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Theory of inner-shell photoionization of fixed-in-space molecules
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A theory is presented for the calculation of molecular inner-shell photoionization near thresholds and
electron—molecular-ion elastic scattering. The interaction of the incoming/outgoing electron with each atom of
the formation(except for the ionized atonms accounted for by suitable boundary conditions imposed on the
electron wave function at nuclei of these atoms in the system. The theory is applied to calculations of the form
of the photoelectron angular distribution fos photoionization of the C atom in the CO diatomic molecule, as
well as for the photoelectron angular distribution due to photodetachment from a quasimolecular negative ion
consisting of a C ion located near a neutral O atom.
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[. INTRODUCTION amplitudes of the molecular continuum wave functions. Built
in such a way, the wave functions can be used to describe
Inner-shell photoionization is a method of investigatingboth the electron-molecule scatterifg,4] and molecular
the electronic states of molecules. Molecules give rise tghotoionization5—11].
photoionization cross sections that are rather different from The method of Ref.[2] is a generalization of the
free atoms due to loss of spherical symmetry. For exampleaugmented-plane-wavéa8PW) approact 12] for molecular
the inner-shell photoabsorption spectra of diatomic mol-systems. The APW method, widely used in solid-state phys-
ecules exhibit broad resonances, quite different from thécs, is usually applied to calculate the bound structure of
monotonically decreasing atomic-photoionization cross secsolids whereas the muffin-tin potential covers all space. For
tion [1]. The main difficulty in calculating cross sections for the molecular case the situation is quite different, because the
molecular photoionization is a realistic description of themuffin-tin potential here is due to a finite number of the
motion of an unbound photoelectron in the continuum of aatomic spheres, and, therefore, it is impossible to neglect the
molecule or a molecular ion, whereas an initial molecularexistence of the molecular boundary. Thus, the traditional
state of a deep inner-shell level remains essentially atomicAPW method must be adapted for molecular photoioniza-
like. Dill and Dehmer[2] combined the multiple-scattering tion. In Ref.[2] this adaptation consists in introducing a
technique for treating nonseparable eigenvalue problemsolecular sphere and assuming a Coulomb potential outside
with electron-scattering theory to construct continuum electhis sphere.
tronic wave functions for molecules. Since RE2] is the The solution of the molecular-photoionization problem in
starting point for our consideration, we briefly recap the genthe framework of the method of Rd®2] leads to the follow-
eral ideas of this method. The molecular potential of a heting principal difficulties. First, the molecular potential exhib-
eronuclear diatomic molecule is represented as a cluster ¢ unphysical discontinuities at the molecular sphere; this is
nonoverlapping spherical potentials with effective ragjii  connected with the assumption of a constant potential in re-
andp, centered at the atomic sit@ggions | and b). Inside  gion II. Second, the center of Coulomb potential in region Il
each sphere, the molecular potential is approximated as th#bes not coincide with the nucleus of the ionized atom.
sum of a central atomic potential of the particular atom, andrhird, in the method of Ref.2] the asymptotic of the pho-
the monopole term of the expansion of the potential of theoelectron wave function far from the molecule is a superpo-
other atom about the center of the given atom. In the spacsition of a plane wave plus a spherical wave convergent on
outside the atomic spheres, but inside the molecular sphetBe molecular center. In fact, because of the multicentered
that embraces the atorfiegion Il) the molecular potential is character of the problem, the asymptotic form of the molecu-
taken to be a constant. And in the region outside the molecuar continuum wave function must include two spherical
lar sphere with radiuR,,=p,+ p, (region lll), the molecu- waves with centers on the nuclei of the atoms that form the
lar potential is considered to be Coulombic, centered on théiatomic molecule. In the case of &ftatom molecule, we
center of the molecular sphere. The matching conditions fomust evidently deal wittN spherical waves, one generated
logarithmic derivatives of the electron wave function on theby each of the atoms of the molecule. Finally, in R&f.the
surfaces of atomic and molecular spheres give a set of inh@uestion of how matching wave functions of different Hamil-
mogeneous linear equations that defines the phase shifts atwhians at the surface of the molecular sphere influences am-
plitudes and phase shifts of continuum wave functions is not
entirely clear.
*On leave from Starodubtsev Physical-Technical Institute, Tash- A method for the calculation of molecular photoionization
kent 700084, Uzbekistan. is presented in this paper. It is based on an idea developed by
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Fermi[13] investigating the shift of the higher spectral lines much less than interatomic distances and therefore in this
of an excited atom under gas pressure. For the description eégion all potentialsv;(|r—R;|)=0. Consequently, to de-
the interaction of a Rydberg electron with the atoms of thescribe molecular photoionization it is sufficient to construct
buffer gas, a pseudopotential as an equivalent of the boundkhe photoelectron wave function correctly in this region
ary conditions imposed on the wave function of excited elecwhere Eq.(2) is valid. Near the origin of the coordinate
tron was used13,14]. We employ this idea to construct the system the photoelectron wave functions of initial and final
molecular continuum wave function. It is crucial that within states coincide with the regular solutions of E2).to within

the framework of the pseudopotential method the effectgonstants, while for large the continuum wave function
connected with electron multiple-scattering by the variousmust correctly describe elastic photoelectron scattering by a
potential centers be taken into account accurately. Howevepositive molecular ion that contains the atom with a hole in
the use of this method is limited to low photoelectron enerthe nl subshell.

gies. Within the framework of this method elastic electron Qualitatively, the behavior of the wave functions describ-
scattering by molecules and molecular ions, and moleculaiing the motion of an electron in the molecular field with
photoionization cross sections near thresholds can be calcenergyE=k?/2>0, the solutions of Eq(1), is as follows:
lated, which obviate some of the difficulties inherent in thenear each of the atoms of the molecule, the functions

method of Ref|[2]. @, (r,R) are close to the wave functions of that atom; in
interatomic space they coincide with the electron wave func-

Il. THEORY AND RESULTS tions in the field of the residual ion; and wave functions

A. Molecular continuum wave functions @i (r,R) must satisfy the so-called outgoing-wave and

incoming-wave boundary conditions. Using the Green’s

Suppose that the nucleus of the atom in a molecule bein nction of Eq.(2),

ionized is located in the origin of the coordinate system an

a set of vectordRy, ... ,RN}Eﬁ defines the positions of N

the nuclei of the other atoms of the molecule. Thesgoms O (r,R)=Pp(r—>, f G (r,r)V(Ir' =Ry
shall be termed atom scatterers. The molecular field in which =1

the photoelectron moves is a sum of two potentials; the po-
tential generated by the ionized atom, which we approximate

as a central field/(r), which is slowly varying(except the , . ,
region near the atomic residiiabnd the potentials/j(|r Here, the function®, (r) are the solutions of homogeneous

—R|) of the atom scatterers, which we also approximate tdEquation (2), with boundary conditions that describe the
be central fields about their respective nuclei. For exampleglastic electron scattering by isolated potentigt) and is

in the case of the photoionization of a hydrogen atom condiven by the expressiofi 5]

fined in a moleculeV(r)=—1/r andV;(|r—R;|) are short-

range potentials of the atoms surrounding the H atom. Here L o aFiA *

and below we use atomic unité € m=e=1). The Schie Tic(r) 477% e Y i Yim(K @a(m). - (4)
dinger equation for the photoelectron wave function in this

multicenter system takes the form Here, ¢\ (r) is the regular-at-zero solution of the radial
Schralinger equatiorn(2), which has the asymptotic form

XD (r',R)dr’. )

N
1 - -

{—§A+V(r)—E}<DE(r,R)=—(I)E(r,R)jZl Vj(Ir=Ry]). 1 I

) gok|(r)|Hw~Hsm kr—?+Eln 2kr+A,|, (5
The potentialsvj(|r— RJ-|) are further approximated as non-
overlapping and equal to zero for—R;[>p;, wherep; is
the radius of atom scattergrThen in the region between the
atom scatterers the photoelectron wave function is a solutio
of the homogeneous equatioh) with the right side equal to

wherez is the charge of the residual atomic ion created by
the photoionization process amg(k) is the phase shift of
the wave function in the potential field of this ion, including
the Coulomb phase. The spherical functiofig(r)=Y ()
andY(k)=Y(Q,) are defined by the spherical coordinates

zero, i.e., . I
of vectorsr andk, respectively¥, (r) and¥, (r) [Eq. (4)]
. . 1 R are characterized by the following asymptotic behavior: at
Ho®e(r,R)=| = 5A+V(r)—E|®e(r,R)=0. (2  r—c they contain the plane wave eidp(r), as well as,

respectively, converging and diverging spherical waves of
It is clear that the behavior of the electron wave function inS,P,d etc. types. The Green’s functions in Eg) are defined

this region that covers all space, except the spheres of atoRY

scatterers, plays the primary role in the description of photo-

ionization of deep atomic subshells because the dipole- Hon(r,r’)= S(r—r'") (6)
matrix elements are generated near the nucleus of the ionized

atom at distances of 1,2, wherel , is the ionization po- and they can be expressed as expansion in terms of spherical
tential of the deeml-atomic level. The size of this region is harmonicq 16]
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+ + . z
Gg(r,r’)=2 Giu(r,r )Y im(m Y (r'). (7) exr{il(krﬂL EInZkr” N
; > [wGran
2mr i=1 k!
The radial parts of the Green’s functions, Ed@), can be
written as XV([r' =Ri)@i (r',R)dr’
Dxa(r’), r<r’ , z
Gki,(r,r’)=2k[¢kl( ?Xklf ) , ®) ex;{iﬂ kr+EIn2kr” N
ea(r)xa(r), r=>r'.

(*)

Here, x,(r)=*ig(r) — xw(r) are linear combinations of
regular ¢ (r) and irregular-at-zergy,(r) solutions of the % f Vi(|r' = R)®(r! R)dr’
radial Schrdinger equatior(2). The latter solution has the ! Tk AT

asymptotic form

N
=2
j=1

, fvj(|r'—Rj|)q>ki(r’,ﬁ)dr’HGkﬁ(r,Rj)h%.

1 l
XDl = ocog kr= —-+ L In2kr+ 4| (9)

(12

According to these formulas, the Green’s functions, &.  To calculate the square bracket in Efj2) we need to know

have asymptotic formpgl6] the wave functiond®; (r,R) and the potentials of the atom
scattererd/;(|r —R;|). However, the direct calculation of the

ex;{ +il kr+ Eln 2kr” integrals in Eq.(12) can be avoided and the coefficients of
the Green’s functions in this equation can be expressed via

* ' _ Fx
Gic ()= 27r Vo (n), s-wave phase shifts for electron scattering by each atom scat-
(10 terer. Consider the wave functiahy (r,R) in the form
where the vectok’ is defined byk’=kr/r. L R N . R
Using Eq.(10), it is seen that the asymptotic largede- <I>k—(r,72)=\1'k—(r)+2l Cj (k)G (1,Ry), (13
=

havior of the second term in E¢Q) has the form

N where theCji(k) are to be determined from the solution of
> f Gf(r,r’)vj(lr’—Rj|)d>,f(r’,7§)dr’|rﬁw the problem of elastic electron scattering by a positive mo-
j=1 lecular ion. By comparison with Eq12), it is seen that these

wave functions, defined by Eq13), satisfy the necessary
Z i .
exp{ii kr+ —In Zkr” boundary conditions. It is also clear that these wave func-
-~ K tions are solutions of Eq(2) in the region between atom

27r scatterers. It is evident, however, that these functions, in con-
trast to exact solutions defined by E®), do not describe
correctly the electron behavior inside the atomic spheres;
moreover, they diverge as|i+ R;| at the centers of these
spheres. This divergence, however, plays no role in the
(1) photoionization problem because the dipole-matrix element

. ) ) is generated near the origin of the coordinate system, quite
According to Eq.(11), the Green’s functions in Eq3) as-  f4r from the atom scatterer spheres.

ymptotically generaté\ spherical waves. The coefficient of ¢ functions(13), have especially simple forms in the
wave j is the amplitude for elastic electron scattering by .oqe ofV(r)=0 . In this case the wave functidi3) takes
atom scatterejr. This amplitude depends on vectérgk’ and
R.

We now restrict our theoretical method to low electron . . _ 1 N . erik-Ir=Rjl
energies. Since we have assumed nonoverlapping potentials (I)E(f,R):e'k'rﬂLz 2 Cj’(k)w
V;(|r—Rj]), the region of integration in Eq11) is divided = !
into Nisolated spheres with radh . If the wavelength of the  sing the summation theorem for spherical Bessel functions
photoelectron is much greater than any of radii of potenuatl?l we can easily show that E¢L4) is a solution of Eq(2)
wells 1k=>p;, then the integrand in Eq11) is a product of i, interatomic space fov(r)=0. For larger, Eq. (14) is a
two functions: smoothly changing functiois, (r) and rap-  syperposition of a plane wave ahtisphericals waves gen-
idly changing functions/;(|r —R;|)® (r,R). This makes it ~erated by the atom scatterers.

N
szl f wEF V(e =R @ (r R)ydr .

the form

(14

possible to remove the functiob, (r) from under the inte- In order to find the coefficient@f(k) defining the linear
gral and, to an excellent approximation for low energies, Eqcombination of the Green'’s functions in E(L3), we con-
(11) becomes sider elastic electron scattering by a positive molecular ion.
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Solutions_of the_ Schuinger equz_itiorﬁ)f_(r,R) for an ele_c- d){(rﬁ)=e”<'r+ fjoikr' (17)
tron moving with energyE>0 in the interatomic region r

must satisfy the boundary conditions on the surfaces of the _

atomic spheregl8]. However, since we only need the wave wheref}, is the swave scattering amplitude. Going to the
function to be correct in the neighborhood of the initial state— 0 limit in Eq. (17) yields

of the photoelectron, the boundary conditions can be im-

posed at the nuclei of the atom scatteriir8]. This means R 11 1 1
that the wave function will be incorrect inside the atom scat- OF (r,R)|,o—1+ bl =+ik|=fl| = +ik+ |- 19
terer spheres; but this is of no consequence for the photoion- r r fo

ization calculation. Furthermore, by imposing the boundary ) )
conditions at the nuclei, the real atomic potentials can béomparing Egs(16) and (18), we obtain the well-known
replaced by point pseudopotentials that are equivalents of tHérmula that connects the scattering amplitude with the
boundary condition§20,21]. swave phase shift,=[exp(d4§)—1)/2ik [15]. For coeffi-
The main idea of the pseudopotential method is to take:ientsC,*(k) we Obtaian(k)=2wf{,.
into account the boundary conditions that are imposed on the In the case oN zero-range potentials the wave function,
wave function[Eq. (13)] by means of a transition from Eq. defined by Eq.(13), must satisfy the boundary conditions,
(2) to an inhomogeneous wave equation. This method is wel(16) at each of the points=R;, j=1,... N. From here we
known in electrodynamics where for calculation of the elec-obtain the following set of algebraic equations for the coef-
trostatic potential of a charge located near a metallic spherdicients
for example, the potential is represented by a corresponding
charge distribution on the sphere’s surface. Then the surface _ 4
charges can be replaced by a system of fictional electrical Zﬂfb‘l’;(RjFCf(k)—ZWf{)z C (kG (R \Ry).
multipoles located at the center of the sphere. Solving the 7 (19)
Poisson equation with these sources, the exact electrostatic

potential outside the metallic sphere is obtaif2g]. Similar  \yhen deriving Eq.(19) it is taken into account that the

to this, in the pseudopotential method, the boundary Coninreen’s functionsG,j(r,Rj) for close values of the argu-

tions on the wave function on the surface of the atomlcments are approximately equal to the Green's function of a

spheres are replaced by fictional point potentials at the Celrag particle[16]. Note that, according to EG19), the coef-
ters of these spheres. ) . ficient C]-*(k) of the jth zero-range potential, depends not
In order to find these potentials, we operate vith on o)y on vectorR; , but also on vectors that define the posi-
the wave function, Eq13), and obtain, instead of E{L), an  +jons of others potentials. This means that the wave func-
inhomogeneous equation with pseudopotentials on the rlghhon, (13) with coefficients defined by Eq19) accounts for

N

hand side, electron multiple-scattering by the potentials of this multi-
center system. The solutions of E49) are reduced to cal-
A k2 . N culating the corresponding determinants. The resulting coef-
[— SHVIN-7 ‘W(F,R)Ijzl C/ (k) 8(r—Ry). ficients C/"(k) can also be used to calculate the cross

(15) sections for elastic scattering by molecules or clusters and
their positive ions.

The methods of solving the problem of electron scattering
using zero-range potentials have been developed in detail
[14,23,24, where it was shown that the general solution of The elastic-scattering amplitude for slow electrons on a

B. Elastic electron scattering

Eq. (15 near the pointR; has the form molecular ion is defined by the asymptotic behavior of the
wave function,(13) asr—« and has the form
cb;(rﬁ)hﬂﬁqur—Rj|—1+kcot5(§). (16) N

_ rion 1 2 + —%
F(9)=F (1‘})4—%]:1 C]- (k)\I’k, (R]-). (20

Here,\; are constants and] is thes-wave phase shift gen- _

erated by atom scattergrwhich we approximate as the so- Here,F'°"(9) is the amplitude for elastic electron scattering

lution of the problem of slow electron scattering by an iso-by a free positive ion located at the coordinate originis

latedj atom. _ the angle of scattering, arkd =kr/r is the momentum of the
The boundary conditiong16) involve the phase shiff] scattered electron.

of the wave function representing elastic electron scattering The case of diatomic molecules is especially simple

by the § potential. The phase-shift problem is simplified by where we have a two-centered system composed of one posi-

considering electron scattering by a zero-range potential lotive ion and onej-scattering center. The set of equations,

cated at the coordinate origin. If all the phases excepsthe (19), for this system is transformed into one equation

phase are vanishingly small, then the wave function .

@/ (r,R) has the form Cj (k)=27f4W, (Ry), (21)
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and the amplitude(20) for electron scattering by molecular cients of the Green'’s functions in E(L.3) are defined by the

ions takes the form expressioncj’*(—k)zcj*(k). According to the dipole-
i Dt N selection rules a transition is possible from thlesubshell to
F(9)=F'(9)+fo¥ (R _, . (Ry). (220 states with orbital angular momenita 1. Therefore, in the

According to Eq.(22), the cross section for elastic scattering €XPansion of the continuum wave functiah, (r,R), Eq.

by a fixed-in-space molecular ion at an anglés defined, as (13),. in spherlcgl harmonics, it is sufficient to consider only
it should be, by the mutual orientation of the vecthirsk’, partla] waves with = 1. The radial part of these wave func-
andR;. Note that the product of two spherical harmonicsions is defined by

Yim(Rj) in Eq. (22) can be reduced to one spherical har-

monic by using the Clebsch-Gordan expansigh]. If po- f O (r,R)YE 1(r)dQ
tential V(r)=0 then we deal with only ongscattering cen- -
ter. In this casé="""(1%) =0 and instead of Eq22) we have — At lam Ay K
the following expression for the amplitude of scattering by mee i 1m(K) @211
an isolated potential at poim; , N
F(9)=thexdi(k—k')-R;]. +2«1 Ci (KGya(r R Y am(Ry).

The total cross sectioor, (k) for the oriented molecular (26)

ion is obtained from Eq(22) with the help of the optical

Near the coordinate origin, the inequalitR; is valid for
theorem[15]

all vectorsR; . Hence, Eq(26), taking into account Eq8),
ImF(0) can be rewritten in the form

k

Omol(K) =4
f D (MR)YEe 1 n(NAQ =D 1 1(K,R)gy+1(r), (27)

+ + am
=0ion(K) + W (R P L (R))—sifsd . (23) A

k where amplitudeD, . ;(k,R) is defined by
If V(r)=0 then we obtain the total cross section for scatter- Sy LA
ing by a short-range potentisl (|r — R;|). As it must be, this Dixy(k/R)=4mii= e H=1Y L 1 n(K)
cross section has the form,q (k) = (47/k?)sir?8] . N
+2k 2, CJ (K xiq=1(R) Y im(Ry).

C. Photoionization cross section i=1

The differential cross section of molecular photoioniza- (28

tion is defined by[26
126) From Eq.(27), the radial parts of the photoelectron con-

tinuum wave functions differ only by amplitudfe,il(kﬁ)

from the radial parts of the wave functions for the free atom.
Equation(28) is physically obvious; the change in the wave-
Here, c is the velocity of light,e is the photon polarization function amplitude near the nucleus of the ionized atom is
vector, andw=1,,,+k*/2 is the photon energy. For the photo- due to multiple reflection of the electron wave from atom
ionization of a deep atomic subshell of an atom located at thecatterers. It is natural that the amplitudes of reflected waves
coordinate origin, the photoelectron wave function of the ini-depend on the electron momentikmand Vectors; .

tial state ®,(r,R) is located near the coordinate origin,  Taking into account Eqg13) and(25), the photoioniza-
within a region of approximate size of orderl, . This  tion amplitude becomes

value is much less than interatomic distances in the mol-
ecule. Therefore, to an excellent approximation, we can ne-
glect the effect of the surrounding atoms of the molecule on

the initial-state wave function of the photoelectﬁbq,(rﬁ)

2

do B R R
fd)k*(r,R)(e-r)CDm(r,R)dr . (29

ko
dQ  2mc

An_d+1= f D *(r,R)(e-r)Dy(r,R)dr

and approximate it as the wave function of tilesubshell of =47, dy,| (—i)*eMY, ,(K)
a free ionized atom, i.e., this wave function is the regular-at- W .
zero solution of Eq(2) with energyE=—1,,, N
N — (- (R .
By (1, R)= (1) Vim(1)- (29 * 7 &4 G X (RIMR) |, (29

The relation®,’ (r,R)=® _¥ (r,R) [15] connects the wave
function of a photoelectrorb[(r,?i) in the molecular con-

tinuum with the function®; (r,R) that describes the elastic
electron scattering by the molecular ion. Hence, the coeffi-

whered, , is the dipole-matrix element for the free atom

dkM:f QDk)\(r)Y:M(r)(e'r)‘PnI(r)Ylm(r)dr' (30)
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Thus, the calculation of the photoionization cross section for S(k) 20

a deep subshell of an atom bound in a molecule is reduced to 120 _—— 60
calculating dipole amplitudes for the free atom and the func- 1.2 N

tion in square brackets in ER9). The representation of the 0.8.

molecular amplitude in this forn{29) is a result of Eqs(27) =1 10 ' .......... _ 30
and (28), which show that the molecular continuum wave 0.4- /- é ‘ \
function differs only by an amplitude factor from the atomic i T/ 4‘ \\
wave function. It is evident that connection between the di- 001 ol (2 i[RI I .
pole amplitude$29) in a molecule and atom cannot be found oo |\ | s i L |

in a closed form if the molecular continuum wave function is | \' , /
expressed using the free-particle Green’s function, as done in 044  \ \ _ ' /i
Ref. [27]. Note that in the calculation of the dipole-matrix 0sl 210 ‘ ........... . 330
element, Eq(30), both initial- and final-state wave functions '

are eigenfunctions of Ed2) to an excellent approximation. 121

Therefore, théengthandvelocityforms of the dipole-matrix 240 el 300

elements lead to nearly identical results. 270
quuatlon(24) :nd (29 forl_ arb'ga[lyh'mt'?l'State .ﬁrb'tal FIG. 1. Structural functiors(k) for the photoionization of the
anguiar m(_)ment are comp icated. There or(_a, tol ustrat.e 1s level of the C atom in the CO molecule showing the dependence

the essential features of this theory, we consider the particy;

on the angle between the photoelectron momerkuamd the mo-

lar case of atomics-level photoionization from a diatomic jecyjar axisR; in the case wheR; is parallel to the photon polar-

molecule. In this case, the general formulas for thezation vectore. Calculated results are fok=0.1 (curve 1, k
differential-photoionization cross section can be greatly sim—g 3 (curve 2, k=0.5 (curve 3, andk=0.7 a.u.(curve 4. Note
plified. The amplitude(29) for a dipole transition in this case that in this figure as well as in Figs. 2, 3, and 4 below, for clarity,
takes the form when the value 08(k) is small, the zero of the radial coordinate on
the polar plot is not at the origin, but on the circumference of the
Y i ircle.
Anl—»elilzrsp\/ﬂ —Ie'Al(e- n) innermost circle
‘ To demonstrate the use of Eq83)—(35), we calculate
the form of the photoelectron angular distribution. As an ex-
+—C (=K x1(R) (e p)|, 31 . A
27 ! (=R xia(Rj)(e p) D ample, we consider the photoionization of thelével of the
_ _ C atom in the CO molecule. This calculation will be carried
where the unit vectora=k/k, p=R;/R;, and the matrix out by performing preliminary radical simplification in Eq.

elementrg is (34) in which we aproximate the exact wave functions of the
electron moving in the field of the positive*Cion with a
_ hole in the 5 subshell by plane waves and their spherical
rsp= ryr rydr. 32
sp f‘Pkl( )T @no(r) (32 components,
From Egs.(24) and(31), the photoelectron angular distribu- W;(R_)_)eik-Rj, (363
tion becomes .
do 20, i xa(R)—ij1(kR) —ny(kRy). (36D
da = ok (e T HikR)) (e p)|*. (33

Here, j1(kR;) and n;(kR;) are spherical Bessel functions
[17]. In this approach, the phase shift of the wave function
A;(k)=0. The amplitude of the-wave elastic scattering by
Hi(k,R)) = ie—iAlf%kzle(Rj)q,tk(Rj)_ (34) th_e free O a_tom_ and the c_orresponding phase sjiftalong
with the ionization potential of thesllevel (1,4~308 eV)

It is very important to note that the differential- Of the C atom are calculated in the Hartree-Fock approxima-
photoionization cross section, E(®3), is a product of two tion using the codes of Reff28]. The interatomic distance in
factors. The first depends on the ground atomic state and f§€ CO molecule is known to bi& =2.13 au[29]. The co-
defined by the integral32). The second is connected only Ordinate system is chosen so tligtis directed along the
with the molecular continuum characteristics and depends ofXis, and vectors andk are located in the same plane; the C
mutual position of vectors, k, andR; . This second factor, atom is located at the origin of the polar system of coordi-

In this formula,

referred to as a structural functi®{k), nates. _ _
The results of the numerical calculations 8fk) as a
S(k)=|(e-k)+H1(k,R)) (e p)|?, (350  function of the angle betwednandR; for various values of

the photoelectron momentuknare given in Figs. 1 and 2.
defines the form of the differential cross section for the mo-The atom scatterer O is on tlzeaxis at pointR;. For low
lecular photoionization. The investigation of the structuralmomentaFig. 1) the behavior of the structural functi@gk)
function is, thus, of importance. is defined by the second term in E@5) because the first
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FIG. 2. As Fig. 1 but fok=1.5 (curve 1, k=1.3 (curve 2, k
=1.1 (curve 3, andk=0.9 a.u.(curve 4.

term vanishes fok— 0. Therefore, folk— 0 the photoelec-

PHYSICAL REVIEW A 64 062707

ted mainly, as expected, along tbeector. The orientations
of the curvesS(k) follow the change in the orientation of the
vector-polarization polar angle. This result qualitatively
agrees with the experimental ddt0] and calculation$11]

for the photoelectron angular distribution from CO.

D. Photodetachment of a negative ion near a neutral atom

Consider the photodetachment of a quasimolecular system
that consists of a negative ion located at the coordinate origin
and a neutral atom at poimR. In this case, in Eq(2), the
potential isV(r)=0. Therefore, in interatomic space, the
molecular continuum wave function is built from the regular
j1(kr) and irregulam,(kr) solutions for a free particle. The
simplicity of this two-center model system allows the calcu-
lation of the differential photoionization cross section of a
quasimolecular negative ion in analytical form.

As in the case of the deep atomic-subshell photodetach-
ment, we approximate the initial state of this molecular sys-
tem with the wave function of the free negative ion. Then in
interatomic space, outside the range of the atomic forces

tron angular distribution is close to isotropic. With the in- with radii p; andp,, the wave function of the ground state is

crease of momenturk both terms in Eq(35) become com-
parable and the photoelectron angular distributiBig. 2)
has a more complicated form. F&r—o the second term

defined by expressiof ,(r,R;)=exp(—«r)/r [14], with the
electron affinityl ;= x?/2. The relation tar&é(k) = —k/k de-
fines thes-phase shift for electron scattering by the atom that

remains finite while the first increases. In this case, the strudorms the negative ion.

tural function is transformed into the angular distribution

From Eq.(14), the molecular continuum wave function is

S(k)~(e-n)? that is typical for the dipole photoionization of the superposition of the plane wave and two Green’s func-

a free atom. The same result occurs, of courseRﬁepoo,

In Fig. 3 the dependenc®(k) on the angle between vec-

torse andR; for fixed photon energy =334 eV, the same

as chosen in Ref11], is presented. This figure allows the
observation of the evolution of the differential cross section
for the molecular photoionization with the variation of this

tions for free motion

—ikr
i (r,R) =€+ Cq (k) 5—+C5 (K)

s

exp(—ik|r—R|)
2mr—R|
(37)

angle. As seen from this figure, the photoelectrons are emitfhe set of equations for the coefficients, Efj9), acquires

S(k) 90

1.6+ 120 60

124 27N

0.8{ 150 " P i ig 30

0.4- - & .
QN ‘-

0.0 180 ] '.\.‘ 2D 74 3 ) ; 0

0.0 I'l 3 P N _",2

0.4 v 7 1

081 210 ‘ " 330

1.6 240 300

FIG. 3. Structural functior§(k) for the photoionization of the
1s level of the C atom in the CO moleculeat 334 eV showing

the form
ikR
Cf(k)=2wfé+cg(k)fé?, (389
) ikR
Cg(k)=2wf§e'k'R+Cl+(k)f(2)?. (38h)

Here,f(l) andf% are the scattering amplitudes by the first and
second atoms, which are defined by thehase shifts5; and

5(2). Note that the formulas similar to Eq&7) and (38) but
with f3=f2 were used by Brueckn¢B0] to describe elastic
pion scattering by deuterium, and also by Subramanh@ah

to consider electron scattering by diatomic molecules. The
solution of Egs.(38) is simple. Since, owing to the dipole-
selection rules, the first of the coefficier@g (k) drops out

of the dipole-matrix element, we are left with on@; (k),
which is

the dependence on the angle between the photoelectron momentum

k and the molecular axi®;. Calculated curves are for various

values of the anglé, between the photon polarization veceand
the molecular axiR;: #,=0° (curve ), §.=30° (curve 2, 6,
=60° (curve 3, and §,=90° (curve 9.

2wR{1+ A, exdi(k-R—kR—65)1}
ALA, exrd —i(kR+ 85+ 82)]—exp(ikR) '

Cy (k)=
(39)
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0.4+

007480

0.2

0.6

1.04

0.1 03 05 07 09
270 photoelectron momentum k (a.u)

1.4+

FIG. 4. Structural functiors(k) for the photodetachment of the FIG. 5. Structural functiors(k) for the photodetachment of the
C~ O gquasimolecular ion showing the dependence on the angle b&s~ O quasimolecular ion showing the dependencek am the case
tween the photoelectron momentkm(k=0.55 a.u.) and the mo- when the photon polarization vecteris parallel to the molecular
lecular axisp in the case whep is parallel to the photon polariza- axis p. Calculated curves are for various values of the argle
tion vectore. Calculated results are for positiag anda, (curve 1 between the photoelectron momenténand the molecular axip:
as well as for positivea; and negativea, (curve 2. #=0° (curve 1, #=30° (curve 2, and #=60° (curve 3.

whereA;=kR/sin &;. Calculating the dipole-matrix element Finally, in Fig. 5 the dependence &k) of the photo-

for the transition from the initial state to the continuum, Eq. electron emission ok for fixed angles(0°, 30°, and 60°)

(37), we obtain relative to the molecular axis for parallel molecular excita-

2 5 tion (el|p) is presgnted. Trr:e g_l:crrves_ have]c ahpror;]ouncled reso-
+ . . nance structure due to the diffraction of the photoelectrons

Stk = e-k=57Co (=KL (kR)+iny(kR)J(e- p)| - by the neighbor scattering atom, as discussed in 3.

(400  With increasing emission angle, the diffraction resonance be-
comes less pronounced, and it disappears completely ehen
Since the first atom has the extra bound electron, the scatteg perpendicular tg, which follows from Eq.(40).
ing length of this atom is,=—k ™~ ‘tans3>0. The scatter-
ing length of the second atom can be either positive or nega-
tive.

In Fig. 4, the dependence 8{k) on the angle between We have developed a theory of deep-subshell photoion-
and p for the 1s photodetachment of Clocated a distance jzation of atoms confined in fixed-in-space molecules. The
R=2.13 a.u. from the neutral O atofmeferred to as the theory developed is a good approximation near the photoion-
C~ O quasimoleculg for two different combinations of scat- jzation thresholds where the formulas derived are exact ex-
tering lengths at fixek=0.55 a.u., are presented. In thesepressions within the framework of a non-overlapping central
numerical calculations, the scattering lengéhsanda, were  atomic-potential model. This method can be used to describe
found from the electron affinities of {=1.25 eV) and O  elastic electron scattering and the photoionization of mol-
(1,=1.46 eV)[29]. To investigateS(k) with different signs  ecules, clusters and their negative ions of any configuration.
of a;, the same scattering lengths were used with the sign ofhe calculated forms of the photoelectron angular distribu-
a, changed. In Fig. 4, the case of the photon polarizationtion for diatomic molecules are in a qualitative agreement
vectore parallel to the molecular axis (along thez axis) is  with experimental data and the results of other calculations.
considered. Both curves in this figure are asymmetric. In theén contrast to Ref[2], the present theory ultimately employs
first case &;>0,a,>0) this asymmetry is more pronounced. no arbitrary parameters, i.e., radii of atomic and molecular
The photoelectrons in the photodetachment of&e emit-  spheres. In addition, the constant potential of region Il is
ted mainly in the direction of the O atom. Fa;>0 and avoided, and the molecular continuum wave functi¢t,
a,<0 the curves in the right and left semiplanes are moraunlike Ref.[2], have the correct asymptotic behavior, i.e., the
symmetric. But the photoelectron emission in the direction ofphotoelectron wave function far from the molecule, as it
the O atom is preferred. It is also found that the curves irshould be, has the form of a superposition of the spherical
Fig. 4 are transformed in a similar manner to those in Fig. 3vaves generated by all molecular atoms.
when the angle between the vecterand p changes in the Furthermore, it was shown that for initial states, the
interval from 0 to 90°, i.e., upon the evaluation from parallel differential cross section factors into two terms with all of
excitation of the quasimolecule to perpendicul@mot the angular information in one of them, the structural func-
shown. tion, thereby making it easier to understand the physics of

Ill. CONCLUSION
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the situation. This structural function depends only upon the ACKNOWLEDGMENTS
molecular continuum wave function.

It is also important to note that this theoretical method- This work was supported by the U.S. Civilian Research
olgy is applicable to any multi-atomic system, not only mol- and Development Foundation for the Independent States of
ecules. Thus, it can be applied to clusters and other nan@he Former Soviet UnioiCRDP), Grant No. ZP2-2123, In-
structures, along with atoms confined in various ways, €.gternational AssociatiofiGrant No. INTAS-97-608 NATO
inside a fullerene. This will allow the treatment of confined (Grant No. PST.CLG 975651 and NSF. V.K.D. ack-

atoms to be extended so that ?ntrinsic atomic resonancegyledges hospitality of the Department of Physics and As-
molecular resonances, and confinement resondi3&<an tronomy, Georgia State University.

be treated on the same footing.

[1] A.P. Hitchcock and D.C. Mancini, J. Electron Spectrosc. Relat. witz and I. A. Stegur(Dover, New York, 1965

Phenom67, 1 (1994, and references therein. [18] W. John and P. Ziesche, Phys. Status SolidiB3555(1971).
[2] D. Dill and J.L. Dehmer, J. Chem. Phy&l, 692 (1974). [19] A.S. Baltenkov, Phys. Lett. 268 92 (2000.
[3] J.L. Dehmer, J. Siegel, and D. Dill, J. Chem. Ph§8, 5203  [20] K. Huang and C.N. Yang, Phys. Rel05, 767 (1957).
(1978. [21] K. Huang, Statistical Mechanic$Wiley, New York, 1963.
[4] J.L. Dehmer, J. Siegel, J. Welch, and D. Dill, Phys. Re2IA  [22] L. Landau and E. LifchitzElectrodynamique des Milieux Con-
101 (1980. tinus (Mir, Moscow, 1969.
[5] D. Dill, J. Chem. Phys65, 1130(1976. [23] A.G. Sitenko and O.l. Gerasimov, Phys. Lett. &1, 71
[6] D. Dill, J. Siegel, and J.L. Dehmer, J. Chem. Ph§5, 3158 (1992.
(1976. [24] Yu.F. Migal, Phys. Rev. A60, 2900 (1999, and references
[7] D. Loomba, S. Wallace, D. Dill, and J.L. Dehmer, J. Chem. therein.
Phys.75, 4546(1981). [25] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii,
[8] C.T. Chen, Y. Ma, and F. Sette, Phys. Rev@® 6737(1989. Quantum Theory of Angular MomentutiVorld Scientific,
[9] D.L. Lynch, Phys. Rev. A3, 5176(1991). Singapore, 1988
[10] F. Heiser, O. Gessner, J. Viefhaus, K. Wieliczek, R. Hentges[26] V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskitglativis-
and U. Becker, Phys. Rev. Left9, 2435(1997). tic Quantum TheoryPergamon Press, Oxford, 1974
[11] E. Shigemasa, J. Adachi, K. Soejima, N. Watanabe, A. Yag{27] C.R. Natoli, M. Benfatto, and S. Doniach, Phys. Rev3#4
ishita, and N.A. Cherepkov, Phys. Rev. L&, 1622(1998. 4682(1986.
[12] T.L. Loucks, The Augmented Plane Wave Meth@eEnjamin,  [28] M.Ya. Amusia and L.V. Chernyshev&omputation of Atomic
New York, 1967. ProcesseslOP, Bristol, 1997.
[13] E. Fermi, Ric Sci.7, 13 (1936. [29] H. MasseyNegative longdCambridge University Press, Cam-
[14] Y.N. Demkov and V.N. OstrovskiiZero-range Potentials and bridge, 1976.
Their Application in Atomic Physia®lenum Press, New York, [30] K.A. Brueckner, Phys. Re\89, 834 (1953.
1988. [31] R. Subramanyan, Zh.Ksp. Teor. Fiz.55, 363 (1968 [Sov.
[15] L.D. Landau and E.M. LifshitzQuantum Mechanics. Non- Phys. JETR28, 190(1969].
relativistic Theory(Pergamon Press, Oxford, 1965 [32] O. Gessner, F. Heiser, N.A. Cherepkov, B. Zimmermann, and
[16] A.l. Baz', Ya.B. Zeldovich, and A.M. Perelomo&cattering, U. Becker, J. Electron Spectrosc. Relat. Phenbdi-103 113

Reactions and Decays in Nonrelativistic Quantum Mechanics (1999.
(Israel Program for Scientific Translations, Jerusalem, 1969 [33] J.P. Connerade, V.K. Dolmatov, and S.T. Manson, J. Phys. B
[17] Handbook of Mathematical Functionedited by M. Abramo- 33, 2279(2000.

062707-9



