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Nonadiabatic dynamics in the dark subspace of a multilevel stimulated Raman adiabatic passage
process
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In this paper we consider a generalization of the three-level stimulated Raman adiabatic-passage process
(STIRAP). In our scheme, there at¢—1 ground levels and one excited level. The ground levels are coupled
with laser pulses through the excited level at multiphoton resonance. The ultimate aim of this scheme is to
create coherent-superposition states on the ground levels. In a previougpayed. Opt.(to be publishey
special issue on quantum interferehege have considered this problem from the optimal-control point of
view. Here we apply a different approach: We reconsider the adiabatic approximation, which is commonly
utilized to describing the STIRAP process. It is shown that in our case, in the adiabatic limit, the dark and
bright subspaces of the Hamiltonian are decoupled; however, the nonadiabatic corrections influence signifi-
cantly the dynamics in the dark subspace. An analytic solution is presented for the case of a five-level system.
Moreover, we consider some special examples for the pulse sequences that effect prescribed final superposition
states. The robustness of the scheme is studied, and the extension of our scheme is also considered.
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[. INTRODUCTION of the couplings. In the limit of ideal adiabatic transfer, the

other eigenstates are not invoked in the evolution and their

Adiabatic methods have been widely used in variouspopulation remains zero throughout the whole time. The
fields of atomic and molecular physics. From the well-knownnonadiabatic corrections tend to involve these states, but the
applications of the Landau-Zener model, the approach ha®agnitudes of such couplings are supposed to be small com-
recently acquired topical interest in the form of stimulatedPared with their energy separation from the adiabatic states.

Raman adiabatic passa(@@TIRAP). This has opened up new  However, when many levels get involved in the dynamics,

prospects in coherent laser control of atomic and moleculaf’® Subspace with zero eigenvalues will contain several basis
processes: for recent review see Réfs2]. Most recently vectors. Then the nonadiabatic corrections that couple these
even cavit’y quantum electrodynami¢@ED) has utilized cannot be neglected, because they effect transfer between the
adiabatic-transfer properties to achieve desired transfer egengrate states O.f the_ zero—elgenvalue subspace; see, e.g.,
coherencé3—5]. 1. Still, the nonadiabatic coupling to states with nonzero

In addition to straightforward population transfer, the STI_elgenvaIues does not have to be included. They are thus de-

RAP has been applied to the problem of manipulating an oupled from the time evolution in the adiabatic subspace

. .. —._and, in the adiabatic limit, there appears an effective reduc-
creating coherent state superpositions. Such sUperpositiogg, ot the full dynamics to the reduced adiabatic subspace

are the desired initial states for many modern quantum apsnere the eigenenergies are degeneteerd and the cou-
plications including information processing and communica-p”ngs are the nonadiabatic corrections.

tion. The original STIRAP process has thus been utilized to | this situation we thus see a clear example of the dy-

create coherent superpositions in three- and four-level sysramical separation of different time scales. The states with
tems [6-9] and to prepare N-component maximally nonzero eigenvalues carry out their evolution in a simple
coherent-superposition statgi]. In extending the scheme manner, whereas the adiabatic subspace offers a reduced dy-
to multilevel systems, one couples the atomic-energy levelaamics occurring at the rate determined basically by the time
in such a way that each one is connected to at most two othacale of the time dependence of the Hamiltonian. In this
ones. Population transfer in a multistate chain has been stugubspace we have an effective Hamiltonian that can be in-
ied theoretically{ 11,12 and also experimentally13,14. vestigated on its own right and the associated dynamic de-
In most cases, the adiabatic transfers utilize the eigenstateslopment in the original system can be determined after-
corresponding to zero eigenenergy. If the system is preparedards. When the STIRAP method is applied to many-level
in this state at the initial time, it will remain there during the systems, we encounter exactly this situation. The aim of the
time evolution as long as adiabaticity prevails. If the adia-present paper is to continue our project with multilevel STI-
batic state is arranged to go over into the desired state at tHRAP to investigate the role of dynamics in the adiabatic sub-
final time, the process effects a smooth and efficient transfespace and its manifestations in the original system.
between the states. The adiabaticity of the process guaranteesin our previous papgrl5], we have studied a generaliza-
its robustness with respect to fluctuations in the parameteinon of the three-level STIRAP; there we consideidd 1
lower-lying levels and one excited level. The lower-lying lev-
els are coupled with resonant laser pulses through the excited
*Permanent address: Research Institute for Solid State Physitsvel. The ultimate aim of this scheme is to create an arbi-
and Optics, P.O. Box 49, H-1525 Budapest, Hungary. trary coherent-superposition state. It has been shown that this
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(7783 where the elements of the vect@(t) correspond to the
TEow probability amplitudes associated with the atomic levels and
the Hamiltonian is given by

0 0 Qq(t) ]
Ql QZ Qn 1( )
0 0 Q,(t)
- ."'. - 1 0 . Ce 0 :
Wy Wy W Wy H(O=5
FIG. 1. Level scheme and couplings for thielevel STIRAP. 0 s te 0 Qn-1(H)
There areN—1 ground states and one excited state. Initially, only - Q,le () Q;(t) o Q’,f,,l(t) 0 -

the state|,) is populated, the others are empty. The aim is to
create a coherent-superposition state of the ground levels.

2

In an atomic-superposition state, the individual atomic levels
Have definite phases. These phases can be adjusted by choos-

: ; . ing the fixed phases of the laser pulses appropriately. How-
based on optimal control theory, has been applied to find th‘8ver they can be absorbed in the definitions of the atomic-
optimal pulse sequences that create a prescribed final SuD?fésié states

position state. From the results of the numerical optimization
it has been concluded that the transfer process occurs in the ~ .
dark subspace. The robustness of the scheme has also been [gn=expim)lgy) (1<ISN-1) (3)
demonstrated.

The motivation of the present paper is twofold. On one )
hand, we provide an analytic solution for the population-"’lmplltudeSQn are real. . . .
transfer process in the multilevel atomic system, which in !n the foIIovylng we wil n-eed the ad|abat!c statgg(t),
our previous worK15] was studied from the optimal-control wh|ch are deflneq as the mstantaneous ellge'nstates of the
point of view. On the other hand we show a rare example OEam!lton!an H(t_) n Eq._(2). The diagonalization of the
nonadiabatic dynamics that is exactly solvable. In Rdf§— a_mlltonlan (2)is a SPeCIa| case of a more general system,
18] the adiabatic corrections for the three-level STIRAPWHICh has been studied {i20]. The eigenvalue spectrum is
were studied. The importance of the nonadiabatic couplinggIghly degenerate,
was revealed for the “tripod” systeri7] and for the “loop
STIRAP” [19] as well. In our case, the adiabatic corrections
prove to play an essential role in governing the dynamics;
they determine the evolution of the system in the dark sub- 1 )
space. In this spirit the adiabaticity condition is carefully Et:ii Q"= =5 Q. )
defined for our multilevel system and it is shown that in the

adiabatic limit the population transfer takes place in the darkrpe Hilpert space in the adiabatic basis is decomposed into
subspace. For a five-level system an explicit analytic solutiog,,, subspaces: the eigenstateg(t)(k=1, ... N—2)

is derived. The robustness of the transfer process is discussgghicn belong to the zero eigenenergy are dark states, i.e.
and particular solutions for some special cases are obtaine{;hey do not involve the excited stale). The dark states

The organization of the paper is as follows. In Sec. Il thespan an K—2)-dimensional subspace. They are given by
physical model of our multilevel STIRAP is presented and

model has a degenerate eigenvalue spectrum that yields
multidimensional dark subspace. A numerical approach

in such a way that from now on it is assumed that all the field

Eo=0 (multiplicity N—2)

the corresponding Hamiltonian is introduced. The eigensys- - 0. - 0.0
h . . is 2 1253
tem of the Hamiltonian is calculated and a condition for
adiabatic evolution is introduced. In Sec. Ill an analytic so- L -0 L 0,03
lution for the transfer process is derived for a five-level sys- 1= 0 L Xo=m——— —®§ . (5
tem. Time evolution in the dark subspace is analyzed. The 0, 0 0,03
properties of the solution are illustrated through some special 0
examples. We conclude the paper in Sec. IV. . .
Il. DEGENERATE STIRAP m Q01T
The generalized STIRAP is displayed in Fig. N1 020N
atomic levels are coupled via a single atomic level with reso- o XNa= 1 :
nant laser pulses. In the rotating-wave approximation the TN O 0n ) '
Schralinger equation of this system reads —O8-2
0

d .
aC(t)=—IH(t)C(t)' @) where

063406-2



NONADIABATIC DYNAMICS IN THE DARK SUBSPACE . . . PHYSICAL REVIEW A 64 063406

ever, the dark subspaceNs-2 dimensional, i.e., there is an
0= Z Q7. (6)  (N—2)x(N—2) submatrix inH(t) with zero diagonal and
n=t nonzero off-diagonal elements. In this block the off-diagonal
The two-dimensional bright subspace is spanned by thgonamabatlc couplings cannot be neglected, since they are

eigenstates not small compared with the diagonal elements. We define
the adiabatic approximation as follows: If the couplings be-

O T tween the dark and bright subspaces of the Hilbert space are
Q small compared with the nonzero eigenenergied/2,
2
1
Xe=—F— : , (7) ) 1
V20 Oy (uOlx-(0)<59, 1=1.N-2, (12
[ +Oy-1

the population-transfer process is called adiabatic. In this

which belong to the eigenvalués. in Eq. (4). They include  .,qe the dark subspace is decoupled from the bright subspace
the excited statéy), hence the system can emit a photon d a simolified Hamiltoniami’ be introduced
when it is in these states. This is the origin of their name,an a simplified Hamiltoniaki’(t) can be introduced,

“bright states.” The time dependence 6f,(t) and y;(t) is

suppressed in these equations for brevity. In the new time- [0 ir(t) 0 0 ]
dependent basig x;(t), - . . xn_2(1),x=(t)} the Schre
dinger equatior(1) has the form -
—ir'(t) 0 0 0
d o H ()= 1 ,
aB(t)——IH(t)B(t), (8) 0 ces 0 +§Q(t) 0
where the state vectdf(t) is transformed by the unitary 0 0 0 _ EQ(t)
operator L 2 ]
U =[xa(1), - - - xn—2(D), x+ (1), x- ()] 9 (13
according to where the upper-triangular matrIx(t) is defined as
B(t)=U(t) 1C(t). (10 N
N 71 . .
~ ; ; <|=N-—
The transformed HamiltoniaH(t) reads Lij(t)= k§=:1 Uic®Uig(®) - (I<]=N-=2) (14)

F(t)=Ut)~TH(HU) +iUet) ~1U(t). (11) 0 (otherwisg.

The first term on the right-hand sidehs) is a zero matrix ~ The matrixI'(t) describes the nonadiabatic coupling in the
except for two nonzero elements on the diagonal in the lowedegenerate subspace. In the following sections we shall ana-
right-hand corner. These two elements are the two nonzeryze in detail the impact of the nonadiabatic couplings on the
eigenenergies (/2 of the HamiltoniarH(t) in Eq.(2). The  population-transfer process.
second term is a matrix that has zero diagonal and nonzero We define the STIRAP process in this degenerate system
imaginary off-diagonal elements. The off-diagonal elementsas follows: transfer population from one of the ground states
are the nonadiabatic couplings in the time-dependent coordio several of them in such a way that the adiabaticity condi-
nate system. Its form allows an interpretation in terms of aion Eqg. (12) is satisfied. In this way, an initial state, which
gauge potential, which has made it possible to connect theesides in the dark subspace, will evolve to a superposition of
associated time evolution to a topological phase as introthe degenerate dark states. The nonadiabatic couplings mix
duced by Berry; a detailed discussion can be founfPin only the dark eigenstates in the dark subspace. Their cou-
In order to understand the role of the nonadiabaticpling to the bright states can be neglected. As a result, the
coupling terms we recall the ordinary STIRAP process in asimplified Hamiltonian in Eq(13) is expected to describe
three-level system. There the dark subspace is one dimethe population transfer approximately correctly.
sional, i.e., there are only one dark state and two bright In the following sections, we address the problem of find-
states. The off-diagonal terms in the transformed Hamiling the field amplitude$),(t) needed to achieve a predeter-
tonian couple the dark state to the two bright states. Thenined superposition statg(). As we will see, the nona-
so-called “adiabatic approximation” in this three-level sys- diabatic couplings play a principal role in the dynamics. An
tem consists in neglecting the coupling terms, since they aranalytic approach is developed, which provides a solution for
much smaller than the nonzero eigenenergies, provided thatrestricted range of parameters. A subset of those superpo-
the field amplitudes vary slowly enough with time. In our sition states that have solely dark state components can be
case the bright subspace is two dimensional as well, howereated by this method.
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IIl. ANALYTIC APPROACH

In this section we derive a solution to the Satirmer
equation(8) with the simplified HamiltoniarH’ (t). We as-

PHYSICAL REVIEW A64 063406

1
|D)=ﬁ(—|¢3>+c|¢4)), (20)

sume that the initial state is in the dark subspace. Thereforgee Ref[21]. The Hamiltonian(17) can be rewritten in the

in the adiabatic limit(12), it is enough to consider the time
evolution in the dark subspace, so that the Sdimger equa-
tion (8) reduces to

d. L
FBO=—iIVOB), (15)

where
0 ir(t)
V(t)= - (16)
—irf(t) 0

and B(t) is equal toB(t) except for the last two elements,
which are truncated out. In general, the mawit) consists

of elements that are complicated functions of time. There
fore, one cannot hope that an analytic solution of Edp)
can be found for arbitrary field amplitudé€k,(t) and in any
dimensionN—2. If the dark subspace is one-dimensional,
we have the ordinary three-level STIRAP scheme. Th
HamiltonianV(t) is simply 0. The Schidinger equatiori15)
implies that when the system is initially in a dark state, it will

form

“ 1
H(t)= E[Ql(t” ) s+ Qa(0) [ ) s

+Q3(D)[C)(s| +H.Cl]. (21

We see that our system reduces effectively to a four-level
one, a “tripod” system, which has already been discussed in
some detail in Ref[7]. In the Appendix B we start by a
systematic derivation of the solution of the Sadtirger
equation (15). We will find that in order to get an exact
analytic solution, we have to assume the relati@8) be-
tween the Rabi frequencies 3 and 4.

In order to obtain a more detailed view of the dynamics in
the dark subspace, it will prove convenient to express the
elements ofV(t) as functions of time-dependent polar
angles. To this end we make use of the derivation described
in Appendix A and express the adiabatic states in EB.

e.ﬁnd (7) in terms of polar coordinates. The dark states read

stay there through the entire time evolution provided that the
process is adiabatic. In the case of a two-dimensional dark
subspace, the “tripod” system is recovered, which has been
studied in great details in Reff7,9]. We note that in this
case the solution of Eq15) can be found straightforwardly
for any time dependence ®f(t), since we have essentially a
two-level problem.

Here we are going to consider the solution of ELp) in
the case whei(t) is a 3x3 matrix. The solution derived
will be nontrivial and it will enable us to discuss some es-
sential effects that occur in adiabatic processes taking place
in a degenerate adiabatic subspace.

Before giving the detailed derivation, we present here a
simple description of the calculation carried out in detail in

the Appendix B. Let us consider again the original Hamil-and the two bright states are

tonian(2) for N=5,

. 12
H<t>=—§l [Qi(0)] ) (5] +H.c]. (17)

Let us also assume that the Rabi frequendiegt) and
Q,(t) are proportional to each other,

1
Qyu(t)= Eﬂa(t), (18

wherec is a constant. Then, we define a coupled state as

1
m(clw3>+|¢4>)

The orthogonal decoupled state is given by

IC)= (19

where
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tane 04 ) Q4 discussed below. If the initial state B —)=[1,0,0]" then
anfg=—, tang= ——, i i
Q, ¢ m at any timet, the exact solution of Eq15) readq Eq. (B16)]
Q — -
tans= . (24) cosp
VOT+HO5+Q% JZ+sirte
. . . . . ————sIing
In the adiabatic basi®2,23 the matrixV(t) has the form B(t)= Je?+1 , (27)
cose sinB
0 —i@sing —iHcospsing | c2+1
V(t)=| i6sing 0 i ¢siné . where
i Gcospsind —i ¢sind 0
(25 -
. . . B=| pdt,
In Appendix B we present a solution of the Sotlirgger —w

equation(15) with the operatol(t) given by Eq.(25). The
solution is valid in the special ca$gq. (B12)]

B=01~/ o (28)
= ————sine.
sing=ctans, (26) c?+sirfe ¢

wherec is an arbitrary real constant. This can be satisfied byif the condition (26) applies to our system, then it implies
a suitable choice of the laser-pulse envelopes, which will béhat the HamiltoniarV(t) in Eq. (25) takes the form

0 i Bsi ) .esin(pCOS(p
—i#sing —i ==
\/Cz-i—sirT;(p
e .. sing
V(t)= I 6sing 0 | (P\/(:Z—I—:Sinzgo (29
] .ﬂsingo COSop . sing 0
| _ —le .
I U\/C2+Sln290 Jc?+sirfe ]
|
There are two limiting values of the parameteif c=0, the lim f(t)=+1. (32)
HamiltonianV/(t) describes the “loop STIRAPT19]. Here t— o

the pump and Stokes pulses are represented by the matrix _ _
elementsV;, andV, 3, respectively. The matrix elemekt,; ~ The parameter®,A6/2, and ¢,A¢/2 are constant. By the
corresponds to the detuning pulsect thenV(t) reduces choice(30) one obtains
to the Hamiltonian of a two-level system. In the general case
one can choose the parametarontinuously from 0 tee, so B=— ﬁm
that these two systems are connected smoothly. A

In order to proceed further, we need to evaludta Eq.

t COSp
arctan ———
Je2+sirfe

(28). As a concrete example, we assume the following time COSo;
dependence of the anglésand ¢, —arcta JZxsie | | (32)
A A where ¢; is the initial value ofy att= —oo.
o(t)= 06+ Tf(t)’ o(t) =+ ;f(t), (30 Now we transform back the state vecﬁn(rt) to the origi-

nal bare-state basis. This can easily be done by appending

two zeros to the end d(t) and multiplying it by the unitary
wheref(t) is a continuous monotonical growing function of matrix U(t), Eq. (9), composed of the adiabatic stai@®)
time such that and (23). Finally one finds
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i cZ+1 ] ™
cosf cosB+ ——sindsingsing Bi=— ﬁ(COS‘Pf_COS(Pi)- (36)
co+sinfe Pt~ @i
) c°+1 ) . The component€,,C,,C5 of C(e) form a unit vector in a
_S'nHCOSIBJF\/mCOSH singsing three-dimensional polar coordinate system. For a gigen
and B; one should find a solution of E¢36) for ¢;. That
Ct)= c?cose sing . solution may or may not exist. As an example we look for
- 7, 7 g the result to have equal populations on the leygly, |,),
Vet + 1 iy and| ;). The angles
ccosesing
=2 21 1 1
e+ 1ye +sinfe @f=arccos—, pPBi=arccos=, ¢;=0.5264 (37)
0 V2 V3

33

33 offer us such a distribution. The angpe was found by solv-
It is important to notice that the final value @ft)(t— ) ing Eq. (36) numerically.
does not depend on the precise form of the time dependence The other limit of the parametar is the value zero. In
of the angles) and g, only the initial and final values matter, practice this means that the field amplitude significantly
provided that they vary in time in the same manner accordexceeds the other ones. Starting from the state vector
ing to Eq. (30). We interpret this feature as robustness; aC(—) as in the previous paragraph at timpe@ne has
particular final state of the system can be achieved by fol-
lowing several different paths in the parameter space. How- 1
ever, the rate of change must be slow enough so that the 0
adiabaticity condition in Eq(12) is satisfied.

The condition(26) has its implication for the field ampli- cit)=| 0]. (38)

tudesQ, as well. The amplitudes can be represented in the 0
following form: 0

Q,;=Acosgsing, o o ]
This is a surprising result, it emerges as follows: In the

Q,=A cose cosé, Schralinger equation(1), the coupling between leve|s),)
and |¢s) dominates for large),. This interaction can be
Qz=Asing, treated as the main part of the Hamiltonian and the rest may
be considered as a perturbation. The superposition states
1
Q“:EA sine, (34) 1 1
)= E(It//4>+|</fs>), l-)= E(Im)—ldfs))
which satisfy both Eqs(24) and (26). Now we can discuss (39)

the physical meaning of the different choices of the param-
eter c. First we note that the amplituded; and (), are  oscillate at the frequenciesQ,, which is much larger than
proportional to each other. This could be relevant in an exthe other Rabi frequencies. As a result, the further ground
perimental realization, since one needs essentially three distates cannot interact resonantly with the sthfes), so that
tinct pulses only, even if originally we required four. the population transfer is blocked.

If c— o0, then the fourth field}, is switched off. One has  |n general, the choice afdepends on the state we want to
a “tripod” system, where three ground levels are coupled viacreate in the population-transfer process. Let us assume that
one excited level by three laser pul§@3. We have already the target superposition state is characterized by the popula-
seen that in this case the Hamiltoni®((t) describes a two- tjon distribution (P;,P,,Ps,P,). It follows from Eq. (33
level system since the dark subspace is two dimensional. Lghat the ratio ofP; versusP, providesc?. The probability
us assume that;=0 and ;= /2. It follows that the initial  p, determines the anglg;. Let the initial state b&(— )

state isC(—)=[1,0,0,0,q. The final state reads =[1,0,0,0,". This condition fixes§;=0 since 3;=0 al-
. ) _ ways. Moreover, let us chooge= 7/2. Then, the ratio oP;
SinBy Sin gy versusP; or P, gives ¢;. However, the values af and ¢;
—CospB¢ almost entirely determing; [Eq. (32)], which is already set.
I There is one more freedom, the initial angle If a value of
Cl)= Sinf coses (35 ¢; can be found that satisfies E®2), then the target popu-
0 lation distribution @,,P,,P3,P,) can be obtained by the
0 method above. If such a solution does not exist, one can still
- - vary ¢ and try to find such parameters that do not lead to a
and contradiction. In general, it is not guaranteed that there exists
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FIG. 2. Time evolution of the populatiorB,(t)—Ps(t) for a . .
. . i FIG. 3. Analytically calculated envelopes of the Rabi frequen-
five-level STIRAP. Starting from the single populated statg) the ies 01(t)—Q,(1), which create the equal superposition state of

system smothIy evolves to the prescribed supe rposition states @ig. 2. Time and frequency are measured in arbitrary time and fre-
equal populations on the ground levels. The solid curves show the .
analytic solution, whereas the dashed ones represent the result %%lency units.
the numerical integration of the Scliiager equation. Time is mea-
sured in arbitrary time units. We have studied an adiabatic population-transfer scheme
in a multilevel system. The linking pattern of the levels re-
a solution. Intuitively this is acceptable, since the four lasersembles that of STIRAP, however, here we have several low-
pulses are not independent of each other, as we have digjing levels and a single excited level. One of our purposes
cussed abovgsee Eq(34)]. has been to find such a pulse sequence, which, starting from
To illustrate our method we consider the case of equah single populated low level, effects a prescribed final super-
populations on the lower-lying states, i.eR,=1/4 (0  position state. It has been shown that the Hamiltonian de-
=1,...,4). Theinitial state isC(—»)=[1,0,0,0,0", as  scribing this system has a degenerate eigensystem: It has two
usual. The parametermust be 1. The initial and final values bright states antl—2 dark states. We have required that the
of the angled are set again ag =0 and6;=m/2. The other  excited level be populated only minimally during the popu-
angles are evaluated following the method described in thetion transfer. Minimal involvement of the excited level im-
previous paragraph. At the end we have plies that the time evolution of the system takes place in the
dark subspace. This condition, however, is equivalent to re-
_m _ _ quiring adiabatic evolution. Here, adiabaticity means that the
Pi 30 ¥ 067022, ¢1=0.46365. (40 the dark and bright subspaces are decoupled from one an-
other. As a result, for our purposes it is enough to restrict the
This analytic solution is obtained in the adiabatic limit. We description of the dynamics to the dark subspace. This has
emphasize that we did not make any special assumptiogeen achieved by transforming the Salinger equation into
about the precise shape of the functifiit) in Eq. (30). In  the time-dependent basis, which is formed by the bright and
order to compare the above result with the “exact” solution, qark eigenstates of the Hamiltonian. In this representation,
we choose a specific form for the time dependence of thene sjze of the system can be reduced by 2, the dimension of
angles¢ and ¢ the bright subspace. Then we have looked for analytic solu-
tions of the reduced Schidinger equation. In general, such a

IV. CONCLUSIONS

o(t)= T 1+tanht— , solution is impossible to obtain. However, we have worked

4 T out one for a five-level system. In order to find an analytic
solution we had to impose an extra condition on the system:

B t Two of the coupling fields have to vary in the same way with

¢(1)=0.56694-0.103 28 tanﬁ, (41) time, only their maximal amplitudes may differ. Our solution

is an example for such adiabatic dynamics where the nona-
wherer is an arbitrary constant that must be chosen so largéiabatic couplings in the Hamiltonian have a substantial in-
that the adiabaticity conditiofiL2) is fulfilled. In Fig. 2 the fluence on determining the time evolution of the system. This
time evolution of the population®,(t)—P,(t) are shown. is due to the special feature of the Hamiltonian that its dark
The solid lines represent the analytic solution E38) while  subspace is degenerate. Even if we have found a solution in
the dashed ones result from the numerical integration of tha restricted parameter space, it turns out that the required
Schralinger equatiori1). The analytical and numerical solu- pulse sequences can be obtained for several interesting su-
tions agree very well. Finally, in Fig. 3 the pulses corre-perposition states. We have also proved that our scheme is
sponding to Eq(41) are displayed. robust for a special choice of the time variation of the mixing
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angles: They must vary with time in the same way, however, Q,

their initial and final values are freely adjustable. Their com- tano= .
. . . . 2

mon time dependence can be arbitrary, provided the adiaba-

ticity condition is satisfied. In that case only their initial and

final values determine the final superposition state. Q4
It is possible to generalize the method of reducing the tane= ——=——,
P 9 g JOi+ 02

effective dimension of the dark subspace to 2, for which case
the solution is known: Assume that we have two sets of
mutually coherent pulses. In both of them the pulses vary
with time in the same way. These two sets of pulses play the
role of Stokes pulses in a STIRAP process. It is easy to show,

similarly as we have done in this work, that they define two tang = On-1 (A2)

coupled and several decoupled states. The population- N-2 '

transfer process populates only the two coupled states, the 2 Qﬁ

ratio is determined by the time integral of the coupling in the n=1

effective two-dimensional Hamiltonian, which acts on the

reduced two-dimensional subspace. Let us introduce the set of orthogonal transformations
We have assumed that each level pair can be addressed

individually by suitably chosen laser fields. In atomic sys- - cosd  sing 07

tems this implies utilization of laser tuning and polarization

control. Experimentally this imposes strict restrictions on the —sing coso

coherence between the various pulses. In molecular systems O,= 1 ,

the range of level spacings and the different selection rules
make the analysis more delicate. We are, however, convinced
that the efficiency and flexibility of STIRAP schemes are 0 1
such that they will be of utility in a broad range of systems,
which includes also the utilization of systems with many

-1 0
coupled levels.
—sing COSyp
ACKNOWLEDGMENTS O,= CoSep  Sing ,
This work was supported by the European Union Re- 1
search and Training Network COCOMO, Contract No. | 0 ]
HPRN-CT-1999-00129. Z.K. is grateful to Razmik Unanyan
for helpful discussions.
APPENDIX A: DIAGONALIZATION OF THE _ _
HAMILTONIAN 1 0
In this appendix we present a simple way to find the . _
eigenstates of the Hamiltonig®). First we introduce polar On_>2= —sin{ cos{ ,
anglesd, ¢, . .. ,£,¢ with which the field amplitudes are pa- cos{  sing
rametrized as
Q,=Qsinfcose- - -cosé cose,
Fy 0"
Q,=0 cosf cose- - - CoS& cOSE,
. 1
Q3;=0sing- - -cosé cos{,
On-1= 1l 1 (A3)
V2 2
Qn_»,=Qsinécos?, 0 i _i
I V22

QN*l:Q S|n§, (Al)
The transformationO; corresponds to a pure rotatid®,.
whereQ =SN"I02 In this way the amplitudes satisfy the The transformation€0,(n=2, ... N—2) can be decom-
equations posed into a product of a pure rotation and a flip,
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-1 0 The matrices), are defined as
0 —-i O 0 —i
On=FnRn= Ji=| | , Jo= 0 0/,
0 i 0 O
= O —
et 07 O.
. i 0
X COoSsy SNy . (A4)
—siny cosy In order to solve Eq(B1) we start with the ansaf22]
- - U(t)=D'(a(t),B(1), ¥(1))
Note that the rotationR, can be expressed in terms of gen- =exf —ia(t)Js]exd —i B(t)Io]exd —iy(t)Js].
erators
(B5)
Rn:exrx_i)((rn)y .
The Wigner rotation matri®!(«,8,y) satisfies a set of par-
0 tial differential equations
0 i P
= . A5 . . _
7l i o (A9 | -Di(a,B,7)= 3Dl (@,B,7),
0
_ . . J . )
Definig the unitary transformatiod(t) as i%D'(a,ﬁ,'y)=(—Jlsina+JZCOSa)D'(a,,8,'y),
U(t)=RiF2Ry- - - Fn—2Rn-20n-1, (AB)
S d . . .
the Hamiltonian(2) is diagonalized through the transforma- I&—’yDJ(a,,B,'y)I(chOSa sinB+J;sinasing
tion
0 +J3c08B8)D) (@, B,7). (B6)
1 In order to find the time-dependent anglesg, andy in Eq.
UT(HH((HU() =5 . (A7)  (B5) we take the total time derivative of the matrix
D (avlg”)/)i
0 -Q
Since th trixJ(t) is unitary, its col t 'dDi —"(9+'&+'6Dj
ince the matriXJ(t) is unitary, its column vectors are or- Idt (a,B,y)=I a - ﬁa,B ya—y (a,B,7y).

thogonal to each other and so they can be chosen as the dark

and bright basis vectors. (B7)

. We sety identically to zero. Now we compare Eq81) and
APPENDIX B: SOLUTION OF THE SCHRO DINGER (B2) with Eq. (B7) and identify the angler by

EQUATION IN THE DARK SUBSPACE

In accordance with Eq$15) and(25) we are going to find AN — tang (B8)
the unitary time-evolution operat@¥(t), which satisfies sing’
d . We also define the anglé as
FUH=—iIVOUD). (B) ' gle
t o,
The matrixV(t) can be decomposed into a weighted sum of B= J:x,Bdt '
operators, which admit the algebra of the angular momentum
operators, e .
P B=6|(sirfe+coge sirt )2, (B9)

V(t)=#6sing J;+ 6 cosp sindJ,— ¢sindJs, (B2
® ¢ ¢ 29 3 (B2) The partial derivative with respect ®in Eq. (B7) gives the

where first two terms in Eq(B2). The third term should result from
the partial derivative with respect t®. However, the condi-
[Jm In]=iemmd - (B3) tion

063406-9
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—siné ¢+ sing cose cosdd

=-sind¢ (B10
sirfg+coSe sirts ¢ (810

o=

must be fulfilled. After some algebra one arrives at a differ-

ential equation that connecgsand 8,

cosdsind g=tane 4. (B11)
The solution to this equation reads
sinpg=ctans, (B12)

where ¢ is an arbitrary real constant. From E@12) we
express sid and insert it into Eq(B8) to obtain

(FTsite

COS@

tana=— (B13

The equation fo3, Eq. (B9), also transforms to

p= f;/'s'dt',

Bl
= ———sine.
c’+sirfe

(B14)

PHYSICAL REVIEW A64 063406

Now we are in a position to furnish explicitly the time-
evolution matrixt4(t). We claim that it is given by

U(t)=exp(—iadz)exp —iBly)expliagls), (B15)
wherea and 8 are given by Eqs(B13) and (B14), respec-
tively. The last term on the rhs results from the requirement
that24(t) be a unit matrix at=—o [since B(—=)=0 but
ap=a(—»)#0, in general It can be readily verified that
the matrix4(t) in Eq. (B15) satisfies the Schdinger equa-
tion (B1) by taking into account EqsB6), (B7), (B12),
(B13), and (B14). If the initial state isﬁ(—OO):[l,O,O]T
then

cosp
N Sii?go )
z—sm,B
Jee+1
cose sinB

Neam

B()=U(1)B(—=)= . (B16)

where we used the definition of from Eq. (B13).
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