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Externally induced metastability of an electron in a Penning trap: Analytical results

S. Brouard and J. Plata
Departamento de Fı´sica Fundamental II, Universidad de La Laguna, La Laguna E38204, Tenerife, Spain

~Received 12 December 2000; published 14 November 2001!

The effect of a driving field on the cyclotron mode of a relativistic electron in a Penning trap is studied
analytically. The Hamiltonian dynamics of this driven nonlinear oscillator is analyzed by using linearization
techniques and displaced squeezed-state formalism. With the approximate analytical expressions obtained for
the eigenstates in this approach, a simplified treatment of the dissipative dynamics is carried out and some of
the nontrivial features found in a recent numerical study@D. Enzer and G. Gabrielse, Phys. Rev. Lett.78, 1211
~1997!# are unraveled. The emergence of different time scales and the generation of a metastable statistical
mixture are understood in terms of the changes induced in the structure of the master equation by the nonuni-
form characteristics of the eigenstates; the partial revivals of specific coherent states are accounted for by the
evolution of particular coherences. The control of these effects by a proper choice of the driving parameters is
discussed.

DOI: 10.1103/PhysRevA.64.063405 PACS number~s!: 32.80.Pj, 42.50.Lc
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I. INTRODUCTION

The study of trapped electrons, intense in the last deca
has opened up new opportunities for high-precision exp
ments with important, conceptual and practical implicatio
@1–8#. The advances brought about in the observation te
niques and the increasing knowledge of the rich dynamic
these systems have allowed testing fundamental effects r
ing from classical noise-induced transitions@4# to quantum
jumps @7#. In this line, it is worth mentioning some rece
developments that have enlarged the field of application
has been shown that an electron in a Penning trap provid
realizable scenario for implementing quantum nondemolit
measurement@7#; additionally, the potential applicability o
this system in generation of macroscopic quantu
interference states@5# and in quantum computing@6# has
been discussed. Presently, considerable attention is b
paid to the effects of dissipation, an important aspect of
dynamics, which, apart from having intrinsic fundamen
interest, is crucial for the practicality of some of the pr
posed applications.

This work focuses on the dissipative dynamics of an el
tron interacting with a circularly-polarized oscillating ele
tric field in a Penning trap; our objective is the analytic
explanation of the nontrivial behavior revealed by a rec
numerical study@1#. It has been shown@1# that, as a result of
the combined action of the external field and the nonlin
potential that accounts for relativistic corrections, the cyc
tron mode, described as a driven quartic oscillator couple
a reservoir, presents complex damping processes. Stro
nonuniform characteristics of the dynamics, partially
flected in the bistability of the classical configuration spa
have been uncovered: various time scales are present i
quences that change as the initial preparation is varied
metastability occurring for initial conditions linked to th
basin of one of the ‘‘attractors.’’ Significantly, the evolutio
of a coherent state centered on that fixed point displays
following features: partial revivals in the initial stage, th
subsequent emergence of a highly populated metast
state, and the eventual decay to the central area of the p
1050-2947/2001/64~6!/063405~9!/$20.00 64 0634
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space. It is remarkable that, for the range of parameters
sidered, the quantum system, as opposed to its bistable
sical analog, is asymptotically monostable.

In previous studies@1,3# different theoretical approache
have been developed to account for these findings and
fact, important points have been clarified. However, there
still some questions that deserve additional analytical wo
specifically, an explanation for the revivals and a better ch
acterization of the asymptotic evolution are needed. Here,
aim at giving a more complete understanding of these
fects. In our approach, the analysis of the classical coun
part gives the clues to setting up unitary transformations
allow an effective reduction of the Hamiltonian dynami
near the fixed points and provide a suitable framework
tackling the open system: with a simplified treatment of t
master equation, some of the mechanisms underlying the
namics are identified and part of the numerical results
reproduced analytically.

The outline of the paper is as follows. The Hamiltonia
system is analyzed in Sec. II: approximate expressions
given for some of the energy eigenstates. Section III de
with dissipation: it is shown how the unitary transformatio
introduced in the previous section alter the functional str
ture of the master equation, explaining the different tim
scales present in the decay processes and the generati
metastable states. Some strategies of control are discuss
Sec. IV. Finally, in Sec. V our conclusions are summarize

II. THE HAMILTONIAN DYNAMICS

We consider a harmonic oscillator of frequencyvc per-
turbed by a quartic nonlinear term and driven by a circula
polarized classical field. In the rotating frame of the drivin
field the system is defined by@1,3#

H5\~vc2v!S a†a1
1

2D2
1

2
\dS a†a1

1

2D 2

1
1

2
\VR~eiwa1e2 iwa†!, ~1!
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FIG. 1. Phase space for th
system defined by Eq.~2! with the
parametersD548d, VR528d,
and an arbitrary scale factor. Th
same parameters are used in
the figures.
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whered is the anharmonicity parameter andv, VR , andw
denote, respectively, drive frequency, Rabi frequency,
initial phase of the external field. Without loss of generali
we take, as in Ref.@1#, w52p/2; in our study, it will be
clear that a different value forw would simply mean a
change in the angular position of the metastable state.
Hamiltonian describes the cyclotron mode of an electron
Penning trap, the elimination of the axial and magnet
modes being allowed by the magnitude of their respec
time scales@1#; the nonlinear term accounts for the relativi
tic corrections and the driving term characterizes the inte
tion with an electric field. Note thatH corresponds also to
driven electromagnetic mode in a cavity with an intensi
dependent refractive index; indeed, in a certain range of
rameters, it represents a typical scenario for dispersive o
cal bistability @9–12#.

Let us see how the analysis of the phase space provide
with information relevant to obtaining some of the ener
eigenstates. The Hamiltonian function of the classical co
terpart can be defined from the diagonal-matrix element
H in the coherent state representation$ua&%; taking q
5Re(a) andp5Im(a), it reads

Hcl[^auHua&5D~p21q2!2
1

2
d~p21q2!21VRp, ~2!

with D5vc2v2d/2 and where, as in the rest of the pap
we have dropped the zero-point energy and have take\
51. In the regime where the nontrivial quantum featu
have been detected this classical system~see the phase spac
depicted in Fig. 1! has three fixed points@3#: g is a local
minimum, e is a local maximum, andr is a saddle point.
06340
d
,

is
a
n
e

c-

-
a-
ti-

us

-
of

,

s

Nearg the system can be approximated as a harmonic os
lator; additionally, despite the fact thate is a maximum and
because of the specific characteristics of the nonlocal po
tial, a harmonic approximation for the Hamiltonian functio
arounde is also possible. Note that the bistable characte
linked to the different signs of the harmonic and anharmo
contributions.

From these results, we set up the following strategy
solve the quantum system. First, we perform a unitary tra
formation with the displacement operatorD(v)[exp(va†

2v*a) @13,14# and calculate, through a reduction procedu
that parallels the classical treatment, the three values ov
that define the quantum analogs of the fixed points. Seco
the validity of a harmonic approximation for each of th
three differently displaced Hamiltonians is studied and a
lytical expressions are obtained for the eigenstates when
linearization is valid. Finally, the effect of the nonlinea
terms is analyzed.

Accordingly, we first applyD(v); the resulting Hamil-
tonianH(v)[D†(v)HD(v) takes the form

H~v !5~D22duvu2!a†a1H F S D2
d

2D v2duvu2v1
VR

2 Ga†

2
1

2
dv2a†21H.c.J 2

1

2
d~a†a!2

1@2dva†a†a1H.c.#, ~3!

where H.c. stands for Hermitian conjugate. Now, proceed
to obtain the displacementsv from which a linearization of
5-2
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EXTERNALLY INDUCED METASTABILITY OF AN . . . PHYSICAL REVIEW A 64 063405
the system may be valid, we make the coefficients ofa and
a† in the above equation equal to zero, that is, we impos

S D2
d

2D v2duvu2v1
VR

2
50. ~4!

It is worth making some comments here. First, note that
equation implies the absorption of the driving term into t
new representation, which is a necessary first step in
approach given the nonperturbative character of the driv
field. Ford50, that is, for a driven linear oscillator, Eq.~4!
becomes a first-order equation inv; it can be solved to obtain
the displacement parameter of the displaced statesD(v)un&
that exactly diagonalizes the system in the original repres
tation; the number statesun& are, in this particular case
eigenstates ofH(v). Second, for our nonlinear system, th
condition parallels the requirement of zero net force that
termines the classical fixed points. In fact, this is a neces
condition for the classical linearization; it is not sufficien
though, since the expansion of a classical Hamiltonian ab
a fixed point can be approximated as a harmonic oscilla
only when the second-order terms in the expansion co
spond to a harmonic potential. In this sense, we stress tha
our quantum system, the validity of a harmonic approxim
tion around each of the three fixed points will be determin
by analyzing if the quadratic terms21/2dv2a†21H.c.,
present in Eq.~3! can be incorporated, through proper un
tary transformation@15#, into a Hamiltonian with the sim-
plest harmonic-functional form, i.e., if they correspond
standard terms of squeezing@15,16#. If the linearization is
feasible, we will evaluate the relative magnitude of the r
of the contributions, namely, the quartic anharmonic p
21/2d(a†a)2 and the residual nonlinear terms,2dva†a†a
1H.c., their inclusion in our scheme in the right perturbati
order being subsequently implemented.

To illustrate the applicability of this methodology, let u
consider the parametersD548d andVR528d, which corre-
spond to one of the cases studied in Ref.@1#. Equation~4!
gives then for the displacements:vg520.295i , ve57.035i ,
and v r526.74i ; as our notation suggests, they can be
lated to the classical fixed points. Actually, the analogy g
further and parallel treatments can be carried out for bo
classical and quantum, systems. Our strategy proceeds a
lows:

~i! In the HamiltonianH(vg), which results from applying
D(vg), the squeezing terms,21/2dvg

2a†21H.c., can be ne-
glected in first order sincevg

2!1. Hence, the local dynamics
including the effects of the quartic nonlinear ter
21/2d(a†a)2, can be approximated by the anharmonic o
cillator defined by

Hg
e f5~D22duvgu2!a†a2

1

2
d~a†a!2. ~5!

In effect,D(vg)un&, eigenstates of this effective Hamiltonia
in the original representation, give excellent approximatio
to some of the eigenstates of the complete system. This re
is particularly relevant to the dissipative dynamics, since
we will show later on,D(vg)u0& is the asymptotic state o
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the open system at zero temperature. We recall that a
placed vacuum is also the stationary state of the dissipa
driven-linear oscillator.

Let us evaluate now the effect of the additional nonline
terms2dva†a†a1H.c. Since, apart from constants, they a
given by the product of the number operator and either
annihilation or the creation operator, their effect could
partially understood as leading to a number-dependent
placement. Accordingly, we build up optimized eigensta
as displaced statesD@vg(n)#un& with the displacement pa
rameter depending on the occupation number. By apply
Hamiltonian of Eq.~3! to the Fock statesun& and ignoring
the effect of the squeezing terms, it is straightforward
shown that these states approximately satisfy the eigen
condition for the values ofvg(n) given by

FD2dS 1

2
1nD Gvg~n!2duvg~n!u2vg~n!1

VR

2
50, ~6!

and that, consequently, the statesD„vg(n)…un& are approxi-
mate eigenstates in the original representation. Note tha
the above equation,n comes from the contribution of the
number operator that appears as a factor in the additio
nonlinear terms2dva†a†a1H.c. By takingn50, we con-
sistently recover Eq.~4!. On the other hand, the solutions fo
n5” 0 improve the quality of our previous approximation.

A direct connection between the results of the quant
study and the characteristics of the phase space is prov
by the Q functions @17# ~also known as Husimi functions!,
defined asQ(q,p)5^aurua&, wherer denotes the density
operator, a is the amplitude of the coherent state wi
Re(a)5q and Im(a)5p. In Figs. 2, 3, and 4, we plot the
analytical Husimi functions@16# for some of the approximate
eigenstatesD(vg)un& and for the related ‘‘exact’’ eigenstates
obtained through a numerical diagonalization of the ma
representation of the complete Hamiltonian of Eq.~1! in the
Fock state basis. The validity of our approach is apparen
these figures. Obviously, the agreement with the numer
results can be improved by working with the optimize
eigenstatesD„vg(n)…un&; in fact, the optimization procedure
is necessary to reproduce eigenstates withQ functions lo-
cated in the outer regions of the phase space, beyond
local maximum area. However, in order to give a simp
picture of the dissipative processes in the inner region of
phase space, we will work with the approximate eigensta
D(vg)un& in the next section.

~ii ! Because of the magnitude ofve , the harmonic ap-
proximation around the local maximum must necessarily
clude the standard terms of squeezing,21/2dve

2a†21H.c.
Their explicit treatment is carried out in the usual way: w
make a further change of representation through the uni
transformation defined by the squeeze operatorS(h)
5exp@(1/2)(ha22h* a†2)#, where the squeeze parameterh
is obtained by imposing that the linear part of the tran
formed Hamiltonian S†(h)H(ve)S(h) has the simplest
harmonic-functional form. The squeezing terms are then
sorbed into the functional form of the new basis and
resulting transformed linear Hamiltonian reads
5-3
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S. BROUARD AND J. PLATA PHYSICAL REVIEW A64 063405
He
e f5@~D22duveu2!cosh 2s1dsinh2sRe~ve

2e2 iu!#a†a,
~7!

wheres andu are related to the squeeze parameter thro
h5uhueiu[seiu. For the example considered in this pap
we geth521.053. Of course, neglecting in first order th
effect of the nonlinear part,21/2d(a†a)21(2dvea

†a†a
1H.c.), is justified only for small occupation numbers.
will be shown further on that, despite this approximation,
eigenstates found,D(ve)S(h)un&, have the basic characte
istics needed to explain part of the features of the dissipa
behavior; some of the associated Husimi functions, also
tained analytically@16#, can be compared in Figs. 5, 6, and
with the ones corresponding to the numerical exact eig
states.

~iii ! Finally, for v r , a harmonic approximation is not pos
sible: the quadratic terms inH(v r) do not correspond to a
harmonic oscillator~see Ref.@15# for details!, as it could
have been guessed, given the saddle character of the as
ated fixed point. Hence, a local study of the dynamics in t
area of the phase space is not allowed.

Let us summarize the results of this section. Two sets
approximate eigenstates have been found: displa
squeezed number statesD(ve)S(h)un&, with Q functions in
the region of the local maximum; and displaced sta

FIG. 2. Q functions for the approximate eigenstateD(vg)u0&
(vg520.295i ) ~a! and for the corresponding exact eigenstate~b!.
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D„vg(n)…un&, vg(n) varying smoothly withn, which cor-
respond to eigenstates withQ functions located in the centra
and outer regions, where the squeezing can be neglecte
first order. In both cases, the analytical approach, which
produces accurately several eigenvalues and gets wors
the occupation number increases, can certainly be impro
by including higher-order effects, needed, for example,
guarantee the orthogonality of the complete representat
Nevertheless, in order to simplify the unraveling of the p
culiar damping processes, which is the main objective of
next section, we go on working at the presented level
approximation.

From the previous analysis, an explanation for one of
main findings of Ref.@1# can be guessed: a coherent sta
centered on the local maximum experiences partial reviv
because, for the set of parameters chosen, it is basica
superposition of two eigenstates, i.e.,uve&5D(ve)u0&
5c1D(ve)S(h)u0&1c2D(ve)S(h)u2&, which, therefore, os-
cillates between the symmetric and the antisymmetric co
binations. The energy splitting, which determines the os
lation period~time of revival! throught rev52p/DE, can be
straightforwardly obtained as DE52@(D
22sduveu2s)cosh 2s1d sinh 2sRe(ve

2e2 iu)# @see Eq. ~7!#.
Consequently, taking into account that tanh(2s)
52duveu2s/(D22sduveu2s) andu5p , the time of revival can

FIG. 3. Same caption as Fig. 2, for the approximate eigens
D(vg)u1&.
5-4
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EXTERNALLY INDUCED METASTABILITY OF AN . . . PHYSICAL REVIEW A 64 063405
be approximated in our analytical framework ast rev
;p/AdVn, whereVn is an effective Rabi frequency define
asVn5VRn̄1/2 andn̄5uveu2 is the mean-occupation numbe
of the coherent state. This result is one of the main achie
ments of the present work; its excellent agreement with
time of revival obtained in Ref.@1# from a numerical study,
confirms the validity of the treatment presented. Later on
will be shown that in the open system, the damping of
corresponding coherence leads to the eventual disappea
of the revivals.

Let us close this discussion by pointing out some oth
qualitative, aspects of the evolution ofD(ve)u0&. First, note
that the considerable localization of this state, i.e., the
that the evolution of the correspondingQ function is re-
stricted to a small area of the phase space, is due to
approximate linear character of the system around the m
mum. This point can be clarified if we artificially makeh
50 in our previous results:D(ve)u0& then becomes an
eigenstate of the local harmonic oscillator and, conseque
experiences a complete time localization. Hence, we can
conclude that it is the presence of squeezing that gives
partial character to the actual localization, the revivals be
rooted in the strong overlapping of the state with two of t
eigenstates. Finally, we point out that our approach allows
to conjecture the almost exact localization of an initially p

FIG. 4. Same caption as Fig. 2, for the approximate eigens
D(vg)u2&.
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pared stateD(ve)S(h)u0&. Actually, this feature is not robus
against dissipation since the coupling to a reservoir leads
we will show in the next section, to a different asympto
state, even at zero temperature.

III. THE DISSIPATIVE DYNAMICS

Dissipation is included in our model by linearly couplin
the system to a thermal reservoir of harmonic oscillato
Once the standard, Born-Markov and rotating-wave appro
mations@17,18# have been made and the partial trace o
the bath variables has been taken, the reduced system i
scribed by the master equation

dr

dt
52 i @H,r#1

gc

2
~2ara†2a†ar2ra†a!1N̄gc~a†ra

1ara†2a†ar2raa†!, ~8!

where H is given by Eq.~1!; gc is the damping constant
which depends on the coupling strength and on the spe
density of the reservoir at the oscillator frequencyvc ; andN̄
is the thermal mean-occupation number of the bath.

te

FIG. 5. Q functions for the approximate eigensta
D(ve)S(h)u0& (ve57.035i andh521.053) ~a! and for the corre-
sponding exact eigenstate~b!.
5-5
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S. BROUARD AND J. PLATA PHYSICAL REVIEW A64 063405
shown in Ref.@19#, this description is valid only for a sma
nonlinearity, which is precisely the case considered here,
d!vc .

The above equation was solved numerically in Ref.@1#;
also, a semiclassical approach for the evolution of the co
spondingQ function was presented in Ref.@3#. Given the
complexity of the problem, evident in those studies and
consequent difficulty in obtaining complete analytical so
tions, we have opted here to focus on the characteristic
the system near the attractors and gain insight into som
the unexplained dissipative features by using our knowle
of the deterministic dynamics. A strategy formally conv
nient for reaching this objective consists of working fir
with a simplified version of the model and then extrapolat
part of the results to the complete system. Specifically, be
consistent with the local character of our previous analy
we study the system whose Hamiltonian dynamics is exa
described either byHg

e f in the basis$D(vg)un&%, or byHe
e f in

the basis$D(ve)S(h)un&%, the relevance of each descriptio
being unambiguously determined by the initial preparati
Additionally, we assume that in both cases a master equa
with the functional form given by Eq.~8! accounts for dissi-
pation. In the following, it will be clear that despite its art

FIG. 6. Same caption as Fig. 5, for the approximate eigens
D(ve)S(h)u1&.
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ficial character, this model, built up with two representatio
that give only approximate expressions for part of the ‘‘e
act’’ eigenstates and where bistability has been introducedad
hoc , is suitable to clarify the asymptotic behavior and som
of the properties of the metastable state. Hence, let us m
a parallel treatment of the changes induced in the structur
the master equation by the unitary transformationsD(vg)
andD(ve)S(h).

A. The master equation in the displaced state basis

When Hamiltonian dynamics is described byHg
e f , the

time evolution of r̃5D†(vg)rD(vg) in the corresponding
open system is readily obtained as

dr̃

dt
52 i @Hg

e f ,r̃ #1
gc

2
~2ar̃a†2a†ar̃2 r̃a†a!

1N̄gc~a†r̃a1ar̃a†2a†ar̃2 r̃aa†!. ~9!

In deriving this equation we have neglected the terms wh
order of magnitude is given bygcvg , as they merely imply a

te FIG. 7. Same caption as Fig. 5, for the approximate eigens
D(ve)S(h)u2&.
5-6
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EXTERNALLY INDUCED METASTABILITY OF AN . . . PHYSICAL REVIEW A 64 063405
second-order correction. There are analytical solutions to
equation@20–22#; a well-known result, with a significant im
portance for our study, is that the GaussianQ function of an
initial coherent state evolves into a ring of probability with
decreasing radius, a GaussianQ-function being eventually
formed at the center of the phase space. ForT50, this
asymptotic state corresponds to the vacuum; in the untr
formed representation, it is the displaced vacuumD(vg)u0&
or, equivalently, the coherent stateuvg& whose amplitude is
given by the displacement parameter. For a nonzero temp
ture, the final state is a statistical mixture of the sta
D(vg)un&, populated according to the corresponding Bol
mann factors.

B. The master equation in the displaced squeezed state basis

Conversely, if Hamiltonian dynamics is described byHe
e f ,

the dissipative processes can be properly studied in term
r̃5S†(h)D†(ve)rD(ve)S(h), whose time evolution reads

dr̃

dt
52 i @He

e f ,r̃ #1
gc

2
cosh2s~2ar̃a†2a†ar̃2 r̃a†a!

1
gc

2
sinh2s~2a†r̃a2a†ar̃2 r̃a†a22r̃ !1

gc

4
sinh2s

3~22e2 iuar̃a1e2 iu~a2r̃1 r̃a2!1H.c.!. ~10!

To present the physical mechanisms in the simplest way
have takenT50 and, again, have suppressed the seco
order corrections. This expression defines a behavior qu
tatively different from the one given by Eq.~9!: the unitary
transformationS(h), in addition to changing the effectiv
decay rates, which become dependent on the squeeze pa
eter, alters the structure of the master equation, leading
significantly different asymptotic state. In particular regim
we can go further on this point: the description simplifi
considerably if the differences between the eigenenergie
He

e f are much larger than the damping constant, which is
case for the parameters chosen to illustrate our methodo
i.e., D548d, VR528d, andgc!d. Then, as the coherence
oscillate in a time scale much smaller than the character
time for the evolution of the populations,;1/gc , they can
be averaged to zero in the population equation. Con
quently, we derive

ṙ̃n,n5
gc

2
~cosh2s!@2~n11!r̃n11,n1122nr̃n,n#1

gc

2
~sinh2s!

3@2nr̃n21,n2122~n11!r̃n,n#. ~11!

Moreover, as the coherences eventually decay to zero,
asymptotic state, in the considered case of zero tempera
is easily obtained from the above equation as a statis
mixture of the statesD(ve)S(h)un&, their weights depending
on s and decreasing withn. Note that, because of the squee
ing, states withn5” 0 are populated even atT50, that is, in
a purely quantum-noise regime.
06340
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C. A qualitative discussion of the damping processes

The picture that emerges from the combination of bo
partial descriptions corresponds to a very simple quan
counterpart of classical bistability. The occurrence of tw
‘‘attractors’’ has been imposed by construction: we have
sumed the existence of two sets of differently displac
states as eigenstates of a system whose dissipative dyna
is modeled in the standard form of Eq.~8!. Obviously, this
approach, introduced merely as a tool formally conveni
for tracing back some characteristics of dissipation to
Hamiltonian dynamics, is incomplete: since it does not g
the transition between both representations, rooted in
strong nonlinearity of the problem, it cannot properly a
count for one of the main findings of Ref.@1#, namely, the
intrinsic monostable character of the quantum system, as
posed to the bistability of the classical analog. Now, let
show that, despite its evident limitations, the previous s
plified treatment provides us with a framework for unrav
ing some features present in the complete system. Our q
tative understanding is summarized in the following poin

~i! First, we consider an initial state with aQ function
located in the inner region of the phase space without ov
lapping the local-maximum area. As we have shown, in
displaced state basis, the deterministic system is appr
mately equivalent to an undriven anharmonic oscillator. A
ditionally, since, in this representation, the master equa
retains the standard structure of Eq.~8!, it follows that, in
this region, the damping processes present no qualitative
ferences with the well-studied ones existent in the dissipa
quartic oscillator @20–22#; in particular, the GaussianQ
function of an initial coherent state evolves into a ring
probability due to the nonlinearity and, eventually, into
Gaussian, which corresponds to the displaced vacuum
T50.

~ii ! For the system initially prepared in a coherent st
centered on the local maximum, one of the cases treate
Ref. @1#, a description in terms of displaced squeezed sta
can partially account for the different time scales detected
the numerical study@1#. There is a transient in which th
evolution~damped oscillation! of the coherence between th
two states that basically constitute the packet gives rise
partial revivals. More specifically, the system oscillates b
tween the symmetric and the antisymmetric combinatio
the period beingt rev;p/AdVn. The partial character of the
revivals has a twofold origin: first, the nonlinear effec
which increase withn, lead to a fast dephasing of the part
the packet formed by the small contributions of other sta
second, the damping of the coherence between the two m
constituent states leads to a gradual variation in the shap
the packet. As the coherences decay to zero, the revi
eventually vanish. In a time scale;1/gc , which corresponds
to the characteristic time for the evolution of the populatio
in Eq. ~11!, an ‘‘asymptotic’’ state, given as a statistical mix
ture of the statesD(ve)S(h)un& with populations that de-
pend ons and decrease withn, is formed. In this mixture, the
squeezing in amplitude can be traced back to the sque
character of each component. Moreover, since the eigens
can be, in part, located on classically unstable areas@23#, it is
5-7
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understood how, for certain parameters, the distribution sp
over the basin of the ground attractor. We emphasize tha
transients, linked to the evolution of coherences and pop
tions, disappear once the ‘‘steady’’ state around the ma
mum is reached, i.e., they die out on a time scale;1/gc .
The roots of metastability can also be conjectured: for a fi
Rabi frequency, the approximation found for the eigensta
becomes worse for increasingn and, at a certain point, th
description of Eq.~11! fails, a slow loss of population taking
place from the metastable state, which eventually m
evolve in the way previously presented as characteristic
the inner region. An increase in the temperature gives ris
a transfer of population to higher levels, changing t
weights in the mixture and accelerating the mechanism
loss ~see Ref.@3# for a semiclassical derivation of the loca
ization time!.

~iii ! Finally, in this framework, we can reasonably conje
ture about the fast decay of an initial coherent state loca
beyond the metastability region@1#: in the outer regions of
the phase space, displaced statesD„vg(n)…un&, vg(n)
varying smoothly withn, give a good description of the de
terministic dynamics and, consequently, we can assume
at least locally, a master equation with the standard fo
given by Eq.~9! applies. Hence, given the high values of t
occupation numbers or equivalently of the energies, an
tially very fast evolution of the coherences and a strong
fect of the nonlinearity21/2d(a†a)2 can be guessed. Obv
ously, given the approximate character of our study,
cannot clarify here important issues such as the precise
nition of the quantum analogs of the classical basins of
traction; we can only stress the relevance to this point of
essential differences between the classical and the qua
formalisms. In this sense, it is worth recalling that, as o
posed to the definition of a classical state as a point in
configuration space, which is unambiguously attached to
of the basins; in the quantum system, because of the fi
extent of the wave functions, theQ function, even for an
initially prepared eigenstate, can have parts in both class
basins.

We complete the analysis of dissipation by pointing o
the applicability of our work to the exhaustive research c
ried out on the parallel system used to describe dispers
optical bistability@9–12#; the methodology proposed in thos
studies, in particular, the characterization of the bistable
monostable regimes, is especially convenient for putting
approach on a more quantitative ground@11#; we have ap-
plied it and have checked how the range of parameters
sidered throughout our study corresponds, indeed, to an
ymptotically monostable regime, the final state forT50
being a displaced vacuum, in agreement with our consi
ations.

IV. FIELD-CONTROLLED METASTABILITY

The knowledge of the specific dependence of the effe
studied on the driving parameters allows a discussion of
possible use of the external field as a tool of control. In t
sense, we summarize in the following some of the previou
described properties, emphasizing how they are affected
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the frequency, phase, and intensity of the field.
~a! First, we remark that, for the appearance of metas

bility, the effective frequencyD, and the anharmonic poten
tial must have different signs; additionally, as the magnitu
of the displacement parameterve and, consequently, the
mean occupation number of the metastable state are d
mined byD, VR , andd, proper values ofv andVR must be
chosen to guarantee the occurrence of ‘‘localization’’ in
particular range of energies. Furthermore, from the res
obtained for the splitting of the eigenvalues, it follows th
the time of revival of coherent states centered on the m
mum can be altered by varying the values ofVR andD.

~b! The phase of the field,w, fixes the phase ofve and, in
turn, the angular position of the localized distribution.

~c! VR affects also the validity of a linearization aroun
the local maximum and the squeezing in the effective h
monic oscillator, higher Rabi frequencies improving t
quality of the approximation; hence, the localization tim
and the spreading in phase can be controlled by adjusting
field intensity. Finally, it is also possible to change the d
placement of the asymptotic stateD(vg)u0&, basically, by
varying the quotient betweenVR andD.

V. CONCLUDING REMARKS

The study presented for the dissipative driven anharmo
oscillator gives an understanding of the mechanisms resp
sible for some aspects of the dynamics; furthermore, it p
vides some general clues to designing strategies of con
We have found that the unintuitive behavior emergent in
system is rooted in the effective enhancement of the non
ear potential caused by the driving field: in the rotatin
frame description, as the frequency is effectively reduc
the relative magnitude of the anharmonic term becomes
nificantly larger; additionally, since in this frame the mas
equation retains its standard structure, typical of linear a
weakly nonlinear systems, the nontrivial features can be
rectly traced back to the high anharmonicity of the Ham
tonian system. Actually, this strong nonlinear character
reflected in the nonuniform properties of the eigenstate r
resentation and in the complex topology of the correspo
ing phase space. Although approximate and only loca
valid, our analysis provides enough information to clar
some points: near the ‘‘attractors’’ the mechanisms unde
ing the decay have been identified; an explanation for
appearance of partial revivals has been given; also, an alm
exact characterization of the asymptotic state as a displa
state has been presented. The potential applicability of
study seems clear, given the predictive power of the ana
cal results obtained and the relevance of the model to
physical problems, particularly, to the cyclotron mode of
electron in a Penning trap.
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