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Nonadiabatic dynamics in the dark subspace of a multilevel stimulated Raman adiabatic passag
process

Z. Kis* and S. Stenholm
Department of Physics, Royal Institute of Technology (KTH), Lindstedtsva¨gen 24, SE-10044 Stockholm, Sweden

~Received 11 June 2001; published 15 November 2001!

In this paper we consider a generalization of the three-level stimulated Raman adiabatic-passage process
~STIRAP!. In our scheme, there areN21 ground levels and one excited level. The ground levels are coupled
with laser pulses through the excited level at multiphoton resonance. The ultimate aim of this scheme is to
create coherent-superposition states on the ground levels. In a previous paper@J. Mod. Opt.~to be published!,
special issue on quantum interference# we have considered this problem from the optimal-control point of
view. Here we apply a different approach: We reconsider the adiabatic approximation, which is commonly
utilized to describing the STIRAP process. It is shown that in our case, in the adiabatic limit, the dark and
bright subspaces of the Hamiltonian are decoupled; however, the nonadiabatic corrections influence signifi-
cantly the dynamics in the dark subspace. An analytic solution is presented for the case of a five-level system.
Moreover, we consider some special examples for the pulse sequences that effect prescribed final superposition
states. The robustness of the scheme is studied, and the extension of our scheme is also considered.
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I. INTRODUCTION

Adiabatic methods have been widely used in vario
fields of atomic and molecular physics. From the well-kno
applications of the Landau-Zener model, the approach
recently acquired topical interest in the form of stimulat
Raman adiabatic passage~STIRAP!. This has opened up new
prospects in coherent laser control of atomic and molec
processes; for recent review see Refs.@1,2#. Most recently
even cavity quantum electrodynamics~QED! has utilized
adiabatic-transfer properties to achieve desired transfe
coherence@3–5#.

In addition to straightforward population transfer, the ST
RAP has been applied to the problem of manipulating a
creating coherent state superpositions. Such superposi
are the desired initial states for many modern quantum
plications including information processing and communi
tion. The original STIRAP process has thus been utilized
create coherent superpositions in three- and four-level
tems @6–9# and to prepare N-component maximally
coherent-superposition states@10#. In extending the schem
to multilevel systems, one couples the atomic-energy lev
in such a way that each one is connected to at most two o
ones. Population transfer in a multistate chain has been s
ied theoretically@11,12# and also experimentally@13,14#.

In most cases, the adiabatic transfers utilize the eigens
corresponding to zero eigenenergy. If the system is prep
in this state at the initial time, it will remain there during th
time evolution as long as adiabaticity prevails. If the ad
batic state is arranged to go over into the desired state a
final time, the process effects a smooth and efficient tran
between the states. The adiabaticity of the process guara
its robustness with respect to fluctuations in the parame
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of the couplings. In the limit of ideal adiabatic transfer, t
other eigenstates are not invoked in the evolution and t
population remains zero throughout the whole time. T
nonadiabatic corrections tend to involve these states, bu
magnitudes of such couplings are supposed to be small c
pared with their energy separation from the adiabatic sta

However, when many levels get involved in the dynami
the subspace with zero eigenvalues will contain several b
vectors. Then the nonadiabatic corrections that couple th
cannot be neglected, because they effect transfer betwee
degenerate states of the zero-eigenvalue subspace; see
@7#. Still, the nonadiabatic coupling to states with nonze
eigenvalues does not have to be included. They are thus
coupled from the time evolution in the adiabatic subspa
and, in the adiabatic limit, there appears an effective red
tion of the full dynamics to the reduced adiabatic subsp
where the eigenenergies are degenerate~at zero! and the cou-
plings are the nonadiabatic corrections.

In this situation we thus see a clear example of the
namical separation of different time scales. The states w
nonzero eigenvalues carry out their evolution in a sim
manner, whereas the adiabatic subspace offers a reduce
namics occurring at the rate determined basically by the t
scale of the time dependence of the Hamiltonian. In t
subspace we have an effective Hamiltonian that can be
vestigated on its own right and the associated dynamic
velopment in the original system can be determined af
wards. When the STIRAP method is applied to many-le
systems, we encounter exactly this situation. The aim of
present paper is to continue our project with multilevel ST
RAP to investigate the role of dynamics in the adiabatic s
space and its manifestations in the original system.

In our previous paper@15#, we have studied a generaliza
tion of the three-level STIRAP; there we consideredN21
lower-lying levels and one excited level.The lower-lying le
els are coupled with resonant laser pulses through the exc
level. The ultimate aim of this scheme is to create an a
trary coherent-superposition state. It has been shown that
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model has a degenerate eigenvalue spectrum that yiel
multidimensional dark subspace. A numerical approa
based on optimal control theory, has been applied to find
optimal pulse sequences that create a prescribed final su
position state. From the results of the numerical optimizat
it has been concluded that the transfer process occurs in
dark subspace. The robustness of the scheme has also
demonstrated.

The motivation of the present paper is twofold. On o
hand, we provide an analytic solution for the populatio
transfer process in the multilevel atomic system, which
our previous work@15# was studied from the optimal-contro
point of view. On the other hand we show a rare example
nonadiabatic dynamics that is exactly solvable. In Refs.@16–
18# the adiabatic corrections for the three-level STIRA
were studied. The importance of the nonadiabatic coupli
was revealed for the ‘‘tripod’’ system@7# and for the ‘‘loop
STIRAP’’ @19# as well. In our case, the adiabatic correctio
prove to play an essential role in governing the dynam
they determine the evolution of the system in the dark s
space. In this spirit the adiabaticity condition is carefu
defined for our multilevel system and it is shown that in t
adiabatic limit the population transfer takes place in the d
subspace. For a five-level system an explicit analytic solu
is derived. The robustness of the transfer process is discu
and particular solutions for some special cases are obtai

The organization of the paper is as follows. In Sec. II t
physical model of our multilevel STIRAP is presented a
the corresponding Hamiltonian is introduced. The eigens
tem of the Hamiltonian is calculated and a condition
adiabatic evolution is introduced. In Sec. III an analytic s
lution for the transfer process is derived for a five-level s
tem. Time evolution in the dark subspace is analyzed.
properties of the solution are illustrated through some spe
examples. We conclude the paper in Sec. IV.

II. DEGENERATE STIRAP

The generalized STIRAP is displayed in Fig. 1:N21
atomic levels are coupled via a single atomic level with re
nant laser pulses. In the rotating-wave approximation
Schrödinger equation of this system reads

d

dt
C~ t !52 iH~ t !C~ t !, ~1!

FIG. 1. Level scheme and couplings for theN-level STIRAP.
There areN21 ground states and one excited state. Initially, o
the stateuc1& is populated, the others are empty. The aim is
create a coherent-superposition state of the ground levels.
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where the elements of the vectorC(t) correspond to the
probability amplitudes associated with the atomic levels a
the Hamiltonian is given by

H~ t !5
1

2 3
0 ••• ••• 0 V1~ t !

0 ••• ••• 0 V2~ t !

0 ••• ••• 0 A

A A A A A

0 ••• ••• 0 VN21~ t !

V1* ~ t ! V2* ~ t ! ••• VN21* ~ t ! 0

4 .

~2!

In an atomic-superposition state, the individual atomic lev
have definite phases. These phases can be adjusted by c
ing the fixed phases of the laser pulses appropriately. H
ever, they can be absorbed in the definitions of the atom
basis states

uc̃ l&5exp~ ih l !uc l& ~1< l<N21! ~3!

in such a way that from now on it is assumed that all the fi
amplitudesVn are real.

In the following we will need the adiabatic statesxk(t),
which are defined as the instantaneous eigenstates o
Hamiltonian H(t) in Eq. ~2!. The diagonalization of the
Hamiltonian~2! is a special case of a more general syste
which has been studied in@20#. The eigenvalue spectrum i
highly degenerate,

E050 ~multiplicity N22!

E656
1

2
A(

n51

N21

uVnu256
1

2
V. ~4!

The Hilbert space in the adiabatic basis is decomposed
two subspaces: the eigenstatesxk(t)(k51, . . . ,N22),
which belong to the zero eigenenergy are dark states,
they do not involve the excited stateucN&. The dark states
span an (N22)-dimensional subspace. They are given by

x15
1

Q2F V2

2V1

0

0

A

G , x25
1

Q2Q3F V1V3

V2V3

2Q2
2

0

A

G , ~5!

. . . , xN225
1

QN22QN21F V1VN21

V2VN21

A

2QN22
2

0

G ,

where
6-2
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NONADIABATIC DYNAMICS IN THE DARK SUBSPACE . . . PHYSICAL REVIEW A 64 063406
Qk5A(
n51

k

Vn
2. ~6!

The two-dimensional bright subspace is spanned by
eigenstates

x65
1

A2QN21F V1

V2

A

VN21

6QN21

G , ~7!

which belong to the eigenvaluesE6 in Eq. ~4!. They include
the excited stateucN&, hence the system can emit a phot
when it is in these states. This is the origin of their nam
‘‘bright states.’’ The time dependence ofVn(t) andxl(t) is
suppressed in these equations for brevity. In the new ti
dependent basis$x1(t), . . . ,xN22(t),x6(t)% the Schro¨-
dinger equation~1! has the form

d

dt
B~ t !52 i H̃~ t !B~ t !, ~8!

where the state vectorC(t) is transformed by the unitary
operator

U~ t !5@x1~ t !, . . . ,xN22~ t !,x1~ t !,x2~ t !# ~9!

according to

B~ t !5U~ t !21C~ t !. ~10!

The transformed HamiltonianH̃(t) reads

H̃~ t !5U~ t !21H~ t !U~ t !1 i U̇~ t !21U~ t !. ~11!

The first term on the right-hand side~rhs! is a zero matrix
except for two nonzero elements on the diagonal in the lo
right-hand corner. These two elements are the two nonz
eigenenergies6V/2 of the HamiltonianH(t) in Eq. ~2!. The
second term is a matrix that has zero diagonal and non
imaginary off-diagonal elements. The off-diagonal eleme
are the nonadiabatic couplings in the time-dependent coo
nate system. Its form allows an interpretation in terms o
gauge potential, which has made it possible to connect
associated time evolution to a topological phase as in
duced by Berry; a detailed discussion can be found in@9#.

In order to understand the role of the nonadiaba
coupling terms we recall the ordinary STIRAP process in
three-level system. There the dark subspace is one dim
sional, i.e., there are only one dark state and two bri
states. The off-diagonal terms in the transformed Ham
tonian couple the dark state to the two bright states. T
so-called ‘‘adiabatic approximation’’ in this three-level sy
tem consists in neglecting the coupling terms, since they
much smaller than the nonzero eigenenergies, provided
the field amplitudes vary slowly enough with time. In o
case the bright subspace is two dimensional as well, h
06340
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ever, the dark subspace isN22 dimensional, i.e., there is a
(N22)3(N22) submatrix inH̃(t) with zero diagonal and
nonzero off-diagonal elements. In this block the off-diagon
nonadiabatic couplings cannot be neglected, since they
not small compared with the diagonal elements. We de
the adiabatic approximation as follows: If the couplings b
tween the dark and bright subspaces of the Hilbert space
small compared with the nonzero eigenenergies6V/2,

u^xl~ t !uẋ6~ t !&u!
1

2
V, l 51•••N22, ~12!

the population-transfer process is called adiabatic. In
case the dark subspace is decoupled from the bright subs
and a simplified HamiltonianH̃8(t) can be introduced,

H̃8~ t !53
0 i G~ t ! 0 0

� A A

2 i G†~ t ! 0 0 0

0 ••• 0 1
1

2
V~ t ! 0

0 ••• 0 0 2
1

2
V~ t !

4 ,

~13!

where the upper-triangular matrixG(t) is defined as

G i j ~ t !5H (
k51

N

U̇ik
21~ t !Uk j~ t ! ~ i , j <N22!

0 ~otherwise!.

~14!

The matrixG(t) describes the nonadiabatic coupling in t
degenerate subspace. In the following sections we shall
lyze in detail the impact of the nonadiabatic couplings on
population-transfer process.

We define the STIRAP process in this degenerate sys
as follows: transfer population from one of the ground sta
to several of them in such a way that the adiabaticity con
tion Eq. ~12! is satisfied. In this way, an initial state, whic
resides in the dark subspace, will evolve to a superpositio
the degenerate dark states. The nonadiabatic couplings
only the dark eigenstates in the dark subspace. Their c
pling to the bright states can be neglected. As a result,
simplified Hamiltonian in Eq.~13! is expected to describe
the population transfer approximately correctly.

In the following sections, we address the problem of fin
ing the field amplitudesVn(t) needed to achieve a predete
mined superposition stateC(`). As we will see, the nona-
diabatic couplings play a principal role in the dynamics. A
analytic approach is developed, which provides a solution
a restricted range of parameters. A subset of those supe
sition states that have solely dark state components ca
created by this method.
6-3
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III. ANALYTIC APPROACH

In this section we derive a solution to the Schro¨dinger
equation~8! with the simplified HamiltonianH̃8(t). We as-
sume that the initial state is in the dark subspace. Theref
in the adiabatic limit~12!, it is enough to consider the tim
evolution in the dark subspace, so that the Schro¨dinger equa-
tion ~8! reduces to

d

dt
B̃~ t !52 iV~ t !B̃~ t !, ~15!

where

V~ t !5F 0 i G~ t !

�

2 i G†~ t ! 0
G ~16!

and B̃(t) is equal toB(t) except for the last two elements
which are truncated out. In general, the matrixV(t) consists
of elements that are complicated functions of time. The
fore, one cannot hope that an analytic solution of Eq.~15!
can be found for arbitrary field amplitudesVn(t) and in any
dimensionN22. If the dark subspace is one-dimension
we have the ordinary three-level STIRAP scheme. T
HamiltonianV(t) is simply 0. The Schro¨dinger equation~15!
implies that when the system is initially in a dark state, it w
stay there through the entire time evolution provided that
process is adiabatic. In the case of a two-dimensional d
subspace, the ‘‘tripod’’ system is recovered, which has b
studied in great details in Refs.@7,9#. We note that in this
case the solution of Eq.~15! can be found straightforwardly
for any time dependence ofV(t), since we have essentially
two-level problem.

Here we are going to consider the solution of Eq.~15! in
the case whenV(t) is a 333 matrix. The solution derived
will be nontrivial and it will enable us to discuss some e
sential effects that occur in adiabatic processes taking p
in a degenerate adiabatic subspace.

Before giving the detailed derivation, we present her
simple description of the calculation carried out in detail
the Appendix B. Let us consider again the original Ham
tonian ~2! for N55,

Ĥ~ t !5
1

2 (
i 51

4

@V i~ t !uc i&^c5u1H.c.#. ~17!

Let us also assume that the Rabi frequenciesV3(t) and
V4(t) are proportional to each other,

V4~ t !5
1

c
V3~ t !, ~18!

wherec is a constant. Then, we define a coupled state a

uC&5
1

A11c2
~cuc3&1uc4&). ~19!

The orthogonal decoupled state is given by
06340
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uD&5
1

A11c2
~2uc3&1c uc4&), ~20!

see Ref.@21#. The Hamiltonian~17! can be rewritten in the
form

Ĥ~ t !5
1

2
@V1~ t !uc1&^c5u1V2~ t !uc2&^c5u

1V3~ t !uC&^c5u1H.c.#. ~21!

We see that our system reduces effectively to a four-le
one, a ‘‘tripod’’ system, which has already been discussed
some detail in Ref.@7#. In the Appendix B we start by a
systematic derivation of the solution of the Schro¨dinger
equation~15!. We will find that in order to get an exac
analytic solution, we have to assume the relation~18! be-
tween the Rabi frequencies 3 and 4.

In order to obtain a more detailed view of the dynamics
the dark subspace, it will prove convenient to express
elements of V(t) as functions of time-dependent pola
angles. To this end we make use of the derivation descri
in Appendix A and express the adiabatic states in Eqs.~5!
and ~7! in terms of polar coordinates. The dark states rea

x15F cosu

2sinu

0

0

0

G , x25F sinu sinw

cosu sinw

2cosw

0

0

G ,

x35F sinu cosw sind

cosu cosw sind

sinw sind

2cosd

0

G ~22!

and the two bright states are

x15
1

A2F sinu cosw cosd

cosu cosw cosd

sinw cosd

sind

1

G ,

x25
1

A2F sinu cosw cosd

cosu cosw cosd

sinw cosd

sind

21

G , ~23!

where
6-4
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tanu5
V1

V2
, tanw5

V3

AV1
21V2

2
,

tand5
V4

AV1
21V2

21V3
2

. ~24!

In the adiabatic basis~22,23! the matrixV(t) has the form

V~ t !5F 0 2 i u̇ sinw 2 i u̇ cosw sind

i u̇ sinw 0 i ẇ sind

i u̇ cosw sind 2 i ẇ sind 0
G .

~25!

In Appendix B we present a solution of the Schro¨dinger
equation~15! with the operatorV(t) given by Eq.~25!. The
solution is valid in the special case@Eq. ~B12!#

sinw5c tand, ~26!

wherec is an arbitrary real constant. This can be satisfied
a suitable choice of the laser-pulse envelopes, which wil
a

as

m

of
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discussed below. If the initial state isB̃(2`)5@1,0,0#T then
at any timet, the exact solution of Eq.~15! reads@Eq. ~B16!#

B̃~ t !5F cosb

Ac21sin2w

Ac211
sinb

cosw sinb

Ac211

G , ~27!

where

b5E
2`

t

ḃdt8,

ḃ5uu̇uA c211

c21sin2w
sinw. ~28!

If the condition ~26! applies to our system, then it implie
that the HamiltonianV(t) in Eq. ~25! takes the form
V~ t !53
0 2 i u̇ sinw 2 i u̇

sinw cosw

Ac21sin2w

i u̇ sinw 0 i ẇ
sinw

Ac21sin2w

i u̇
sinw cosw

Ac21sin2w
2 i ẇ

sinw

Ac21sin2w
0

4 . ~29!
ding
There are two limiting values of the parameterc. If c50, the
HamiltonianV(t) describes the ‘‘loop STIRAP’’@19#. Here
the pump and Stokes pulses are represented by the m
elementsV12 andV13, respectively. The matrix elementV23
corresponds to the detuning pulse. Ifc→` thenV(t) reduces
to the Hamiltonian of a two-level system. In the general c
one can choose the parameterc continuously from 0 tò , so
that these two systems are connected smoothly.

In order to proceed further, we need to evaluateb in Eq.
~28!. As a concrete example, we assume the following ti
dependence of the anglesu andw,

u~ t !5 ū1
Du

2
f ~ t !, w~ t !5w̄1

Dw

2
f ~ t !, ~30!

where f (t) is a continuous monotonical growing function
time such that
trix

e

e

lim
t→6`

f ~ t !561. ~31!

The parametersū,Du/2, and w̄,Dw/2 are constant. By the
choice~30! one obtains

b52
Du

Dw
Ac211FarctanS cosw

Ac21sin2w
D

2arctanS cosw i

Ac21sin2w i
D G , ~32!

wherew i is the initial value ofw at t52`.
Now we transform back the state vectorB̃(t) to the origi-

nal bare-state basis. This can easily be done by appen
two zeros to the end ofB̃(t) and multiplying it by the unitary
matrix U(t), Eq. ~9!, composed of the adiabatic states~22!
and ~23!. Finally one finds
6-5



en
r,
rd

;
fo
ow
t

-
th

m

ex
d

vi

L

or

ctor

he

ay
s

nd

to
that
ula-

-

still
o a
ists
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C~ t !53
cosu cosb1

Ac211

Ac21sin2w
sinu sinb sinw

2sinu cosb1
Ac211

Ac21sin2w
cosu sinb sinw

2
c2cosw sinb

Ac211Ac21sin2w

2
c cosw sinb

Ac211Ac21sin2w

0

4 .

~33!

It is important to notice that the final value ofC(t)(t→`)
does not depend on the precise form of the time depend
of the anglesu andw, only the initial and final values matte
provided that they vary in time in the same manner acco
ing to Eq. ~30!. We interpret this feature as robustness
particular final state of the system can be achieved by
lowing several different paths in the parameter space. H
ever, the rate of change must be slow enough so that
adiabaticity condition in Eq.~12! is satisfied.

The condition~26! has its implication for the field ampli
tudesVn as well. The amplitudes can be represented in
following form:

V15A cosw sinu,

V25A cosw cosu,

V35A sinw,

V45
1

c
A sinw, ~34!

which satisfy both Eqs.~24! and ~26!. Now we can discuss
the physical meaning of the different choices of the para
eter c. First we note that the amplitudesV3 and V4 are
proportional to each other. This could be relevant in an
perimental realization, since one needs essentially three
tinct pulses only, even if originally we required four.

If c→`, then the fourth fieldV4 is switched off. One has
a ‘‘tripod’’ system, where three ground levels are coupled
one excited level by three laser pulses@7#. We have already
seen that in this case the HamiltonianV(t) describes a two-
level system since the dark subspace is two dimensional.
us assume thatu i50 andu f5p/2. It follows that the initial
state isC(2`)5@1,0,0,0,0#T. The final state reads

C~`!5F sinb f sinw f

2cosb f

2sinb f cosw f

0

0

G ~35!

and
06340
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b f52
p

2~w f2w i !
~cosw f2cosw i !. ~36!

The componentsC1 ,C2 ,C3 of C(`) form a unit vector in a
three-dimensional polar coordinate system. For a givenw f
and b f one should find a solution of Eq.~36! for w i . That
solution may or may not exist. As an example we look f
the result to have equal populations on the levelsuc1&, uc2&,
and uc3&. The angles

w f5arccos
1

A2
, b f5arccos

1

A3
, w i50.5264 ~37!

offer us such a distribution. The anglew i was found by solv-
ing Eq. ~36! numerically.

The other limit of the parameterc is the value zero. In
practice this means that the field amplitudeV4 significantly
exceeds the other ones. Starting from the state ve
C(2`) as in the previous paragraph at timet, one has

C~ t !5F 1

0

0

0

0

G . ~38!

This is a surprising result, it emerges as follows: In t
Schrödinger equation~1!, the coupling between levelsuc4&
and uc5& dominates for largeV4. This interaction can be
treated as the main part of the Hamiltonian and the rest m
be considered as a perturbation. The superposition state

uc1&5
1

A2
~ uc4&1uc5&), uc2&5

1

A2
~ uc4&2uc5&)

~39!

oscillate at the frequencies6V4, which is much larger than
the other Rabi frequencies. As a result, the further grou
states cannot interact resonantly with the statesuc6&, so that
the population transfer is blocked.

In general, the choice ofc depends on the state we want
create in the population-transfer process. Let us assume
the target superposition state is characterized by the pop
tion distribution (P1 ,P2 ,P3 ,P4). It follows from Eq. ~33!
that the ratio ofP3 versusP4 providesc2. The probability
P2 determines the angleb f . Let the initial state beC(2`)
5@1,0,0,0,0#T. This condition fixesu i50 sinceb i50 al-
ways. Moreover, let us chooseu f5p/2. Then, the ratio ofP1
versusP3 or P4 givesw f . However, the values ofc andw f
almost entirely determineb f @Eq. ~32!#, which is already set.
There is one more freedom, the initial anglew i . If a value of
w i can be found that satisfies Eq.~32!, then the target popu
lation distribution (P1 ,P2 ,P3 ,P4) can be obtained by the
method above. If such a solution does not exist, one can
vary u f and try to find such parameters that do not lead t
contradiction. In general, it is not guaranteed that there ex
6-6
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a solution. Intuitively this is acceptable, since the four la
pulses are not independent of each other, as we have
cussed above@see Eq.~34!#.

To illustrate our method we consider the case of eq
populations on the lower-lying states, i.e.,Pn51/4 (n
51, . . . ,4). The initial state is C(2`)5@1,0,0,0,0#T, as
usual. The parameterc must be 1. The initial and final value
of the angleu are set again asu i50 andu f5p/2. The other
angles are evaluated following the method described in
previous paragraph. At the end we have

b f5
p

3
, w i50.670 22, w f50.463 65. ~40!

This analytic solution is obtained in the adiabatic limit. W
emphasize that we did not make any special assump
about the precise shape of the functionf (t) in Eq. ~30!. In
order to compare the above result with the ‘‘exact’’ solutio
we choose a specific form for the time dependence of
anglesu andw

u~ t !5
p

4 S 11tanh
t

t D ,

w~ t !50.566 9420.103 28 tanh
t

t
, ~41!

wheret is an arbitrary constant that must be chosen so la
that the adiabaticity condition~12! is fulfilled. In Fig. 2 the
time evolution of the populationsP1(t) –P4(t) are shown.
The solid lines represent the analytic solution Eq.~33! while
the dashed ones result from the numerical integration of
Schrödinger equation~1!. The analytical and numerical solu
tions agree very well. Finally, in Fig. 3 the pulses corr
sponding to Eq.~41! are displayed.

FIG. 2. Time evolution of the populationsP1(t) –P5(t) for a
five-level STIRAP. Starting from the single populated stateuc1& the
system smoothly evolves to the prescribed superposition state
equal populations on the ground levels. The solid curves show
analytic solution, whereas the dashed ones represent the res
the numerical integration of the Schro¨dinger equation. Time is mea
sured in arbitrary time units.
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IV. CONCLUSIONS

We have studied an adiabatic population-transfer sche
in a multilevel system. The linking pattern of the levels r
sembles that of STIRAP, however, here we have several l
lying levels and a single excited level. One of our purpos
has been to find such a pulse sequence, which, starting
a single populated low level, effects a prescribed final sup
position state. It has been shown that the Hamiltonian
scribing this system has a degenerate eigensystem: It has
bright states andN22 dark states. We have required that t
excited level be populated only minimally during the pop
lation transfer. Minimal involvement of the excited level im
plies that the time evolution of the system takes place in
dark subspace. This condition, however, is equivalent to
quiring adiabatic evolution. Here, adiabaticity means that
the dark and bright subspaces are decoupled from one
other. As a result, for our purposes it is enough to restrict
description of the dynamics to the dark subspace. This
been achieved by transforming the Schro¨dinger equation into
the time-dependent basis, which is formed by the bright a
dark eigenstates of the Hamiltonian. In this representat
the size of the system can be reduced by 2, the dimensio
the bright subspace. Then we have looked for analytic so
tions of the reduced Schro¨dinger equation. In general, such
solution is impossible to obtain. However, we have work
out one for a five-level system. In order to find an analy
solution we had to impose an extra condition on the syst
Two of the coupling fields have to vary in the same way w
time, only their maximal amplitudes may differ. Our solutio
is an example for such adiabatic dynamics where the no
diabatic couplings in the Hamiltonian have a substantial
fluence on determining the time evolution of the system. T
is due to the special feature of the Hamiltonian that its d
subspace is degenerate. Even if we have found a solutio
a restricted parameter space, it turns out that the requ
pulse sequences can be obtained for several interesting
perposition states. We have also proved that our schem
robust for a special choice of the time variation of the mixi

of
e
of

FIG. 3. Analytically calculated envelopes of the Rabi freque
cies V1(t) –V4(t), which create the equal superposition state
Fig. 2. Time and frequency are measured in arbitrary time and
quency units.
6-7



e
m
ab
d

th
as
o

ar
th
o

wo
io
, t
he
he

ss
s

on
th
te
le
c
re
s

ny

e
o
an

he

-

e

Z. KIS AND S. STENHOLM PHYSICAL REVIEW A64 063406
angles: They must vary with time in the same way, howev
their initial and final values are freely adjustable. Their co
mon time dependence can be arbitrary, provided the adi
ticity condition is satisfied. In that case only their initial an
final values determine the final superposition state.

It is possible to generalize the method of reducing
effective dimension of the dark subspace to 2, for which c
the solution is known: Assume that we have two sets
mutually coherent pulses. In both of them the pulses v
with time in the same way. These two sets of pulses play
role of Stokes pulses in a STIRAP process. It is easy to sh
similarly as we have done in this work, that they define t
coupled and several decoupled states. The populat
transfer process populates only the two coupled states
ratio is determined by the time integral of the coupling in t
effective two-dimensional Hamiltonian, which acts on t
reduced two-dimensional subspace.

We have assumed that each level pair can be addre
individually by suitably chosen laser fields. In atomic sy
tems this implies utilization of laser tuning and polarizati
control. Experimentally this imposes strict restrictions on
coherence between the various pulses. In molecular sys
the range of level spacings and the different selection ru
make the analysis more delicate. We are, however, convin
that the efficiency and flexibility of STIRAP schemes a
such that they will be of utility in a broad range of system
which includes also the utilization of systems with ma
coupled levels.
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APPENDIX A: DIAGONALIZATION OF THE
HAMILTONIAN

In this appendix we present a simple way to find t
eigenstates of the Hamiltonian~2!. First we introduce polar
anglesu,w, . . . ,j,z with which the field amplitudes are pa
rametrized as

V15V sinu cosw•••cosj cosz,

V25V cosu cosw•••cosj cosz,

V35V sinw•••cosj cosz,

A

VN225V sinj cosz,

VN215V sinz, ~A1!

whereV5A(n51
N21Vn

2. In this way the amplitudes satisfy th
equations
06340
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e
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.

tanu5
V1

V2
,

tanw5
V3

AV1
21V2

2
,

A

tanz5
VN21

A(
n51

N22

Vn
2

. ~A2!

Let us introduce the set of orthogonal transformations

O15F cosu sinu 0

2sinu cosu

1

�

0 1

G ,

O25F 1 0

2sinw cosw

cosw sinw

1

0 �

G ,

A

ON225F 1 0

�

2sinz cosz

cosz sinz

0 1

G ,

ON2153
1 0

�

1

1

A2

1

A2

0
1

A2
2

1

A2

4 . ~A3!

The transformationO1 corresponds to a pure rotationR1.
The transformationsOn(n52, . . . ,N22) can be decom-
posed into a product of a pure rotation and a flip,
6-8
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On5FnRn5F 1 0

�

0 1

1 0

0 �

G
3F 1 0

�

cosx sinx

2sinx cosx

0 �

G . ~A4!

Note that the rotationsRn can be expressed in terms of ge
erators

Rn5exp~2 ixsn!,

sn5F � 0

0 i

2 i 0

0 �

G . ~A5!

Definig the unitary transformationU(t) as

U~ t !5R1F2R2•••FN22RN22ON21 , ~A6!

the Hamiltonian~2! is diagonalized through the transform
tion

UT~ t !H~ t !U~ t !5
1

2F 0

V

0 2V

G . ~A7!

Since the matrixU(t) is unitary, its column vectors are o
thogonal to each other and so they can be chosen as the
and bright basis vectors.

APPENDIX B: SOLUTION OF THE SCHRÖ DINGER
EQUATION IN THE DARK SUBSPACE

In accordance with Eqs.~15! and~25! we are going to find
the unitary time-evolution operatorU(t), which satisfies

d

dt
U~ t !52 iV~ t !U~ t !. ~B1!

The matrixV(t) can be decomposed into a weighted sum
operators, which admit the algebra of the angular momen
operators,

V~ t !5 u̇ sinw J11 u̇ cosw sind J22ẇ sind J3 , ~B2!

where

@Jm ,Jn#5 i«mnkJk . ~B3!
06340
ark

f
m

The matricesJk are defined as

J15F 0 2 i 0

i 0 0

0 0 0
G , J25F 0 0 2 i

0 0 0

i 0 0
G ,

J35F 0 0 0

0 0 2 i

0 i 0
G . ~B4!

In order to solve Eq.~B1! we start with the ansatz@22#

U~ t !5Dj
„a~ t !,b~ t !,g~ t !…

5exp@2 ia~ t !J3#exp@2 ib~ t !J2#exp@2 ig~ t !J3#.

~B5!

The Wigner rotation matrixDj (a,b,g) satisfies a set of par
tial differential equations

i
]

]a
Dj~a,b,g!5J3Dj~a,b,g!,

i
]

]b
Dj~a,b,g!5~2J1sina1J2cosa!Dj~a,b,g!,

i
]

]g
Dj~a,b,g!5~J1cosa sinb1J2 sina sinb

1J3cosb!Dj~a,b,g!. ~B6!

In order to find the time-dependent anglesa, b, andg in Eq.
~B5! we take the total time derivative of the matr
Dj (a,b,g),

i
d

dt
Dj~a,b,g!5 i S ȧ

]

]a
1ḃ

]

]b
1ġ

]

]g DDj~a,b,g!.

~B7!

We setg identically to zero. Now we compare Eqs.~B1! and
~B2! with Eq. ~B7! and identify the anglea by

tana52
tanw

sind
. ~B8!

We also define the angleb as

b5E
2`

t

ḃdt8,

ḃ5uu̇u~sin2w1cos2w sin2d!1/2. ~B9!

The partial derivative with respect tob in Eq. ~B7! gives the
first two terms in Eq.~B2!. The third term should result from
the partial derivative with respect toa. However, the condi-
tion
6-9
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ȧ5
2sind ẇ1sinw cosw cosdḋ

sin2w1cos2w sin2d
52sind ẇ ~B10!

must be fulfilled. After some algebra one arrives at a diff
ential equation that connectsw andd,

cosd sind ẇ5tanw ḋ. ~B11!

The solution to this equation reads

sinw5c tand, ~B12!

where c is an arbitrary real constant. From Eq.~B12! we
express sind and insert it into Eq.~B8! to obtain

tana52
Ac21sin2w

cosw
. ~B13!

The equation forb, Eq. ~B9!, also transforms to

b5E
2`

t

ḃdt8,

ḃ5uu̇uA c211

c21sin2w
sinw. ~B14!
n,

n

le

rg

K

.

.
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Now we are in a position to furnish explicitly the time
evolution matrixU(t). We claim that it is given by

U~ t !5exp~2 iaJ3!exp~2 ibJ2!exp~ ia0J3!, ~B15!

wherea andb are given by Eqs.~B13! and ~B14!, respec-
tively. The last term on the rhs results from the requirem
thatU(t) be a unit matrix att52` @sinceb(2`)50 but
a0[a(2`)Þ0, in general#. It can be readily verified tha
the matrixU(t) in Eq. ~B15! satisfies the Schro¨dinger equa-
tion ~B1! by taking into account Eqs.~B6!, ~B7!, ~B12!,
~B13!, and ~B14!. If the initial state isB̃(2`)5@1,0,0#T

then

B̃~ t !5U~ t !B̃~2`!5F cosb

Ac21sin2w

Ac211
sinb

cosw sinb

Ac211

G , ~B16!

where we used the definition ofa from Eq. ~B13!.
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