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Giant dipole states of multielectron atoms in crossed electric and magnetic fields
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Giant dipole states of singly and excited doubly multielectron atoms in crossed electric and magnetic fields
are investigated. A gauge-independent approach to the pseudoseparation of the center of mass yields a gener-
alized multielectron potential in crossed fields that serves as a basis for the study of the dipole states. For
doubly excited systems, a class of highly symmetric decentered configurations is found and the properties of
the corresponding resonances are determined. An outline on multiply excited systems is given.
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I. INTRODUCTION [11]. It is based on the population of a Coulomb-Rydberg
state by laser excitation, followed by a two-step switching of
External fields strongly influence the structural as well asan external electric field, thereby capturing the electronic-
dynamical properties of matter and, in particular, of atoms oinuclear relative motion in the outer well. In an application to
molecules. Unexpected phenomena have been found for tigatter-antimatter systems, it could be shqia| that for the
most fundamental atomic system, i.e., the hydrogen atorfuter-well states of the positronium atom, the positron and
exposed to magnetic and electric fieldee Refs[1-4] and  €lectron are prevented from annihilation for time scales as
references thereinBeyond the specific phenomena induced!ong as several years, i.e., an isolated quasistable positro-
by the external field, the hydrogen atom represents a pardium atom exists in crossed fields.
digm of a complex and nonintegrable system, whose detailed In the present paper, we investigate giant dipole states of
understanding influenced a number of modern theoretical a@®ultielectron atoms in crossed electric and magnetic fields.
well as experimental developments. Examples are the semf© do this, we first derive in Sec. Il, the generalized potential
classical theory of classically chaotic systems and the experfor neutral multielectron atoms by performing a gauge-
mental technique called scaled energy spectroscopy. independent pseudoseparation of their CM. Section Il is de-
More recenﬂy, it has become evident that the nonseparaloted to the treatment of Slngly excited decentered atoms.
bility of the center of mas$CM) and electronic motion for Section IV contains an investigation of doubly excited sys-
the hydrogen atom in a magnetic field leads to a variety oféms that yields a class of resonances in crossed fields cor-
two-body phenomenigb] such as the chaotic diffusion of the responding to highly correlated decentered configurations of
CM [6,7]. Due to a gauge-independent approach to the sepdhe atoms.
ration of the CM and electronic motion of the atom, it was
possible to prov€{8] that there exists a generalized gauge- II. THE GENERALIZED POTENTIAL FOR
independent potentiaf for the electronic motion. In addition MULTIELECTRON ATOMS IN CROSSED FIELDS
to the Coulomb potentialy contains linear and quadratic
terms with respect to the electronic coordinates perpendicu- Since the above-summarized results have been obtained
lar to the magnetic field, plus a constant associated with th# the framework ofone-electron atomshe question arises
electric field being either of motional or external origin. If Whether there exist decentered structuresmufitielectron
the electric field exceeds a certain threshold value, the congystemsand what their properties are. Since the gauge-
bined action of these potential terms leads to the existence éfdependent approach to the separation of the CM is the key
an outer well, whose minimum is strongly shifted from the ingredient for the derivation of both the outer well as well as
Coulomb singularity at the origin. This outer well accomo- the giant dipole states, our first major step is to prove the
dates typically a huge number of weakly bound states thagxistence of a generalized gauge-independent multielectron
possess, at laboratory field strengths, a very large electrigotential. To do so, we start with the atomic Hamiltonian in
dipole moment (so-called decentered staté9,10) and the presence of external magnetic and electric fields in the
which are inherently different from the “traditional” hydro- laboratory frame
genic Rydberg states in a magnetic field located in the Cou-

lomb well. For low-lying energetical excitations, the eigen- 1 N 1

states in the outer well may be approximated by those of & H=7 Z p/ —eA/)*+ (p0+ZeAO)2

charged anisotropic harmonic oscillator in a magnetic field. B

With an increasing degree of excitation, however, anharmo- N

nicity effects become relevant and “exact” numerical calcu- _621 E-r{+ZeE-ro+Ve(|r{ —ri[,|r{ =rg)), (D)

lations are indispensable in order to gain insight into the

properties of the systerf8]. A detailed description of an

experimentally feasible scheme allowing for the preparatiorwhere the indices,0 refer to the electrons and the nucleus,
of the hydrogenic giant dipole states was provided in Refrespectively. V. contains all Coulomb interaction terms.
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E, A are the electric field and vector potential, respectively. R _p eB E E m v v A
The (total) pseudomomenturi is a constant of motion of “Part B nimes |y Ve, T Vi A
the above Hamiltonian. It possesses the following gauge-
i M
independent appearanfE3] 476 VOVRM_Z Vi)AO
1
K=, (p/ —eA’ +eBxr/)+ps+ZeAl—ZeBxr} (2) e
o ' VT 0 0 :Pat+§B><Z ri—e(z A{—ZA(’,), (5)
I I

Due to its conservation, the pseudomomentum obeys L R
N - . A where the prime indicates the derivatives of the scalar func-
[K,%]=0 and its components commute, i.pK,,Kz]=0

) I , tion VA(r)=A’. The second equality in E@5) arises from
for a neutral systenB is the mqgnehc-ﬂeld_vector ard is the particular dependence of the functighsand A, on the
the total mass of the atom. Using a specific ga(ige sym-

) belowit has b b read Iargumentsi andR,;. Since the pseudomomentum is a con-
metric one, see belowit has been shown already several o1\ eq quantity and since its components commute, it is de-

decades agfl4,19 that the pseudomomentum may be assOgjrapie to construct the common eigenfunctions of the

ciated with the CM motion and may in particular be used Ohamiltonian and the pseudomomentum. To this end, let us

perform a so-called pseudoseparation of the CM motion. Inygcompose the eigenfunctions of the Hamiltori@raccord-
deed, for vanishing external fields, it becomes identical with,

the total canonical momentum of the atom. The conservation

of the Iaﬁter aII.ows_, fo_r a complete separation of the CM and Vol {rihRa) = U R P (1), (6)

electronic motion in field-free space. In the general fgfm

of the Hamiltonian, the vector potentiAl generates the ho- e

mogeneous magnetic-fieBl=V X A. Without loss of gener- u(ri; Rat):exl{ +iK-Ry—i 5

ality, the vector potential can therefore be parametrized as

A(r{)=(1/2)BXr{+V'A(r{) whereA is an arbitrary scalar

function. As a first step towards a gauge-independent pseu- +ieX({ri};Rat)) )

doseparation for multielectron systems, we perform a coor-

dinate transformation from the laboratory frame to the CM . . . .

frame. Specifically, we introduce the CM of the atom and the'ith & so-far unknown functio({r;};Ra;). K is designed

relative coordinates of the electrons with respect to thdo be an eigenvalue of the operatér(see below The re-

nucleus quirement that ¥,,,=KW,., yields the most general ex-
pression for the functiory

BX >, ri)Rat
I

M ,ori=r{—rg ©)

1 N
Rat:_(m; ri +M0ro +f({rl}) (8)

x({ri}:Rm)=(Ei Ai—ZAg

and the corres_,ponding cqnonicglly conjugated mo_mentg\s a next step, we unitarily transform the Hamiltonigh
Pat,Pi respectlvely. Applylng .th's change Of. coordinate according toH— U~ 1HU with U from Eq.(7) together with
frame to thg He_1m|lton|ar(1) yields the following trans- Eq. (8). After some algebra and rearrangement of the terms
formed Hamiltonian involved, we arrive at the Hamiltonial =7+ V with

N
1 m e m 1 e 2
H:ﬁ; {Mpatpri—EBx ri+Rat_M; r T=ﬁ2 (pi—EBXriJre,BBXEi ri+eVif)
m 2 1 [Mg Ze 1 2
_e(vaat+Vi Aj +2_M0[Vpat_2i pit 5B +_2Mo(2 Di+975><2 ri+eZ Vif) .9
m Mo 2 2
- ) - — . 1 1
X | Rat M EI r|+zZe M Ve, Z V|)Ao} V:m[K—NeBX NE ri> —eEZ ri+V({ri}),
I I

10
—eEY, ri+Ve(lri—r 1o

) ri|)1 (4)
where B=m/M and y=Nm—My/2M. The part7 of the
Hamiltonian represents the kinetic energy of the electrons in
whereVg_,V; are the derivative operators with respect to thethe presence of the magnetic field and this term is, as ex-
CM and electronic relative coordinates, respectively. Furtherpected, explicitly gauge dependent via the scalar fundtion
more, A;=A(ri+Ry—(mM/M)Zr;) and A,=A(R,  Indeed, expressing in terms of the electronic degrees of
—(m/M)Zr;). The pseudomomentux2) reads then as fol- freedom (coordinates and velocitigswith respect to the

lows: nucleus we arrive at
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m _2 m? .\ 2 pole moment depending on the absolute value of the electric
=~ > vy (2 rj) : (1))  and magnetic-field strengths.
J J . . . .
From a physical point of view, the above scenario may be

: ' : A _imagined to exist also for multielectron atoms. Assuming
which confirms the above statement tais the kinetic en that only one of the electrons is excited in the presence of

ergy of the electrons with respect to the nucleus. Further:

he final Hamiltoni ins the i ” crossed electric and magnetic field®r an experimental
more, the final Hamiltoniaft contains the important pa preparation se¢l1]) one would then expect that it is cap-
that is independent of the chosen gauge scalar functiorf

' ) tured in an outer well due to the generalized potential in
occurs in)) and may therefore be interpretesl @ a gener-  ¢rossed fields. Formally, however, this is less evident since

alized potential. Besides the Coulomb interaction tefas  the generalized potential in E¢LO) acts upon the ECM of
and the electric Stark term due to the external electric fieldnhe atom and not on a single electron. In the following, we
the first quadratic term of the potential is of particular il provide a rigorous background on the existence and
relevance. Apart from the trivial constaKt’/2M, it gives  properties of giant dipole states for singly excited multielec-
rise to a motional electric-field terne(M)(BXK)Zr; anda  tron atoms.

diamagnetic terme’/2M)(BX =r;)%. The relevant quantity  Having identified the generalized gauge-independent po-
occuring in the latter two potential terms is the electronictential 1’ and the kinetic-energy; we are now allowed to
center of mas$ECM), i.e,, R=(1/N)Zr; in the internal co-  choose a suitable gauge in order to perform further investi-
ordinate frame. It is therefore the ECM that experiences ingations. For reasons of simplicity, we chodse0 in 7. To
teractions beyond the Coulomb potential and that enters thgyrther prepare the Hamiltoniak(f=0) in Egs.(9,10 for
generalized potential for multielectron systems. In case ofn investigation of singly excited giant dipole states, several
one-electron systems, the above potential reduces to the og@nsformations are required that we shall describe in the
derived in[8], and in particular, the ECM reduces to the following. First, we note that the relative kinetic energy of
coordinate vector of the single electron. We remark, that thene electrons with respect to the nucleus contains terms in-
first quadratic term in Eq(10), which is according to the yolving the velocities of different electroisee Eq(11)]. If
above an important part of the total potentldl may be e deal with singly excited systems, it is however recom-
shown to represent the kinetic energy of the CM of the atommendable to formally separate the excited electron from the
Therefore, the CM kinetic energy of a neutral atom providesglectrons of the remaining positively charged core as much

a potential for the internal motion of the electrons of theas possible. To this end, we perform the coordinate transfor-
atom. This kinetic energy is due to the vanishing net chargenation

of the systemwe are dealing with a neutral atgrimdepen-
dent of any chosen gauge of the external vector potential. ri=ritary ry=ry (12)

In the following sections, we analyze the above- . _ .
generalized potential and identify the geometrical giant W'th.a_d[m/(Ngll)rTj_Mg' m Eq. (1(12'), ;che t;))nfmed agd ft
dipole configurations corresponding to singly and muItipIyunprlme variables denote the coordinates betore and arter
. . . the transformation, respectively. Starting with the relative co-
excited atoms in crossed fields. . .
ordinates of the electrons with respect to the nucleug Ej.
shows that in the coordinate system the coordinates of the
. G'A'\Ig(DI'TPSI'D‘TACST'\I'EEU?QTKN)'\ET O’\'; SINGLY Nth electron remain unchanged whereas the coordinates of
= U CTRO OMS the remaining N—1) electrons are now shifted by a small
For one-electron atomd\(=1), it is well understood how fraction of the position of th&th electron. This leads to the
the decentered giant dipole states afBe10]. Above some desired simplification with respect to the kinetic-enef@y
critical electric-field strength of motionakpseudomomen- Which then reads
tum) and/or external origin, the generalized potentiain

__ N-1 2 N-1

Eq. (10) develops for finite magnetic-field strength simulta- 7— M E 12— m (ri-r)+ &H )
neously a saddle point and an outer minimum. Concerning 2M MLy Y 2(Mgtm) N
the potentialV, three regions have then to be distinguished. (13

Close to the origin, the Coulomb potential is dominating. . A
With increasing distance from the origin, the linear StarkTheNth electron is now kinetically decoupled from the other

. qu—l) electrons. The kinetic-enerdfjand the generalized
terms become important and cause the appearance of t dtential) of the new Hamiltoniart{ take on the followin
saddle point. Finally, for large distances, the diamagnetig 9

o o appearance:
term of V becomes significant and an outer minimum

evolves. Due to the diamagnetic term, we encounter asymp- 1 N1t e em Nt
totically a quadratic confinement perpendicular to the mag- 7= om 2 (pi—sz r,+ VBX Z ri
netic field. An outer potential well located far from the Cou- : :
lomb singularity therefore develops and becomes em 2 1
increasingly deeper with increasing electric-field strength + erN) e
[8]. This three-dimensional outer well bears bound states that 2(m+My) 2(m+My)
correspond to highly excited Rydberg states of the atom for N—1 N—1

e[ (N—2)m—M]

2 p;+ 5M BXZ ri

which the electron is located far from the proton. As a con- x
sequence, these decentered states possess a huge electric di-
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e(N—1)m 2 m+M, Ho=H-7y with
T 2 (mtMy) rN) | 2mM, ,
2 2 N-1 2 — LMO) p MBXI’ (19
X(DN+e(Nm—_MO)B~rN+£BXE n) : ml2mMo 1T 2(mmg)? N
2(m+Mg)? 2(m+My) i

i.e., we haveH o ({ri};ry) = e(rv) ¢al{ri}rn). 7 is the
kinetic energy of the excited slow electron. The eigenfunc-
tions ¢, are therefore solutions to the problem of the inter-
E f[1—a(N=1)]r )r acting core and a static, i.e., spatially fixed external charge at
= N the positionry, in the presence of the external fieldg(ry)
are the eigenvalues that depend parametrically on the posi-
V({rhr) tion ry of the Nth e_Iectron. We remark that the_ expansi_on
CLLLiS N/ (18) does not take into account the proper antisymmetriza-
tion between théNth and theN—1 electrons. However, ex-
(15 change effects due to this antisymmetrization are expected to
be extremely small due to the large distance between the core
The kinetic-energy term for thth electronthird quadratic ~ and excited electrons. The core Hamiltonidid may be fur-
term in Eq.(14)] may be simplified by performing the uni- ther simplified by applying the unitary transformation
tary transformatiord ~*HU with
iem
U=exmim o

i.e., by transforming,=U~H ;U which yields the signifi-
cantly simplified core Hamiltonian

(14

% K—eBX

:m[

—eE( > ri+[l-a(N-1)]ry

N-1 ' (20

BX >, ri)r,\,}, (16)

N—-1
BX X, ri)rN
I

U iem
R T o (mrMy)

which yields then

N—1 N—1 2
e em
1 Nt e em N1 ’HOZ%—H}:% EI pi—EBXri-l-VBX Z ri)
Tzﬁ 2 pi_Eeri+VBXE I
' ! Lt NEl L &((N=2)m—Mo)
Loem 2+ 1 Nil 2(m+Mg) | < Pi 2M
—  BXr - _
(m+My) N 2(m+Mo) \ 5 P N-1 2
- X ri| +W. 21
e[(N—2)m—M0]BXNEl LeN-Dm 2 Z ! @)
2M =~ [ mamg) o _ _ _ o
Inserting the expansion E¢L8) into the Schrdinger equa-
m-+M, e(Nm?—M3) 2 tion HW=EW, projecting on the eigenfunctiog;, of the
oM | PNT 5 B X (17)  core HamiltonianH, and using the orthonormality of the
0 2(m+Mo) eigenfunctions yields the coupled channel equation of mo-

tions for the wave functions of the sloNth electron

Having separated the kinetic energy of thth electron from
that of the remainindgN— 1 electrons we are now at an ex-
cellent starting point in order to perform an adiabatic sepa-
ration of the motion of thé\Nth electron from that of thé

—1 electrons. This is motivated by the fact that tNeh  performing an adiabatic approximation means to neglect all
electron is highly excited and possesses a small kinetic erhonadiabatic coupling elementsy| 7y ¢ occuring in Eq.
ergy and low velocity compared to the remainiNg-1 elec-  (22). This assumes the validity of the approximation of the
trons that constitute the tightly bound atomic core. Formallyr,e eigenfunction of the total system by a single product of
we therefore perform an adiabatic expansion of the total ¢ore eigenfunction, to H, and a solutiony, to the fol-
wave function¥ ({r;},ry), which is an eigenfunction of the |owing equation of motion for the exciteth electron
Hamiltonian{

[TN+e.<rN)—E]x.=—Ek<w.|TN|¢k>xk. (22)

[Tt e(rn) —Elxi=0, (23

Pk =2 dd{rikr  xdr, (18)  i.e., we restrict the motion of the slow electron to a single
“ potential-energy surfacg(ry) created by the fast motion of
the core electrons. This potential-energy surface takes on the
where ¢ ({r;};rn) are the eigenfunctions of following appearance:
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1 ) that the adiabatic approximation and the approximations in-
&(ry) =5 (K=eBX[1—a(N=1)]ry) troduced above by neglectirg-dependent terms introduce
errors that are of the same order of magnitude as the energies

e associated with the dipole interaction.
—eE[1-a(N=1)]Jry— o (BXP)(K—eB Basing ourselves on E¢26), we immediately realize that
the resulting equation of motiof23) is very similar to that
X[1—=a(N—=1)]ry)—€eEP obtained for the hydrogen atom in Reff8]. The correspond-

ing results obtained in these references may therefore be di-
_|_< " ¢|> (29 rectly transfered_to the case of the singly excited multielec-
tron atom investigated here.

Above some critical value of the electric-field stren¢ph
where P, = (| =r;| ) is the electric dipole moment of the motional or external originand correspondingly the absolute
electronic state), in the presence of the crossed fields. Thevalue of the pseudomomentufi, an outer well is formed in
reader should note that the potentig(ry) in Eq. (24) de- the potentiale,. This well bears weakly bound states for
pends both explicitly and implicitly viay, on the positiorry  which theNth electron is located at a large distance from the
of the excitedNith electron. In the following, we restrict our- remaining positively charged atomic core and therefore these
selves to the electronic ground stafg of the atomic core. A  states possess a large electric dipole moment. In analogy to
careful look at Eq(24) reveals that the terms depending on Refs.[8], the condition for the existence of the outer well
P are negligible compared to, e.g., the first quadratic termreadsK’3>(27/4)MB’ whereB’=[1—a(N—1)]B. If we
Additionally, the last quadratic term occuring in the expecta-specialize to the situatioB=(0,0B),K’'=(0,K’,0), i.e., the
tion value with respect t@y, may safely be neglected. The electric field points along the negatixelirection, we obtain
implicit dependence of the potential ener@4) onry may the position of the saddle point, and in particular, of the
be obtained by performing a multipole expansion of the Couminimum of the outer well as solutions to the third-order
lomb potentialV,, with respect to the outer electron. This is polynomial B'%M)x3+(B'K'/M)x3—1=0. Expanding
justified by the fact that the excited outer electron is locatedhe potential energy, up to second order around the posi-
far from the atomic core, i.e., we halm|>|r;|. The leading tion of the outer minimum and solving the corresponding
term in this multipole expansion describes the Coulomb in-equation of motiofsee Eq(23)] for an anisotropic charged
teraction of the distanNth electron with a single positive oscillator in a magnetic field yields the frequencies
charge located at the position of the atomic deee Eq(25)
below]. In other words, the atomic core is represented by a s o 2 o S,
positive net charge. Finally, we arrive at the following good wizﬁ((wﬁr wy+ o) F[ () — o)) “+ 2w} + o))
approximation to the potential energy:

e2
To+Vet 57

2
Bx% rk)

Xw§+w§]l/2)1/2;

1
eo(rN)~m(K—eBx[l—a(N—l)]rN)2

1 1/2
e2 wZ: |X |3 ’ (27)
~eE[1-a(N-Dlrv= 1 1+C (29 #1%0
N whereu=[mMy/(m+Mg)] and
where( is an irrelevant constant. The Stark-like term due to i 11/
the external electric-field may be combined with the first |2(B? 1 _
quadratic term in Eq(25) by redefining the pseudomomen- Wx= M W“LF '
tum K’'=K+ Mvy wherevy is the drift velocity of charged - o
particles in the crossed external fieldg,B). Thereby, an (1 /g2 1|12
additional constant appears that may be included,ine., o= —_— .
we have Vole\ M3
1 2 62 N 2 M 2
o(Tn)=~ =— (K’ —eBX[1— a(N—1)]ry)%— — +C. [ eB(Nm"—Myg)
2M [rul 0= | ————————— (28
(26) m(m+Mo)

Including the term of the next higher order with respect to1he spectrum is that of a three-dimensional harmonic oscil-
the multipole expansion would give rise to the interaction oflator with the above frequencies, i.eE, n o =(n.

the outer charge with the permanent dipole of the atomict1/2)w, +(n_+1/2)w_+(n,+1/2)w,+C'. This approxi-
core that results in an interaction terae(Pry/|ry|®). How-  mation to the exact spectrum of the giant dipole states is only
ever, due to the strong decay of this interaction with increasvalid for sufficiently low-energetical excitations. With in-
ing distance of the outer electron from the remaining atomicreasing energy in the outer well, effects due to the anhar-
core, it is safely assumed to be of very minor importance formonicity of the well become increasingly important and a
the properties of the excited atom. Additionally, it turns outnumerical approach to the solution of the corresponding
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equation of motior Eq. (23) together with Eq(26)] is nec-
essary{8]. We mention here only that anharmonicity effects
are most pronounced in the direction parallel to the magnetic
field. This concludes our investigation on the giant dipole
states of singly excited multielectron atoms in crossed elec-
tric and magnetic fields.

IV. GIANT DIPOLE STATES FOR MULTIPLY EXCITED
ATOMS

It is an intriguing perspective to go beyond the previously
described singly excited decentered atomic states and to ask
the question for the existence and properties of giant dipole
configurations for multiply excited atoms. To investigate this
problem, let us focus on doubly excited systems, more spe-
cifically on two-electron systemghe generalization to arbi- FIG. 1. Shown is a sketch of the geometrical configuration of
trary doubly excited systems is then, according to the abovthe giant dipole two-electron resonances. The electric and magnetic-
results, straightforwapd As a first step, let us introduce a field vector point along the negative and positivez direction,
suitable coordinate transformation simplifying the two- respectivelyR is the electronic center of mass coordinate aride
electron Hamiltoniar(10 for f=0) for N=2. Since impor- relative coordinate vector of the electrons. The big circular loop
tant parts of the generalized potentladepend only on the lying in the yz plane indicates the geometrical position of all ex-
ECM and since both electrons are assumed to be highly extemal configurations.
cited, it is natural to introduce the ECM as a coordinate
vector. Additionally, we require that the kinetic energy
should become as simple as possible, which leads to the
relative vector of the two electrons as a good choice for the
second coordinate vector, i.e., we have in toR(rq LA M
+1,)/2; r=r;—r,. The transformed Hamiltoniat(=7+V P(X)=X"+| 5| X —ﬁ§=0 (X<0), (@31
therefore decomposes into

1
(rR)=0; Y=Z=0; R= Eﬁr;

1 2 ) whereR=(X,Y,Z), r=(x,y,z) andr=|r|, R=|R|. Accord-
T= P—ein R| + _( p— Eer (29) ing to the first geometrical condition R=0, the ECM and
2u w' m 4 ' the interelectronic coordinate vector are orthogonal. Since

) Y=Z=3,_this leads tax=0. Furthermore, the conditioR
1 e 1 =(1/2)yJ3r and equally|R—(1/2)r|=|R+ (1/2)r| leads to
V= N(K —2eBXR)*+ T -z¢ 1 the fact that the two ele|ctrons and| th|e nucleus| form an equi-
R— —r lateral triangle. The remaining nonzero coordinxtef the
2 ECM has to fulfill the corresponding polynomial equation
1 P(X)=0 in Eg.(31). This completes the specification of the
n +C (30) e_xtremal con_figurations _ that are located on a one-
1 ' dimensional circular manifold. The electrons form a decen-
R+ Er tered triangular configuration and afgighly correlated
through the fact that they are forced to stay on opposite sides
where u=2mM,/M, u’=2mMy/M,—2m. Analogous to Of @ circle. The geometry of the extremal configuration de-
the previous sectiol’ includes both the motional as well as Scribed by the above conditions is illustrated in Fig. 1 in
external electric fieldsee Eq(25) and discussion belgwas ~ Which the circular extremal line as well as the opposite elec-
can be seen from Eq&29),(30), our coordinate change de- trons are indicated. Both electrons arg for laboratory field
coupled the kinetic-energy terms belonging to the two eIeC_sFrengths: Iocated_far from the nuc_lgus. the electron—nuc_:leus
tronic coordinate vectors and also simplified the field-fj'St"’mCe sca]es with (1/B). The position of the extrema wil
dependent potential terms in Eq(30. The above N the following be denoted byo,R.
Hamiltonian therefore provides an excellent starting point for If the inequality K’3>(81/4)\/§MB is fulfilled P(X)
further investigations. =0 has two real solutions on the negativexis (the decen-
In general, we expect that possible doubly excited detering direction of the atonThe smaller of these two values
centerd configurations correspond to resonances of the atofexcluding the sighcorresponds to a maximuksaddle of
and these can in particular be yielded by the extrema of théhe intersection of the potentiab along the X direction,
six-dimensional potential(R,r) in Eqg. (30). We therefore whereas the larger value yields an outer minimum. Of par-
have to find the roots of the six nonlinear coupled equationsicular interest is, of course, the case where the ECM is cap-
dVIgr=0 anddV/9gR=0. Without loss of generality, we as- tured in the outer minimum. To investigate the energies and
sume in the following again that the magnetic- and electric-stability of the resonances corresponding to this case we will
field vectors point along the positiveaxis and negativek  proceed as follows: We expand the potentiabround the
axis, respectively. A cumbersome calculation yields the fol-minimum up to second order with respect to all coordinates
lowing geometrical conditions: followed by a normal-mode analysis of the resulting coupled
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problem in the presence of the external fields. The expansion of the pofgmgads
r—ro\" 6%V
R—Ry) drdR

V=) R ad ad R—-R !
~W(ro, o)+5 (r ro)*‘ﬁ ( o)+§
(r0+Rp) (ro+Rp)

( r—ro> 32
. 32
(ro-Ro) R—Rg

Sincerg,Rg represents an extremum we ha&)ﬂ’arhroﬂo):aV/aR|(r0,RO)=O, i.e., the linear terms vanish and the quadratic
ones remain only. A tedious calculation gives

( azv)
JdriR| (ro Ry)
=Xl 0 0 0 Yo Zy
3y2 3y,
0 Yo YoZo Yo 0 0
4%l 4lXo
3yoz 322
o Yoo 0 Z 0 0
4lXo|  4[Xo|
_ 32X,|*[4B?  15(3
=FX 0 Yo Z A ___\/— 0 0 s (33)
273 | M g|x,f°
32%04[4B2 [ 33  27y3y32 YoZo
Yo 0 0 0 — - : - 2000
273 [ M\ 21X0F 32X, [Xol
z 21Xl 2722
2 0 0 0 ~ YoZo 32Xl ( 3 0
[Xol 27 1 2|X03  32X,/°

whereF=27\/§/32lX0|4 To be specific, let us focus on the case 0,z# 0. Equation(33) then reads

—X| 0 0 o o 2
V3
0 0 0 0 0 0
0 0 X 2%l g
0
7’V =FX \/§ 34
ardR 2|Xo| ' (34
(o-Ro) o 0 =2% p, 0 o
V3
0 0 0 Dy O
2IX] 0 0 0 0 D
— z
V3
|
where tial, the circle of extremal configurations is associated with a
motion possessing a vanishing vibrational frequency. This
32X,|* [ 4B2 153 fact is strictly valid both_ for the potentiab i_n Eqg. (32 as
= o 3 well as the exact potentidf in Eq. (30). It will also persist
27\3 8| Xl for the full equations of motion, i.e., including the kinetic
energy in the presence of the external figl@9). As a next
32X,|4(4B2 3.3 4| step, one ha_s to perform a normgl-mode analysis based on
Dy= V-ﬁ- Ak =g (35  the Hamiltonian=7+V whereV is now taken from Eq.
27\3 2[Xol (32) together with Eqs(34),(35). As a result, one arrives at

the following eigenvalue problem for the harmonic frequen-
Equation(34) contains a column and row of zeros that cor- cies ();, which are the frequencie@nergies of the reso-
respond to the mode of zero frequency: for the total potennances of the doubly excited atom in crossed fields
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2[Xol B, 41X
0 0 0 -
m mF my/3
iBQ;
—_— 0 0 0 0 0
mF
2|X 4|X
o o A% _axd g 0
, m mv/3
—09V.=FX )
(ZQHVi=F 2X Dy  2iBQ, Vio (3
0 0 - -— = 0
e} H n'F
2iBQ; Dy
0 0 0 -t 0
un'F M
2|X D
2l 0 0 0 - ==
mN3 I
whereV;=(V4, ... ,Vg); are the six-dimensional eigenvectors belonging to the eigenmodes with eigenfrequ&noiethe

atom. The reader should note that the matrix on the right hand(sids) of Eq. (36) depends explicitly on the frequencies

Q;, which is due to the appearance of the kinetic-enérigee Eq(29)] in the presence of a magnetic field. A closer look at

Eq. (36) reveals that the six-dimensional eigenvalue problem reduces to two three-dimensional ones involving exclusively the

subspaces\(;,V,,Vg); and (V5,V,4,Vs);, respectively. In the following, we therefore discuss these two subspaces separately.
The subspace\(;,V,,Vg); contains the above-mentioned mode with zero frequeigy 0, which corresponds to the

eigenvector withv,; =0, V,#0, Vg=0. Starting from the aligned configuratieg=y,=0, z,# 0 (see Fig. 1this corresponds

to an elongation of the interelectronic vectotangential to the circle of extremal configurations. The remaining characteristic

polynomial in the subspace/(,V,,Vs); is quadratic and leads to the following eigenfrequencies:

1/2
, fori=1,6. (37

2

32
+ o FEIXol?

= 3m

B, 2u
FD,+ EB _FF|XO|i \/

1 B 2K
o FD,— 2B+ F[Xol

The terms of(}; involving F originate from the expansion of The spectrum finally reads E=32  Q;(N;+3%)

V, whereas the terms proportional B come from the ki- +W(ry,Rp), Where the frequencies are determined by the
netic energy, i.e., the field- and velocity-dependent force. Th@hove Eqs(37),(38). Analyzing the frequencie®; , we find

term (32:/3m)F?Xo|* is the only one that stems from off- tha the two largest ones are almost degenerate and are of the

diagonal COUp|ingS of the matrix on the r.h.s. of Bﬁ) The order of half the electronic Cyclotron frequenc@e

analysis of the subspac¥{,V,,Vs); leads to a characteris- _ _gp/m, The remaining three frequencies contain the mo-

tic polynomial of sixth order that contains only even powers;; parallel to the magnetic field that is governed exclu-
of ;. It reads as follows: sively by the Coulomb interaction and the heavy particle
dynamics. They are significantly smaller théry. The fre-
wmDy+ umDy+ 22| X quencied); are therefore different by several orders of mag-
nitude and include in particular all possible nuclear and elec-
tronic modes of the excited atom in the presence of the
—mDyDy—2uDy|Xo| ext_ernal fieldgsee Eig. 2. Furthermore, it turns qut that for
typical laboratory field strengths, all frequencies are real.
Within our harmonic analysis around these extremal configu-
rations we therefore encounter no decay of the corresponding
resonances, which indicates that they should possess a sig-
nificant life time. Figure 2 shows the dependencies of the
five nonzero frequencies on both the electric- as well as the
magnetic-field strengths. With increasing magnetic-field
strength all frequencies increase. For those frequencies that
which reduces to a third-order polynomial equatiomﬁ is  are associated with the cyclotron motion of the electronic or
introduced as a variable. nuclear degrees of freedom, this behavior is evident. For the

(—p’mQP+F

2
rap-1E g2
i

Qf+F?

81 we
- 2M|X0|Dx+?|xo| —8—BZF 1[X| | Qf
o

4
+2F3<|XO|DXDY_§DYX(2)):O, for i=3,4,5, (39
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" 07 -24-70-24-718[T] V. CONCLUSIONS

10° § ] We have established the existence of giant dipole states
2 _ for highly excited multielectron atoms in crossed electric and
4 ] magnetic-fields. The basis for our investigation is a gauge-
independent pseudoseparation of the CM motion in the pres-
ence of the crossed fields. From this pseudoseparation, we
obtained a generalized potential whose properties are of cen-
tral importance to the existence and properties of giant dipole
states. In general, we have to distinguish between singly and
multiply excited atoms. Using a number of transformations
10° and an adiabatic approximation to separate the fast core elec-
E [V/m] trons from the excited electron we could show for singly
excited systems that the properties of their giant dipole states
i . are quite similar to that of the hydrogen atom.
oo 0 e o e ol o ag ITPOTAN aCE could be revealed or e iant diol

) ) L : States of multiply excited atoms. We have shown the exis-
shown as a function of the applied electric fi€&{v/m) for differ- - L .

tence of a class of highly symmetric giant dipole resonances

ent magnetic field strengths. Two of the frequencies are approxi: . . .
mately degenerate and indistinguishatselid line) in the figure: for doubly excited atoms in crossed fields. For these systems,

they are associated with the electronic cyclotron motion. The Ioné&e electronic CM s captured via the generalized potential.

dashed line shows the behavior of the frequency associated with thE1€ €lectrons and the nucleus form an equilateral triangle
cyclotron motion of the heavy particiucleus. The dotted and  that possesses a rotational freedom around the axis defined

short-dashed line show the behavior of the frequencies associatdy the nucleus and the electronic CM. This represents a
with the motion along the magnetic field. highly correlated electronic and nuclear motion induced by

the external fields. The spectrum of this system has been
. : . . analyzed by performing a harmonic expansion and a subse-
frequencies associated with the motion parallel to the magy ot normal-mode analysis. As a result, we obtained com-
netic field, it is a consequence of the fact that the positionyete stability of the resonances up to the second order of the
|Xo| of the outer minimum decreases strongly with increasgypansion around the equilibriutextrema) configuration.

ing field strength. The Coulomb potential becomes thenot course, a detailed numerical analysis on the above reso-
stronger and the frequency in the corresponding well parallehances is desirable in order to elucidate the influence of
to the field raises. As can be seen in Fig. 2, the dependengfgher-order terms on their properties. The present analytical
of the frequencies on the electric-field strength is twofold.paper can provide only strong indications towards their ex-

Those frequencies associated with the cyclotron motion ofstence and characteristics. Also, we have not taken into ac-
the electronic and nuclear degrees of freedom show, in gereount the possible process of reorganization of the doubly
eral, only a very weak dependence on the electric-fielexcited atom to a simply excited one that happens via auto-
strength. An exception is the onset of the existence of théonization. This process is very complicated in the presence
outer minimum(well), i.e., E~E., whereE,, is the minimal  of the fields and leads to a singly excited ion that cannot be
value of the electric-field strengttpseudomomentuymfor described in the present framework. However, since the two
which the outer-potential well occurs: a strong dependencgXcited electrons do overlap very little, it is not expected to

of the frequency associated with the cyclotron motion of theP€ very efficient and/or rapid.

heavy particle(nucleus may be observed for a relatively It is natural to think of resonances for triply and higher-
small interval of the electric-field strength. For the frequen-EXCited systems. According to the above considerations, we

cies associated with the motion parallel to the magnetic field®<Pect the ECM again to be captured by the corresponding

we generically obtain a strong dependence on the electrid0tential V in the outer well. Consequently, the excited
field strength(see Fig. 2 electrons will form a strongly correlated configuration

The above results address the case of a triangular e)z(a_round this decenterd ECM. Some remarks are in order. Due

. . . to their spatial extension, quantum-mechanical corrections
tremal configurationy=0, z#0 whose ECM is located at P 9

th ition|X.| that ds to th ; o | such as exchange interactions may safely be neglected for
e position|Xo| that corresponds to the outer minimum. In the above states. This might be different if we turn to field

case of the second, i.e., inner extremal configuration, th‘?.trengths available in astrophysics, where the size of the
ECM is located above the saddleXndirection. An analysis  itiply excited systems is expected to shrink significantly.
similar to the above one reveals then imaginary frequenciegyrthermore, the tunneling rates from the outer configuration
describing the decay of the corresponding resonances. Thg the inner Coulomb well may be estimated to be extremely
typical lifetimes involved are of the order of nanoseconds.sma”_ To prepare and detect the above resonances in an ex-
This configuration is certainly of minor interest due to the perimental setup, a scheme similar to the one established in
larger decay rate of the resonances. It is reminiscent of quasRef. [11] might be helpful. It relies upon a combined tech-
Penning resonances in crossed fidlti§] and a correspond- nique of electromagnetic excitation and switching of an ex-
ing configuration is of relevance in multiple-ionization pro- ternal electric field in several steps. The prepared resonances
cesses in strong laser fielfls7]. might then be detected via their huge dipole moment.

v[GHz]
ao
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