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K- and L -shell ionization of heavy targets by various 20- and 80-MeM projectiles
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K- andL-shell ionization induced by 20 MeV/u He, C, O, and Ne beams on Ta, Pb, and Th targets, and 80
MeV/u He, C, O beams on a Pb target has been stuHlieeray production cross sections have been measured
and compared with theoretical calculations. Probabilities of creation of one additistedll hole, accompa-
nying aK-shell hole, have been deduced from experimental data, using the theoretical positions and intensities
of the diagram and satellit¢ x-ray lines, obtained from the multiconfiguration Dirac-Fock calculations. This
approach avoids explicit measurements of th&-rays and can be applied with the use of a standard Ge
detector.
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. INTRODUCTION 4He?t, 12c8t ) 1808+ jon beams were used. All ions were
produced simultaneously in the ECR ion source
Until now, the bulk of knowledge concerning inner-shell (ECRIS. The beams were separated by tuning the radio fre-
ionization in ion-atom collisions has been obtained for lightquency of the cyclotron appropriateji1]. Targets were
projectiles and targetsZ(<50) [1-7]. The reason for focus- 184Ta, 2%ph  and 33°Th with thicknesses 5.0, 3.6, and
ing on light systems is the large ionization probability at4.8 mg/cnf, respectively. The uncertainty of the target
moderate beam energies, which allows one to measure thgicknesses was less than 0.1 mgldor each target. Char-
relevant observables with relatively Simple means. ConSEacteristiC X-ray Spectra were measured with a h|gh-pur|ty Ge-
quently, not much data are available for heavier systemsplanar x-ray detector with an active area of 100 mwb-
One has to rely on extrapolations based on the dominanhined from the Institute for Nuclear Research in Moscow.
dependence of th&-shell-ionization probability on the re- an energy resolution ofr=255 eV was obtained at an
duced velocityéc vy /v, i.e., the ratio of the projectile x.ray energy of 75 keV. Absolute efficiency measurements
velocity to theK-shell-electron velocity, and on the charge of vere made using’Co, 133Ba, 5%u, and 2*’Am standard
the projectile,Z,. However, for the heaviest targetx /C  radioactive sources. The detector was positioned near 90 °
~0.6 and, therefore, relativistic effects become increasinglyyith respect to the beam direction and outside the scattering
important[8]. Just as has been done fite particled9,10,  chamber at a distance of 30 cm from the target. The chamber
explicit measurements for the cases of heavier projectiles anglindow of 1 mm stainless steel effectively removed the in-
heavy targets are necessary to establish a reliable body @énse contribution of x rays on the low-energy side of the
data. Here we study thi€-shell-ionization cross sections for spectrum. The typical count rate varied from 1 to 3 kHz,
three targetsTa, Pb, and Thand four projectiles{He, *’C,  which is sufficiently low to prevent pileup. This was verified
1°0, and *Ne) at the same velocitf/A=20 MeV/u, and  py adding a®*!Am source during the main rur(@xcept for
for a Pb target and three projectile¥He, *°C, 1°0) atE/A  the runs with the Ta target, where it would interfere with the
=80 MeV/u, thus we vary botlfx and Z,. The present measurement of TK x rays. The beam current was inte-
investigation was made in order to prepare for future nucleagrated in a Faraday cup for normalization. Data were accu-
physics experiments in this range of energy and target atomigulated to have approximately 16ounts in the x-ray region
number. to allow for sufficient statistical accuracy in the analysis.
The observed dependence of the peak positions and the A typical x-ray spectrum is shown in Fig. 1. It has been
shape of the measuredi x-ray spectra on the values @,  obtained using a Pb target and a 20-MeVide beam. The
evidences thd -shell-ionization accompanying thi€-shell  contributions of the various elements and their partition into
ionization. Therefore, we have performed a consistent analysubcomponentgSiegbahn notationare indicated. In the
sis allowing us to establish th€-shell-ionization cross sec- analysis for the determination of positions and intensities of
tions and the_-shell-ionization probabilities simultaneously. the diagram and satellite lines the multiconfiguration Dirac-

The latter measurements have thus been made with a Ggck (MCDF) method has been usésee below
detector and, therefore, avoid the use of low-efficiency crys-

tal spectrometers.
Ill. MCDF CALCULATIONS

Il. EXPERIMENTAL PROCEDURE . .
In recent years, several theoretical models for reliable de-

The experiment was performed with beams from the suscriptions of very complex x-ray spectra accompanying the
perconducting cyclotron AGOR at KVI, Groningen. 20- ionization in collision processes based on the MCDF method
MeV/u “Hel™, 12c3*) 160% 20Ne®* and 80-MeV/u have been developed and applid®]. The results of these
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K K K Ko McKenzieet al.[21]). The formulas for the transition matrix
e2_fal 1 B;b elements and spontaneous emission probabilities can be
40000 |- found in the work of Granf19]. The calculations have been

performed for both the Coulomb and Babushki26,27
gauges. In the nonrelativistic limit the Coulomb-gauge for-
mula for the electric dipole transitions yields the dipole ve-
30000 locity expression while the Babushkin formula gives the
dipole-length expressiofl9]. The studies presented in this
paper have been done using theasp packagd25].

Counts

20000 IV. DATA ANALYSIS

In the case of collisions of 20-MeV/tHe with 2°%Pb the
large yields for Bi and Péwhich can be seen in the spectrum
presented in Fig.)lindicate the importance of nuclear pro-
cesses producing the elements of atomic numberZ;
(whereZ refers to the targetand the internal conversion of
the decaying residual nuclg28]. The atomic processes for
0 . L \ | | the produced nucleif>Z+) seem to be insignificant in gen-

65 70 75 80 85 90 95 eral, becauser, . pk(b=0)<ok, wherepg(b=0) is the
Energy (keV) ionization probability andob is the impact parameter that

equals zero on the atomic scale. In order to disentangle such

44e+ 298 (solid histogram The dashed line spectrum presents spectra, the analysis makes use of a special technique that

the result of a fitting procedure. Note theray contribution be- allows unfolding of the x-ray spectrum into its cpntributing
tween theK 8 peaks of Pb. components. For each measured spectrum we first analyze a

single isolated peakcorresponding to a transition energy

studies have been successfully implemented in analyses &f) in order to obtain a precise description of the response in
Ka and KB x-ray spectra of many target atontwith z  the detectoiP(E—E,). Typically we use five parameters to
>40) generated in the near-central collisions with variousdescribeP(E—E,): a Gaussian of certain widthy (1 pa-
light and heavy projectilef13—18§. rametey, an exponential t§|(3 parametersa, b,_and C, see

The MCDF method applied in the present study has beeR€low and a Compton taif1 parameter Especially impor-
described in detail in many papds9—25. Therefore, only ~ tant for a good description is the shape o_f the exponential
a brief description will be given here, pointing out the esseniail, for which we usea+b exg —(E—EJ/c] in the energy
tial details. Within the MCDF scheme the effective Hamil- interval from where it connects with the GaussiarEat E,

tonian for anN-electron system is expressed by —30 down to the backscatter energy/(1+2E,/mec?).
We assume that the total spectrum is a sum of contribu-
N ] N tions AY from the atoms with a singl&-shell hole for each
H :;1 hD(')+j>i2:1 Cij (1) element of the atomic numbgr(i.e., Z; for target nuclei and

Z:+1, Z;+2 for nuclear reaction produdtand A?T*L

wherehp(i) is the Dirac operator for thith electron and the  from the target atomsZ;) with one K-shell hole and an
termsC;; account for electron-electron interactions and comeadditionalL-shell hole. Therefore, the total spectruX(E),
from one-photon exchange process. The latter is a sum of thean be expressed by
Coulomb interaction operatdidue to longitudinally polar-
ized photongsand the transverse Breit operatdue to trans- n
versely polarized photons X(E)=Ag+ >, AXD a(Z2)P(E-E;(2))

In the MCDF method an atomic-state function with the 2 =l

I HI :]
[ ] [ lPo

10000

FIG. 1. X-ray spectrum resulting from the reaction 20-MeV/u

total angular momentund and parity 7 is assumed in the m
multiconfigurational form +A§T+Lz a;(Z1)P(E—E{(Zy)). 3
=1
Y(I7)= % Crn(S)P(ymd™), 2 In this caseA, is the overall background. The normalized

n coefficientse; describe the relative intensity of the various
where ®(y,,,J7) are configuration state function®CSPH,  diagram transitiongwith corresponding energids) for the
cn(s) are the configuration mixing coefficients for stae single K-shell hole atomic states of a given element. Simi-
andyp, represents all information required to uniquely definelarly, the normalizedn coefficientse; describe the relative
a certain CSF. intensity of the various satellite transitiofsith correspond-

Apart from the transversgBreit) interaction two types of ing energiesk;) for the target atoms with a hole in the
guantum electrodynamics corrections are included, namely§-shell and one additiondl-shell hole. Then=13 diagram
the self-energy and vacuum-polarization correctideee andm~ 140 satellite line positions with corresponding rela-
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60000 TABLE I. ExperimentalK x-ray-production cross sections and
i their errors in barns. The last column gives theoreticatRoss
code values.
20 MeV/uNe + Ta
Reaction Ep(MeVIu) & okx (Aokx) oxx (theor)
“He+ 18iTa 20 0.83 2@) 16
40000 12¢ 4 18174 20 0.83 156L5) 124
160+ 18T 20 0.83 20019) 210
@ 2ONe+ 18Ta 20 0.83 29(®8) 321
5 “He+2%pp 20 0.71 o) 7
8 12 1 208py, 20 0.71 66) 49
160+ 20%pp 20 0.71 768) 79
20000 “Ne+ 2%%pPp 20 0.71 11412 116
“He+2%2Th 20 0.63 3.90.3 3.1
12C+ 2321 20 0.63 283) 24
160+ 232Th 20 0.63 344) 39
20Ne+232Th 20 0.63 484) 56
‘He+2%pp 80 1.43 440) 44
; . 12C+2%%pp 80 143  3836) 394
063 P &5 %6 & o5 se [ O+2%Db 80 143 70666) 696
Energy (keV)

FIG. 2. Kp region of the x-ray spectrum resulting from the one with the total intensitybéT+L (for the target atoms with a
reaction 20-MeV/u~"Ne+ **“Ta. The solid line presents the experi- hole in theK shell and a hole in the shel).

mental data and the dashed line is a fit assuming only sitgleell For a description of the shape of the characteristic spec-
ionization. The dotted line presents a fit assuntnplus additional P P " p.
- o trum of the target atom we thus use positions and relative
single L-shell ionization. . - . . .
intensities of approximately 140 diagram and satellite lines,

. . i calculated within the MCDF method. A spectrum obtained
tive intensities have been obtained from the MCDF calculasyith the above procedure is shown in Fig. 2 as a dotted line.

tions. By including all pos_sible transitions the same shapexs can be seen from that figure, the fit assunfihglus one
can be used for all peaks, in contrast to our earlier Wal  qgitionalL-shell hole is in much better agreement with the
that described thK 8 peaks as a single component instead 0fexperimental spectrum than the fit that neglects the effect of
a composition of individual transitions. the additionalL-shell ionization. Thus, although the indi-

In order to test the role of the-shell ionization in our ;44| satellite lines cannot be distinguished, they are crucial
experiment, we have initially neglected the contribution fromsq, the reproduction of the target-atom spectrum.

the last term in Eq(3). The yieldsA7 and the overall back-  For the estimation of the-shell ionization probability per

ground A, have been obtained by a least-square fit thaglectron,p, , we have applied the following relatidi30]:
makes use of a simple matrix-inversion technique. This pro-

cedure is very effective in excluding from the fit theray AL g
peaks originating from decays following nuclear reactions R = T _ Pu , (4)
(as, for example, the-ray peak between th¢, peaks of Pb, A?T 1-po

that can be seen in Fig).ln the following we have included

these peaks in our analysis by adding one extra peak COMghere A7 "+ and A} are the total intensities for the target
ponent to Eq.(3). Although the overall description of the o \ith 4 hole in thi shell and a hole in the shell and
spectra obtame_d from this simplified proc_edure IS quite .Satfor the target atoms with a singke-shell hole, respectively.
Lifactory (_see tFI? L V‘t’e qbservi sImaI][ dllscreparéc.lesthwnh R, represents also the ratio of the total ionization cross sec-
Ke (:;(pi%rrllr(r'lseer; ?:iSp;_CTrﬁé ngizrslsczr?)rs,scgegtigdonsfgn ;Ee h? h_tion for production of on& hole and ond. hole to the total

B reg . 9. . "9 i?nization cross section for production of okehole and no
energy side of the peaks must be attributed to the addmonet holes. We can then evaluate theshell-ionization prob-
L-shell ionization, as the presencelothell holes gives the e .
largest shifts in the&K x-ray energy spectrum. We, therefore, ability per electron from the expression
assume that the small shifts due to the M-shell ionization can

be ignored, and that at the most a singishell hole is cre- pin_ (5)
ated. Thus, for a better reproduction of the whole experimen- 8+RL

tal spectra and for evaluation of theshell-ionization prob-

abilities, now we use Eq3), including the last, previously V. RESULTS AND DISCUSSION

neglected, term. Following the full form of E(), the char- .

acteristic x-ray yields for the target element are assumed to A. K x-ray cross sections

consist of two separate components: one with the total inten- In Table | the experimentd{ x-ray-production cross sec-
sity A?T (for the target atoms with a singke-shell holg and  tions and their errors are collected. These experimental errors
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30-MeV/u Ne and Ar projectiles and various targets are also
indicated.
2 . .
10 | To compare the experimental results with the theory we
[ 3 have performed calculations of the dird¢tshell-ionization
cross sections, based on the PWBA-BCPR model, i.e.,
p(lang w(ave b(orn) a(pproximation method including cor-
rections for Kinding energy effegt c(oulomb deflectioj
e p(olarization effect, and felativistic effect$ [32—36. The
= theoretical values have been computed, usingktkEeross
b 1 20 MeV/uNe code based on the formalism described28], with the aim
x 1 0 obtain results for differeny . The full results of these
x AN to obt Its for differen, . The full results of th
© W 20 MeV/u He (this work) calculations are presented in the last column of Table I. In
@ 20 MeV/u C (this work) Fig. 3 we show for clarity the theoretical prediction for Ne
W 20 MeV/u O (this work) projectiles only. These are indicated by solid lines labeled 1,
8 i mz\x: e EtL'l'f) work) 2, and 3, corresponding to 20-, 30-, and 80-MeV/u Ne pro-
O 30 Mev/u Ar (Lia) jectiles, respectively. We observe that the experimental data
X 80 MeV/u He (this work) are systematically higher than the theoretical predictions for
# 80 MeV/u C (this work) the “He and*2C projectiles, the magnitude is of the order of
1 dgh 80 MeV/u O (this work) . . d . . L.
10 Lo L e e the experimental error. A similar size systematic deviation
06 07 08 09 1 11 12 13 14 15 : = 20 .
Reduced velocity &, but with opposite sign is found for th#O and?°Ne projec-

tiles result. Therefore, th&xcross calculations are quite
FIG. 3. Experimental reducei x-ray-production cross sections satisfactory for the description of the experimental cross sec-

in comparison withkxcross code calculations presented as solid tions for most of the applications, e.g., for the normalization
lines 1-3 as a function of reduced velocit§. Data labeled with  of nyclear cross sectiofg9].

Lia have been obtained from7].

B. L-shell ionization

have been deduced using statistical and systematical errors _
due to uncertainties in the Ge detector efficiency, targe The average number Qi_;hell holesN, (=8p,), ano! the

X i ! A E-shell-ionization probabilities per electrop, , obtained
thicknesses, and beam current integration. In Fig. 3 the reih the experimental method described in Sec. IV are listed
ducedK x-ray-production cross sections, i.e., the meas#red i, Taple II. There are two sets of data in this table, referring
X-ray-production cross sections d|V|dedby2, are shown as g the two gauges: Coulomi€) and Babushkin B), which
a function of the reduced velocit . In the same figure, the have been employed in calculations of diagram and satellite
experimental cross sections obtained in the wi@k] for line intensities. The dependence on the gauge is found to be

TABLE II. Average number of_-holes,N, , andL-shell-ionization probabilities per electrop, , ob-
tained experimentallyp, * indicates the assumed lower limit fp; (see text

Reaction Ep(MeViu) ¢ NL (C) pL(C) NL(B) p.(B) p* (C) p* (B

“He+18'Ta 20 2.44 0.20 0.025 0.21 0.026 0.023 0.024
12c+ 18119 20 2.44 0.32 0.040 0.35 0.044 0.035 0.038
160+ 181 20 2.44 0.46 0.058 0.47 0.059 0.049 0.050
2ONe+ 181Tg 20 2.44 0.78 0.098 0.79 0.099 0.075 0.076
“He+ 208pp 20 2.05 0.11 0.014 0.10 0.013 0.013 0.012
12C+ 208pp 20 2.05 0.30 0.037 0.28 0.035 0.033 0.031
160+ 208pp 20 2.05 0.43 0.054 0.41 0.051 0.046 0.044
2ONe+2%8pp 20 2.05 0.62 0.078 0.58 0.072 0.063 0.059
“He+2%2Th 20 1.77 0.37 0.046 0.37 0.047 0.040 0.041
12c+232Th 20 1.77 0.38 0.047 0.37 0.047 0.041 0.041
1860+ 232Th 20 1.77 0.40 0.050 0.39 0.049 0.043 0.042
20Ne+232Th 20 1.77 0.51 0.064 0.50 0.062 0.053 0.052
4He+ 28pp 80 4.10 0.10 0.013 0.10 0.013 0.012 0.012
12C+20%pp 80 4.10 0.11 0.014 0.11 0.014 0.013 0.013
160+ 208pp 80 4.10 0.13 0.016 0.13 0.016 0.015 0.015
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less than 10%. We note that the experimental uncertainty dut 1

to counting statistics is negligible and the systematical un- f O 20AMeV+To

certainties noted in Sec. VA do not play an important role 09 f O 20AMev+Pb

here. This is the advantage of using the present approach fc ﬁ zgi mz::

calculatingL-shell ionization probabilities, as they are inde- “E O

pendent from the experimental conditions. However, in our
method we assumed the creation of only one additional .
L-shell hole. Taking into account the binomial distribution of  gg [ O
the additional multiple ionization we have estimated the
probability of creating a second-shell hole to be less than =Z' 0.5
10% for “He, '2C, and®0 projectiles. The maximum prob- s @
ability for a second_-shell hole is about 31% in the case of 04 A

the 2Ne+ *81Ta reaction. With the assumption that all excess
yield A7 " defined in Sec. IV must be attributed to addi-

tional L-shell holes, ignoring the details of the corresponding .2 o

o>

characteristic spectrum, W R A
0.1
K+L L
8
RL_AZT_l_(l_pL) 6) P S E N I S RN RN
- - ' 20 a0 60 80 100 120
Az, (1-p)° z
resulting in an alternative value FIG. 4. Average number df-shell holesN, (based on the Cou-
lomb gaugé as a function oTsz.
1
pr=1- —(R FETSTTh (7 a-particle-induced reactions, unforeseen processes following
L

inelastic scattering, involving contributions of interniat
andK-conversion between nuclear excited states may play a
role that is difficult to quantify(cf. the interpretation of the
results shown in Fig. )1

We considerp; to be the lowest limit forp, . The maxi-
mum deviation is 25% also in théNe+'Ta case(see
Table 1l). These conditions also indicate the limits of the
method applied in this work. Various other aspects—in par-
ticular, the energy calibration and the energy dependence of
the detector efficiency—that might affect the deductiop of
were also investigated. However, requiring a good descrip- We have studie& - and L-shell ionization of heavy tar-
tion of the position of the low-energy side of the x-ray peaksgets by various projectiles with energies 20 and 80 MeV/u.
that are not influenced by additionktholes indicated that The K x-ray-production cross sections obtained experimen-
the result obtained with the present method is robust. tally are within 10% of the theoretical PWBA-BCPR model

In Fig. 4 the average number afshell holes,N_, is  predictions(kxcross code calculations which shows that
shown as a function 02,23. It can be seen from this figure this model can be applied in the intermediate reduced veloc-
that theL-shell-ionization probabilities increase considerablyity regime; theK x-ray production cross sections are propor-
with ZS in the case of 20-MeV/u projectile energy and Pbtional to Zf,.
and Ta targets, which was also observed3di] using a Se The approach for the determination of theshell ioniza-
target. In the case of 80-MeV/u projectile energy and a Plion probabilities usink x-ray spectrum, which can be ob-
target theL-shell-ionization probabilities are significantly tained with a standard Ge detector, is presented in this work.
smaller than in the case of 20-MeV/u projectile energy. TheThe L-shell-ionization probabilities have been deduced using
reason for this decrease is the large reduced velodity ( the energies and intensities of the diagram and satellite lines
*vplv., i.e., the ratio of the projectile velocity to the obtained from the MCDF calculations. It was found that the
L-shell-electron velocity In this case& is about 4, i.e., experimental values of the-shell-ionization probabilities in-
twice higher than in the 20-MeV/u case and far above thecrease significantly with‘ip2 in the case of 20-MeV/u pro-
value 1, for which the projectile velocity approximately jectiles, whereas in the case of 80-MeV/u projectiles and Pb
matches the velocity of the-shell electrons of the target. target there is only a slight increase. The effectLeshell
This dependence is consistent with the recent measuremeritiization is relatively small in studied reactions, in general,
using light targets(in the Z=18-39 region described in less than oné-shell hole is created.

[38]. At higher reduced velocity80 MeV/u casg we ob- The presented results will be used in the interpretation of
tained a much less-strong projectdedependence in the de- future experiments concerning the measurement of the fis-
termination of the_-shell-ionization probabilities than in the sion time scald39]. In our forthcoming work we will mea-

20 MeV/u case. The reason for this different behavior issure the direct ionization cross sections explicitly, which will
presently not understood and will require further investiga-give us the opportunity to separate the nuclear-process con-
tions both theoretically and experimentally. In particular, fortributions from theK x-ray-production cross sections.

VI. SUMMARY AND CONCLUSIONS
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