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Atom-atom interactions at and between metal surfaces at nonzero temperature
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We have investigated the temperature-dependent Casimir-Polder interaction between two oscillators in the
proximity of metal surfaces. The interaction near a single metal surface has much in common with the
interaction in free space. However, at any finite temperature the long-range asymptote is equal to the high-
temperature asymptote. This asymptote, which originates not from=t{eterm in the Matsubara summation
but from thermal population of the>0 terms, isF(R)= —2kBTa(2)/R6. This should be compared with the
more rapidly decaying zero-temperature Casimir-Polder asym[ﬁtﬁ@),%—l%Ca(z)/(ZwR7). The interac-
tion in the midplane between two metallic surfaces is very different. The nonretarded interaction decreases
exponentially and the interaction is dominated by an enhanced Casimir-Polder-like asymptote. At large sepa-
rations this asymptote also decays exponentially. For any relevant temperatures the long-range asymptote is no
longer equal to the high-temperature limit. In other words crossover to a classical limit found for the long-
range interaction in free space, and on a metal surface, is not always valid in a narrow cavity.
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[. INTRODUCTION finement influences both van der Waals interactions, the de-
cay rates of atoms in excited states, and the resonance
There has recently been an increased interest iinteraction[18,19.
fluctuation-induced forces. The forces predicted by Casimir A review of both theoretical and experimental work done
[1] between metal surfaces and by Casimir and Pdldér on these forces before 1993 is given in R&0]. Not only
between atoms have come to play a vital role in the underhave the measurements of the Casimir force between metal
standing of quantum electrodynamics. Such forces may welurface§21-23 and the Casimir-Polder force between atom
have fundamental importance in chemical physics and imnd surface$24—29 verified the existence of these forces,
biochemistry. Dispersion forces acting on ions have been input they have also been used to put up constraints on forces
voked to explain the ion specific surface tension of salt sopredicted by unified gauge theorig30]. At finite tempera-
lutions [3,4]. The classical theory of colloidal particle inter- ture thermal population of the electromagnetic field modes
actions is fundamentally in error due to the omission of suchnfluences the interaction. In spite of all the efforts to mea-
forces in the theory3,5]. Our interest is in the effect of sure these forces no one has so far managed to measure
temperature on atomic interactiof®,7] near and between thermal corrections to the Casimir force, nor to the Casimir-
metallic boundaries. At any nonzero temperature, the CaPolder force.
simir and Casimir-Polder interactions take on a different Wennerstrm et al.[7] argued that the usual interpretation
form to that at zero temperature, hence it is of interest fronof retardation effects in terms of losses in interatomic corre-
a fundamental point of view. It is also of interest for appli- lations due to the finite velocity of light is too simplistic,
cations such as catalysis. Lundstret al. have for instance indeed erroreous! Instead they proposed an alternative inter-
investigated the influence of boundaries on catalysis in charpretation in terms of thermal population of the electromag-
nels with depths down to 100 nf8,9]. NO, are very unde- netic field. At high enough temperatures the interaction be-
sirable byproducts of high-temperature combustion, andween two atoms goes over to its classical analog. As pointed
catalytic experiments aiming to solve this problem have in-out in Ref.[7] it is quite remarkable that the same system at
volved nanometer sized slits and pof&6]. There are many any finite temperature goes to the same limit at large enough
different interactions involved in understanding catalysis, buseparations. They used both the Lifshitz theory and fourth-
one important contribution certainly comes from the disper-order quantum electrodynamic perturbation theory to obtain
sion forceq11] of the kind investigated in this work. asymptotic results for the interaction between two atoms.
Mahanty and Ninhani12,13 showed that there are im- Similar results were obtained by Goedecke and W&,
portant boundary effects on the dispersion interaction beand by Boyel32].
tween a pair of oscillators. Vigourewet al.[14] investigated In the present work we discuss the influence of retardation
the polarizability and dispersion interacti¢gim the nonre- and finite temperature on the interaction free energy between
tarded limiy between a pair of adsorbed atoms. There havewo harmonic oscillators in a cavity with metallic walls. In
also been calculations performed on cavity quantum electroSec. Il we present the general theory. We will then consider
dynamics between parallel dielectric surfaf®5—-17. Con-  two limiting cases: both oscillators on a single surface in
Sec. lll, and both atoms in the midplane of a cavity in Sec.
IV. We show that while the interaction on a surface has many
*Present address: Malimdniversity, School of Technology and things in common with interaction in free space, in a narrow
Society, SE-205 06 MalmdSweden. cavity the situation is very different. We restrict our investi-
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gation to where the cavity is narrow compared to both the Solving Egs.(2), (3), and (4) for the vector and scalar
interparticle separation arftt/(kgT). In a cavity that is that potentials.4 and ¢, and substituting the result into E¢L)
narrow, the nonretarded interaction decays exponentially andives the secular determinant for the coupled system. This
the interaction is dominated by a Casimir-Polder-like asymp-can be rewritten as

tote. At large enough separations this term decays exponen- » 5

tially also. In addition to this we find that the interaction, Diw)=[M(ws— )l +4me°G(Ry,Ry;w)]

unlike in free space, does not go to a classiediere all the 2 2 2 i

fluctuations are thermplimit at large separations. Thus we X[M(wp—09)l +4me°G(R2, Ry )]

can conclude that it is important in both cases to consider —16m2e*G(R;,R»;w)G(R,, Ry ). (5)
retardation and thermodynamic effects together to find the

correct long-range interaction. Some aspects of the interadrhe diadic Green'’s functiog(r,r’; ) is given by,

tion between two atoms near a metal surface and in a narrow
2

slit are highlighted using numerical computations in Sec. V. . CP RTI

Finally, in Sec. VI we end with a short summary. gir,r "”):?G (1) =VVIGE(rr').  (6)
. CASIMIR-POLDER INTERACTION IN A CAVITY HereG™M(r,r’) is the Green’s function of the equation
The dispersion interaction between two atoms is found as V2¢=0, (7)

the difference between the free energy of the coupled system b - , .
and that of two single atoms in a cavity. The boundary ef—"’.de(Z)(r’r ;@) is the diadic Green's function to the equa-
fects enter through the structure of the Green’s functions ofion [12.13,
the electromagnetic field that determine the coupling be- 2
tween the atoms. This has been described in great detail in (V2+ bl
Ref.[13]. We will in the subsequent calculations make two c?
simplifying assumptions. First, we will model the atoms as ) .
isotropic oscillators, second we will assume the cavity wallsWith the appropriate boundary conditions.
to be perfectly conducting although it is straightforward to ~ The result for two atoms shifts the frequency of the nor-
extend the formalism to real metal surfaces described by lomal modes to the zeros & ,,(w). Each mode contributes
cal or nonlocal dielectric-response functiof3,33—35.  f1w/2 to the zero-point energy arngT In[sinh(8w;/2)] to
Work is in progress to go beyond these limitations for thethe free energyhere 18=kgT). In order to find the total
interaction between ground-state atoms, and also atoms [ff€€) energy one needs to calculate a sum awgrthe zeros
excited configurations. We feel confident that many moredf D(w). Assuming that the functiong(z) and D(z) are
interesting results will be found when this is done. Clearly,analytic this can be carried out using the identity,
some effects such as the torque of alignment, or spin flip, due 1 1 dD(w)
to dispersion interactions can only be investigated when an- E g(w))= Z_ﬂch(w) do (9)

j

A=0, ®

isotropy is included in the formalism. There will also be D(w) do

corrections to the results derived here due to for instance the

finite plasma frequency of real metal surfaces. Hereg(w;) is the(free) energy of each mode. The contd@r
The equations of motion for two isotropic oscillators with includes the relevant zeros Bf(w) and excludes the poles

charge e), massm, and natural frequency, are (after ~ Of g(w). Lifshitz [36] and later Ninhamet al. [37] showed

Fourier transformation[12,13: that such an expression for the free enerdg(w)

=kgT In[sinh(Bfiw/2)]} can be rewritten as a Matsubara

summation over discrete frequencies

2 o iwe )
M(wj— o) Uj(w)= TA(RJ ,w)+eVe(Rj,0); =12

(1) F(T)szTEO’ IND(i¢,), &=2mkgTn/fi. (10)
=
Maxwell's equationgin the Coulomb gaugegive, The prime on the summation indicates that a weight of 1/2
should be applied to the=0 term. This term is of special
w2 i Ariwe importance. In many cases a term that is identical torthe
V2+ — A(r,w)=—V o+ 2 Uj(w)é(r,R;), =0 term dominates the long-range interaction at finite tem-
c ¢ ) peratures at large enough separations. This is for instance the
2 case for the Casimir interaction between two planar plates
[36,38,39, between atoms in free spalcg31], and between
V-A=0, ©) guantum well§40]. As we will discuss later the interaction
between two atoms in a thin slit provides a challenging ex-
ception.
V2¢:47re2 VRJ- S(r,Ry) - uj(). (4) In our case we are interested in the changes to the free
i

energy brought about by having both oscillators interacting
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with the field. To arrive at this relative energy we subtract the * 2

, 47e?
free energy arrived at from settii®( w) =D;(w)D,(w) (the F=—KkgT >, %
self-energy of two isolated oscillatorérom that arrived at n=0 |\ m(wg+4&;)
from settingD (w) =D 5(w), where K TG(Ry Ry: —i£)G(Ry Ry: 1], (13)

In this expression we immediately identify the usual ap-
proximation for the atomic polarizability of a ground-state
atom, a(i &,) =e?/[m(w3+ £2)].

This gives the free energy as The Green’s functions for two atoms between two parallel
metal plates were worked out by Mahanty and NinHa2j.
We arrive at the Green'’s functions for two atoms on a metal

Dj(w)=|m(wj— w?)|+4me*G(R; \Rj;w)]. (1)

_ % ' D 1o(i €n) surface, and in the midplane between two metal surfaces, as
F_kBTn:O In D,(i&,)D,(i&,)) (12) limiting cases of this. They used a coordinate system where
ther, andr, axis lay at one metal surface and the other
surface was at;=L. The matrix elements for the Green’s
To order €*) this gives functionG(r,r'; w) are (@,8=1,2,3)
|
T s T gt i)+ 5,00t ) (14)
ap=| 3 Oap™ rrie)+—4é, rri);
Frlce ar ,Ir s % o2 030p392
Gu(r o) Sin(pwrs)sin pﬂ'ré) J“ f” dkydkoexpli[ky(ra—ry) +Ka(ra—rz)1} (15
1 Yw = 1
! 2m?L p-1 L L —oo )~ wZ/CZ—kg
(o) 12, Cos( pm(rg+ry) fx fw dkydka expfi[ky(ri—ri)+Kka(ro—ra)1} 19
1 ,(1) = - 7 ’
? 272 =0 L R w22~ K2
andkj=ki+k3+p2m?/L2.
|
lll. ATOMS AT A METAL SURFACE expression for the Casimir-Polder interaction in free space

We will now apply the formalism developed above to the(Cf' Eq. (5) of Ref.[7]). Comparison immediately shows that

special case of two oscillators at a metal surface Mahant&n the nonretarded limit the free energy of attraction wil,
and Ninhar{12] pointed out that the nonretardétarded egardless of temperature, be reduced to 2/3 of the corre-

interaction becomes reducéehhanceyiin a narrow channel sponding free space value. This agrees with the result found
at zero temperature by Mahanty and Ninham. They found

compared to the free space value. We find similar resu“igat the nonretarded interaction in the close proximity of a

when the atoms are on a metgl surfage. The total retarde onducting surface is reduced to 2/3 of the London result in
free energy of interaction for this case is free space, or

© 2

— 2 2 ' T3 2
FloD=—tbmadel 2 frramz 17 F(p,T=0 K)=- h‘;o?o (20
whereA=(&;/wo)?, ag=e?/mw} is the static polarizability. g
T§3 is In other words, the interaction energy is equal to that be-
tween a pair of two-dimensional harmonic oscillators.
) g~ 2mn ) 3 4 For large values ok then=0 term in the frequency sum-
T33:?2p6[1+27mx+ 3(mnx)*+2(mnx)”+ (mnx)7], mation dominates. This occurs at sufficiently high tempera-

(18) tures, or for any finite temperature at sufficiently large sepa-
rations. Then=0 term in the frequency summation becomes
where reduced in exactly the same way as the nonretarded interac-
tion
x=2kgTpltic (19

2kgTard

andp is the distance between the two atoms. In the nonre- Froo(p,T)=—
-o(p, 5
p

tarded limit T3;~1/(47%p®). One can obtain a very similar
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Casimir and Polder showed that the interaction enéagyy This expression can be series expanded for both small and
0 K) between two ground-state atoms at separations mudharge values ok. In the limit of large separation, or large
larger tharc/ wg vanishes much faster with separation than inthe interaction free energy approaches

the nonretarded limit. In this limit we find that the Casimir- 4
Polder ir)teraction on the surface becon@8/23 of the cor- Frog~— 4e kB-:[lJr 2(1x) + 3(mx) 2+ 2(7X)°3
responding result in free space m?p®&]
+ (mx)4]e 2™
13hcaj 4e*kgT
F(p.T=0 K)~— . (22) ~— "B g 4mkaTrlic, 26)
2mp’ m?c?p2

The conventional interpretation of the much more rapid de-Thus at large enough separations, the entropy driverd
. hierp . : P term dominates completely in the high-temperature limit. In
cay of the interaction at large separations is related to th - ; : .
. . . . e limit of small separations and high temperatures we find
loss of interatomic correlation at large separations. However,
for any finite temperature, the long-range retarded interaction 27%e*kgT
changes drastically, and it is evident that in practice there is Foso~————%.2-
more to it. The interaction will, at large enough separations 45m°p°¢;
and finite temperatures, approach a classical analdgre
the fluctuations are purely thermahat does not depend on
the velocity of light.
The frequency summation can be performed exactly whe
retardation is neglected. Using E@.4) of Ref. [6] we find
that the result is

(27)

This term has the same separation dependence as the
n=0 term but vanishes with temperature Bs®. Thus, in
this limit as in the free space case, the interaction has one
r;.5art that has an entropic origin and one part that originates
from the internal energy,

8
E=F-ToF/dT~— —————. 28
4alksT[1 ) 4 @8
= +zcoth(z)/4+ 7% cscH(z) /14— 1/2],

Flp.T)=——%—|3
(23

P When Ninham and Parseigd#l] investigated the inter-

action free energy between water surfaces, they found that
changes in both entropy and enthalpy contributed in the
wherez=r/\/A. This is once again exactly 2/3 of the result high-temperature limit. This should not be confused with the
in free space. present result. The dependence on the enthalpy in that case
At any temperature the zero-frequency term is cancellegvas due to the temperature dependence of the dielectric-
out exactly by contributions from the>0 terms and the response function. That kind of effect is not considered here.
leading term is th&'=0 K interaction energy. In the high- We next consider thermal corrections to the Casimir-
temperature limit a term identical to the=0 term will  Polder result in the low-temperature limit. This will give the
dominate, and the first correction comes fromel term.  lowest-order correction to the zero-temperature interaction
The case that we are interested in is when both retardatiognergy. We assume that<1, i.e., that the thermal energy is
and finite temperature are included. There will then be amall compared to the atomic resonance eneggy<,),
competition between three different length scalessepara- and thatAn?<1 for all relevant values of. Due to the
tion), ¢/w, (related to the atomic resonancand c/é; (re-  exponential term in the expression for the free energy only
lated to the thermal energyWe will consider different lim-  terms of the orden~1/27x contributes significantly. This
iting cases. We first consider the high-temperature liréjt ( later approximation is valid whem=c/(wgp)<1. This sim-
> w,). Here we can assume than?>1 for any finitenand  ply corresponds to replacing the frequency dependent atomic

the free energy becomes approximately polarizability with the static polarizability as is usually done
to obtain the zero-temperature Casimir-Polder asymptote. We
4e4kBT" polylog(4,e72ﬂ'>() . 2p0|y|0q3,e*27TX) find that
i (o (%) L caadeT[ 1 2mxem
n>0" 6 27X _ 27X __ 1\2
3polylog 2, 2™) 2In(1—e ™) P e?™—1 (e?™-1)
+ 2 - 3772X2€27TX(e27TX+ 1)
(7X) X
(827TX_ 1)3
3v3,2TX 21X ArX
+(e2™—1)", (24) 2m3x3e?™(1+ 4e2™ + ™)
(e27TX_ 1)4
7T4X4e27TX(1+ 11e2’7TX+ 11e477x+ e67TX)
polylog(n,z)= >, Z*/k". (25) (2™ —1)5
k=1 29
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This expression can be expanded for both small and large 1 - e P gﬁ 1+2y,p
values ofx in the limit of low temperatures and not too large T22=—Z sir?(p/2) —+ 2p ,
separationgseparation large compared tdw,) but small LvV2mp=1 VpyplC 2p
compared taic/(kgT). The free energy then approaches (33
13hcal 16adkaT4m 1 2 (pm\? e %
Flp,T)~— . (30 Tos=———2, | —| co(pn/2)
2mp’ 4503c3p® Ly2mp=1\ L ‘/P)’p
One should note the high order of the first thermal correc- 1 - , fﬁ e P
tion (cT4). + FZ cospm) N (34)
At large enough separations the. , asymptote becomes L y2mp=0 PYp
64a2KST® Here y,=\(&n/c)?+ (pm/L)?. The p=0 term in the last
F(p.Tpoo~— ﬁeﬂlmkaﬂﬁﬁ (31) summation is alone responsible for the long-range Casimir-
phi'c Polder-like asymptote found at zero temperature. As will be

discussed later the reason for this is that all other terms will
Of course, in this limit it is better to use time=1 term as the  have exponentially decaying prefactors. Remembering our
first correction to then=0 contribution, since in this way we initial assumptions, i.e., that the atoms are assumed to be far
avoid any assumptions about the magnitude of atomic res@enough apart in the thin slit, the series consists of terms that
nance frequency. The long-range retarded interaction is fogo exponentially towards zero with increasing valuegpof
any finite temperature given by the=0 term in the fre- To obtain asymptotic results we, therefore, only retain the
quency summation. p<1 terms in the summations. We find thaj, becomes

We finally note that the dispersion contribution to the cor-negligible in comparison td;,

relation of atoms in a liqui§42—44 at a liquid-metal inter-

face can be obtained in an entirely analogous manner with m3e= 2071
results that are expected to be very similar in limiting cases. Tfl+ T%Zw P (35
To conclude this section analogous to the free space case 2L%y1p

there is a close relationship between temperature and retar-

dation. The interaction between two atoms at a surface is Both the nonretarded interaction and the zero-frequency
quite similar to the interaction in free space. In the nonre-contribution originates fronT,;. The matrix elemenT s is
tarded limit the interaction is, regardless of temperature, regiven by

duced to exactly 2/3 of the interaction in free space. When )

retardation is included the dominating term in the high- & e rinlc  emm 36
temperature limit will be reduced in the same way. The re- Tag~— - : 36
tarded Casimir-Polder asymptote found at zero temperature c’Ly2m[2Vpélc  Npry

is instead enhanced by a factor 26/23. We have finally inves- o )
tigated corrections to these limiting results. The Casimir-Polder-like asymptote fountd®K comes from

the first term  of this  expression Tgp
— ¢34—2péIc 2.3 ;
IV. ATOMS IN THE MIDDLE OF A THIN SLIT =¢gpe” ¥ /[BapL7c”]). To proceed we series expand
BETWEEN METALLIC SURFACES P71

“We next consider the interaction between two atoms in the py1=(pmlL)N1+ud=~(pm/L)(1+u?2), (37)
middle of a very thin slit between two metallic surfaces. Due

to strong con_finement the inte_raction will be very differentWhere we have assumed that 2ksTLn/(hc)<1 and that
from the previous case. In particular the nonretarded van der/L>1. It is clear that all exponents that contain this term,

Waals interaction decays exponentially and becomes domgr similar terms, will decay exponentially, i.e., all terms ex-

nated by the retarded Casimir-Polder interaction. cept that which gives rise to the Casimir-Polder-like asymp-

th Webllmltt:]he |nv$s|t|gat|on tot_S“t W'dthg‘f) muﬁh slmalletr tote. At zero temperature one finds that the nonretarded in-
an bo e particle separation aotk, (for all re evant o action decays exponentially,

frequencies Taking rz=r3=L/2, ro=r5, and p=r;—r;

>0, all off-diagonal elements in the Green'’s functigwan- 0 5heh @ 2mplL

ish. The trace of the Green’s functions that we need to evalu- F(p,T=0 K)~— _ (39)
ate to obtain the free energy of interaction now becomes mzngG 2mplL
T G(R1,R,)G(R,,Ry) ] =T+ T5,+ T5; where
The retarded Casimir-Polder-like asymptote is
TS, sit(pai2 §n 3+ 4yopt Ay’
=——=2, Sif(pm/2)—| = — , _ 2
L\2mp=1 Vol € 4p° F(pT=0 Ky~ 0% (39)

(32 8L%p°

062702-5



M. BOSTRQM, J. J. LONGDELL, AND B. W. NINHAM PHYSICAL REVIEW A64 062702

For small separations one can no longer neglect the atomimost relevant temperatures. However, there will still be a
resonances. In the limit wharf =c/(wqp)] goes to infinity, region, at large separations and sufficiently small tempera-

we obtain the following asymptote: tures, where the interaction follows the zero-temperature
Casimir-Polder-like asymptote. At 300 KXdoes not exceed
—2het unity until separations exceeding @#m. The zero-

F(p, T=0 K)%m- (40) temperature Casimir-Polder asymptote is often a good ap-

proximation at separations less thanuin. However, ulti-

One must remember that the interaction in this limit receivedgnately —at large separations, the interaction decays
important contributions not only frofficp. We will returnto ~ €xponentially. _ _
this in the next section when we discuss a few numerical What about then=0 term in the frequency summation?
results. In a bounded region the interaction at small separd2n€ might expect this term to give the dominating contribu-
tions decays exponentially, whereas at large enough separd@n to 'Fhe Iong—range interaction in a similar fashion to that
tions it follows a power law similar to the Casimir-Polder for the interaction in free space and on a surface. In this case
force in free space. Recalling our initial assumption, that thdt becomes
atoms are further apart than the width of the slit, the interac-
tion will be dominated by the Casimir-Polder asymptote for
almost every relevant case. More curious still, the interaction
in the large separation limit is enhanced by a factor of
37p?/(52L2) compared to the Casimir-Polder result in free This term, which does not contain Planck’s constant, de-
space. Since we assumed tpatL this is an enormous am- pends very much on the ratio between particle separation and
plification of the interaction. However, as for the interactionslit width. In the limit of very narrow slit width we can
in free space, and on a metal surface, the long-range retard@eglect this term compared to the Casimir-Polder asymptote
interaction is fundamentally different for finite temperatures.for any relevant temperatures. The terms that we have ne-
Replacing the polarizability with its static limit we obtain the glected can similarly be shown to be small in the limits that
Casimir-Polder-like free energy: we have considered.

We can again see the important relationship between dis-

—47T4angTefz””/L
Fooo(p.T)= : L@
L°p

—2matksTE &, B tance and temperature for the long-range interaction between
Feplp. T)~—————— 2 ' n%e ™™ (41)  atoms. However, the long-range asymptote for finite tem-
pLoc n-0 peratures can no longer be found by simply taking the
This sum can be evaluated exactly. In the limit of smali =0 term in the frequency summation. Comparing the expo-
becomes nents of Eqs(43) and(44), it is clear that thenx=0 asymp-
tote dominates oncéc/(2kgL)<T. At a temperature of
ShCaS 27T4agkg-|-4 1000 K this means that the slit width must be greater.than
Fep(p, T)~— s YEYCR, (42 approximately 1um. For the examples that we consider
8L%p> 15pLfi°c here, the long-range Casimir-Polder asymptote is the domi-

nating by far. In any case the true long-range interaction

In ex_actly the Same way as fqr t_he mterac_tlon on a Surfa_c?iecays away exponentially at any finite temperature. The in-
the first correction to the Casimir-Polder like asymptote IScjusion of one extra length scale, i.e., the slit width, is of

. 4 . . . .
proportional toT". For the interaction in the mldplan'e b,e' course the origin of the new features found in this final ex-
tween metal surfaces the thermal, or entropy, contribution mple. In the opposite limit whep/L<1 other approxima-

increase the attraction, similar to in free space. This shoul ons must be used to obtain correct analytical expressions.

be contrasted with what we found for two atoms confined inrp o < ,mmations in the Green's functions can be replaced
two dimensions near a surface where the thermal correctiop;. integrations and tha=0 term becomes

decreased the attraction. One should observe that althoug\;/¥1

the overall entropy of a systefiincluding separation inde- 3kaTa p e
pendent black-body radiatipmust be positive, this is cer- Froo(p, T)=— BG Ol1— ot (45)
tainly not true for particular interactions. p 3L 2L

In the opposite limit x>1) we find that the interaction

decreases exponentially, With increasing slit width the interaction in the midplane

between two metal surfaces approaches the free space result
4 21,44 as it should.
16m aOkBT ef47rkBTp/ﬁcl (43)

FCP(p,T) ~
2333
PL hc V. NUMERICAL RESULTS

The Casimir-Polder-like asymptote decays exponentially for We have numerically investigated the interaction at 1000
any finite temperature at large enough separations. This i between two hydrogen atoms on a metal surface, and in
contrast to the power law found for the high-temperaturehe midplane of a narrow cavity with metallic walls. The
limit on a metal surface or in free space. This is the truehigh temperature is relevant for catalysis of atoms on sur-
long-range retarded asymptote for the interaction betweefaces, narrow slits, and in pores. The parameters used to
two atoms in the middle of a thin slit with metallic walls for model the polarizability of a hydrogen atom were taken from
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FIG. 2. The interaction free enerdgolid line) at 1000 K be-
tween two atoms in the midplane of a metallic cavityL nm) is
compared with different asymptotes:ettd K Casimir-Polder as-
ymptote (dasheg, the high-temperature Casimir-Polder asymptote
(dashed-dotted the nonretarded van der Waals asymptotecles,
the n=0 asymptote(dotted, the energy contribution that comes
0 from the second sum ifi33 (crossey and finally the small separa-
tion Casimir-Polder asymptotgashed-triple dotted

FIG. 1. The interaction free energy at 1000 K between two
atoms on a metal surfagsolid line) is compared with different
asymptotes: th 0 K Casimir-Polder asymptoteashegl the nonre-
tarded van der Waals asymptdiotted, and then=0 asymptote
(dashed dotted

Rauberet al. [45]. We used a static polarizability of 4.5
atomic units (1 a.u=1.482x< 10~ ?° m3/atom) and a charac-

teristic absorption frequency of 11.65 eV. , )
In Fig. 1 we compare the interaction free energy betweeions, where the relevant frequencies become much smaller

two hydrogen atoms on a metal surface with differentthan the atomic resonance frequency, the interaction follows

asymptotes. We have previously shown that there are smooffi€ 10ng-range 0 K Casimir-Polder-like asymptote. At still
transitions between different separation regions for the inter@/9er separations  the interaction follows the high-
action between an atom and two metallic shdd®]. We temperature Casimir-Polder asymptote. We note that the in-

can, in an analogous manner, get a fairly good approximatioFFraCtion is totally dominated by the _contribution§ that come
of the interaction free energy by simply using the nonre-Tom the second sum ifi3; at separations exceeding 10 nm.
tarded van der Waals asymptote for small separations, the N Fig. 3 we explore the ratio between the interaction
Casimir-Polder asymptote at larger separations, and finally &n€rgy to the interaction free energy between two atoms in
even larger separations the high-temperature asym(ttute free space, on a_surface_, and finally in a narrow_sht. At large
n=0 term). For T=1000 K, .¢/(kgT)=2.3 um so thermal separations the interaction between two atoms in free space,

effects will begin to influence the interaction unless the sepa@nd On @ surface, has a purely entropic origin. For these two
ration is small compared to &m. For future reference we Ccases the ratio goes, as expected, to zero at large separations.

note that the interaction increases with temperature bein?ne should note that it may exceed unity in a small separa-
almost entirely entropic at large enough separations. ion range for the interaction on a surface. As might be ex-

As we have already stated the interaction in a narrow glipected the more interesting case is the interaction in a narrow

is very different from the interaction in free space, or on a
surface. In Fig. 2 the interaction free energy in a very narrow
cavity is compared with different asymptotes. One should
note that~,_ is totally negligible even at this high tempera-
ture. In order for this part of the interaction to dominate one
has to increase the temperature at least one order of magni-
tude. At very small separations one can no longer assume
that the particle separation is much smaller than the slit
width and one can no longer expect the interaction to follow
our nonretarded asymptote. At slightly larger, but still small,
separations the interaction becomes dominated by the nonre-
tarded asymptote that originates frany, but there will also

be minor contributions from the other terms. At intermediate 10-2
separations, where the high-frequency spectrum still domi- 0 ! ( m)2 3

nates, the interaction follows the small separation Casimir- P

Polder-like asymptote, which depends on the atomic reso- F|G. 3. Ratio between the energy and the free energy for two
nance. The actual interaction found numerically at thesgtoms in free spac@otted, on a metal surfacéasheg, and in a
separations is smaller than the asymptote given in the previt-nm slit with metal wallgsolid). The free energy was evaluated at
ous section. The reason is that many terms of alternating sigrooo K, and the energy was obtained from a discretization of Eq.
in the second sum iii 33 contributes. At even larger separa- (28 with F evaluated at 950, 1000, and 1050 K.

10!

100

10-1

Energy/Free Energy

|||||||||||||||||||||||||‘|'.|||\
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105 [FTTTT T T interaction follows Eq(43). In this limit all relevant electro-
7N\ .
1000 K y \ magnetic modes propagates as evanescent waves through the
10% = T narrow channel.
o R
= 103
<
Mo VI. CONCLUSIONS
T We have investigated the interaction between two atoms
¥ at a metal surface, and in a thin slit with metallic, perfectly
M0 conducting, walls.
10-1 We have found Casimir-Polder-like long-range asymp-
Y totes at zero temperature. However, in many situations ther-
10-2 Lol 1l '2 ol 1 mal effects are important for any nonzero temperature at
ot 10010t 102 108 large enough separations. While the zero temperature results
p (nm) are not useless, they are of limited validity and it is important

FIG. 4. The ratio between the interaction free energy at 1000 Iéo know limitations of such approximations.

: . : ) The interaction between two atoms on a conducting sur-
between two atoms in a slit to the corresponding energy in fre%a

space. Three different slit widths were considered: 1(dashed, 5 " ce goes a_syn']:pttotlc(;sl_lly tOV\_Iard&I‘, ;he clas_5|cal Ir.llfe,:acno_:_]hbe'
nm (dotted, and 10 nm(solid). ween a pair of two-dimensional harmonic oscillators. This

interaction is not due to the=0, or classical term, but in the

cavity. Using the relation between energy, entropy, and fre§2Me way as for the free space c@ggit is due to thermal

energy, and the expression for the high-temperature CasimiPOPulation of the electromagnetic field modes. o
Polder asymptote, we obtain the following relations: To see this one can simply consider the nonretarded limit:
here, regardless of temperature, tire 0 term is cancelled

E/F~—3+4mkgTpl/(%ic), (46) out exactly by one term that comes from the surmof0
terms. At high temperatures when the field modes become
—TSF~4—47mkgTpl(he). (47 thermally excited, then>0 terms produce a term that is

identical to then=0 term.

This is totally different from the asymptotic interaction on a  This demonstrates once again the correspondence prin-
surface E=—TS=—2kgTa,/p®) where the internal en- ciple that a quantum system goes over to its classical analog
ergy goes to zero. One may compare with the highwhen the relevant photon modes are fully excited. It is re-
temperature limit of the interaction between an atom andnarkable that this is not only true for highompared to the
metallic sheet$46]. There was a large cancellation betweenresonance frequengyemperatures, but it also often occurs at
thermal corrections that originated from different modes. Thdarge separations.
part that originated from transverse magnetic modes in- The change in power law at large separations has usually
creased with temperature in contrast to the part that camleeen interpreted as being simply due to the finite velocity of
from transverse electric modes, which decreased with temight. However, the long-range interaction at finite tempera-
perature. Due to this cancellation thermal effects on the totalures between two atoms on a surfdoein free space as in
interaction occured at much larger separations than for thRef. [7]) is independent of the velocity of light. This shows
separate parts. It is noteworthy that only the transverse magdhat there is more to it than a simple loss of intercorrelation
netic contributions had a linear temperature dependence due to the finite velocity of light. As pointed out by Wenner-
high T, i.e., purely entropic. The separation dependence oftram et al. [7] the quantum nature of light is important to
the different contributions were thus different also in thatthe softening of the interaction potential.
case. In the middle of a narrow slit with conducting walls the

Finally, Fig. 4 presents the ratio between the free energjyong-range interaction between two atoms decreases expo-
of interaction in a slit to the corresponding interaction in freenentially at any finite temperature. This is because the modes
space. In the limit of small separations the interaction in thehat contribute to the classical term are suppressed in a cav-
slit is dominated by nonretarded contributions that comaty. If the slit is too narrow, light of the appropriate frequen-
mainly fromTq;. The modes that dominates this part of thecies can only propagate as exponentially decaying evanes-
interaction are exponentially damped in the slit already atent waves. These modes, therefore, fail to dominate the free
very small separations. The result is the lowering of the in-energy through entropic contributions in the presence of at-
teraction compared to in free space that can be seen at segans. This is similar to the case of dispersion forces in the
rations around 1-10 nm. At larger separations the retardegresence of electrolytdd 3] where Debye screening causes
Casimir-Polder part of the interaction dominates. For slitan exponential decay to the interaction. The long-range in-
widths of 1, 5, and 10 nm the enhancement of the interactioteraction need no longer be the same asrtked term. In
in this limit due to confinement may be as large ad-400°  fact, it is only when high temperature is large compared to
times. This effect decreases with increasing slit width but itic/(2kgL) that the long-range interaction has a pure en-
will still influence the interaction in substantially larger slits. tropic origin in this case. For most relevant temperatures the
At separations exceeding Oum thermal effects become long-range interaction follows E@43). Changes in both en-
important. There is a sharp drop in the energy ratio when thé&ropy and internal energy contribute to this asymptote. To
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conclude, in extremely confined regions one can no longeferm cognm(z+2')/L]. Since it is then=0 term that give rise
expect the long-range Casimir-Polder interaction to alwayso the long-range Casimir-Polder asymptote this interaction

go over in a simple way to the corresponding “classical”
limit.
It is straightforward to describe the interaction between

two atoms at arbitrary positions in a narrow slit. The Green’s

functions will in general have nonzero off-diagonal matrix
elements. The contributions that originate from these will

is actually independent of and z' in narrow cavities and
given by Eq.(43).
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