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Theory of inner-shell photoionization of fixed-in-space molecules
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A theory is presented for the calculation of molecular inner-shell photoionization near thresholds and
electron–molecular-ion elastic scattering. The interaction of the incoming/outgoing electron with each atom of
the formation~except for the ionized atom! is accounted for by suitable boundary conditions imposed on the
electron wave function at nuclei of these atoms in the system. The theory is applied to calculations of the form
of the photoelectron angular distribution for 1s photoionization of the C atom in the CO diatomic molecule, as
well as for the photoelectron angular distribution due to photodetachment from a quasimolecular negative ion
consisting of a C2 ion located near a neutral O atom.
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I. INTRODUCTION

Inner-shell photoionization is a method of investigati
the electronic states of molecules. Molecules give rise
photoionization cross sections that are rather different fr
free atoms due to loss of spherical symmetry. For exam
the inner-shell photoabsorption spectra of diatomic m
ecules exhibit broad resonances, quite different from
monotonically decreasing atomic-photoionization cross s
tion @1#. The main difficulty in calculating cross sections f
molecular photoionization is a realistic description of t
motion of an unbound photoelectron in the continuum o
molecule or a molecular ion, whereas an initial molecu
state of a deep inner-shell level remains essentially atom
like. Dill and Dehmer@2# combined the multiple-scatterin
technique for treating nonseparable eigenvalue probl
with electron-scattering theory to construct continuum el
tronic wave functions for molecules. Since Ref.@2# is the
starting point for our consideration, we briefly recap the g
eral ideas of this method. The molecular potential of a h
eronuclear diatomic molecule is represented as a cluste
nonoverlapping spherical potentials with effective radiir1
andr2 centered at the atomic sites~regions I1 and I2). Inside
each sphere, the molecular potential is approximated as
sum of a central atomic potential of the particular atom, a
the monopole term of the expansion of the potential of
other atom about the center of the given atom. In the sp
outside the atomic spheres, but inside the molecular sp
that embraces the atoms~region II! the molecular potential is
taken to be a constant. And in the region outside the mole
lar sphere with radiusRm>r11r2 ~region III!, the molecu-
lar potential is considered to be Coulombic, centered on
center of the molecular sphere. The matching conditions
logarithmic derivatives of the electron wave function on t
surfaces of atomic and molecular spheres give a set of in
mogeneous linear equations that defines the phase shifts

*On leave from Starodubtsev Physical-Technical Institute, Ta
kent 700084, Uzbekistan.
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amplitudes of the molecular continuum wave functions. Bu
in such a way, the wave functions can be used to desc
both the electron-molecule scattering@3,4# and molecular
photoionization@5–11#.

The method of Ref.@2# is a generalization of the
augmented-plane-waves~APW! approach@12# for molecular
systems. The APW method, widely used in solid-state ph
ics, is usually applied to calculate the bound structure
solids whereas the muffin-tin potential covers all space.
the molecular case the situation is quite different, because
muffin-tin potential here is due to a finite number of th
atomic spheres, and, therefore, it is impossible to neglect
existence of the molecular boundary. Thus, the traditio
APW method must be adapted for molecular photoioni
tion. In Ref. @2# this adaptation consists in introducing
molecular sphere and assuming a Coulomb potential out
this sphere.

The solution of the molecular-photoionization problem
the framework of the method of Ref.@2# leads to the follow-
ing principal difficulties. First, the molecular potential exhi
its unphysical discontinuities at the molecular sphere; thi
connected with the assumption of a constant potential in
gion II. Second, the center of Coulomb potential in region
does not coincide with the nucleus of the ionized ato
Third, in the method of Ref.@2# the asymptotic of the pho
toelectron wave function far from the molecule is a super
sition of a plane wave plus a spherical wave convergent
the molecular center. In fact, because of the multicente
character of the problem, the asymptotic form of the mole
lar continuum wave function must include two spheric
waves with centers on the nuclei of the atoms that form
diatomic molecule. In the case of anN-atom molecule, we
must evidently deal withN spherical waves, one generate
by each of the atoms of the molecule. Finally, in Ref.@2# the
question of how matching wave functions of different Ham
tonians at the surface of the molecular sphere influences
plitudes and phase shifts of continuum wave functions is
entirely clear.

A method for the calculation of molecular photoionizatio
is presented in this paper. It is based on an idea develope
-
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BALTENKOV, DOLMATOV, AND MANSON PHYSICAL REVIEW A 64 062707
Fermi @13# investigating the shift of the higher spectral lin
of an excited atom under gas pressure. For the descriptio
the interaction of a Rydberg electron with the atoms of
buffer gas, a pseudopotential as an equivalent of the bou
ary conditions imposed on the wave function of excited el
tron was used@13,14#. We employ this idea to construct th
molecular continuum wave function. It is crucial that with
the framework of the pseudopotential method the effe
connected with electron multiple-scattering by the vario
potential centers be taken into account accurately. Howe
the use of this method is limited to low photoelectron en
gies. Within the framework of this method elastic electr
scattering by molecules and molecular ions, and molecu
photoionization cross sections near thresholds can be ca
lated, which obviate some of the difficulties inherent in t
method of Ref.@2#.

II. THEORY AND RESULTS

A. Molecular continuum wave functions

Suppose that the nucleus of the atom in a molecule be
ionized is located in the origin of the coordinate system a
a set of vectors$R1 , . . . ,RN%[RW defines the positions o
the nuclei of the other atoms of the molecule. TheseN atoms
shall be termed atom scatterers. The molecular field in wh
the photoelectron moves is a sum of two potentials; the
tential generated by the ionized atom, which we approxim
as a central fieldV(r ), which is slowly varying~except the
region near the atomic residual!, and the potentialsVj (ur
2Rj u) of the atom scatterers, which we also approximate
be central fields about their respective nuclei. For exam
in the case of the photoionization of a hydrogen atom c
fined in a molecule,V(r )521/r andVj (ur2Rj u) are short-
range potentials of the atoms surrounding the H atom. H
and below we use atomic units (\5m5e51). The Schro¨-
dinger equation for the photoelectron wave function in t
multicenter system takes the form

F2
1

2
D1V~r !2EGFE~r ,RW !52FE~r ,RW !(

j 51

N

Vj~ ur2Rj u!.

~1!

The potentialsVj (ur2Rj u) are further approximated as non
overlapping and equal to zero forur2Rj u.r j , wherer j is
the radius of atom scattererj. Then in the region between th
atom scatterers the photoelectron wave function is a solu
of the homogeneous equation~1! with the right side equal to
zero, i.e.,

Ĥ0FE~r ,RW !5F2
1

2
D1V~r !2EGFE~r ,RW !50. ~2!

It is clear that the behavior of the electron wave function
this region that covers all space, except the spheres of a
scatterers, plays the primary role in the description of pho
ionization of deep atomic subshells because the dip
matrix elements are generated near the nucleus of the ion
atom at distances of;I nl

21/2, whereI nl is the ionization po-
tential of the deepnl-atomic level. The size of this region i
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much less than interatomic distances and therefore in
region all potentialsVj (ur2Rj u)50. Consequently, to de
scribe molecular photoionization it is sufficient to constru
the photoelectron wave function correctly in this regi
where Eq.~2! is valid. Near the origin of the coordinat
system the photoelectron wave functions of initial and fin
states coincide with the regular solutions of Eq.~2! to within
constants, while for larger the continuum wave function
must correctly describe elastic photoelectron scattering b
positive molecular ion that contains the atom with a hole
the nl subshell.

Qualitatively, the behavior of the wave functions descr
ing the motion of an electron in the molecular field wi
energyE5k2/2.0, the solutions of Eq.~1!, is as follows:
near each of the atoms of the molecule, the functio
Fk

6(r ,RW ) are close to the wave functions of that atom;
interatomic space they coincide with the electron wave fu
tions in the field of the residual ion; and wave functio
Fk

6(r ,RW ) must satisfy the so-called outgoing-wave a
incoming-wave boundary conditions. Using the Gree
function of Eq.~2!,

Fk
6~r ,RW !5Ck

6~r !2(
j 51

N E Gk
6~r ,r 8!Vj~ ur 82Rj u!

3Fk
6~r 8,RW !dr 8. ~3!

Here, the functionsCk
6(r ) are the solutions of homogeneou

Equation ~2!, with boundary conditions that describe th
elastic electron scattering by isolated potentialV(r ) and is
given by the expression@15#

Ck
6~r !54p(

l ,m
i le6 iD lYlm~r !Ylm* ~k!wkl~r !. ~4!

Here, wkl(r ) is the regular-at-zero solution of the radi
Schrödinger equation~2!, which has the asymptotic form

wkl~r !ur→`'
1

kr
sinS kr2

p l

2
1

z

k
ln 2kr1D l D , ~5!

wherez is the charge of the residual atomic ion created
the photoionization process andD l(k) is the phase shift of
the wave function in the potential field of this ion, includin
the Coulomb phase. The spherical functionsYlm(r )[Y(V)
andYlm(kW )[Y(Vk) are defined by the spherical coordinat
of vectorsr andk, respectively.Ck

2(r ) andCk
1(r ) @Eq. ~4!#

are characterized by the following asymptotic behavior:
r→` they contain the plane wave exp(ik•r ), as well as,
respectively, converging and diverging spherical waves
s,p,d etc. types. The Green’s functions in Eq.~3! are defined
by

Ĥ0Gk
6~r ,r 8!5d~r2r 8! ~6!

and they can be expressed as expansion in terms of sphe
harmonics@16#
7-2
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Gk
6~r ,r 8!5(

l ,m
Gkl

6~r ,r 8!Ylm~r !Ylm* ~r 8!. ~7!

The radial parts of the Green’s functions, Eq.~7!, can be
written as

Gkl
6~r ,r 8!52kH wkl~r !xkl

6~r 8!, r ,r 8

wkl~r 8!xkl
6~r !, r .r 8.

~8!

Here,xkl
6(r )56 iwkl(r )2xkl(r ) are linear combinations o

regular wkl(r ) and irregular-at-zeroxkl(r ) solutions of the
radial Schro¨dinger equation~2!. The latter solution has the
asymptotic form

xkl~r !ur→`'2
1

kr
cosS kr2

p l

2
1

z

k
ln2kr1D l D . ~9!

According to these formulas, the Green’s functions, Eq.~7!,
have asymptotic forms@16#

Gk
6~r ,r 8!ur→`5

expF6 i S kr1
z

k
ln 2kr D G

2pr
C6k8

7* ~r !,

~10!

where the vectork8 is defined byk85kr /r .
Using Eq.~10!, it is seen that the asymptotic large-r be-

havior of the second term in Eq.~3! has the form

(
j 51

N E Gk
6~r ,r 8!Vj~ ur 82Rj u!Fk

6~r 8,RW !dr 8ur→`

→
expF6 i S kr1

z

k
ln 2kr D G

2pr

3(
j 51

N E C6k8
(7)* ~r 8!Vj~ ur 82Rj u!Fk

6~r 8,RW !dr 8.

~11!

According to Eq.~11!, the Green’s functions in Eq.~3! as-
ymptotically generateN spherical waves. The coefficient o
wave j is the amplitude for elastic electron scattering
atom scattererj. This amplitude depends on vectorsk,k8 and
RW .

We now restrict our theoretical method to low electr
energies. Since we have assumed nonoverlapping poten
Vj (ur2Rj u), the region of integration in Eq.~11! is divided
into N isolated spheres with radiir j . If the wavelength of the
photoelectron is much greater than any of radii of poten
wells 1/k@r j , then the integrand in Eq.~11! is a product of
two functions: smoothly changing functionsCk

6(r ) and rap-

idly changing functionsVj (ur2Rj u)Fk
6(r ,RW ). This makes it

possible to remove the functionCk
6(r ) from under the inte-

gral and, to an excellent approximation for low energies,
~11! becomes
06270
als

l
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expF6 i S kr1
z

k
ln2kr D G

2pr (
j 51

N E C6k8
(7)* ~r 8!

3Vj (ur 82Rj u)Fk
6~r 8,RW !dr 8

'

expF6 i S kr1
z

k
ln2kr D G

2pr (
j 51

N

C6k8
(7)* ~Rj !

3E Vj~ ur 82Rj u)Fk
6~r 8,RW !dr 8

5(
j 51

N F E Vj~ ur 82Rj u)Fk
6~r 8,RW !dr 8G GGkl

6~r ,Rj !ur→` .

~12!

To calculate the square bracket in Eq.~12! we need to know
the wave functionFk

6(r ,RW ) and the potentials of the atom
scatterersVj (ur2Rj u). However, the direct calculation of th
integrals in Eq.~12! can be avoided and the coefficients
the Green’s functions in this equation can be expressed
s-wave phase shifts for electron scattering by each atom s
terer. Consider the wave functionFk

6(r ,RW ) in the form

Fk
6~r ,RW !5Ck

6~r !1(
j 51

N

Cj
6~k!Gk

6~r ,Rj !, ~13!

where theCj
6(k) are to be determined from the solution

the problem of elastic electron scattering by a positive m
lecular ion. By comparison with Eq.~12!, it is seen that these
wave functions, defined by Eq.~13!, satisfy the necessar
boundary conditions. It is also clear that these wave fu
tions are solutions of Eq.~2! in the region between atom
scatterers. It is evident, however, that these functions, in c
trast to exact solutions defined by Eq.~3!, do not describe
correctly the electron behavior inside the atomic sphe
moreover, they diverge as 1/ur2Rj u at the centers of thes
spheres. This divergence, however, plays no role in
photoionization problem because the dipole-matrix elem
is generated near the origin of the coordinate system, q
far from the atom scatterer spheres.

The functions~13!, have especially simple forms in th
case ofV(r )[0 . In this case the wave function~13! takes
the form

Fk
6~r ,RW !5eik•r1

1

2p (
j 51

N

Cj
6~k!

e6 ik•ur2Rj u

ur2Rj u
. ~14!

Using the summation theorem for spherical Bessel functi
@17#, we can easily show that Eq.~14! is a solution of Eq.~2!
in interatomic space forV(r )[0. For larger, Eq. ~14! is a
superposition of a plane wave andN sphericals waves gen-
erated by the atom scatterers.

In order to find the coefficientsCj
6(k) defining the linear

combination of the Green’s functions in Eq.~13!, we con-
sider elastic electron scattering by a positive molecular i
7-3
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BALTENKOV, DOLMATOV, AND MANSON PHYSICAL REVIEW A 64 062707
Solutions of the Schro¨dinger equationFk
6(r ,RW ) for an elec-

tron moving with energyE.0 in the interatomic region
must satisfy the boundary conditions on the surfaces of
atomic spheres@18#. However, since we only need the wav
function to be correct in the neighborhood of the initial sta
of the photoelectron, the boundary conditions can be
posed at the nuclei of the atom scatterers@19#. This means
that the wave function will be incorrect inside the atom sc
terer spheres; but this is of no consequence for the photo
ization calculation. Furthermore, by imposing the bound
conditions at the nuclei, the real atomic potentials can
replaced by point pseudopotentials that are equivalents o
boundary conditions@20,21#.

The main idea of the pseudopotential method is to t
into account the boundary conditions that are imposed on
wave function@Eq. ~13!# by means of a transition from Eq
~2! to an inhomogeneous wave equation. This method is w
known in electrodynamics where for calculation of the ele
trostatic potential of a charge located near a metallic sph
for example, the potential is represented by a correspon
charge distribution on the sphere’s surface. Then the sur
charges can be replaced by a system of fictional electr
multipoles located at the center of the sphere. Solving
Poisson equation with these sources, the exact electros
potential outside the metallic sphere is obtained@22#. Similar
to this, in the pseudopotential method, the boundary co
tions on the wave function on the surface of the atom
spheres are replaced by fictional point potentials at the c
ters of these spheres.

In order to find these potentials, we operate withĤ0 on
the wave function, Eq.~13!, and obtain, instead of Eq.~1!, an
inhomogeneous equation with pseudopotentials on the ri
hand side,

F2
D

2
1V~r !2

k2

2 GFk
1~r ,RW !5(

j 51

N

Cj
1~k!d~r2Rj !.

~15!

The methods of solving the problem of electron scatter
using zero-range potentials have been developed in d
@14,23,24#, where it was shown that the general solution
Eq. ~15! near the pointsRj has the form

Fk
1~r ,RW !ur→Rj

→l j~ ur2Rj u211k cotd0
j !. ~16!

Here,l j are constants andd0
j is thes-wave phase shift gen

erated by atom scattererj, which we approximate as the so
lution of the problem of slow electron scattering by an is
lated j atom.

The boundary conditions,~16! involve the phase shiftd0
j

of the wave function representing elastic electron scatte
by thed potential. The phase-shift problem is simplified b
considering electron scattering by a zero-range potentia
cated at the coordinate origin. If all the phases except ths
phase are vanishingly small, then the wave funct
Fk

1(r ,RW ) has the form
06270
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Fk
1~r ,RW !5eik•r1 f 0

j eikr

r
, ~17!

where f 0
j is thes-wave scattering amplitude. Going to ther

→0 limit in Eq. ~17! yields

Fk
1~r ,RW !ur→0→11 f 0

j F1

r
1 ikG5 f 0

j F1

r
1 ik1

1

f 0
j G . ~18!

Comparing Eqs.~16! and ~18!, we obtain the well-known
formula that connects the scattering amplitude with
s-wave phase shiftf 0

j 5@exp(2id0
j)21#/2ik @15#. For coeffi-

cientsCj
1(k) we obtainCj

1(k)52p f 0
j .

In the case ofN zero-range potentials the wave functio
defined by Eq.~13!, must satisfy the boundary condition
~16! at each of the pointsr5Rj , j 51, . . . ,N. From here we
obtain the following set of algebraic equations for the co
ficients

2p f 0
j Ck

1~Rj !5Cj
1~k!22p f 0

j (
iÞ j

N

Ci
1~k!Gk

1~Ri ,Rj !.

~19!

When deriving Eq.~19! it is taken into account that the
Green’s functionsGk

1(r ,Rj ) for close values of the argu
ments are approximately equal to the Green’s function o
free particle@16#. Note that, according to Eq.~19!, the coef-
ficient Cj

1(k) of the j th zero-range potential, depends n
only on vectorRj , but also on vectors that define the pos
tions of otherd potentials. This means that the wave fun
tion, ~13! with coefficients defined by Eq.~19! accounts for
electron multiple-scattering by the potentials of this mu
center system. The solutions of Eq.~19! are reduced to cal-
culating the corresponding determinants. The resulting co
ficients Cj

1(k) can also be used to calculate the cro
sections for elastic scattering by molecules or clusters
their positive ions.

B. Elastic electron scattering

The elastic-scattering amplitude for slow electrons on
molecular ion is defined by the asymptotic behavior of t
wave function,~13! as r→` and has the form

F~q!5F ion~q!1
1

2p (
j 51

N

Cj
1~k!Ck8

2* ~Rj !. ~20!

Here,F ion(q) is the amplitude for elastic electron scatterin
by a free positive ion located at the coordinate origin,q is
the angle of scattering, andk85kr /r is the momentum of the
scattered electron.

The case of diatomic molecules is especially sim
where we have a two-centered system composed of one p
tive ion and onej-scattering center. The set of equation
~19!, for this system is transformed into one equation

Cj
1~k!52p f 0

j Ck
1~Rj !, ~21!
7-4
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and the amplitude,~20! for electron scattering by molecula
ions takes the form

F~q!5Fi~q!1 f 0
j Ck

1~Rj !C2k8
1

~Rj !. ~22!

According to Eq.~22!, the cross section for elastic scatterin
by a fixed-in-space molecular ion at an angleq is defined, as
it should be, by the mutual orientation of the vectorsk, k8,
and Rj . Note that the product of two spherical harmoni
Ylm(Rj ) in Eq. ~22! can be reduced to one spherical ha
monic by using the Clebsch-Gordan expansion@25#. If po-
tential V(r )[0 then we deal with only onej-scattering cen-
ter. In this caseF ion(q)50 and instead of Eq.~22! we have
the following expression for the amplitude of scattering
an isolated potential at pointRj ,

F~q!5 f 0
j exp@ i ~k2k8!•Rj #.

The total cross sectionsmol(k) for the oriented molecula
ion is obtained from Eq.~22! with the help of the optical
theorem@15#

smol~k!54p
Im F~0!

k

5s ion~k!1Ck
1~Rj !C2k

1 ~Rj !
4p

k2
sin2d0

j . ~23!

If V(r )[0 then we obtain the total cross section for scatt
ing by a short-range potentialVj (ur2Rj u). As it must be, this
cross section has the formsmol(k)5(4p/k2)sin2d0

j .

C. Photoionization cross section

The differential cross section of molecular photoioniz
tion is defined by@26#

ds

dV
5

kv

2pc
U E Fk

2* ~r ,RW !~e•r !Fnl~r ,RW !drU2

. ~24!

Here,c is the velocity of light,e is the photon polarization
vector, andv5I nl1k2/2 is the photon energy. For the phot
ionization of a deep atomic subshell of an atom located at
coordinate origin, the photoelectron wave function of the i
tial state Fnl(r ,RW ) is located near the coordinate origi
within a region of approximate size of order;I nl

21/2. This
value is much less than interatomic distances in the m
ecule. Therefore, to an excellent approximation, we can
glect the effect of the surrounding atoms of the molecule
the initial-state wave function of the photoelectronFnl(r ,RW )
and approximate it as the wave function of thenl subshell of
a free ionized atom, i.e., this wave function is the regular
zero solution of Eq.~2! with energyE52I nl ,

Fnl~r ,RW !5wnl~r !Ylm~r !. ~25!

The relationFk
1(r ,RW )5F2k

2* (r ,RW ) @15# connects the wave

function of a photoelectronFk
2(r ,RW ) in the molecular con-

tinuum with the functionFk
1(r ,RW ) that describes the elasti

electron scattering by the molecular ion. Hence, the coe
06270
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cients of the Green’s functions in Eq.~13! are defined by the
expressionCj

2* (2k)5Cj
1(k). According to the dipole-

selection rules a transition is possible from thenl subshell to
states with orbital angular momental 61. Therefore, in the
expansion of the continuum wave functionFk

2(r ,RW ), Eq.
~13!, in spherical harmonics, it is sufficient to consider on
partial waves withl 61. The radial part of these wave func
tions is defined by

E Fk
2~r ,RW !Yl 61m* ~r !dV

54p i l 61e2 iD l 61Yl 61m* ~k!wkl61~r !

1(
j 51

N

Cj
2~k!Gkl61

2 ~r ,Rj !Yl 61m* ~Rj !.

~26!

Near the coordinate origin, the inequalityr ,Rj is valid for
all vectorsRj . Hence, Eq.~26!, taking into account Eq.~8!,
can be rewritten in the form

E Fk
2~r ,RW !Yl 61m* ~r !dV5Dl 61~k,RW !wkl61~r !, ~27!

where amplitudeDl 61(k,RW ) is defined by

Dl 61~k,RW !54p i l 61e2 iD l 61Yl 61m* ~k!

12k(
j 51

N

Cj
2~k!xkl61

2 ~Rj !Yl 61m* ~Rj !.

~28!

From Eq. ~27!, the radial parts of the photoelectron co
tinuum wave functions differ only by amplitudeDl 61(k,RW )
from the radial parts of the wave functions for the free ato
Equation~28! is physically obvious; the change in the wav
function amplitude near the nucleus of the ionized atom
due to multiple reflection of the electron wave from ato
scatterers. It is natural that the amplitudes of reflected wa
depend on the electron momentumk and vectorsRj .

Taking into account Eqs.~13! and ~25!, the photoioniza-
tion amplitude becomes

Anl→e l 615E Fk
2* ~r ,RW !~e•r !Fnl~r ,RW !dr

54p(
l,m

dlmF ~2 i !leiDlYlm~k!

1
k

2p (
j 51

N

Cj
1~2k!xkl

1 ~Ri !Ylm~Rj !G , ~29!

wheredlm is the dipole-matrix element for the free atom

dlm5E wkl~r !Ylm* ~r !~e•r !wnl~r !Ylm~r !dr . ~30!
7-5
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BALTENKOV, DOLMATOV, AND MANSON PHYSICAL REVIEW A 64 062707
Thus, the calculation of the photoionization cross section
a deep subshell of an atom bound in a molecule is reduce
calculating dipole amplitudes for the free atom and the fu
tion in square brackets in Eq.~29!. The representation of th
molecular amplitude in this form,~29! is a result of Eqs.~27!
and ~28!, which show that the molecular continuum wa
function differs only by an amplitude factor from the atom
wave function. It is evident that connection between the
pole amplitudes~29! in a molecule and atom cannot be foun
in a closed form if the molecular continuum wave function
expressed using the free-particle Green’s function, as don
Ref. @27#. Note that in the calculation of the dipole-matr
element, Eq.~30!, both initial- and final-state wave function
are eigenfunctions of Eq.~2! to an excellent approximation
Therefore, thelengthandvelocityforms of the dipole-matrix
elements lead to nearly identical results.

Equation ~24! and ~29! for arbitrary initial-state orbital
angular momental are complicated. Therefore, to illustra
the essential features of this theory, we consider the part
lar case of atomics-level photoionization from a diatomic
molecule. In this case, the general formulas for
differential-photoionization cross section can be greatly s
plified. The amplitude,~29! for a dipole transition in this cas
takes the form

Anl→e l 615r spA4pF2 ieiD1~e•n!

1
k

2p
Cj

1~2k!xk1
1 ~Rj !~e•r!G , ~31!

where the unit vectorsn5k/k, r5Rj /Rj , and the matrix
elementr sp is

r sp5E wk1~r !rwn0~r !dr. ~32!

From Eqs.~24! and~31!, the photoelectron angular distribu
tion becomes

ds

dV
5

2v

ck
r sp

2 u~e•k!1H1~k,Rj !~e•r!u2. ~33!

In this formula,

H1~k,Rj !5 ie2 iD1f 0
j k2xk1

1 ~Rj !C2k
1 ~Rj !. ~34!

It is very important to note that the differentia
photoionization cross section, Eq.~33!, is a product of two
factors. The first depends on the ground atomic state an
defined by the integral,~32!. The second is connected on
with the molecular continuum characteristics and depend
mutual position of vectorse, k, andRj . This second factor
referred to as a structural functionS(k),

S~k!5u~e•k!1H1~k,Rj !~e•r!u2, ~35!

defines the form of the differential cross section for the m
lecular photoionization. The investigation of the structu
function is, thus, of importance.
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To demonstrate the use of Eqs.~33!–~35!, we calculate
the form of the photoelectron angular distribution. As an e
ample, we consider the photoionization of the 1s level of the
C atom in the CO molecule. This calculation will be carrie
out by performing preliminary radical simplification in Eq
~34! in which we aproximate the exact wave functions of t
electron moving in the field of the positive C1 ion with a
hole in the 1s subshell by plane waves and their spheric
components,

Ck
1~Rj !→eik•Rj , ~36a!

xk1
1 ~Rj !→ i j 1~kRj !2n1~kRj !. ~36b!

Here, j 1(kRj ) and n1(kRj ) are spherical Bessel function
@17#. In this approach, the phase shift of the wave funct
D1(k)50. The amplitude of thes-wave elastic scattering by
the free O atom and the corresponding phase shiftd0

j , along
with the ionization potential of the 1s level (I 1s'308 eV)
of the C atom are calculated in the Hartree-Fock approxim
tion using the codes of Ref.@28#. The interatomic distance in
the CO molecule is known to beRj52.13 au@29#. The co-
ordinate system is chosen so thatRj is directed along thez
axis, and vectorse andk are located in the same plane; the
atom is located at the origin of the polar system of coor
nates.

The results of the numerical calculations ofS(k) as a
function of the angle betweenk andRj for various values of
the photoelectron momentumk are given in Figs. 1 and 2
The atom scatterer O is on thez axis at pointRj . For low
momenta~Fig. 1! the behavior of the structural functionS(k)
is defined by the second term in Eq.~35! because the firs

FIG. 1. Structural functionS(k) for the photoionization of the
1s level of the C atom in the CO molecule showing the depende
on the angle between the photoelectron momentumk and the mo-
lecular axisRj in the case whenRj is parallel to the photon polar
ization vectore. Calculated results are fork50.1 ~curve 1!, k
50.3 ~curve 2!, k50.5 ~curve 3!, andk50.7 a.u.~curve 4!. Note
that in this figure as well as in Figs. 2, 3, and 4 below, for clari
when the value ofS(k) is small, the zero of the radial coordinate o
the polar plot is not at the origin, but on the circumference of
innermost circle.
7-6
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term vanishes fork→0. Therefore, fork→0 the photoelec-
tron angular distribution is close to isotropic. With the i
crease of momentumk both terms in Eq.~35! become com-
parable and the photoelectron angular distribution~Fig. 2!
has a more complicated form. Fork→` the second term
remains finite while the first increases. In this case, the st
tural function is transformed into the angular distributi
S(k);(e•n)2 that is typical for the dipole photoionization o
a free atom. The same result occurs, of course, forRj→`.

In Fig. 3 the dependenceS(k) on the angle between vec
tors e andRj for fixed photon energyv5334 eV, the same
as chosen in Ref.@11#, is presented. This figure allows th
observation of the evolution of the differential cross sect
for the molecular photoionization with the variation of th
angle. As seen from this figure, the photoelectrons are e

FIG. 2. As Fig. 1 but fork51.5 ~curve 1!, k51.3 ~curve 2!, k
51.1 ~curve 3!, andk50.9 a.u.~curve 4!.

FIG. 3. Structural functionS(k) for the photoionization of the
1s level of the C atom in the CO molecule atv5334 eV showing
the dependence on the angle between the photoelectron mome
k and the molecular axisRj . Calculated curves are for variou
values of the angleue between the photon polarization vectore and
the molecular axisRj : ue50° ~curve 1!, ue530° ~curve 2!, ue

560° ~curve 3!, andue590° ~curve 4!.
06270
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ted mainly, as expected, along thee vector. The orientations
of the curvesS(k) follow the change in the orientation of th
vector-polarization polar angle. This result qualitative
agrees with the experimental data@10# and calculations@11#
for the photoelectron angular distribution from CO.

D. Photodetachment of a negative ion near a neutral atom

Consider the photodetachment of a quasimolecular sys
that consists of a negative ion located at the coordinate or
and a neutral atom at pointR. In this case, in Eq.~2!, the
potential is V(r )[0. Therefore, in interatomic space, th
molecular continuum wave function is built from the regul
j 1(kr) and irregularn1(kr) solutions for a free particle. The
simplicity of this two-center model system allows the calc
lation of the differential photoionization cross section of
quasimolecular negative ion in analytical form.

As in the case of the deep atomic-subshell photodeta
ment, we approximate the initial state of this molecular s
tem with the wave function of the free negative ion. Then
interatomic space, outside the range of the atomic for
with radii r1 andr2, the wave function of the ground state
defined by expressionFnl(r ,Rj )}exp(2kr)/r @14#, with the
electron affinityI 15k2/2. The relation tand0

1(k)52k/k de-
fines thes-phase shift for electron scattering by the atom th
forms the negative ion.

From Eq.~14!, the molecular continuum wave function
the superposition of the plane wave and two Green’s fu
tions for free motion

Fk
2~r ,R!5eik•r1C1

2~k!
e2 ikr

2pr
1C2

2~k!
exp~2 ikur2Ru!

2pur2Ru
.

~37!

The set of equations for the coefficients, Eq.~19!, acquires
the form

C1
1~k!52p f 0

11C2
1~k! f 0

1 eikR

R
, ~38a!

C2
1~k!52p f 0

2eik•R1C1
1~k! f 0

2 eikR

R
. ~38b!

Here, f 0
1 and f 0

2 are the scattering amplitudes by the first a
second atoms, which are defined by thes-phase shiftsd0

1 and
d0

2. Note that the formulas similar to Eqs.~37! and ~38! but
with f 0

15 f 0
2 were used by Brueckner@30# to describe elastic

pion scattering by deuterium, and also by Subramanyan@31#
to consider electron scattering by diatomic molecules. T
solution of Eqs.~38! is simple. Since, owing to the dipole
selection rules, the first of the coefficientsC1

1(k) drops out
of the dipole-matrix element, we are left with onlyC2

1(k),
which is

C2
1~k!5

2pR$11A1 exp@ i ~k•R2kR2d0
1!#%

A1A2 exp@2 i ~kR1d0
11d0

2!#2exp~ ikR!
,

~39!

tum
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BALTENKOV, DOLMATOV, AND MANSON PHYSICAL REVIEW A 64 062707
whereAi5kR/sind0
i . Calculating the dipole-matrix elemen

for the transition from the initial state to the continuum, E
~37!, we obtain

S~k!5Ue•k2
k2

2p
C2

1~2k!@ j 1~kR!1 in1~kR!#~e•r!U2

.

~40!

Since the first atom has the extra bound electron, the sca
ing length of this atom isa152k21tand0

1.0. The scatter-
ing length of the second atom can be either positive or ne
tive.

In Fig. 4, the dependence ofS(k) on the angle betweenk
andr for the 1s photodetachment of C2 located a distance
R52.13 a.u. from the neutral O atom~referred to as the
C2O quasimolecule!, for two different combinations of scat
tering lengths at fixedk50.55 a.u., are presented. In the
numerical calculations, the scattering lengthsa1 anda2 were
found from the electron affinities of C (I 151.25 eV) and O
(I 251.46 eV) @29#. To investigateS(k) with different signs
of ai , the same scattering lengths were used with the sig
a2 changed. In Fig. 4, the case of the photon polarizat
vectore parallel to the molecular axisr ~along thez axis! is
considered. Both curves in this figure are asymmetric. In
first case (a1.0,a2.0) this asymmetry is more pronounce
The photoelectrons in the photodetachment of C2 are emit-
ted mainly in the direction of the O atom. Fora1.0 and
a2,0 the curves in the right and left semiplanes are m
symmetric. But the photoelectron emission in the direction
the O atom is preferred. It is also found that the curves
Fig. 4 are transformed in a similar manner to those in Fig
when the angle between the vectorse and r changes in the
interval from 0 to 90°, i.e., upon the evaluation from paral
excitation of the quasimolecule to perpendicular~not
shown!.

FIG. 4. Structural functionS(k) for the photodetachment of th
C2O quasimolecular ion showing the dependence on the angle
tween the photoelectron momentumk (k50.55 a.u.) and the mo
lecular axisr in the case whenr is parallel to the photon polariza
tion vectore. Calculated results are for positivea1 anda2 ~curve 1!
as well as for positivea1 and negativea2 ~curve 2!.
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Finally, in Fig. 5 the dependence ofS(k) of the photo-
electron emission onk for fixed angles(0°, 30°, and 60°)
relative to the molecular axis for parallel molecular exci
tion (eir) is presented. The curves have a pronounced re
nance structure due to the diffraction of the photoelectr
by the neighbor scattering atom, as discussed in Ref.@32#.
With increasing emission angle, the diffraction resonance
comes less pronounced, and it disappears completely whe
is perpendicular tor, which follows from Eq.~40!.

III. CONCLUSION

We have developed a theory of deep-subshell photo
ization of atoms confined in fixed-in-space molecules. T
theory developed is a good approximation near the photo
ization thresholds where the formulas derived are exact
pressions within the framework of a non-overlapping cen
atomic-potential model. This method can be used to desc
elastic electron scattering and the photoionization of m
ecules, clusters and their negative ions of any configurat
The calculated forms of the photoelectron angular distri
tion for diatomic molecules are in a qualitative agreem
with experimental data and the results of other calculatio
In contrast to Ref.@2#, the present theory ultimately employ
no arbitrary parameters, i.e., radii of atomic and molecu
spheres. In addition, the constant potential of region II
avoided, and the molecular continuum wave functions~13!,
unlike Ref.@2#, have the correct asymptotic behavior, i.e., t
photoelectron wave function far from the molecule, as
should be, has the form of a superposition of the spher
waves generated by all molecular atoms.

Furthermore, it was shown that for initials states, the
differential cross section factors into two terms with all
the angular information in one of them, the structural fun
tion, thereby making it easier to understand the physics

e-
FIG. 5. Structural functionS(k) for the photodetachment of th

C2O quasimolecular ion showing the dependence onk in the case
when the photon polarization vectore is parallel to the molecular
axis r. Calculated curves are for various values of the angleu
between the photoelectron momentumk and the molecular axisr:
u50° ~curve 1!, u530° ~curve 2!, andu560° ~curve 3!.
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the situation. This structural function depends only upon
molecular continuum wave function.

It is also important to note that this theoretical metho
olgy is applicable to any multi-atomic system, not only mo
ecules. Thus, it can be applied to clusters and other na
structures, along with atoms confined in various ways, e
inside a fullerene. This will allow the treatment of confine
atoms to be extended so that intrinsic atomic resonan
molecular resonances, and confinement resonances@33# can
be treated on the same footing.
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