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Externally induced metastability of an electron in a Penning trap: Analytical results
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The effect of a driving field on the cyclotron mode of a relativistic electron in a Penning trap is studied
analytically. The Hamiltonian dynamics of this driven nonlinear oscillator is analyzed by using linearization
techniques and displaced squeezed-state formalism. With the approximate analytical expressions obtained for
the eigenstates in this approach, a simplified treatment of the dissipative dynamics is carried out and some of
the nontrivial features found in a recent numerical stidyEnzer and G. Gabrielse, Phys. Rev. L&8,. 1211
(1997] are unraveled. The emergence of different time scales and the generation of a metastable statistical
mixture are understood in terms of the changes induced in the structure of the master equation by the nonuni-
form characteristics of the eigenstates; the partial revivals of specific coherent states are accounted for by the
evolution of particular coherences. The control of these effects by a proper choice of the driving parameters is
discussed.
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[. INTRODUCTION space. It is remarkable that, for the range of parameters con-
sidered, the quantum system, as opposed to its bistable clas-
The study of trapped electrons, intense in the last decadesical analog, is asymptotically monostable.
has opened up new opportunities for high-precision experi- In previous studie$1,3] different theoretical approaches
ments with important, conceptual and practical implicationshave been developed to account for these findings and, in
[1-8]. The advances brought about in the observation techfact, important points have been clarified. However, there are
niques and the increasing knowledge of the rich dynamics oftill some questions that deserve additional analytical work;
these systems have allowed testing fundamental effects rangPecifically, an explanation for the revivals and a better char-
ing from classical noise-induced transitiot to quantum acterization of the asymptotic evolution are needed. Here, we
jumps[7]. In this line, it is worth mentioning some recent @m at giving a more complete understanding of these ef-
developments that have enlarged the field of applications: ffects. In our approach, the analysis of the classical counter-
has been shown that an electron in a Penning trap providesRart gives the clues to setting up unitary transformations that
realizable scenario for implementing quantum nondemolitior@llow an effective reduction of the Hamiltonian dynamics
measuremenft7]; additionally, the potential applicability of near the fixed points and provide a suitable framework for
this system in generation of macroscopic quantumiackling the open system: with a simplified treatment of the
interference statef5] and in quantum computing6] has ~ Master equation, some of the mechanisms underlying the dy-
been discussed. Presently, considerable attention is beitgmics are identified and part of the numerical results are
paid to the effects of dissipation, an important aspect of théeproduced analytically.
dynamics, which, apart from having intrinsic fundamental The outline of the paper is as follows. The Hamiltonian
interest, is crucial for the practicality of some of the pro-System is analyzed in Sec. II: approximate expressions are
posed applications. given for some of the energy eigenstates. Section Ill deals
This work focuses on the dissipative dynamics of an e|ecW|th d|SS|pat|0n: itis ShOWI’] hOW the Un|tary transforma“ons
tron interacting with a circularly-polarized oscillating elec- introduced in the previous section alter the functional struc-
tric field in a Penning trap; our objective is the analyticalture of the master equation, explaining the different time
explanation of the nontrivial behavior revealed by a recengcales present in the decay processes and the generation of
numerical study1]. It has been showfti] that, as a result of metastable states. Some strategies of control are discussed in
the combined action of the external field and the nonlineaS€c. IV. Finally, in Sec. V our conclusions are summarized.
potential that accounts for relativistic corrections, the cyclo-
tron mode, described as a driven quartic oscillator coupled to Il. THE HAMILTONIAN DYNAMICS
a reservoir, presents complex damping processes. Strongly , , i
nonuniform characteristics of the dynamics, partially re- Ve consider a harmonic oscillator of frequeney per-
flected in the bistability of the classical configuration spacefurbed by a quartic nonlinear term and driven by a circularly
have been uncovered: various time scales are present in S;é@lanzed classm_al flelgl. In the rotating frame of the driving
quences that change as the initial preparation is varied witfield the system is defined Ky,3]
metastability occurring for initial conditions linked to the

2
basin of one of the “attractors.” Significantly, the evolution B B s, 1)1 i, L
of a coherent state centered on that fixed point displays the H=A(w.—w)| a'at 2 2h6 aat 2
following features: partial revivals in the initial stage, the 1
subsequent emergence of a highly populated metastable +ZhQp(efa+e i¢al), 1)
state, and the eventual decay to the central area of the phase 2
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FIG. 1. Phase space for the
system defined by E@2) with the
parametersA =485, 1z=286,
and an arbitrary scale factor. The
same parameters are used in all
the figures.
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where § is the anharmonicity parameter and (g, and ¢ Nearg the system can be approximated as a harmonic oscil-
denote, respectively, drive frequency, Rabi frequency, anthtor; additionally, despite the fact thatis a maximum and
initial phase of the external field. Without loss of generality,because of the specific characteristics of the nonlocal poten-
we take, as in Ref{1], ¢=—=/2; in our study, it will be tial, a harmonic approximation for the Hamiltonian function
clear that a different value fop would simply mean a aroundeis also possible. Note that the bistable character is
change in the angular position of the metastable state. Thignked to the different signs of the harmonic and anharmonic
Hamiltonian describes the cyclotron mode of an electron in &ontributions.
Penning trap, the elimination of the axial and magnetron From these results, we set up the following strategy to
modes being allowed by the magnitude of their respectivesolve the quantum system. First, we perform a unitary trans-
time scaleg1]; the nonlinear term accounts for the relativis- formation with the displacement operat@r(v)=expa'
tic corrections and the driving term characterizes the interac—v*a) [13,14] and calculate, through a reduction procedure
tion with an electric field. Note thatl corresponds also to a that parallels the classical treatment, the three values of
driven electromagnetic mode in a cavity with an intensity-that define the quantum analogs of the fixed points. Second,
dependent refractive index; indeed, in a certain range of pathe validity of a harmonic approximation for each of the
rameters, it represents a typical scenario for dispersive optthree differently displaced Hamiltonians is studied and ana-
cal bistability[9—-12]. lytical expressions are obtained for the eigenstates when the
Let us see how the analysis of the phase space provides lisearization is valid. Finally, the effect of the nonlinear
with information relevant to obtaining some of the energyterms is analyzed.
eigenstates. The Hamiltonian function of the classical coun- Accordingly, we first applyD(v); the resulting Hamil-
terpart can be defined from the diagonal-matrix elements ofonianH(v)=D'(v)HD(v) takes the form
H in the coherent state representati¢jw)}; taking q
=Re(a) andp=Im(«a), it reads

1) Q
L H(v)=(A—258lv|?)ata+ A—E)v—5|v|2v+7R al
Ho=(alH|a)=A(p?+0%) — 5 8(p*+0?)*+Qep, (2
1 1
. . — —évlat?+H.cp—=d8a'a)?
with A= w,— w— 8/2 and where, as in the rest of the paper, 2 2
we have dropped the zero-point energy and have tdken +[-svatatatHe] 3)

=1. In the regime where the nontrivial quantum features
have been detected this classical systeee the phase space
depicted in Fig. 1 has three fixed pointg3]: g is a local where H.c. stands for Hermitian conjugate. Now, proceeding
minimum, e is a local maximum, and is a saddle point. to obtain the displacementisfrom which a linearization of
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the system may be valid, we make the coefficienta @hd the open system at zero temperature. We recall that a dis-
a' in the above equation equal to zero, that is, we impose placed vacuum is also the stationary state of the dissipative
driven-linear oscillator.
, Qg Let us evaluate now the effect of the additional nonlinear
v=dv|v+—-=0. @ terms— sva'a'a+ H.c. Since, apart from constants, they are
given by the product of the number operator and either the
It is worth making some comments here. First, note that thisnnihilation or the creation operator, their effect could be
equation implies the absorption of the driving term into thepartially understood as leading to a number-dependent dis-
new representation, which is a necessary first step in oyslacement. Accordingly, we build up optimized eigenstates
approach given the nonperturbative character of the drivings displaced state3[v4(n)]|n) with the displacement pa-
field. For =0, that is, for a driven linear oscillator, E¢d)  rameter depending on the occupation number. By applying
becomes a first-order equationnit can be solved to obtain Hamiltonian of Eq.(3) to the Fock statefn) and ignoring
the displacement parameter of the displaced staies |n) the effect of the squeezing terms, it is straightforwardly
that exactly diagonalizes the system in the original represershown that these states approximately satisfy the eigenstate
tation; the number statejg1) are, in this particular case, condition for the values of4(n) given by
eigenstates oH(v). Second, for our nonlinear system, this
condition parallels the requirement of zero net force that de-
termines the classical fixed points. In fact, this is a necessary [A— S
condition for the classical linearization; it is not sufficient,
though, since the expansion of a classical Hamiltonian about
a fixed point can be approximated as a harmonic oscillatoand that, consequently, the staf@év,(n))|n) are approxi-
only when the second-order terms in the expansion corremate eigenstates in the original representation. Note that, in
spond to a harmonic potential. In this sense, we stress that, the above equatiom comes from the contribution of the
our quantum system, the validity of a harmonic approxima-number operator that appears as a factor in the additional
tion around each of the three fixed points will be determinechonlinear terms- sva‘a‘a+H.c. By takingn=0, we con-
by analyzing if the quadratic terms-1/26v2a’?+H.c.,  sistently recover Eq4). On the other hand, the solutions for
present in Eq(3) can be incorporated, through proper uni- n#0 improve the quality of our previous approximation.
tary transformatior{15], into a Hamiltonian with the sim- A direct connection between the results of the quantum
plest harmonic-functional form, i.e., if they correspond tostudy and the characteristics of the phase space is provided
standard terms of squeezifd5,16. If the linearization is by the Q functions[17] (also known as Husimi functiohs
feasible, we will evaluate the relative magnitude of the restdefined asQ(q,p)=(a|p|a), wherep denotes the density
of the contributions, namely, the quartic anharmonic partpperator, « is the amplitude of the coherent state with
—1/25(a’a)? and the residual nonlinear terms,dva’a’a  Re(a)=q and Im(@)=p. In Figs. 2, 3, and 4, we plot the
+H.c., their inclusion in our scheme in the right perturbativeanalytical Husimi function§16] for some of the approximate
order being subsequently implemented. eigenstate® (v4)|n) and for the related “exact” eigenstates,
To illustrate the applicability of this methodology, let us obtained through a numerical diagonalization of the matrix
consider the parametefs= 485 and{)r= 284, which corre-  representation of the complete Hamiltonian of EL).in the
spond to one of the cases studied in H&f. Equation(4)  Fock state basis. The validity of our approach is apparent in
gives then for the displacementg;= —0.295, v.=7.033, these figures. Obviously, the agreement with the numerical
andv,=—6.74; as our notation suggests, they can be retesults can be improved by working with the optimized
lated to the classical fixed points. Actually, the analogy goeigenstate® (v4(n))|n); in fact, the optimization procedure
further and parallel treatments can be carried out for bothis necessary to reproduce eigenstates \@tliunctions lo-
classical and quantum, systems. Our strategy proceeds as felated in the outer regions of the phase space, beyond the
lows: local maximum area. However, in order to give a simple
(i) In the HamiltoniarH (v 4), which results from applying  picture of the dissipative processes in the inner region of the
D(vg), the squeezing terms; 1/26v§a*2+ H.c., can be ne- phase space, we will work with the approximate eigenstates
glected in first order since;<1. Hence, the local dynamics, D(vg)|n) in the next section.
including the effects of the quartic nonlinear term (ii) Because of the magnitude of,, the harmonic ap-
—1/28(a'a)?, can be approximated by the anharmonic os-proximation around the local maximum must necessarily in-
cillator defined by clude the standard terms of squeezirgl/26vZa'?+H.c.
Their explicit treatment is carried out in the usual way: we
make a further change of representation through the unitary
transformation defined by the squeeze opera&fr)
=exf (1/2)(ya®— *a'?)], where the squeeze parameter
In effect,D(vg)ln), eigenstates of this effective Hamiltonian is obtained by imposing that the linear part of the trans-
in the original representation, give excellent approximationsormed Hamiltonian S'(7)H(ve)S(7) has the simplest
to some of the eigenstates of the complete system. This resdiarmonic-functional form. The squeezing terms are then ab-
is particularly relevant to the dissipative dynamics, since, asorbed into the functional form of the new basis and the
we will show later on,D(v4)|0) is the asymptotic state of resulting transformed linear Hamiltonian reads

y 0
2

5+ [og(m = dlvg(m)[2og(n)+ 5" =0, (6)

1
Hgf:(A—25|ug|2)aTa—§5(aTa)2. 5)
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FIG. 2. Q functions for the approximate eigensteﬁx{vg)|0> FIG. 3. Same caption as Fig. 2, for the approximate eigenstate
(vg=—0.295) (a) and for the corresponding exact eigensidbe D(vg)|1).

HE'=[(A—208|v|?)cosh B+ dsinh2sRe(v2e™ ) ]a'a, D(ug(n))|n>,. vg(n) varying smoothly withn, which cor-
7 respond to eigenstates wifhfunctions located in the central
and outer regions, where the squeezing can be neglected in
wheres and ¢ are related to the squeeze parameter througfirst order. In both cases, the analytical approach, which re-
n=|7|e'’=sd’. For the example considered in this paper,produces accurately several eigenvalues and gets worse as
we getn=—1.053. Of course, neglecting in first order the the occupation number increases, can certainly be improved
effect of the nonlinear part—1/25(a'a)?+ (- dv.a'a’a by including higher-order effects, needed, for example, to
+H.c.), is justified only for small occupation numbers. It guarantee the orthogonality of the complete representation.
will be shown further on that, despite this approximation, theNevertheless, in order to simplify the unraveling of the pe-
eigenstates found) (ve)S(7)|n), have the basic character- culiar damping processes, which is the main objective of the
istics needed to explain part of the features of the dissipativeext section, we go on working at the presented level of
behavior; some of the associated Husimi functions, also obapproximation.
tained analyticallyf16], can be compared in Figs. 5, 6, and 7  From the previous analysis, an explanation for one of the
with the ones corresponding to the numerical exact eigenmain findings of Ref[1] can be guessed: a coherent state
states. centered on the local maximum experiences partial revivals
(i) Finally, forv,, a harmonic approximation is not pos- because, for the set of parameters chosen, it is basically a
sible: the quadratic terms iH(v,) do not correspond to a superposition of two eigenstates, i.€ly)=D(v¢)|0)
harmonic oscillator(see Ref.[15] for detaily, as it could =c¢;D(ve)S(7)|0)+c,D(ve)S(7)|2), which, therefore, os-
have been guessed, given the saddle character of the assagllates between the symmetric and the antisymmetric com-
ated fixed point. Hence, a local study of the dynamics in thidinations. The energy splitting, which determines the oscil-
area of the phase space is not allowed. lation period(time of reviva) throught,.,=2#/AE, can be
Let us summarize the results of this section. Two sets oftraightforwardly obtained as AE=2[(A
approximate eigenstates have been found: displaced 2s8|v¢/?%)cosh 3+ dsinh ZSRe(uge‘”’)] [see Eq.(7)].
squeezed number statBgv ) S(7)|n), with Q functions in  Consequently, taking into account that targ)(2
the region of the local maximum; and displaced states=—dv>/(A—2s8v*) and #== , the time of revival can
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FIG. 4. Same caption as Fig. 2, for the approximate eigenstate

D(Ug)|2>- FIG. 5. Q functions for the approximate eigenstate
D(ve)S(7)|0) (ve=7.035 andn=—1.053)(a) and for the corre-

roxim in r analytical fram rk
be approximated in our analytical framework as, sponding exact eigenstath)

~ /88, where(),, is an effective Rabi frequency defined

— 012 andae [y (2 : _ _
as),=Qgn"* andn=|v,|* is the mean-occupation number pared stat® (v,)S(7)|0). Actually, this feature is not robust
of the coherent state. This result is one of the main achievesgainst dissipation since the coupling to a reservoir leads, as

ments of the present work; its excellent agreement with thgye will show in the next section, to a different asymptotic
time of revival obtained in Ref1] from a numerical study, state, even at zero temperature.

confirms the validity of the treatment presented. Later on, it
will be shown that in the open system, the damping of the
corresponding coherence leads to the eventual disappearance
of the revivals. Dissipation is included in our model by linearly coupling
Let us close this discussion by pointing out some otherthe system to a thermal reservoir of harmonic oscillators.
qualitative, aspects of the evolution Bf(v¢)|0). First, note  Once the standard, Born-Markov and rotating-wave approxi-
that the considerable localization of this state, i.e., the facinations[17,18 have been made and the partial trace over
that the evolution of the correspondir@ function is re-  the bath variables has been taken, the reduced system is de-
stricted to a small area of the phase space, is due to thscribed by the master equation
approximate linear character of the system around the maxi-
mum. This point can be clarified if we artificially make dp
=0 in our previous resultsD(ve)|0) then becomes an gt
eigenstate of the local harmonic oscillator and, consequently,
experiences a complete time localization. Hence, we can also +apa’—a'ap—paal), (8)
conclude that it is the presence of squeezing that gives the o ) _
partial character to the actual localization, the revivals beingvhereH is given by Eq.(1); yc is the damping constant,
rooted in the strong overlapping of the state with two of thewhich depends on the coupling strength and on the spectral
eigenstates. Finally, we point out that our approach allows ugensity of the reservoir at the oscillator frequerngy, andN
to conjecture the almost exact localization of an initially pre-is the thermal mean-occupation number of the bath. As

Ill. THE DISSIPATIVE DYNAMICS

=—i[H,p]+ % (2apa’—a'ap—pata)+Ny.apa
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FIG. 6. Same caption as Fig. 5, for the approximate eigenstate FIG. 7. Same caption as Fig. 5, for the approximate eigenstate
D(ve)S(7)[1). D(ve)S(7)[2).

shown in Ref[19], this description is valid only for a small . . : . . .

nonlinearity, which is precisely the case considered here, i.eficial qharacter, this mpdel, built up ‘,N'th two representations

S<w that give only approximate expressions for part of the “ex-
° act” eigenstates and where bistability has been introdackd

The above equation was solved numerically in Réf; h i able o clarify th totic behavi q
also, a semiclassical approach for the evolution of the correl9¢, IS sultable o ¢ arify the asymptotic behavior and some

spondingQ function was presented in Re]. Given the of the properties of the metastable state. Hence, let us make

complexity of the problem, evident in those studies and thé parallel treatment of the changes induced in the. structure of
consequent difficulty in obtaining complete analytical solu—thed master equation by the unitary transformati@n® )
tions, we have opted here to focus on the characteristics &ndD(ve)S(7).

the system near the attractors and gain insight into some of

the unexplained dissipative features by using our knowledge  A. The master equation in the displaced state basis

of the deterministic dynamics. A strategy formally conve- I L . f
nient for reaching this objective consists of working first When H§m|ltog|an ?ynamms N .descnbed bté ' the
with a simplified version of the model and then extrapolatingtime evolution ofp=D"(v4)pD(vg) in the corresponding
part of the results to the complete system. Specifically, bein§Pen system is readily obtained as

consistent with the local character of our previous analysis, ~

we study the system whose Hamiltonian dynamics is exactly dj — —irHef 31+ e 2apa’—a'an—pa'a
described either b%" in the basigD(vg)|n)}, or by HE' in gt~ 'Hg el 5 (2ap p=pa‘a)

the basig§D(ve)S(7)|n)}, the relevance of each description — o~ ~+ Lt~ o~ s

being unambiguously determined by the initial preparation. +Ny(a'patapa’—a’‘ap—paa’). ©)

Additionally, we assume that in both cases a master equation
with the functional form given by Eq8) accounts for dissi- In deriving this equation we have neglected the terms whose
pation. In the following, it will be clear that despite its arti- order of magnitude is given by.v, as they merely imply a
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second-order correction. There are analytical solutions to this  C. A qualitative discussion of the damping processes
equation20—27; a well-known result, with a significant im-
portance for our study, is that the Gaussfarfunction of an
initial coherent state evolves into a ring of probability with a
decreasing radius, a Gaussi@afunction being eventually
formed at the center of the phase space. Fer0, this
asymptotic state corresponds to the vacuum; in the untran

The picture that emerges from the combination of both
partial descriptions corresponds to a very simple quantum
counterpart of classical bistability. The occurrence of two
“attractors” has been imposed by construction: we have as-
g_umed the existence of two sets of differently displaced

formed representation, it is the displaced vacun(ng)|0> States as eigenstates of a system whose dissipative dynamics

or, equivalently, the coherent stdte,) whose amplitude is is modeled. in the standard form of E@). Obviously, thls_
given by the displacement parameter. For a nonzero temper@PProach, introduced merely as a tool formally convenient
ture, the final state is a statistical mixture of the statedOr tracing back some characteristics of dissipation to the
D(vg)|n), populated according to the corresponding Bo|tZ_Ham|Iton|§n dynamics, is incomplete: since it does not.glve
mann factors. the transition between both representations, rooted in the
strong nonlinearity of the problem, it cannot properly ac-
count for one of the main findings of Rdfl], namely, the
intrinsic monostable character of the quantum system, as op-
Conversely, if Hamiltonian dynamics is describedl—lef, posed to the bistability of the classical analog. Now, let us
the dissipative processes can be properly studied in terms ghow that, despite its evident limitations, the previous sim-
}3=ST(77)D*(ve)pD(ve)S(n), whose time evolution reads Pplified treatment provides us with a framework for unravel-
ing some features present in the complete system. Our quali-
tative understanding is summarized in the following points:
(i) First, we consider an initial state with @ function
located in the inner region of the phase space without over-
lapping the local-maximum area. As we have shown, in the
displaced state basis, the deterministic system is approxi-
mately equivalent to an undriven anharmonic oscillator. Ad-
X (—2e Yapa+e % a%p+pa?)+H.c). (10)  ditionally, since, in this representation, the master equation
retains the standard structure of H§), it follows that, in
To present the physical mechanisms in the simplest way, wis region, the damping processes present no qualitative dit-
have takenT=0 and, again, have suppressed the second€rences with the well-studied ones existent in the dissipative
order corrections. This expression defines a behavior qualfuartic oscillator[20-22; in particular, the GaussiaQ
tatively different from the one given by E¢9): the unitary ~ function of an initial coherent state evolves into a ring of
transformationS(»), in addition to changing the effective Probability due to the nonlinearity and, eventually, into a
decay rates, which become dependent on the squeeze paraf#ussian, which corresponds to the displaced vacuum if
eter, alters the structure of the master equation, leading to -5:9- o )
significantly different asymptotic state. In particular regimes, (i) For the system initially prepared in a coherent state
we can go further on this point: the description simplifiescentered on the local maximum, one of the cases treated in
considerably if the differences between the eigenenergies ¢tef-[1], @ description in terms of displaced squeezed states
He' are much larger than the damping constant, which is th&&" partially account for the different time scales detected in
case for the parameters chosen to illustrate our methodolog§fl€ Numerical study1]. There is a transient in which the
i.e., A=485, Qr=285, andy.<é5. Then, as the coherences evolution(damped o_scnlatlohof Fhe coherence bet_vveen_the
oscillate in a time scale much smaller than the characteristitV0 States that basically constitute the packet gives rise to
time for the evolution of the populations; 1/y., they can partial revivals. Mor_e specifically, 'ghe system oscnlgtes. be-
be averaged to zero in the population equation. Consdween 'Fhe sy.mmetrlc and the antlsym'metrlc combinations,
quently, we derive the_perlod belngreU~Tr/\/6_Q_n. The partial character of the
revivals has a twofold origin: first, the nonlinear effects,
which increase withn, lead to a fast dephasing of the part of
r nzﬁ(cosﬁs)[Z(nJr D) prsns1—2npnn]+ E(sinhzs) the packet formed by the small contributions of other states;
T2 ' ’ 2 second, the damping of the coherence between the two main
~ ~ constituent states leads to a gradual variation in the shape of
X[2npy—1p-1—2(N+1)ppn . (1D the packet. As the coherences decay to zero, the revivals
eventually vanish. In a time scatel/y., which corresponds
Moreover, as the coherences eventually decay to zero, the the characteristic time for the evolution of the populations
asymptotic state, in the considered case of zero temperaturie, Eq. (11), an “asymptotic” state, given as a statistical mix-
is easily obtained from the above equation as a statisticalire of the state®(v¢)S(7)|n) with populations that de-
mixture of the stateB (v¢)S(#)|n), their weights depending pend ons and decrease with, is formed. In this mixture, the
onsand decreasing with. Note that, because of the squeez-squeezing in amplitude can be traced back to the squeezed
ing, states witm+0 are populated even a&t=0, that is, in  character of each component. Moreover, since the eigenstates
a purely guantum-noise regime. can be, in part, located on classically unstable a3k it is

B. The master equation in the displaced squeezed state basis

d ~ ~ ~ ~
d_Ft) =—i[HE" P+ %cosi‘?s(Zapa*— a'ap—pa'a)

+ %sinhzs(Zaf;)a— a'ap—pa'a—2p)+ %sinth
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understood how, for certain parameters, the distribution spillthe frequency, phase, and intensity of the field.
over the basin of the ground attractor. We emphasize that the (a) First, we remark that, for the appearance of metasta-
transients, linked to the evolution of coherences and populahility, the effective frequency\, and the anharmonic poten-
tions, disappear once the “steady” state around the maxitial must have different signs; additionally, as the magnitude
mum is reached, i.e., they die out on a time scal&/y,. of the displacement parameter, and, consequently, the
The roots of metastability can also be conjectured: for a fixeanean occupation number of the metastable state are deter-
Rabi frequency, the approximation found for the eigenstatemined byA, Qg, andé, proper values of» and{)r must be
becomes worse for increasimgand, at a certain point, the chosen to guarantee the occurrence of “localization” in a
description of Eq(11) fails, a slow loss of population taking particular range of energies. Furthermore, from the results
place from the metastable state, which eventually maybtained for the splitting of the eigenvalues, it follows that
evolve in the way previously presented as characteristic ofhe time of revival of coherent states centered on the maxi-
the inner region. An increase in the temperature gives rise tlmum can be altered by varying the values(bf and A.
a transfer of population to higher levels, changing the (b) The phase of the fieldp, fixes the phase af, and, in
weights in the mixture and accelerating the mechanism ofurn, the angular position of the localized distribution.
loss (see Ref[3] for a semiclassical derivation of the local-  (c) QR affects also the validity of a linearization around
ization time. the local maximum and the squeezing in the effective har-
(iii) Finally, in this framework, we can reasonably conjec-monic oscillator, higher Rabi frequencies improving the
ture about the fast decay of an initial coherent state locategyality of the approximation; hence, the localization time
beyond the metastability regidr]: in the outer regions of and the spreading in phase can be controlled by adjusting the
the phase space, displaced sta@fvy(n))[n), vg(n)  field intensity. Finally, it is also possible to change the dis-
Varying SmOOthly Withn, give a gOOd description of the de- p|acement of the asymptotic Sta[@(vg)|0>, basica”y, by
terministic dynamics and, consequently, we can assume thé\ﬁarying the quotient betweefl, andA.
at least locally, a master equation with the standard form
given by Eq.(9) applies. Hence, given the high values of the

occupation numbers or equivalently of the energies, an ini- V. CONCLUDING REMARKS
tially very fast evolution of the coherences and a strong ef- '
fect of the nonlinearity— 1/25(a’a)? can be guessed. Obvi- The study presented for the dissipative driven anharmonic

ously, given the approximate character of our study, weoscillator gives an understanding of the mechanisms respon-
cannot clarify here important issues such as the precise defsible for some aspects of the dynamics; furthermore, it pro-
nition of the quantum analogs of the classical basins of atvides some general clues to designing strategies of control.
traction; we can only stress the relevance to this point of th&Ve have found that the unintuitive behavior emergent in the
essential differences between the classical and the quantusystem is rooted in the effective enhancement of the nonlin-
formalisms. In this sense, it is worth recalling that, as op-ear potential caused by the driving field: in the rotating-
posed to the definition of a classical state as a point in thérame description, as the frequency is effectively reduced,
configuration space, which is unambiguously attached to onthe relative magnitude of the anharmonic term becomes sig-
of the basins; in the quantum system, because of the finitaificantly larger; additionally, since in this frame the master
extent of the wave functions, th® function, even for an equation retains its standard structure, typical of linear and
initially prepared eigenstate, can have parts in both classicaleakly nonlinear systems, the nontrivial features can be di-
basins. rectly traced back to the high anharmonicity of the Hamil-
We complete the analysis of dissipation by pointing outtonian system. Actually, this strong nonlinear character is
the applicability of our work to the exhaustive research carteflected in the nonuniform properties of the eigenstate rep-
ried out on the parallel system used to describe dispersivegsentation and in the complex topology of the correspond-
optical bistability{9—12]; the methodology proposed in those ing phase space. Although approximate and only locally
studies, in particular, the characterization of the bistable anglalid, our analysis provides enough information to clarify
monostable regimes, is especially convenient for putting ousome points: near the “attractors” the mechanisms underly-
approach on a more quantitative grourdd]; we have ap- ing the decay have been identified; an explanation for the
plied it and have checked how the range of parameters coappearance of partial revivals has been given; also, an almost
sidered throughout our study corresponds, indeed, to an aexact characterization of the asymptotic state as a displaced
ymptotically monostable regime, the final state for=0 state has been presented. The potential applicability of the
being a displaced vacuum, in agreement with our considerstudy seems clear, given the predictive power of the analyti-
ations. cal results obtained and the relevance of the model to real
physical problems, particularly, to the cyclotron mode of an

IV. FIELD-CONTROLLED METASTABILITY electron in a Penning trap.

The knowledge of the specific dependence of the effects
studied on the driving parameters allows a discussion of the ACKNOWLEDGMENT
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