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Atom-atom interactions at and between metal surfaces at nonzero temperature
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We have investigated the temperature-dependent Casimir-Polder interaction between two oscillators in the
proximity of metal surfaces. The interaction near a single metal surface has much in common with the
interaction in free space. However, at any finite temperature the long-range asymptote is equal to the high-
temperature asymptote. This asymptote, which originates not from then50 term in the Matsubara summation
but from thermal population of then.0 terms, isF(R)522kBTa0

2/R6. This should be compared with the
more rapidly decaying zero-temperature Casimir-Polder asymptote,F(R)'213\ca0

2/(2pR7). The interac-
tion in the midplane between two metallic surfaces is very different. The nonretarded interaction decreases
exponentially and the interaction is dominated by an enhanced Casimir-Polder-like asymptote. At large sepa-
rations this asymptote also decays exponentially. For any relevant temperatures the long-range asymptote is no
longer equal to the high-temperature limit. In other words crossover to a classical limit found for the long-
range interaction in free space, and on a metal surface, is not always valid in a narrow cavity.

DOI: 10.1103/PhysRevA.64.062702 PACS number~s!: 34.20.Cf, 03.70.1k, 11.10.Wx, 34.50.Dy
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I. INTRODUCTION

There has recently been an increased interest
fluctuation-induced forces. The forces predicted by Casi
@1# between metal surfaces and by Casimir and Polder@2#
between atoms have come to play a vital role in the und
standing of quantum electrodynamics. Such forces may w
have fundamental importance in chemical physics and
biochemistry. Dispersion forces acting on ions have been
voked to explain the ion specific surface tension of salt
lutions @3,4#. The classical theory of colloidal particle inte
actions is fundamentally in error due to the omission of su
forces in the theory@3,5#. Our interest is in the effect o
temperature on atomic interactions@6,7# near and between
metallic boundaries. At any nonzero temperature, the
simir and Casimir-Polder interactions take on a differe
form to that at zero temperature, hence it is of interest fr
a fundamental point of view. It is also of interest for app
cations such as catalysis. Lundstro¨m et al. have for instance
investigated the influence of boundaries on catalysis in ch
nels with depths down to 100 nm@8,9#. NOx are very unde-
sirable byproducts of high-temperature combustion, a
catalytic experiments aiming to solve this problem have
volved nanometer sized slits and pores@10#. There are many
different interactions involved in understanding catalysis,
one important contribution certainly comes from the disp
sion forces@11# of the kind investigated in this work.

Mahanty and Ninham@12,13# showed that there are im
portant boundary effects on the dispersion interaction
tween a pair of oscillators. Vigoureuxet al. @14# investigated
the polarizability and dispersion interaction~in the nonre-
tarded limit! between a pair of adsorbed atoms. There h
also been calculations performed on cavity quantum elec
dynamics between parallel dielectric surfaces@15–17#. Con-
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finement influences both van der Waals interactions, the
cay rates of atoms in excited states, and the resona
interaction@18,19#.

A review of both theoretical and experimental work do
on these forces before 1993 is given in Ref.@20#. Not only
have the measurements of the Casimir force between m
surfaces@21–23# and the Casimir-Polder force between ato
and surfaces@24–29# verified the existence of these force
but they have also been used to put up constraints on fo
predicted by unified gauge theories@30#. At finite tempera-
ture thermal population of the electromagnetic field mod
influences the interaction. In spite of all the efforts to me
sure these forces no one has so far managed to mea
thermal corrections to the Casimir force, nor to the Casim
Polder force.

Wennerstro¨m et al. @7# argued that the usual interpretatio
of retardation effects in terms of losses in interatomic cor
lations due to the finite velocity of light is too simplistic
indeed erroreous! Instead they proposed an alternative in
pretation in terms of thermal population of the electroma
netic field. At high enough temperatures the interaction
tween two atoms goes over to its classical analog. As poin
out in Ref.@7# it is quite remarkable that the same system
any finite temperature goes to the same limit at large eno
separations. They used both the Lifshitz theory and fou
order quantum electrodynamic perturbation theory to obt
asymptotic results for the interaction between two atom
Similar results were obtained by Goedecke and Wood@31#,
and by Boyer@32#.

In the present work we discuss the influence of retarda
and finite temperature on the interaction free energy betw
two harmonic oscillators in a cavity with metallic walls. I
Sec. II we present the general theory. We will then consi
two limiting cases: both oscillators on a single surface
Sec. III, and both atoms in the midplane of a cavity in S
IV. We show that while the interaction on a surface has ma
things in common with interaction in free space, in a narr
cavity the situation is very different. We restrict our inves
©2001 The American Physical Society02-1
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M. BOSTRÖM, J. J. LONGDELL, AND B. W. NINHAM PHYSICAL REVIEW A64 062702
gation to where the cavity is narrow compared to both
interparticle separation and\c/(kBT). In a cavity that is that
narrow, the nonretarded interaction decays exponentially
the interaction is dominated by a Casimir-Polder-like asym
tote. At large enough separations this term decays expo
tially also. In addition to this we find that the interactio
unlike in free space, does not go to a classical~where all the
fluctuations are thermal! limit at large separations. Thus w
can conclude that it is important in both cases to cons
retardation and thermodynamic effects together to find
correct long-range interaction. Some aspects of the inte
tion between two atoms near a metal surface and in a na
slit are highlighted using numerical computations in Sec.
Finally, in Sec. VI we end with a short summary.

II. CASIMIR-POLDER INTERACTION IN A CAVITY

The dispersion interaction between two atoms is found
the difference between the free energy of the coupled sys
and that of two single atoms in a cavity. The boundary
fects enter through the structure of the Green’s functions
the electromagnetic field that determine the coupling
tween the atoms. This has been described in great deta
Ref. @13#. We will in the subsequent calculations make tw
simplifying assumptions. First, we will model the atoms
isotropic oscillators, second we will assume the cavity wa
to be perfectly conducting although it is straightforward
extend the formalism to real metal surfaces described by
cal or nonlocal dielectric-response functions@13,33–35#.
Work is in progress to go beyond these limitations for t
interaction between ground-state atoms, and also atom
excited configurations. We feel confident that many m
interesting results will be found when this is done. Clea
some effects such as the torque of alignment, or spin flip,
to dispersion interactions can only be investigated when
isotropy is included in the formalism. There will also b
corrections to the results derived here due to for instance
finite plasma frequency of real metal surfaces.

The equations of motion for two isotropic oscillators wi
charge (2e), massm, and natural frequencyv0 are ~after
Fourier transformation! @12,13#:

m~v0
22v2!uj~v!5

ive

c
A~Rj ,v!1e“f~Rj ,v!; j 51,2.

~1!

Maxwell’s equations~in the Coulomb gauge! give,

S“21
v2

c2 DA~r ,v!5
iv

c
“f1

4p ive

c (
j

uj~v!d~r ,Rj !,

~2!

“•A50, ~3!

“

2f54pe(
j

“Rj
d~r ,Rj !•uj~v!. ~4!
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Solving Eqs.~2!, ~3!, and ~4! for the vector and scala
potentialsA and f, and substituting the result into Eq.~1!
gives the secular determinant for the coupled system. T
can be rewritten as

D12~v!5@m~v0
22v2!I14pe2G~R1 ,R1 ;v!#

3@m~v0
22v2!I14pe2G~R2 ,R2 ;v!#

216p2e4G~R1 ,R2 ;v!G~R2 ,R1 ;v!. ~5!

The diadic Green’s functionG(r ,r 8;v) is given by,

G~r ,r 8;v!5
v2

c2
G(2)~r ,r 8;v!2““8G(1)~r ,r 8!. ~6!

HereG(1)(r ,r 8) is the Green’s function of the equation

“

2f50, ~7!

andG(2)(r ,r 8;v) is the diadic Green’s function to the equ
tion @12,13#,

S“21
v2

c2 DA50, ~8!

with the appropriate boundary conditions.
The result for two atoms shifts the frequency of the n

mal modes to the zeros ofD12(v). Each mode contributes
\v/2 to the zero-point energy andkBT ln@sinh(b\vj/2)# to
the free energy~here 1/b5kBT). In order to find the total
~free! energy one needs to calculate a sum overv j , the zeros
of D(v). Assuming that the functionsg(z) and D(z) are
analytic this can be carried out using the identity,

(
v j

g~v j !5
1

2p i EC
g~v!

1

D~v!

dD~v!

dv
dv. ~9!

Hereg(v j ) is the~free! energy of each mode. The contourC
includes the relevant zeros ofD(v) and excludes the pole
of g(v). Lifshitz @36# and later Ninhamet al. @37# showed
that such an expression for the free energy$g(v)
5kBT ln@sinh(b\v/2)#% can be rewritten as a Matsuba
summation over discrete frequencies

F~T!5kBT(
n50

`

8 ln D~ i jn!, jn52pkBTn/\. ~10!

The prime on the summation indicates that a weight of
should be applied to then50 term. This term is of specia
importance. In many cases a term that is identical to thn
50 term dominates the long-range interaction at finite te
peratures at large enough separations. This is for instance
case for the Casimir interaction between two planar pla
@36,38,39#, between atoms in free space@7,31#, and between
quantum wells@40#. As we will discuss later the interactio
between two atoms in a thin slit provides a challenging
ception.

In our case we are interested in the changes to the
energy brought about by having both oscillators interact
2-2
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ATOM-ATOM INTERACTIONS AT AND BETWEEN METAL . . . PHYSICAL REVIEW A 64 062702
with the field. To arrive at this relative energy we subtract
free energy arrived at from settingD(v)5D1(v)D2(v) ~the
self-energy of two isolated oscillators! from that arrived at
from settingD(v)5D12(v), where

D j~v!5um~v0
22v2!I14pe2G~Rj ,Rj ;v!u. ~11!

This gives the free energy as

F5kBT(
n50

`

8 lnS D12~ i jn!

D1~ i jn!D2~ i jn! D . ~12!

To order (e4) this gives
he
n

l
ul
rd

re
r

06270
e
F52kBT(

n50

`

8 S 4pe2

m~v0
21jn

2!
D 2

3Tr@G~R1 ,R2 ;2 i jn!G~R2 ,R1 ;2 i jn!#. ~13!

In this expression we immediately identify the usual a
proximation for the atomic polarizability of a ground-sta
atom,a( i jn)5e2/@m(v0

21jn
2)#.

The Green’s functions for two atoms between two para
metal plates were worked out by Mahanty and Ninham@12#.
We arrive at the Green’s functions for two atoms on a me
surface, and in the midplane between two metal surfaces
limiting cases of this. They used a coordinate system wh
the r 1 and r 2 axis lay at one metal surface and the oth
surface was atr 35L. The matrix elements for the Green
function G(r ,r 8;v) are (a,b51,2,3)
Tab5S v2

c2
dab2

]2

]r a]r b8
D g1~r ,r 8;v!1

v2

c2
da3db3g2~r ,r 8;v!; ~14!

g1~r ,r 8;v!5
1

2p2L
(
p51

`

sinS ppr 3

L D sinS ppr 38

L D E
2`

` E
2`

` dk1dk2exp$ i @k1~r 12r 18!1k2~r 22r 28!#%

v2/c22kp
2

; ~15!

g2~r ,r 8;v!5
1

2p2L
(
p50

`

8 cosS pp~r 31r 38!

L D E
2`

` E
2`

` dk1dk2 exp$ i @k1~r 12r 18!1k2~r 22r 28!#%

v2/c22kp
2

; ~16!

andkp
25k1

21k2
21p2p2/L2.
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III. ATOMS AT A METAL SURFACE

We will now apply the formalism developed above to t
special case of two oscillators at a metal surface. Maha
and Ninham@12# pointed out that the nonretarded~retarded!
interaction becomes reduced~enhanced! in a narrow channe
compared to the free space value. We find similar res
when the atoms are on a metal surface. The total reta
free energy of interaction for this case is

F~r,T!5216p2a0
2kBT(

n50

`

8
T33

2

~11An2!2 , ~17!

whereA5(j1 /v0)2, a05e2/mv0
2 is the static polarizability.

T33
2 is

T33
2 5

e22pxn

4p2r6
@112pnx13~pnx!212~pnx!31~pnx!4#,

~18!

where

x[2kBTr/\c ~19!

and r is the distance between the two atoms. In the non
tarded limitT33

2 '1/(4p2r6). One can obtain a very simila
ty

ts
ed

-

expression for the Casimir-Polder interaction in free sp
~cf. Eq. ~5! of Ref. @7#!. Comparison immediately shows tha
in the nonretarded limit the free energy of attraction w
regardless of temperature, be reduced to 2/3 of the co
sponding free space value. This agrees with the result fo
at zero temperature by Mahanty and Ninham. They fou
that the nonretarded interaction in the close proximity o
conducting surface is reduced to 2/3 of the London resul
free space, or

F~r,T50 K!52
\v0a0

2

2r6
. ~20!

In other words, the interaction energy is equal to that
tween a pair of two-dimensional harmonic oscillators.

For large values ofx then50 term in the frequency sum
mation dominates. This occurs at sufficiently high tempe
tures, or for any finite temperature at sufficiently large se
rations. Then50 term in the frequency summation becom
reduced in exactly the same way as the nonretarded inte
tion

Fn50~r,T!52
2kBTa0

2

r6
. ~21!
2-3
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M. BOSTRÖM, J. J. LONGDELL, AND B. W. NINHAM PHYSICAL REVIEW A64 062702
Casimir and Polder showed that the interaction energy~at
0 K! between two ground-state atoms at separations m
larger thanc/v0 vanishes much faster with separation than
the nonretarded limit. In this limit we find that the Casim
Polder interaction on the surface becomes~26/23! of the cor-
responding result in free space

F~r,T50 K!'2
13\ca0

2

2pr7
. ~22!

The conventional interpretation of the much more rapid
cay of the interaction at large separations is related to
loss of interatomic correlation at large separations. Howe
for any finite temperature, the long-range retarded interac
changes drastically, and it is evident that in practice ther
more to it. The interaction will, at large enough separatio
and finite temperatures, approach a classical analog~where
the fluctuations are purely thermal! that does not depend o
the velocity of light.

The frequency summation can be performed exactly w
retardation is neglected. Using Eq.~14! of Ref. @6# we find
that the result is

F~r,T!52
4a0

2kBT

r6 F1

2
1z coth~z!/41z2 csch2~z!/421/2G ,

~23!

wherez5p/AA. This is once again exactly 2/3 of the resu
in free space.

At any temperature the zero-frequency term is cance
out exactly by contributions from then.0 terms and the
leading term is theT50 K interaction energy. In the high
temperature limit a term identical to then50 term will
dominate, and the first correction comes from then51 term.

The case that we are interested in is when both retarda
and finite temperature are included. There will then be
competition between three different length scales:r ~separa-
tion!, c/v0 ~related to the atomic resonance! and c/j1 ~re-
lated to the thermal energy!. We will consider different lim-
iting cases. We first consider the high-temperature limitj1
@v0). Here we can assume thatAn2@1 for any finiten and
the free energy becomes approximately

Fn.0'2
4e4kBT

m2r2c4Fpolylog~4,e22px!

~px!4
1

2polylog~3,e22px!

~px!3

1
3polylog~2,e22px!

~px!2
2

2 ln~12e22px!

px

1~e2px21!21G , ~24!

polylog~n,z!5 (
k51

`

zk/kn. ~25!
06270
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This expression can be series expanded for both small
large values ofx. In the limit of large separation, or largex,
the interaction free energy approaches

Fn.0'2
4e4kBT

m2r6j1
4@112~px!13~px!212~px!3

1~px!4#e22px

'2
4e4kBT

m2c4r2
e24pkBTr/\c. ~26!

Thus at large enough separations, the entropy drivenn50
term dominates completely in the high-temperature limit.
the limit of small separations and high temperatures we fi

Fn.0'2
2p4e4kBT

45m2r6j1
4

. ~27!

This term has the same separation dependence as
n50 term but vanishes with temperature asT23. Thus, in
this limit as in the free space case, the interaction has
part that has an entropic origin and one part that origina
from the internal energy,

E5F2T]F/]T'2
8p4e4kBT

45m2r6j1
4

. ~28!

When Ninham and Parseigan@41# investigated the inter-
action free energy between water surfaces, they found
changes in both entropy and enthalpy contributed in
high-temperature limit. This should not be confused with t
present result. The dependence on the enthalpy in that
was due to the temperature dependence of the dielec
response function. That kind of effect is not considered he

We next consider thermal corrections to the Casim
Polder result in the low-temperature limit. This will give th
lowest-order correction to the zero-temperature interac
energy. We assume thatA!1, i.e., that the thermal energy i
small compared to the atomic resonance energy (j1!v0),
and thatAn2!1 for all relevant values ofn. Due to the
exponential term in the expression for the free energy o
terms of the ordern;1/2px contributes significantly. This
later approximation is valid whenv[c/(v0r)!1. This sim-
ply corresponds to replacing the frequency dependent ato
polarizability with the static polarizability as is usually don
to obtain the zero-temperature Casimir-Polder asymptote.
find that

Fn.0'
24a0

2kBT

r6 F 1

e2px21
1

2pxe2px

~e2px21!2

1
3p2x2e2px~e2px11!

~e2px21!3

1
2p3x3e2px~114e2px1e4px!

~e2px21!4

1
p4x4e2px~1111e2px111e4px1e6px!

~e2px21!5 G .

~29!
2-4
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This expression can be expanded for both small and la
values ofx in the limit of low temperatures and not too larg
separations~separation large compared toc/v0) but small
compared to\c/(kBT). The free energy then approaches

F~r,T!'2
13\ca0

2

2pr7
1

16a0
2kB

4T4p3

45\3c3r6
1•••. ~30!

One should note the high order of the first thermal corr
tion (}T4).

At large enough separations theFn.0 asymptote become

F~r,T!n.0'2
64a0

2kB
5T5

r2\4c4
e24prkBT/\c. ~31!

Of course, in this limit it is better to use then51 term as the
first correction to then50 contribution, since in this way we
avoid any assumptions about the magnitude of atomic re
nance frequency. The long-range retarded interaction is
any finite temperature given by then50 term in the fre-
quency summation.

We finally note that the dispersion contribution to the c
relation of atoms in a liquid@42–44# at a liquid-metal inter-
face can be obtained in an entirely analogous manner
results that are expected to be very similar in limiting cas
To conclude this section analogous to the free space
there is a close relationship between temperature and r
dation. The interaction between two atoms at a surfac
quite similar to the interaction in free space. In the non
tarded limit the interaction is, regardless of temperature,
duced to exactly 2/3 of the interaction in free space. Wh
retardation is included the dominating term in the hig
temperature limit will be reduced in the same way. The
tarded Casimir-Polder asymptote found at zero tempera
is instead enhanced by a factor 26/23. We have finally inv
tigated corrections to these limiting results.

IV. ATOMS IN THE MIDDLE OF A THIN SLIT
BETWEEN METALLIC SURFACES

We next consider the interaction between two atoms in
middle of a very thin slit between two metallic surfaces. D
to strong confinement the interaction will be very differe
from the previous case. In particular the nonretarded van
Waals interaction decays exponentially and becomes do
nated by the retarded Casimir-Polder interaction.

We limit the investigation to slit widths~L! much smaller
than both the particle separation andc/jn ~for all relevant
frequencies!. Taking r 35r 385L/2, r 25r 28 , and r5r 12r 18
.0, all off-diagonal elements in the Green’s functionG van-
ish. The trace of the Green’s functions that we need to ev
ate to obtain the free energy of interaction now becom
Tr@G(R1 ,R2)G(R2 ,R1)#5T11

2 1T22
2 1T33

2 where

T115
1

LA2p
(
p51

`

sin2~pp/2!
e2rgp

Argp

F jn
2

c2 2
314gpr14gp

2r2

4r2 G ,

~32!
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T225
1

LA2p
(
p51

`

sin2~pp/2!
e2rgp

Argp

F jn
2

c2 1
112gpr

2r2 G ,

~33!

T335
1

LA2p
(
p51

` S pp

L
D 2

cos2~pp/2!
e2rgp

Argp

1
1

LA2p
(
p50

`

8 cos~pp!
jn

2

c2

e2rgp

Argp

. ~34!

Here gp5A(jn /c)21(pp/L)2. The p50 term in the last
summation is alone responsible for the long-range Casim
Polder-like asymptote found at zero temperature. As will
discussed later the reason for this is that all other terms
have exponentially decaying prefactors. Remembering
initial assumptions, i.e., that the atoms are assumed to be
enough apart in the thin slit, the series consists of terms
go exponentially towards zero with increasing values ofp.
To obtain asymptotic results we, therefore, only retain
p<1 terms in the summations. We find thatT22 becomes
negligible in comparison toT11,

T11
2 1T22

2 '
p3e22rg1

2L6g1r
. ~35!

Both the nonretarded interaction and the zero-freque
contribution originates fromT11. The matrix elementT33 is
given by

T33'
jn

2

c2LA2p
F e2rjn /c

2Arj/c
2

e2rg1

Arg1
G . ~36!

The Casimir-Polder-like asymptote found at 0 K comes from
the first term of this expression (TCP

2

[jn
3e22rjn /c/@8prL2c3#). To proceed we series expan

rg1

rg15~rp/L !A11u2'~rp/L !~11u2/2!, ~37!

where we have assumed thatu[2kBTLn/(\c)!1 and that
r/L@1. It is clear that all exponents that contain this ter
or similar terms, will decay exponentially, i.e., all terms e
cept that which gives rise to the Casimir-Polder-like asym
tote. At zero temperature one finds that the nonretarded
teraction decays exponentially,

F~r,T50 K!'2
2p5\e4

m2v0
3L6

e22pr/L

2pr/L
. ~38!

The retarded Casimir-Polder-like asymptote is

F~r,T50 K!'
23\ca0

2

8L2r5
. ~39!
2-5
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For small separations one can no longer neglect the ato
resonances. In the limit whenv@[c/(v0r)# goes to infinity,
we obtain the following asymptote:

F~r,T50 K!'
22\e4

rL2c3m2
. ~40!

One must remember that the interaction in this limit recei
important contributions not only fromTCP . We will return to
this in the next section when we discuss a few numer
results. In a bounded region the interaction at small sep
tions decays exponentially, whereas at large enough sep
tions it follows a power law similar to the Casimir-Pold
force in free space. Recalling our initial assumption, that
atoms are further apart than the width of the slit, the inter
tion will be dominated by the Casimir-Polder asymptote
almost every relevant case. More curious still, the interac
in the large separation limit is enhanced by a factor
3pr2/(52L2) compared to the Casimir-Polder result in fr
space. Since we assumed thatr@L this is an enormous am
plification of the interaction. However, as for the interacti
in free space, and on a metal surface, the long-range reta
interaction is fundamentally different for finite temperature
Replacing the polarizability with its static limit we obtain th
Casimir-Polder-like free energy:

FCP~r,T!'
22pa0

2kBTj1
3

rL2c3 (
n50

`

8 n3e2n2px. ~41!

This sum can be evaluated exactly. In the limit of smallx it
becomes

FCP~r,T!'2
3\ca0

2

8L2r5
2

2p4a0
2kB

4T4

15rL2\3c3
. ~42!

In exactly the same way as for the interaction on a surf
the first correction to the Casimir-Polder like asymptote
proportional toT4. For the interaction in the midplane be
tween metal surfaces the thermal, or entropy, contributi
increase the attraction, similar to in free space. This sho
be contrasted with what we found for two atoms confined
two dimensions near a surface where the thermal correc
decreased the attraction. One should observe that altho
the overall entropy of a system~including separation inde
pendent black-body radiation! must be positive, this is cer
tainly not true for particular interactions.

In the opposite limit (x@1) we find that the interaction
decreases exponentially,

FCP~r,T!'2
16p4a0

2kB
4T4

rL2\3c3
e24pkBTr/\c. ~43!

The Casimir-Polder-like asymptote decays exponentially
any finite temperature at large enough separations. Thi
contrast to the power law found for the high-temperat
limit on a metal surface or in free space. This is the tr
long-range retarded asymptote for the interaction betw
two atoms in the middle of a thin slit with metallic walls fo
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most relevant temperatures. However, there will still be
region, at large separations and sufficiently small tempe
tures, where the interaction follows the zero-temperat
Casimir-Polder-like asymptote. At 300 Kx does not exceed
unity until separations exceeding 4mm. The zero-
temperature Casimir-Polder asymptote is often a good
proximation at separations less than 1mm. However, ulti-
mately at large separations, the interaction dec
exponentially.

What about then50 term in the frequency summation
One might expect this term to give the dominating contrib
tion to the long-range interaction in a similar fashion to th
for the interaction in free space and on a surface. In this c
it becomes

Fn50~r,T!5
24p4a0

2kBTe22rp/L

L5r
. ~44!

This term, which does not contain Planck’s constant,
pends very much on the ratio between particle separation
slit width. In the limit of very narrow slit width we can
neglect this term compared to the Casimir-Polder asymp
for any relevant temperatures. The terms that we have
glected can similarly be shown to be small in the limits th
we have considered.

We can again see the important relationship between
tance and temperature for the long-range interaction betw
atoms. However, the long-range asymptote for finite te
peratures can no longer be found by simply taking then
50 term in the frequency summation. Comparing the ex
nents of Eqs.~43! and ~44!, it is clear that then50 asymp-
tote dominates once\c/(2kBL)!T. At a temperature of
1000 K this means that the slit width must be greater th
approximately 1mm. For the examples that we consid
here, the long-range Casimir-Polder asymptote is the do
nating by far. In any case the true long-range interact
decays away exponentially at any finite temperature. The
clusion of one extra length scale, i.e., the slit width, is
course the origin of the new features found in this final e
ample. In the opposite limit whenr/L!1 other approxima-
tions must be used to obtain correct analytical expressio
The summations in the Green’s functions can be repla
with integrations and then50 term becomes

Fn50~r,T!52
3kBTa0

2

r6 F12
r3

3L3
2

r5

2L5
1•••G . ~45!

With increasing slit width the interaction in the midplan
between two metal surfaces approaches the free space r
as it should.

V. NUMERICAL RESULTS

We have numerically investigated the interaction at 10
K between two hydrogen atoms on a metal surface, and
the midplane of a narrow cavity with metallic walls. Th
high temperature is relevant for catalysis of atoms on s
faces, narrow slits, and in pores. The parameters use
model the polarizability of a hydrogen atom were taken fro
2-6
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Rauberet al. @45#. We used a static polarizability of 4.5
atomic units (1 a.u.51.482310229 m3/atom) and a charac
teristic absorption frequency of 11.65 eV.

In Fig. 1 we compare the interaction free energy betwe
two hydrogen atoms on a metal surface with differe
asymptotes. We have previously shown that there are sm
transitions between different separation regions for the in
action between an atom and two metallic sheets@46#. We
can, in an analogous manner, get a fairly good approxima
of the interaction free energy by simply using the non
tarded van der Waals asymptote for small separations,
Casimir-Polder asymptote at larger separations, and final
even larger separations the high-temperature asymptote~the
n50 term!. For T51000 K, \c/(kBT)52.3 mm so thermal
effects will begin to influence the interaction unless the se
ration is small compared to 1mm. For future reference we
note that the interaction increases with temperature be
almost entirely entropic at large enough separations.

As we have already stated the interaction in a narrow
is very different from the interaction in free space, or on
surface. In Fig. 2 the interaction free energy in a very narr
cavity is compared with different asymptotes. One sho
note thatFn50 is totally negligible even at this high temper
ture. In order for this part of the interaction to dominate o
has to increase the temperature at least one order of ma
tude. At very small separations one can no longer ass
that the particle separation is much smaller than the
width and one can no longer expect the interaction to foll
our nonretarded asymptote. At slightly larger, but still sma
separations the interaction becomes dominated by the no
tarded asymptote that originates fromT11, but there will also
be minor contributions from the other terms. At intermedia
separations, where the high-frequency spectrum still do
nates, the interaction follows the small separation Casim
Polder-like asymptote, which depends on the atomic re
nance. The actual interaction found numerically at th
separations is smaller than the asymptote given in the pr
ous section. The reason is that many terms of alternating
in the second sum inT33 contributes. At even larger separ

FIG. 1. The interaction free energy at 1000 K between t
atoms on a metal surface~solid line! is compared with different
asymptotes: the 0 K Casimir-Polder asymptote~dashed!, the nonre-
tarded van der Waals asymptote~dotted!, and then50 asymptote
~dashed dotted!.
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tions, where the relevant frequencies become much sm
than the atomic resonance frequency, the interaction follo
the long-range 0 K Casimir-Polder-like asymptote. At s
larger separations the interaction follows the hig
temperature Casimir-Polder asymptote. We note that the
teraction is totally dominated by the contributions that co
from the second sum inT33 at separations exceeding 10 nm

In Fig. 3 we explore the ratio between the interacti
energy to the interaction free energy between two atom
free space, on a surface, and finally in a narrow slit. At la
separations the interaction between two atoms in free sp
and on a surface, has a purely entropic origin. For these
cases the ratio goes, as expected, to zero at large separa
One should note that it may exceed unity in a small sepa
tion range for the interaction on a surface. As might be
pected the more interesting case is the interaction in a nar

FIG. 2. The interaction free energy~solid line! at 1000 K be-
tween two atoms in the midplane of a metallic cavity (L51 nm) is
compared with different asymptotes: the 0 K Casimir-Polder as-
ymptote ~dashed!, the high-temperature Casimir-Polder asympto
~dashed-dotted!, the nonretarded van der Waals asymptote~circles!,
the n50 asymptote~dotted!, the energy contribution that come
from the second sum inT33 ~crosses!, and finally the small separa
tion Casimir-Polder asymptote~dashed-triple dotted!.

FIG. 3. Ratio between the energy and the free energy for
atoms in free space~dotted!, on a metal surface~dashed!, and in a
1-nm slit with metal walls~solid!. The free energy was evaluated
1000 K, and the energy was obtained from a discretization of
~28! with F evaluated at 950, 1000, and 1050 K.
2-7
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cavity. Using the relation between energy, entropy, and f
energy, and the expression for the high-temperature Cas
Polder asymptote, we obtain the following relations:

E/F'2314pkBTr/~\c!, ~46!

2TS/F'424pkBTr/~\c!. ~47!

This is totally different from the asymptotic interaction on
surface (F52TS522kBTa0 /r6) where the internal en
ergy goes to zero. One may compare with the hig
temperature limit of the interaction between an atom a
metallic sheets@46#. There was a large cancellation betwe
thermal corrections that originated from different modes. T
part that originated from transverse magnetic modes
creased with temperature in contrast to the part that c
from transverse electric modes, which decreased with t
perature. Due to this cancellation thermal effects on the t
interaction occured at much larger separations than for
separate parts. It is noteworthy that only the transverse m
netic contributions had a linear temperature dependenc
high T, i.e., purely entropic. The separation dependence
the different contributions were thus different also in th
case.

Finally, Fig. 4 presents the ratio between the free ene
of interaction in a slit to the corresponding interaction in fr
space. In the limit of small separations the interaction in
slit is dominated by nonretarded contributions that co
mainly from T11. The modes that dominates this part of t
interaction are exponentially damped in the slit already
very small separations. The result is the lowering of the
teraction compared to in free space that can be seen at s
rations around 1–10 nm. At larger separations the retar
Casimir-Polder part of the interaction dominates. For
widths of 1, 5, and 10 nm the enhancement of the interac
in this limit due to confinement may be as large as 103–105

times. This effect decreases with increasing slit width bu
will still influence the interaction in substantially larger slit
At separations exceeding 0.1mm thermal effects becom
important. There is a sharp drop in the energy ratio when

FIG. 4. The ratio between the interaction free energy at 100
between two atoms in a slit to the corresponding energy in
space. Three different slit widths were considered: 1 nm~dashed!, 5
nm ~dotted!, and 10 nm~solid!.
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interaction follows Eq.~43!. In this limit all relevant electro-
magnetic modes propagates as evanescent waves throug
narrow channel.

VI. CONCLUSIONS

We have investigated the interaction between two ato
at a metal surface, and in a thin slit with metallic, perfec
conducting, walls.

We have found Casimir-Polder-like long-range asym
totes at zero temperature. However, in many situations t
mal effects are important for any nonzero temperature
large enough separations. While the zero temperature re
are not useless, they are of limited validity and it is importa
to know limitations of such approximations.

The interaction between two atoms on a conducting s
face goes asymptotically towards the classical interaction
tween a pair of two-dimensional harmonic oscillators. Th
interaction is not due to then50, or classical term, but in the
same way as for the free space case@7# it is due to thermal
population of the electromagnetic field modes.

To see this one can simply consider the nonretarded lim
here, regardless of temperature, then50 term is cancelled
out exactly by one term that comes from the sum ofn.0
terms. At high temperatures when the field modes beco
thermally excited, then.0 terms produce a term that i
identical to then50 term.

This demonstrates once again the correspondence
ciple that a quantum system goes over to its classical an
when the relevant photon modes are fully excited. It is
markable that this is not only true for high~compared to the
resonance frequency! temperatures, but it also often occurs
large separations.

The change in power law at large separations has usu
been interpreted as being simply due to the finite velocity
light. However, the long-range interaction at finite tempe
tures between two atoms on a surface~or in free space as in
Ref. @7#! is independent of the velocity of light. This show
that there is more to it than a simple loss of intercorrelat
due to the finite velocity of light. As pointed out by Wenne
ström et al. @7# the quantum nature of light is important t
the softening of the interaction potential.

In the middle of a narrow slit with conducting walls th
long-range interaction between two atoms decreases e
nentially at any finite temperature. This is because the mo
that contribute to the classical term are suppressed in a
ity. If the slit is too narrow, light of the appropriate freque
cies can only propagate as exponentially decaying eva
cent waves. These modes, therefore, fail to dominate the
energy through entropic contributions in the presence of
oms. This is similar to the case of dispersion forces in
presence of electrolytes@13# where Debye screening caus
an exponential decay to the interaction. The long-range
teraction need no longer be the same as then50 term. In
fact, it is only when high temperature is large compared
\c/(2kBL) that the long-range interaction has a pure e
tropic origin in this case. For most relevant temperatures
long-range interaction follows Eq.~43!. Changes in both en
tropy and internal energy contribute to this asymptote.

K
e
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conclude, in extremely confined regions one can no lon
expect the long-range Casimir-Polder interaction to alw
go over in a simple way to the corresponding ‘‘classica
limit.

It is straightforward to describe the interaction betwe
two atoms at arbitrary positions in a narrow slit. The Gree
functions will in general have nonzero off-diagonal mat
elements. The contributions that originate from these w
decay in much the same way as the contributions that c
from T11 andT22. The second sum inT33, which give rise to
the Casimir-Polder-like asymptote, become modulated b
r

v.
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term cos@np(z1z8)/L#. Since it is then50 term that give rise
to the long-range Casimir-Polder asymptote this interact
is actually independent ofz and z8 in narrow cavities and
given by Eq.~43!.
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