the outer well, effects due to the anh
monicity of the well become increasingly important and
numerical approach to the solution of the correspond
2-5
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equation of motion@Eq. ~23! together with Eq.~26!# is nec-
essary@8#. We mention here only that anharmonicity effec
are most pronounced in the direction parallel to the magn
field. This concludes our investigation on the giant dipo
states of singly excited multielectron atoms in crossed e
tric and magnetic fields.

IV. GIANT DIPOLE STATES FOR MULTIPLY EXCITED
ATOMS

It is an intriguing perspective to go beyond the previou
described singly excited decentered atomic states and to
the question for the existence and properties of giant dip
configurations for multiply excited atoms. To investigate th
problem, let us focus on doubly excited systems, more s
cifically on two-electron systems~the generalization to arbi
trary doubly excited systems is then, according to the ab
results, straightforward!. As a first step, let us introduce
suitable coordinate transformation simplifying the tw
electron Hamiltonian~10 for f 50) for N52. Since impor-
tant parts of the generalized potentialV depend only on the
ECM and since both electrons are assumed to be highly
cited, it is natural to introduce the ECM as a coordina
vector. Additionally, we require that the kinetic energ
should become as simple as possible, which leads to
relative vector of the two electrons as a good choice for
second coordinate vector, i.e., we have in totalR5(r1
1r2)/2; r5r12r2. The transformed HamiltonianH5T1V
therefore decomposes into

T5
1

2m S P2e
m

m8
B3RD 2

1
1

m S p2
e

4
B3r D 2

, ~29!

V5
1

2M
~K 822eB3R!21

e2

ur u
2Ze2F 1

UR2
1

2
rU

1
1

UR1
1

2
rUG1C, ~30!

where m52mM0 /M , m852mM0 /M022m. Analogous to
the previous sectionK 8 includes both the motional as well a
external electric field@see Eq.~25! and discussion below#. As
can be seen from Eqs.~29!,~30!, our coordinate change de
coupled the kinetic-energy terms belonging to the two el
tronic coordinate vectors and also simplified the fie
dependent potential terms in Eq.~30!. The above
Hamiltonian therefore provides an excellent starting point
further investigations.

In general, we expect that possible doubly excited
centerd configurations correspond to resonances of the a
and these can in particular be yielded by the extrema of
six-dimensional potentialV(R,r ) in Eq. ~30!. We therefore
have to find the roots of the six nonlinear coupled equati
]V/]r50 and]V/]R50. Without loss of generality, we as
sume in the following again that the magnetic- and elect
field vectors point along the positivez axis and negativex
axis, respectively. A cumbersome calculation yields the
lowing geometrical conditions:
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~rR !50; Y5Z50; R5
1

2
A3r ;

P~X!5X31S K

2BDX22
3

8A3

M

B2
50 ~X,0!, ~31!

whereR5(X,Y,Z), r5(x,y,z) andr 5ur u, R5uRu. Accord-
ing to the first geometrical conditionr•R50, the ECM and
the interelectronic coordinate vector are orthogonal. Si
Y5Z50, this leads tox50. Furthermore, the conditionR
5(1/2)A3r and equallyuR2(1/2)r u5uR1(1/2)r u leads to
the fact that the two electrons and the nucleus form an e
lateral triangle. The remaining nonzero coordinateX of the
ECM has to fulfill the corresponding polynomial equatio
P(X)50 in Eq. ~31!. This completes the specification of th
extremal configurations that are located on a o
dimensional circular manifold. The electrons form a dece
tered triangular configuration and arehighly correlated
through the fact that they are forced to stay on opposite s
of a circle. The geometry of the extremal configuration d
scribed by the above conditions is illustrated in Fig. 1
which the circular extremal line as well as the opposite el
trons are indicated. Both electrons are for laboratory fi
strengths located far from the nucleus: the electron-nuc
distance scales with}(1/B). The position of the extrema wil
in the following be denoted byr0 ,R0.

If the inequality K83.(81/4)A3MB is fulfilled P(X)
50 has two real solutions on the negativex axis ~the decen-
tering direction of the atom!. The smaller of these two value
~excluding the sign! corresponds to a maximum~saddle! of
the intersection of the potentialV along theX direction,
whereas the larger value yields an outer minimum. Of p
ticular interest is, of course, the case where the ECM is c
tured in the outer minimum. To investigate the energies a
stability of the resonances corresponding to this case we
proceed as follows: We expand the potentialV around the
minimum up to second order with respect to all coordina
followed by a normal-mode analysis of the resulting coup

FIG. 1. Shown is a sketch of the geometrical configuration
the giant dipole two-electron resonances. The electric and magn
field vector point along the negativex and positivez direction,
respectively.R is the electronic center of mass coordinate andr the
relative coordinate vector of the electrons. The big circular lo
lying in the yz plane indicates the geometrical position of all e
tremal configurations.
2-6
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problem in the presence of the external fields. The expansion of the potentialV reads

V'V~r0 ,R0!1
]V
]r U

(r0 ,R0)

~r2r0!1
]V
]RU

(r0 ,R0)

~R2R0!1
1

2 S r2r0

R2R0
D T ]2V

]r]RU
(r0 ,R0)

S r2r0

R2R0
D . ~32!

Sincer0 ,R0 represents an extremum we have]V/]r u(r0 ,R0)5]V/]Ru(r0 ,R0)50, i.e., the linear terms vanish and the quadra
ones remain only. A tedious calculation gives

S ]2V
]r]RDU

(r0 ,R0)

5F3

¨

2uX0u 0 0 0 y0 z0

0
3y0

2

4uX0u
3y0z0

4uX0u
y0 0 0

0
3y0z0

4uX0u
3z0

2

4uX0u
z0 0 0

0 y0 z0
32uX0u4

27A3
S 4B2

M
2

15A3

8uX0u3D 0 0

y0 0 0 0
32uX0u4

27A3
F4B2

M
1S 3A3

2uX0u3
2

27A3y0
2

32uX0u5 D G 2
y0z0

uX0u

z0 0 0 0 2
y0z0

uX0u
32uX0u4

27 S 3

2uX0u3
2

27z0
2

32uX0u5D
©

, ~33!

whereF527A3/32uX0u4 To be specific, let us focus on the casey50,zÞ0. Equation~33! then reads

S ]2V
]r]RD U

(r0 ,R0)

5F31
2uX0u 0 0 0 0

2uX0u

A3

0 0 0 0 0 0

0 0 uX0u
2uX0u

A3
0 0

0 0
2uX0u

A3
DX 0 0

0 0 0 0 DY 0

2uXu

A3
0 0 0 0 DZ

2 , ~34!
r-
en

h a
his

ic

d on

t
n-
where

DX5
32uX0u4

27A3
S 4B2

M
2

15A3

8uX0u3D ;

DY5
32uX0u4

27A3
S 4B2

M
1

3A3

2uX0u3
D ; DZ5

4uX0u
9

. ~35!

Equation~34! contains a column and row of zeros that co
respond to the mode of zero frequency: for the total pot
06341
-

tial, the circle of extremal configurations is associated wit
motion possessing a vanishing vibrational frequency. T
fact is strictly valid both for the potentialV in Eq. ~32! as
well as the exact potentialV in Eq. ~30!. It will also persist
for the full equations of motion, i.e., including the kinet
energy in the presence of the external fields~29!. As a next
step, one has to perform a normal-mode analysis base
the HamiltonianH5T1V whereV is now taken from Eq.
~32! together with Eqs.~34!,~35!. As a result, one arrives a
the following eigenvalue problem for the harmonic freque
cies V i , which are the frequencies~energies! of the reso-
nances of the doubly excited atom in crossed fields
2-7
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~2V i
2!V i5F3

¨

2uX0u
m

2 iBV i

mF
0 0 0 2

4uX0u

mA3

iBV i

mF
0 0 0 0 0

0 0 2
2uX0u

m
2

4uX0u

mA3
0 0

0 0 2
2uX0u

mA3
2

DX

m
2

2iBV i

m8F
0

0 0 0
2iBV i

m8F
2

DY

m
0

2
2uX0u

mA3
0 0 0 0 2

DZ

m

©
V i , ~36!

whereV i5(V1 , . . . ,V6) i are the six-dimensional eigenvectors belonging to the eigenmodes with eigenfrequenciesV i of the
atom. The reader should note that the matrix on the right hand side~r.h.s.! of Eq. ~36! depends explicitly on the frequencie
V i , which is due to the appearance of the kinetic-energyT @see Eq.~29!# in the presence of a magnetic field. A closer look
Eq. ~36! reveals that the six-dimensional eigenvalue problem reduces to two three-dimensional ones involving exclus
subspaces (V1 ,V2 ,V6) i and (V3 ,V4 ,V5) i , respectively. In the following, we therefore discuss these two subspaces sepa

The subspace (V1 ,V2 ,V6) i contains the above-mentioned mode with zero frequencyV250, which corresponds to th
eigenvector withV150, V2Þ0, V650. Starting from the aligned configurationx05y050, z0Þ0 ~see Fig. 1! this corresponds
to an elongation of the interelectronic vectorr tangential to the circle of extremal configurations. The remaining characte
polynomial in the subspace (V1 ,V2 ,V6) i is quadratic and leads to the following eigenfrequencies:

V i5F 1

2m FFDZ1
m

m2
B22

2m

m
FuX0u6AS FDZ2

m

m2
B21

2m

m
FuX0u D 2

1
32m

3m
F2uX0u2G G 1/2

, for i 51,6. ~37!
f
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The terms ofV i involving F originate from the expansion o
V, whereas the terms proportional toB2 come from the ki-
netic energy, i.e., the field- and velocity-dependent force. T
term (32m/3m)F2uX0u2 is the only one that stems from off
diagonal couplings of the matrix on the r.h.s. of Eq.~36!. The
analysis of the subspace (V3 ,V4 ,V5) i leads to a characteris
tic polynomial of sixth order that contains only even powe
of V i . It reads as follows:

~2m2m!V i
61FS mmDY1mmDX12m2uX0u

14F21
m2m

m82
B2D V i

41F2S 2mDXDY22mDYuX0u

22muX0uDX1
8m

3
uX0u28

m2

m82
B2F21uX0u D V i

2

12F3S uX0uDXDY2
4

3
DYX0

2D50, for i 53,4,5, ~38!

which reduces to a third-order polynomial equation ifV i
2 is

introduced as a variable.
06341
e

The spectrum finally reads E5( i 51
6 V i(Ni1

1
2 )

1V(r0 ,R0), where the frequencies are determined by
above Eqs.~37!,~38!. Analyzing the frequenciesV i , we find
that the two largest ones are almost degenerate and are o
order of half the electronic cyclotron frequencyVe

52eB/m. The remaining three frequencies contain the m
tion parallel to the magnetic field that is governed exc
sively by the Coulomb interaction and the heavy parti
dynamics. They are significantly smaller thanVe . The fre-
quenciesV i are therefore different by several orders of ma
nitude and include in particular all possible nuclear and el
tronic modes of the excited atom in the presence of
external fields~see Fig. 2!. Furthermore, it turns out that fo
typical laboratory field strengths, all frequencies are re
Within our harmonic analysis around these extremal confi
rations we therefore encounter no decay of the correspon
resonances, which indicates that they should possess a
nificant life time. Figure 2 shows the dependencies of
five nonzero frequencies on both the electric- as well as
magnetic-field strengths. With increasing magnetic-fie
strength all frequencies increase. For those frequencies
are associated with the cyclotron motion of the electronic
nuclear degrees of freedom, this behavior is evident. For
2-8
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frequencies associated with the motion parallel to the m
netic field, it is a consequence of the fact that the posit
uX0u of the outer minimum decreases strongly with incre
ing field strength. The Coulomb potential becomes th
stronger and the frequency in the corresponding well para
to the field raises. As can be seen in Fig. 2, the depende
of the frequencies on the electric-field strength is twofo
Those frequencies associated with the cyclotron motion
the electronic and nuclear degrees of freedom show, in g
eral, only a very weak dependence on the electric-fi
strength. An exception is the onset of the existence of
outer minimum~well!, i.e.,E'Ecr whereEcr is the minimal
value of the electric-field strength~pseudomomentum! for
which the outer-potential well occurs: a strong depende
of the frequency associated with the cyclotron motion of
heavy particle~nucleus! may be observed for a relativel
small interval of the electric-field strength. For the freque
cies associated with the motion parallel to the magnetic fi
we generically obtain a strong dependence on the elec
field strength~see Fig. 2!.

The above results address the case of a triangular
tremal configurationy50, zÞ0 whose ECM is located a
the positionuX0u that corresponds to the outer minimum.
case of the second, i.e., inner extremal configuration,
ECM is located above the saddle inX direction. An analysis
similar to the above one reveals then imaginary frequen
describing the decay of the corresponding resonances.
typical lifetimes involved are of the order of nanosecon
This configuration is certainly of minor interest due to t
larger decay rate of the resonances. It is reminiscent of qu
Penning resonances in crossed fields@16# and a correspond
ing configuration is of relevance in multiple-ionization pr
cesses in strong laser fields@17#.

FIG. 2. The five frequenciesn ~GHz! of the normal modes
belonging to the expansion around the extremal configurations
shown as a function of the applied electric fieldE(V/m) for differ-
ent magnetic field strengths. Two of the frequencies are appr
mately degenerate and indistinguishable~solid line! in the figure:
they are associated with the electronic cyclotron motion. The l
dashed line shows the behavior of the frequency associated wit
cyclotron motion of the heavy particle~nucleus!. The dotted and
short-dashed line show the behavior of the frequencies assoc
with the motion along the magnetic field.
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V. CONCLUSIONS

We have established the existence of giant dipole st
for highly excited multielectron atoms in crossed electric a
magnetic-fields. The basis for our investigation is a gau
independent pseudoseparation of the CM motion in the p
ence of the crossed fields. From this pseudoseparation
obtained a generalized potential whose properties are of
tral importance to the existence and properties of giant dip
states. In general, we have to distinguish between singly
multiply excited atoms. Using a number of transformatio
and an adiabatic approximation to separate the fast core e
trons from the excited electron we could show for sing
excited systems that the properties of their giant dipole st
are quite similar to that of the hydrogen atom.

Important facts could be revealed for the giant dipo
states of multiply excited atoms. We have shown the ex
tence of a class of highly symmetric giant dipole resonan
for doubly excited atoms in crossed fields. For these syste
the electronic CM is captured via the generalized potent
The electrons and the nucleus form an equilateral trian
that possesses a rotational freedom around the axis de
by the nucleus and the electronic CM. This represent
highly correlated electronic and nuclear motion induced
the external fields. The spectrum of this system has b
analyzed by performing a harmonic expansion and a su
quent normal-mode analysis. As a result, we obtained c
plete stability of the resonances up to the second order of
expansion around the equilibrium~extremal! configuration.
Of course, a detailed numerical analysis on the above re
nances is desirable in order to elucidate the influence
higher-order terms on their properties. The present analyt
paper can provide only strong indications towards their
istence and characteristics. Also, we have not taken into
count the possible process of reorganization of the dou
excited atom to a simply excited one that happens via a
ionization. This process is very complicated in the prese
of the fields and leads to a singly excited ion that cannot
described in the present framework. However, since the
excited electrons do overlap very little, it is not expected
be very efficient and/or rapid.

It is natural to think of resonances for triply and highe
excited systems. According to the above considerations,
expect the ECM again to be captured by the correspond
potential V in the outer well. Consequently, then excited
electrons will form a strongly correlated configuratio
around this decenterd ECM. Some remarks are in order.
to their spatial extension, quantum-mechanical correcti
such as exchange interactions may safely be neglected
the above states. This might be different if we turn to fie
strengths available in astrophysics, where the size of
multiply excited systems is expected to shrink significan
Furthermore, the tunneling rates from the outer configurat
to the inner Coulomb well may be estimated to be extrem
small. To prepare and detect the above resonances in an
perimental setup, a scheme similar to the one establishe
Ref. @11# might be helpful. It relies upon a combined tec
nique of electromagnetic excitation and switching of an e
ternal electric field in several steps. The prepared resona
might then be detected via their huge dipole moment.
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