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Two-loop self-energy correction in H-like ions
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A part of the two-loop self-energy correction, the so-calettrm, is evaluated numerically for thes state
to all orders inZa. Our calculation, combined with the previous investigati® Mallampalli and J. Sa-
pirstein, Phys. Rev. A7, 1548(1998], yields the total answer for the two-loop self-energy correction in H-like
uranium and bismuth. As a result, the major uncertainty is eliminated from the theoretical prediction for the
Lamb shift in these systems. The total value of the ground-state Lamb shift in H-like uranium is found to be
463.9550) eV.

DOI: 10.1103/PhysRevA.64.062507 PACS nuntder31.30.Jv, 31.106xz

INTRODUCTION energy, theP term. Results of our evaluation, added to those
from Ref.[7], yield the final answer for the total two-loop
The calculation of all two-loop QED diagrams for the self-energy correction for H-like uranium and bismuth. This
Lamb shift of H-like ions is one of the most challenging result disagrees with the recent calculation of the total con-
problems in bound-state QED. The experimental accuracy dfibution reported by Goidenket al. [8], which is based on
1 eV aimed at in measurements of the ground-state Lamthe partial-wave renormalization approach.
shift in H-like uranium[1] requires a calculation of the com-  The plan of the paper is the following. The basic formulas
plete set of QED corrections of the ordef without any needed for the evaluation of tiieterm are given in the first
expansion in the parametge (Z is the nuclear-charge num- section, along with the discussion of the treatment of ultra-
ber, « is the fine-structure constantn highZ Li-like ions,  Violet and infrared divergences. In the next section, we for-
these diagrams are the source of the major theoretical uncemulate the scheme of the numerical evaluation and give
tainty for the 2,,-2s transition energyf2] and, therefore, Some technical details. Numerical results are discussed in the
the limiting factor in comparison of theory and experiment.last section. In that section, we also collect all second-order
Also in the lowZ region, the two-loop Lamb shift is impor- contributions to the ground-state Lamb shift of H-like ura-
tant from the experimental point of viel@]. What is more, nium and to the Py,-2s transition energy in Li-like ura-
its Za expansion exhibits a rather peculiar behavior, with anium. In the latter case, the two-loop self-energy contribution
very slow convergence even in case of hydrofnin order  is estimated by scaling thesTresult.
to eliminate the uncertainty due to higher-order contribu- In this paper, we use the relativistic units€c=m=1).
tions, it is important to perform a nonperturbatitie Za)  The roman style (p) is used for four vectors, bold fap (
calculation of two-loop corrections even in the I@&wegion. ~ for three vectors and italic stylg) for scalars. Four vectors
The most problematic part of the one-electwhcontri- ~ have the form g=(po,p). The scalar product of two four
bution is the two-loop self-energy correction, represented/ectors is (pk)=poko—(p-k). We use the notationd p
diagrammatically in Fig. 1. The diagram in Figalis usu-  =p,y*, p=p/|p|.
ally divided into two parts, which are referred to as the irre-
ducible and the reducible contributiofThe reducible con- I. BASIC FORMALISM
tribution is defined as a part of this diagram in which
intermediate states in the spectral decomposition of the In this paper, we are concerned with the evaluation of the
middle electron propagator coincide with the initial state. correction
The irreducible contribution(also referred to as the loop-
after-loop correctioncan be shown to be gauge invariant AE=AEM+AEM+24EY, @)
when covariant gauges are use_d. Its _evaluation_is not VerYnere the contributiond EN' AEN2, and AE®! are repre-
pumbt_arso_me and was accomplished in several independegiaq by Feynman diagrams shown in Figs. 2, 3, and 4,
|nvest|gat|oni4—6]. : N respectively. Our consideration of these three sets of Feyn-
The reducible part of the diagram in Figlal should be o giagrams should be considered as an investigation,
evaluated together with the remaining two diagrams in F'gcomplementary to Ref7], to which we refer hereafter ds

1. This calculation is by far more difficult. The first attempt |, ;¢ calculation, we use the Feynman gauge and the point
to attack this problem was performed by Mallampalli and

Sapirstein[7]. In that work, the contribution of interest was m

rearranged into three parteferred to by the authors as the (‘JWH m (,f"\
M, P, andF termg, only two of which were actually evalu-

ated. The remaining pafthe P term) was left out since a
new numerical technique had to be developed for its compu-
tation. In our present investigation, we perform the numeri- FIG. 1. One-electron self-energy Feynman diagrams of second
cal evaluation of the missing part of the two-loop self- order ina.

a b ¢
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FIG. 2. Diagrammatic representation of the correctibEN®, FIG. 4. Diagrammatic representation of the correctlde®?.
For brevity, we do not explicitly display the diagrams involving
mass counterterms; the inner self-energy loops should be under- t
. . Pn(X1) Prn(X2)
stood with the corresponding mass counterterm subtracted. G(e,Xq,Xp) = E ﬂ 3)
n € &pn —1

nuclear model, the same aslinOur results, combined with ) i ) ) ,
those froml, should yield the complete answer for the two- EGuation(2) is written completely in coordinate space. We
loop self-energy correction. will also need the corresponding expression in the mixed

All the contributionsAENT AEN2 and AEC! are ultra- Momentum-coordinate representation. It is obtained by the
violet (UV) divergent. FoIIO\;vingl we refer to their Uy Fourier transformation of Eq2) over one of the radial vari-

finite part as the P term.” We note that subtractions in these ables,
contributions are chosen in such a way that each of them is )
free from overlapping divergences. The main problem in the L __ '_“f“ f dp, _dp,
. X . . AE e do

evaluation of these diagrams is that they contain bound- 27 ) (2m)3 (2m)°
electron propagators as well as UV divergences. While UV
divergences are normally separated in momentum space, the A2"(w,0) a(p1) @ ia(py)
Dirac-Coulomb Green function is generally treated in the in: ga— w—e,(1—i0) '
coordinate representation. The most direct way for the calcu-
lation of the P term consists in developing a numerical
sche_me for the evaluation of the D_irac-Coqumb G_reen func- Azn(w,q):#f dx w;(x)%lﬁn(x)e*iq'x, (5)
tion in momentum space, which is one of the aims of the w-—Qg-+i0
present paper.

The nested contributiond EN! andAEN?, possess in ad- whereq=p;—p,, and
dition some infraredIR) divergences, which are associated
with the so-caled reference-state singularities. These diver- :
gences are canceled out when consi?jered together with the ‘ﬂ(p):J' dx ey (x). ©®
corresponding parts of the reducible contribution of the dia-
gram in Fig. 1a). Following |, we handle the IR divergences We note that while the integration over in Eq. (4) can be
by introducing a regulator. This makes it clear that great carearried out by Cauchy’s theorem, we prefer to keep it, having
should be taken in order to separate all divergences exactim mind future generalizations to the two-loop case.
in the same way as i, in order not to miss a finite The renormalization of the one-loop self-energy is well
contribution. known. In our paper, we employ the method based on the
expansion of the bound-electron propagator in E).in
terms of the interaction with the nuclear Coulomb figgd.

] ] ] For the detailed description of our renormalization proce-
We start W|th some basic formulas _for the first-order Self'dure, we refer the reader {d0]. The renormalized self-
energy correction. The formal expression for the unrenormalenergy correction is represented by the sum of three finite
ized first-order self-energy matrix element in the Feynmangrms

gauge is given by

4

A. One-loop self-energy

e f SEAER AR AR,
AEunren:Ej_xdwf dxy dx; ¢ra(Xq) where
expi| w|X1o)
Xa,Gle,— w,X1,Xo)at P (X)) ——, (2 dp
pOlEam o )atyabe) =5 @ Sl | STl e e, @

wherea*=(1,a) are the Dirac matrices, ar@ is the Dirac-

Coulomb Green function dp; dp,
’ (v | = _FF2 ¢ 0 .
AEone_f (277)3 (277)3 'ﬂa(pl)'YOFR(Savplvsavpz)

@ - & XVc(Q) a(p2), 9
+ +

where V()= —4maz/|q|?, and 3P(p) and T4(p;,p,)
are the renormalized free self-energy and vertex operators
FIG. 3. Diagrammatic representation of the correctidd™?. introduced in Appendix A. The expression fdrEfnlgny is
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given by Eqg. (2), where the Green functionG(e,

—w,X1,%;) is replaced withG@*)(e,— w,X;,X,),
G(2+)(81X11X2):G(val:XZ)_G(O)(S!XlIXZ)
—GW(e,x1,%)), (10

GO(e,x;,%,) is the free Dirac Green function, and

(&,2,%).
(11

al
G(l)(S,Xl 1X2) == J’ dZG(O)(E,Xl 72) HG(O)

B. Basic formulas for two-loop diagrams

PHYSICAL REVIEW 84 062507

The expressions for the remaining diagrams in Figs.
2—4 are obtained in a similar way, by replacing the Dirac-
Coulomb Green functioi© in Egs. (12), (15), and (16) by
G or g™,

C. Separation of ultraviolet divergences

In this section, we isolate the UV-finite part AfE. Fol-
lowing I, we refer to this contribution as theterm. Consid-
ering the renormalization of the diagrams in Fig. 2, we
should keep in mind that the inner self-energy loops are al-
ways accompanied by the corresponding mass counterterms.

The renormalization of the one-loop self-energy and ver-
tex operators is defined in Appendix A. To handle the UV
divergences, we regularize them by workingDr=4— € di-

The formal expression for the first diagram in Fig. 2 canmensions. The resulting expressions are

be obtained from Eq.(2) by the substitution G(e,
—w,Xl,XZ)—>GN1(sa—w,Xl,Xz), Where

d
GNl(Sle’XZ):f(2:)3G(S’X11p)
X yo[2O(e,p)— dm]G(e,p,Xo),
(12
G(a,xl,p)zf dx, ePeG(&,X1,Xy), (13
G(s,p,x2)=f dx; e P G(&,Xq,Xp), (14)

and3 (©)(p) is the free one-loop self-energy operator defined

in Appendix A.

3O(p)— sm=BO(p—m)+=Q(p), (17)

T#(py,po) =Ly +TK(py, pa), (18)
whereB® andL™® are UV-divergent constants, a&d”(p)
and I'k(p,,p») are finite. According to the Ward identity,
BW=_TQ)

For the renormalization of the two-loop self-energy dia-
grams, we refer the reader to(eery pedagogicaldescrip-
tion given by Fox and Yennigl1]. Applying their arguments
to the diagrams in Figs. 2—4, we have

AEN'+AEN=BMAER)  p+AER'+AER?,  (19)
20EC =2LWAEQ) -+ 2AER, (20)

The expression for the first diagram in Fig. 3 is obtainedVhere the subscrige means that the corresponding contri-

from Eq. (2) by the replacementG(e,— w,Xq,Xp)
_>GN2(8a_wa1aX2), Where

dp; dp;
GN2(81X1:X2):JW (2m)°

G(e,X1,p1)Vc(d) vo

XT%&,p1;€,p2)G(,P2,%2), (15

bution is UV convergent, and the subscrptof AE(), 5
indicates that this correction should be evaluate simen-
sions, keeping terms of order (These terms yield a finite
contribution when multiplied by divergent renormalization
constants.

The resulting expression reads

AE=TMAER)

o+ AER +AEN+2AERY.  (2D)

wherel™(py,p,) is the free one-loop vertex operator defined jere, the correctioh EN® is obtained from the correspond-

in Appendix A, andV¢ is the Coulomb potential in momen-

tum space.

We obtain the expression for the first diagram in Fig. 4 by

replacing one of they matrices in Eq.(4) with the vertex
operatorT’,

iOl * dpl de
7] 2 o anr
2m ) = (2m)® (2m)°

A (w,9)

n Ea—w—en(l—

AE Qe —

unren

XTH(ga—,p1;€4,P2) ¥a(P2), (16)

with A%(w,q) given by Eq.(5).

ing expression forAEN' by the replacements (9)(p)
—3O)(p), and the correctionAEN? and AES* by the cor-
responding substitutiod #(py,po) — 'k(P1,po). Since all
the P terms are UV convergent, in their evaluation, we may
disregard terms of ordee in definition of 3(p) and
I'&(py,po). We note also that the UV-divergent part &
separated in Eq21), exactly corresponds to that In

D. Separation of infrared divergences

Infrared divergences occur in the correctiohEN* and
AEQ2 due to so-called reference-state singularities. They
arise when the energy of intermediate states in the spectral
decomposition of both electron propagators in E48) and
(15 coincide with the energy of the reference state.
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As shown, e.g., inl, the divergent terms disappear when Here, we have introduced the correctiaiEp ., that does

considered together with the related contributions from thenot depend on the regulatérand can be obtained by fitting

reducible part of the diagram in Fig(al. However, since we numerical results foA EgllR(g)_

are going to evaluate the contributiodsEp' and AER? An analogous evaluation for the IR-divergent part of

separately, a proper regularization of the IR divergences igEgz yields

needed. In order to preserve the compatibility of our results

with those ofl, we have to employ exactly the same proce- N2 a o N2

dure for the regularization of the IR divergences. AEp|r(0)= —AEgIn 6+ ARy +O(6).  (27)
Following I, we introduce in the IR-divergent parts of

AEp*, AER? a regulators that modifies the location of the  As can be seen, the IR-divergent parts separated in(26s.
reference-state pole of the Green functien;—e,(1+45).  and(27) are exactly canceled by the corresponding terms in

After that, we have for the IR-divergent part AER* Egs. (50) and (55) of I.
i ® P (VPN P
N1 — I_a <a|2R (ea w)|a> II. NUMERICAL EVALUATION
AEp r(9) 2 dw 5
' 2795 )= (—ea6— w+i0)

A. Green function in the mixed representation

The main problem of the numerical evaluation of the
terms is that they involve the Dirac-Coulomb Green function
in momentum space. Until recently, there has been no con-
where a denotes the electron with the energy and the venient method for its evaluation. As was pointed out,in
angular-momentum projectiom,. In Appendix B, we dem- new numerical tools should be developed for the calculation
onstrate thak (")(¢,— w) as a function ofw can be analyti- Of the P terms.
cally continued to the first quadrant starting from the right Here, we address two main features that allow us to
half of the realw axis, and to the third quadrant from the left evaluate theP terms. First, we express them in a form that
half of the realw axis. Therefore, we may perform the Wick involves the Fourier transform of the Green function over

1l . —
X (aa ———ell*Paa), (22)
X12

rotation of thew integration contour in Eq(22), only one radial variablgEgs.(13) and(14)]. We refer to this

as the mixed(momentum-coordinajerepresentation. Sec-

a = (a3O(e,~iw)|a) ond, we develop a convenient scheme for the numerical
AENIR(&)=—— > ReJ do, — evaluation of the Green function in the mixed representation.
' T na 0 (ea0t+iw) This scheme was proposed and tested in our previous evalu-

-y o ation of the irreducible part of the diagram in Figall(the

X (aa) ———e~“*17aa). (23 loop-after-loop contribution6]. Here, we describe the basic

X12 idea of this approach.

We start from theéB-splines method for the Dirac equation
[12]. For a fixed angular-momentum quantum numkeit
provides a finite set of radial wave functioﬁ@'m(x)},ﬁ‘:l,

Let us investigate the behavior AiEgllR for small values of
6. Writing it in a compact form, we have

. f(w) where the superscript=1,2 indicates the upper and the
AEN - (8)=Re| do———F— lower component of the radial wave function, ameiumer-
' 0 (ea8+iw)? ates the wave functions in the set. The wave functions are

found as a linear combination of tiesplines[13],
= f(w)—1f(0)
= Ref do—— : 1 .
0 (eqdtio) Chen(X)= > al(x,n,1)B(x), (29
' |
=R f'(0)]In 5+terms, regular irs. (24)
where{B,(x)}, 1=1,2, ..., is the set of thB splines defined

on the grid{x;}. Since each oB,(x) is represented as a
piecewise polynomial, we can build the corresponding

Taking into account that

d —<(0) R . ) : . )
Re% 2_ (a]3R(ea—iw)|a) piecewise-polynomial representation for the wave functions,
w=0L Ha
, 1 _
X(aame_‘”xlqga) (PIK,I'](X): X Ek: CL(K:nJ)(X_XOk, Xe[X,X+1].
X12 29
= _ (0)
(@alZr (ea)la), (25) Consequently, the radial Dirac-Coulomb Green function
we have in the coordinate space, defined as
i j
1o i @en(X1) @ n(X2)
AEpr(0)= _ABLgoln 8+ AERL+O(5). (20 Gllexaxg) =2 “HEE—, (30
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is written in an analogous form,

. 1 -
Gle,xy,X)=—— > Al (8,x,11,15)
K 12275 &, kako 112

K K
X (X=X, ) (X2 = X,)"2,

PHYSICAL REVIEW 84 062507

B. Evaluation of AEN?

First, we separate the total contributi?E}* into two
pieces, the IR-divergent paE}’ given by Eq.(22), and
the finite remainderAER’ . The expression fodERY is
given by

Xy X X +1], Xa& XX +1]. (31 AE'S}TZ%IQO dwf (de)sf dx, dx,
. -

Here, the coefficientd) , are given by .
e ><exp(||co|x12)

) ) +
' > Ci, (kN 1p)ck (k,n,12) X1z a(X1)
Aklkz(S,K,|1,|2)_ n £—é&p . (32) ><a#gNl(sa_“’.Xl,p,Xg)a“wa(xz), (36)

At this point, we have built the Dirac-Coulomb Green func-

tion in the piecewise-polynomial form. This representation isVhere
very convenient for the numerical evaluation. After the coef-
. ij :

ficients Ay , are stored for given values of and &, the Gni(€.X1,P,%2) =G (&,%X1,P) Y02 V(&,p) G(&,p,X2)

computation of the Green function is reduced to the evalua- ©) ) ©)

tion of a simple polynomial over each of the radial variables. —G™(e.x1,P) Y02 (£,p) G (£,P,X2)
We note one additional advantage of this representation of A1) (0) (0)

the Green function, as compared to its closed analytical G(ex1,p) vo2 R (2,P) G Poxe)
form. The Green function in the forit81) and its derivative -GO(g,x;,p) 702%0)(8,p)G(1)(8,p,X2)
are continuous functions of the radial arguments, while its

analytic representation contains a discontinuous function gbg(xl)zpz;(p) ©
6(x,—X,) (see, e.g.[14]). -2 m'yOER (e,p)
Now we turn to the Green function in the mixed represen- Ha a
tation. The Fourier transform of the radial Green function f
: i Pl P) r(X2)
over the second radial argument is written as ><—+.0. (37)
e—¢gatl

ij _ . 2: ij
Gulexa,p2) 4WS(L’)JO e 3] Lj(szZ)GK(S'Xl'XZ)’ The next step is to perform the Wick rotation of the
(33 w-integration contour in Eq:36). This is very convenient for
the numerical evaluation since, first, the Dirac Green func-
wherelLy ,=|x=1/2/—1/2, s(L1) =1, s(Lo)=—«/[«|, and 455 35 well as the photon propagator are exponentially de-
JL(Z)_ denotes the spherl_cal Bessel_functlon. Introducing th%aying functions for imaginary values of. Second, by this
Fourier-transformed basic polynomials, deformation of the contour, we escape most of the problems
connected with poles of the electron propagators and with
the analytic structure o ©)(¢). The analysis given in Ap-
pendix B shows thaE&o)(sa—w) as a function of real
allows the analytical continuation to the first quadrant of the
complex plane starting from the right half of the real axis,
and to the third quadrant from the left half of the axis. There-
fore, we may rotate the integration contour on the imaginary
axis dividing AER® into two piecesAERY,, corresponding
to the integral along the imaginary axis, and the pole term
AEQ}methat arises from the pole of electron propagator with
en,=¢&4. (At this moment, we assume thatcorresponds to
the 1s state) We have

iK X|+1 ki
I (p)=4ms(L) dx X(x=x) j,(px), (34
X
we write the Green function in the mixed representation,
ij 1 k
Grl(eX1,P2) =~ > (X1=x,)"
1 kg

ij jka
X2 Algoleuml il TAP2),
X1€[X X 1] (39

Certainly, a computation in the mixed representation is es-

sentially more time consuming than that in coordinate space, AEN, =— @ Refwdwf dp f dx, dx,
due to necessity to evaluate the whole set of the integrals ’ m 0 (2m)°
ik2 L )
HI2 (p,) for each new value op,. Still, in actual calcula xR~ wx1)
tions, we perform the numerical integration owgfrfirst, and X f(X1)

X12

Xa,Gni(ea—1w,X1,p,X2) a¥ha(Xp), (39

the total amount of computational time may be kept very
reasonable.
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TABLE I. The individual contributions ta\E}®, in a.u.

X12 z AERS AER e AERn Total
GRY & 0, X1 P2 X0) (X)), (399 83  —0.03419  0.00480 —0.03951 —0.068 90(20)
90 —0.03484 0.00430 —0.03780 —0.06834(20)
where 92 —0.03489 0.00438 —0.03737 —0.067 88(20)
ole, 0)
GR18aX1,PX) = E [a(X1) ¢—(p)702( (£a,P) The actual calculation was performed with the basis set
constructed typically with 50—68 splines of order six and
X G e,,p, %)+ G e,,%1,P) Yo employing the point nuclear model. The cavity size of 1 a.u.

©) + was employed foZ =80, which was scaled ag/Z with Z,
XZR(ea,P)¢al(p) (X2)], (400 y=I—(aZ)2 We use an exponential grid with the first
knot of about 0.001 a.u. faf=80. This particular grid was

andG'™is the reduced Dirac-Coulomb Green function,  chosen since it yields an optimal convergence in the evalua-
enten + tion of the first-order self-energy correction with respect to
G e, X, %) = E n(X1) Pn(X2) (41) the number of knots. The infinite summation over the

172 e—¢ep(1-i0)" angular-momentum quantum number of intermediate states

x was terminated typically dt«,i=7. The tail of the ex-

Finally, we collect all contributions tAEN, pansion was estimated by polynomial fitting in/ The
results of the numerical evaluation of the individual contri-

butions toAEp" are presented in Table | f@=83, 90, and

N1 1
Ep(0)= _AEgezolné"'AEP infr AED hoiet AER 92. The numerical errors, quoted in the table, originate
mainly from the sensitivity of the result to the number of
+0(9). (42)  knots and different grids.
We note that instead of dividing EN* into three parts, we C. Evaluation of AEN2

could have introduced the regulatérright from the begin- H fiom EN2 b itten in th
ning in AER, as it was done i for the “M terms.” How- AENle correctiomEp ™ can be written in the same way as

ever, this would cause a rapidly varying structure of the in-
tegrand in the loww region, which makes calculations much

more time consumingE.g., for the pole term introducing a N2(6)= —AE&LIn 5+AEP Infr+AEP pOIe+AEP im
regulator would involve a numerical evaluation of the inte-
gral that yields thes function in the limit 5—0.) In our +0(6). (43

approach, on the contrary, only the IR-divergent part is
evaluated with the regulator; the corresponding calculation i${ere, we again separate the IR-divergent p&d. (27)] and
relatively simple and allows accurate fitting to the fof®®).  perform the Wick rotation of the-integration contour, sepa-
Let us now outline essential features of our numericakating the corresponding pole contributiod B> bold - We
evaluation. As can be seen, the dependence of the functiomgte that the rotation of the contour is p055|ble because the
Gn1 andGR3® on the angular parts of, andx, is exactly the  vertex operatod™*(s,— w,e,— w) as a function of reak
same as that of the Dirac Green function. Therefore, the amallows an analytic continuation in the region of interest, as
gular integration causes no problems and was performed byghown in Appendix C. The resulting expression reads
straightforward generalization of formulas given in H&0].

The most problematic part of the numerical evaluation of dp; dp;

AEp' is the calculation ofAER],. All numerical integra- AERTn= f f(z )3f dx, dx,
tions were performed by the Gauss—Legendre quadratures. )

The ordering of integrations in our computation coincides expl— wXqy) .

with that of Eq.(38), with the summation over the angular- X— V() ra(X1)

momentum quantum number of intermediate stat@soved 12

outside. For each value of and w, we store three sets of Xa,Ono(ea—10,X,P1,P2,X0) @ iha(X),
complex coefﬁmentaAk K, corresponding to the functiorg, (44)

G©, andG(). For each value ab, we calculate also a set of

the Fourier-transformed polynomial$|“(p). After this, the where

integrations over the radial variables, x, are performed. _ 0 )
This scheme is rather efficient and was used for the evaluaZNe(é:X1:P1,P2,X2) =G(&.x1,p1) Yol r(#.P1;2,P2)

tion of AEP im- The correcuonsz&EP infr andAEP nole Were X G(g,pp,%)—GO(g,%;,P1) Y0
calculated in several different ways, which served as a good 0 o
test for our numerical procedure. XTR(e,p1;€,02)GO(e,pz,X0)
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E wixl)'ﬁ_(pl) TABLE II. The individual contributions ta\E}?, in a.u.
P e (£,p1:€,P2)
= e—eati0 v k(e paie.Po AENZAEN . AEM Total
Ya(P2) U(%o) 83 006563 —0.02127 002178  0.066 (20)
X—— o (45 90 007200 —0.02675  0.02460  0.069 X))
a 92 0.07403 —0.02881 0.02570 0.070 e20)

Assuming that is the 1s state, the pole contribution is given

by where [3=T"3(e,—iw,p1;ea—iw,P3), ¥, and ¢y, stand

o dp, dp, for solutions of the Dirac equation with the Coulomb poten-
AEQZpolez—ReJ j dx, dx Xg — Vc(q) tial, ug andu, denote solutions of the free Dirac equation,
, 2 (277_)3 271_)3 . S .

and the prime on the sum indicates that the term wnp

Xlﬂa(Xl)a GRO%(& 4, X1 ,P1, P2 Xa) P ha(Xp), =e&n,= €4 IS Omitted. In order to evaluate E¢48), we in-
(46) troduce the matrixg,

i j
. , (PK,n (pl)(PK,n (pZ)
where S)(@,p1,p2)= > - -

| niny (Sa_iw_snl)(sa_iw_snz)
poe(saaxliplipZIXZ)

a a;
X(an2| ———e “nja), (49

=2 [Yalx)¥g(P0) ¥ol Rlea.P1iea.P2) X2

Ha i
o o whereg'(p) (i =1,2) stands for the radial components of the
X G £4,p2,%) +G"Ye,,%1,P1) Y0 corresponding wave function. An analogous ma®® is

0 ] + introduced also for the second part of Eg48). For each
XT'r(ea,P1iea P YalP) ¥(X) ] (40 \a14e of k andw, we calculate coefficients of the piecewise-

_ o o _ Polynomial representation & S(%. Then, for each value of
The angular integration in these expressions |so|estra|ghtfo P, andp,, we store two sets of the Fourier-transformed poly-
ward, due to the fact that the functiodig, and GR°® have

nomials,IT*(p,) andI1{*(p,). Finally, the integration ov
the same dependence on the angular parxs ahdx, as the i (o) (P) y g o

: ) . , is performed.
Dirac Green functionG. The numerical evaluation of the  The results of the numerical evaluation of the individual

correcuonAEP im IS much more time consuming than that of ., ntributions toAEN? are presented in Table Il faf=83,
AER’,. This is because the integration oygf in Eg. (38) 90, and 92.
(after the angular integration has been carried @usubsti-

tuted by the triple integration ovefp,|, |p2| and ¢

=(p;-P,). So, the numerical evaluation NEP im involves ) . .
one infinite partial-wave summation and a sevenfold numeri- | "€ expression foAER" can be easily obtained from Eq.
cal integration.(One additional integral comes from the (16), after rewriting it in term;of the Green function and
evaluation of the Green function in the mixed representamaking the substitution&— G**) andI'*— Tk,

tion.) While it is possible to evaIuatAEP im iN & similar way

as AER’,,, we have found a more efficient method for its AEOlZ—Zia{J'OO d“’f dp, _dpy_

computation. To this end, we rewrite E@4) as follows: P (2m)% (2m)°

D. Evaluation of AES*

* dp, dp; f exp—iq-z) .
N2 _ X | dz?=—7—F Z)
AER = Refo dwf 2 (2w)3vC(q> 2~ qP+10 Pal
@) (o —
(P2 vol R, (P2) X@,G  (2a= 0,2,py)
X . -
fano (sa—lw—snl)(sa—lw—snz) X yol'R(ea— ®,P1;€a,P2) Pa(P2), (50
1- e, where g=p;—p,, G®")(e,z,p;) is the many-potential
X {an,| e~ “*17n,a) Green functionEqg. (10)] in the momentum-coordinate rep-
resentation. The analysis given in Appendix C shows that the
u;(pl) Yol RU,(P2) vertex operatof f(e,— w,&,) as a function of reab allows

the analytical continuation to the first quadrant of the com-

plex  plane starting from the right half of the real axis, and

to the third quadrant from the left half of the axis. Therefore,

X (ay| —12 e 17 Ba) ¢, (48) we may perform the Wick rotation of the integration contour,
X12 separating the corresponding pole contribution,

By (ea—lw—ep)(ea—iw—g,)
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AES =AEQL o+ AESY,. (51) TABLE III. The individual contributions taAER?, in a.u.
The angular integration in E@50) is by far more difficult as  Z AER ok AER, Total
compared to the contributions considered so far. As the ing 0.03602 0.02496 —0.01106(15)
volved expressions are rather lengthy, we do not give thei _0'03599 0'02417 _0'011 82(15)
detailed consideration here. However, in order to give th —0.03605 0.02392 —0.01213(15)

reader an idea how the angular integration is performed, wi
note that Eq(16) is very similar to the free-vertex contribu-
tion which is encountered in a calculation of the self-energy . . . . 1) )
screening diagramfcompare with Eq.(68) in Ref. [15]]. p!eceW|se-p0Iynom|aI represe_ntatlon@f . These coeffi- .
Basically, the angular integration in E€G0) is the same as C|ent§ are obtained a(lg) the dlfféelr)ence of the .correspondmg
described in detail in Ref15]. The only difference is thatin Coefficients forG,, G,”, and G, as stated in Eq(1D).
Ref.[15] the integration was demonstrated for two particular T N€ next two loops are the integrations oveandy. For
statesn=2p,, and 3. In Eq. (50), we need a generalization each val_ue ot_)kl, we store a set of _the F(_)uner-trqnsformed
of that procedure for an arbitrany, which is somewhat te- PolynomialsITi(p;). The next step is the integration ovgr
dious but straightforward. and the evaluation df(p;,p»,£), which involves an integra-
Let us discuss now the numerical evaluationAdgQ.  tion over the Feynman parameteee, e.g., Ref10]). The
After the angular integration is carried out, a typical contri-innermost loop is the integration over Its optimization is

bution to AESY, . is written as follows: the most critical part from the point of view of computational
‘ time. For small values af, we use Gauss-Legendre quadra-
o - - 1 = p2p2z2 tures. Wherq is large, we decomposg(gx) in a comb_ina-
t=> f dwf dplf dpzf dgf dz——— tion of sin@x) and cosgx), and use the standard routine for
© J0 0 0 -1 Jo0 wttq the sin- and cos-Fourier transforms based on the generalized

i i G(2+)ij . ; i Clenshaw-Curtis algorithm. At that stage of the computation,
1(92)¢a(2)G,5 " (2a=10,2,P)f(P1,P2,6) @a(P2), both ¢, andG?*)" are represented by piecewise polynomi-
(52 als and, therefore, theintegration can be performed rather
fast.
where pi=|pi|, P2=Ipal, €=(p1-P2), G°=pi+p3 A good test for our numerical procedure is to evaluate the
—2p1p2¢, ¢' is a radial component of the wave function, many-potential part of the first-oder self-energy correction,
G(K2+)” denotes a radial component ®f?*), j, is a spheri- Which can be obtained from Ed50) by the substitution
cal Bessel function, anf(p;,p,,£) originates from the ver- T'g—¥*.
tex operator. Equatiofb2) involves one infinite partial-wave The results of the numerical calculation of the individual
summation and a sixfold numerical integratidithe sixth  contributions toAEQ! are presented in Table IIl fof =83,
integral is the momentum integration in the evaluation of the90, and 92.
Green function in the mixed representation. Two additional
integrations may be also mentioned, one over the Feynman
parameter in the evaluation dip,,p,,£), and another a
radial integration in the computation 6. This makes the In this paper, we present the numerical evaluation of the
total dimension of the integral to be]8Two of these inte-  correctionAE, given by the three sets of diagrams that are
grations involve spherical Bessel functions, which oscillateshown in Figs. 2—4. Putting together Ed4), (21), (42),
strongly in the high-momenta region. In order to keep the43), and(51), we have
amount of computational time within an acceptable limit, the
general scheme of the calculation should be chosen carefully. o
In our approach, we introduce the following change of vari- AE=T (1A E%ﬁnyD*’ —[AED +AEM)In 5+ AEN. .
ables[10]: gpl.gzé;e{x,y.q}. wherex=p;+py, y=p- . '
“P<,  97=p1tpa—2pipeé,  pP-=maxPyp),  Pe< +AER it AER i+ AER + AER it AER T,
=min(p,,p,). After that, we have

III. RESULTS AND DISCUSSION

+2AERY ot 2AER ,+ O(5). (54)

el 0 1
f dplf dpzf déF(p1,p2,6)
0 0 -t The UV-finite differenceAE-LMAE(),,, corresponds to
® X X q what in | is called theP term. The IR-divergent contribu-
=f de dyf dq2 tions, still presented in th® term, are canceled when con-
0 o Jy P1P2 sidered together with Eqg50) and (55) of I. When all
X[F(py,p2,&) +F(ps,p1,&)]. (53)  o-dependent terms are put together, the li;it0 may be
taken, and contributions of ordérand higher vanish. Finite
In the actual calculation, the outermost loop was the summandividual contributions toAEN*, AER?, and AER* are
tion over k. The next loop is thev integration. For given listed in Tables I-IIl, respectively. In Table IV, we collect all
values of x and w, we store a set of coefficients of the finite contributions toAE.
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TABLE IV. Finite parts of the individual contributions tAE,
in a.u. Ty Ty 7y

z AEN AEN? 2AE®? Total

() ()

83 —0.06890 0.06614 —0.02212 —0.024 88(40)

(®)
90 —0.06834  0.06985 —0.02364 —0.02213(40)
92 —0.06788 0.07092 —0.02426 —0.02122(40) Q
(e t9]

Now, we can obtain a finite, gauge-independeénmithin @
the covariant gaugésesult for the sum of the diagrams in (d)
Figs. 1b) and Xc) and the reducible part of the diagram in
Fig. 1(a). In order to get this, we should add together the
contributions listed in Table IV, the results froinfor the M
terms[Egs. (50), (52), and (55) of 1] and those for thd-
terms(Table IV of I). This yields—0.903(11) eV for the l'w,\,.?)
ground state of H-like uranium and0.575(11) eV for bis-
muth. Adding this to the irreducible part of the diagram in
Fig. 1(a@ (—0.971 eV forz=92[4,5] and —0.544 eV for

)
(h)

Z=283, this paper we have for the total two-loop self- g z
(k)

st

(2 O]

energy correction, given by the diagrams in Fig.-11.874
(11) eV forz=92 and—1.119(11) eV forz=83.

The numerical results for the sum of the diagrams in Figs.
1(b) and Xc) and the reducible part of the diagram in Fig.
1(a), obtained by combining the present calculation with
that of I, may be compared with the recent evaluation an-of the «®> QED corrections[ VPVP (f) and S(VP)E (k)]
nounced in Ref[8]. The results of—0.903(11) eV g  are evaluated only within the Uehling approximation at
=92) and—0.575(11) eV Z=83) obtained in this paper present. We ascribe the uncertainty of 50% to them. To ob-
should be compared with 1.285) and 0.789) eV, respec- tain the binding energy, the Dirac point-nucleus eigenvalue
tively, reported in Ref[8]. Surprisingly enough, the com- Of —132279.92(1) eV should be added to the Lamb shift
parison shows that the results disagree even with respect f§esented in Table V. The error of 0.01 eV of the Dirac
the overall sign of the contribution. Commenting on this dis-Pinding energy results from the uncertainty of the Rydberg
agreement, one may mention that the partial-wave renormafn€rgy[19]. As can be seen from the Table, the present level
ization procedure, used in Ré8], is known to produce cer- of experimental precision provides a test of QED effects of

; . . ' i 0
tain spurious terms due to the noncovariant nature of thgrs\t/vqtrr??r: |nta O? the Iel\f/el of 5%. lculated for the &tat
regularization(see Ref[16] and a discussion given in Refs. o clan egtirirlgt-eoi(;g \S/Zu;:r:‘i:g% ca c_uzz ?ran(;tior? inaLie-’
[17,6]). We also note that some assumptions employed in thﬁ/ Py

numerical evaluation of Ref{8] make it difficult to kee ke ions. As is known, the leading contribution to the self
o . P energy arises from small distances, where the self-energy
accuracy under proper control in the computation. Still, in

R o . operator is close to @-functional potential. This gives the
order to resolve this disagreement, it is desirable to perfom{}vell-known 1h3 scaling for thes states and zero for the

an gvaluation of the total two-loop self-eqergy correctiong;ates Assuming this scaling, we have a (2BeV contri-
within the covariant approach from the beginning up to theytion for the one-electron two-loop self-energy correction
end by the same authors. This will be the aim of our futurey the 2,25 transition energy in Li-like uranium. Now we
investigation. _ collect all second-order QED contributions to this transition
With this evaluation of the two-loop self-energy correc- energy in uranium, as shown in Table VI. In the first line of
tion, we complete the long-lasting problem of calculation ofthe Table, our previous result of 280(48) eV [2] is given,
all second-ordefin @) QED corrections for the hydrogenlike in which all available contributions are included, except one-
ions without an expansion in the parameft. The com- electron second-order QED effects. The total value of the
plete set of these corrections is presented in Fig. 5. Thé&ransition energy amounts to 280(64)(21) eV, which
whole set is conveniently divided into several gauge invari-agrees well with the experimental result of 28QqHY eV
ant subsetsSESE(a—9, VPVP (d), VPVP (e), VPVP (), [34]. In the theoretical prediction, the first quoted error arises
SEVP(g—i), S(VP)E (k). In Table V, we collect all avail- from the uncertainty due to the finite-nuclear-size effect and
able contributions to the ground-state Lamb shiff#Uo* . due to higher-order electron correlatiofsee discussion in
The nuclear-size correction is calculated for the FermiRef.[2]). The second quoted error corresponds to the uncer-
nuclear model With<r2>1’2=5.860(2) fm[18]. The uncer- tainty of the second-order one-electron QED effects.
tainty of 0.38 eV ascribed to the nuclear-size effect is evalu-
ated as the difference between the corrections obtained
within the Fermi model and with the homogeneously charged In this paper, we developed a convenient numerical ap-
sphere distribution, employing the same rms radius. Somproach to the evaluation of two-loop corrections in the mixed

FIG. 5. One-electron QED corrections of second ordes.in

CONCLUSION
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TABLE V. The ground-state Lamb shift iF*8U%" in eV.

Finite nuclear size 198.839)
First order self-energy 355.05 [20]
vacuum polarization —88.60 [21]
Second order SESE(a, irred) -0.97 [4]
SESE(a, red) (b,0 —0.90(1) This work+ [7]
VPVP (d) -0.22 [22,23
VPVP (e,f —0.75(30) [24-26
SEVP(g-i) 1.14 [22]
S(VP)E (k) 0.136) [22,27
Total (a—K —1.57(31)
Nuclear recoil 0.46 [28]
Nuclear polarization —0.20(10) [29-31
Lamb shift(theory) 463.9550)
Lamb shift(experimenk 468+ 13. [1]

momentum-coordinate  representation. The elaborateti-like ions very promising for testing second-order QED
scheme was applied to the evaluation of a part of the twoeffects. The first estimate of the two-loop self-energy correc-
loop self-energy correction that was omitted in the previousion allows us to ascribe a well-defined uncertainty to the
study[7]. It is worth mentioning that our numerical proce- theoretical prediction. For them,,-2s transition in Li-like
dure is rEIatiVEIy Cheap from Computational pOint of view. uranium, the total result amounts to 28(1M eV, which

computer for a given value a. 280.5910) eV [34].
The results of our calculation combined with thosg off

yield the total value for the two-loop self-energy correction
of —1.874(11) eV for the ground state of H-like uranium
and of —1.119(11) eV for bismuth. As this correction has
been the last uncalculated second-order QED contribution in VY. wishes to thank the Technische UniversiBresden
these systems up to now, our calculation improves signifiand the Max-Planck Institut fuPhysik Komplexerer Sys-
cantly the accuracy of the theoretical prediction in one<teme for their hospitality. This work was supported in part by
electron ions. The total result for the ground-state Lamb shifthe Russian Foundation for Basic Reseaf@nant No. 01-
in H-like uranium amounts to 463.660) eV. While the  2.17248 and by the program “Russian Universities: Basic
present experimental precision ¢f13 eV [1] is not high  Research’(Project No. 393D
enough to test the second-order QED effects, it is going to be
improved by an order of magnitude in the near futLig

The evaluation of the two-loop self-energy correction for APPENDIX A: ONE-LOOP SELF-ENERGY AND VERTEX
the 1s state allows us to make an estimate of this contribu- OPERATORS
tion for the 2p4,,-2s transition energy in Li-like ions. This is
of particular importance, since in that case, the experimental The free one-loop self-energy operator in the Feynman
accuracy is much better than for H-like ions, which makesgauge is defined by

ACKNOWLEDGMENTS

TABLE VI. The 2p,,-2s transition energy in Li-like?*®, in eV. The first quoted error in the total
theoretical prediction arises from the uncertainty due to the finite-nuclear-size effect and due to higher-order
electron correlations. The second quoted error corresponds to the uncertainty of the second-order one-
electron QED effects.

Transition energy without second-order one-electron QED effects 280)48 [2]

One-electron second-order SESE(a-9 0.2320) This work
VPVP (d) 0.04 [32,22,23
VPVP (e 0.105) [24-24
SEVP(g-i) -0.19 [33,22
S(VP)E (k) -0.02(1) [22]
Total (a—K 0.1621)

Transition energytheory) 280.6411)(21)

Transition energyexperimenk 280.5910 [34]
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dPk 1 p—K+m APPENDIX B: ANALYTIC PROPERTIES OF THE ONE-
o LOOP SELF-ENERGY OPERATOR

3O (p)y=—4i aJ’ - .
(P (2mP K2+i0 " (p—K)2—m?+i0 " - , . |
(A1) In this section, we consider analytical properties of the
one-loop self-energy operat@(®?(e,—w,p) as a function
To separate UV divergences, we write the self-energy operaf w. From the definitior(A1), one can deduce that the self-

tor in D=4- € dimensions as energy operator is two basic integrals,
3O(p)=om+BO(p-m+2Q(p).  (A2)
_167% [ d°k {1k}
Here, ém is the mass counterterm, 03,1 = i J (2m)P (K*+i0)[(p—k)2—m?+i0]
(B1)
sm="mla+ 240 A3
m=,_m/A+z (e), (A3)

By introducing the Feynman parametrization of the denomi-
B is the UV divergent part of the renormalization constantnator, we rewrite this as

1-2,14,
) o 19.0,) 16W2fld f dPk
- = — X
B 4,“_AE+O(6)1 (A4) M i 0 (27T)D
A _=2/e— yg+Indm, andyg is the Euler constant. The con- % 11k} _ '
tribution =Y)(p) is finite; its definition agrees with that of {[k=(1—x)p]?>— (1—x)(m?—xp?)}2
[denoted inl as 2@2:°P>(p)]. We note that, evaluating two- (B2)

loop corrections, one should keep terms of ordersince
they can yield a finite contribution when multiplied by a
divergent constant of order &/ However, in our present
evaluation of theP terms, we do not need explicit expres-
sions for these contributions.

The one-loop free vertex operator in the Feynman gauge

where m?*=m?—i0. Shifting the integration variable—kk
—(1—x)p, we obtain

is given b
g Y 1672 (1 dPk {1(1-x)p,}
19, =— deJ = ,
T4(py,pp) = — A f %k 1 o) (2m)P [k (1) (M= xp?)]?
Po)=—4ma o
PPz (2mP K2+i0 B3
—Kk+ —Kk+
X Pkt m o Po— K+ m Y. where we have taken into account the identity
(pr—k)2—m?+i0 ~ (p,—k)2—m?+i0
(A5)
d®°k  k,
We define a finite part of the vertex operator through f (2m)P A(k2)=0, (B4)
T#(py,p) =LMy#+ TR(py,p2), (AB)

with A(k?) being a function of k The k integration yields
whereL™ is the UV divergent part of the renormalization
constantz; -1,
{1!(1_X)pp,}

Ne/Z !
(B5)

2 1
B N {J,JM}=E(47r)€/21"(1+e/2)f0dx
L(l)IEAE-l-O(E), (A7)

and the Ward identitB®=—-T®) is satisfied. Again, our Y o
definition of I'§ exactly corresponds to that ¢f(A(2) in ~ whereN=(1-x)(m"—xp). In the limit e—0, we have
notations ofl).
The explicit expressions for the operat&’, T'4 in the , ,
limit e—0 may be found in Ref[10]. For their exact —el2_
-N =——InN+0O(e). B6
e-dependent form, we refer the reader to € € : (e) (B6)
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Roots ofN can be easily found,

N=X(1-X)(w;—w—i0)(w_+w—1i0),

wherewt= Jm?/x+ p?+ €a- ObV|oust,w+>w+ m+e,
andw_=w’=m-g, for aII values of|p| andxe[0,1].
We find that forw e ] — 0, %[, the integralsJ, J, and,

(B7)

therefore, the self-energy operaﬁ:fo)(sa— w) as functions
of real  may be analytically continued both into the upper(a) p,=(e,— w,py),
and into the lower half-plane. However, for>w® the self-
energy operator allows the analytical continuation in the up-

per half-plane only, and fap< — °

PHYSICAL REVIEW A 64 062507

tion of w in the complex plane with the branch cyts
+e,—10,0—i0) and[ —m+g,+i0,—»+i0).

APPENDIX C: ANALYTIC PROPERTIES
OF THE VERTEX OPERATOR

Here, we are interested in analytical properties of the ver-
tex operatol”?(p;,p,) as a function ofw in two kinematics:
P2=(ea—w,p2); and (b) p;=(e,
—,P1), P2=(&4,P2)-

From the definition(A5), we deduce that the vertex op-

in the lower half-plane  erator can be written as a combination of three basic inte-
only. We conclude that (®(s,— ) is an analytic func-

grals,

{15k, K k,}

» Doy

le-er’ dPk
i

{10 h=

(2m)° (K+i0)[(py—k)*—

m?+i0][(p,— k)2—m?+i0] (€

Introducing the Feynman parametrization of the denominator and shifting the integration variakteyq— xp,, we obtain

dPk  {1;(ya+xpy) . i (YA+XPy) L (YA+XP2) , +K,K,}

i, }=32—7dexfdf
et T o o™ ] 2mP = (yar xpp 2= [xie—ypi— ()L

d®k  {1;x( yq+p2)#; X2(yg+p,) (yq+p2)y+k#ky}

(C2

p,, m®=m?—i0, and the identityB4) has been taken into account. Shifting the integration varigbbey

where ¢=p;—
yields
32772f1 1
I,l.}l=—14d fdxxf
Uil == o Yo (2m)P {k?—x
Now, we separate the integrh}, into two parts,|, —If‘w

+1° . Here,I’, corresponds to the part bf,, with k k, in
the numerator andﬂiv
yields D=4-¢),

1 1
{I1,,18,}= —F(1+6/2)(47T)E/2f dyf dx
0 0

{1 X(YOQ+pa) . XY+ P2) (yq+pz)v}
e/2N1+E/2

(C4

2 g 1 €l2
|fw— T'(1+ el2)(4m)?=L= J dyf X~z
(CH

whereN=x[yp; + (1—y)p,]2+m?—yps— (1—y)p3. In the
limit e—0, we have

is the remainder. Integration over k

(C3)

2(yq+po)2—x[m?—ypZ— (1—y)p3]}°

az)=- o[ o
L ALX(YA+P2) 2(§q+ P2) (YAt P2).}

+0(e), (Ce)

1, g’”A —g’”f dyf dx xInN+O(e), (C7)

whereA .=2/e— yg+In 4.

Obviously, the denominatdX is a quadratic polynomial
with respect taw. Let us find its roots. In kinematics “a,” we
have:

N=—(1—-X)(g,— w)2+m?+B? (C8)
where BZ=xy(1-y) g+ (1—-x)ypi+(1—-x)(1-y)p3, B
=0. We writeN as

N=(1-X)(w;—w—i0)(w_+w—i0), (C9

where
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/m?+ 82+
W= &,
* 1_X a

(C10
As can easily be seem.=wl=m=*eg,.
In kinematics “b,” we have analogously,
N=y(l-Xxy) (o, —w—i0)(w_+w—i0), (Cl)

where

PHYSICAL REVIEW 84 062507

1-xy
y(1-x)?

[m?—(1-x)s2+B?]

_1-x \/ 2
wi_l—xy 8a+
isa}.

Again, one can show that.=wl=m=*g,.

So, we find thatl' (g3~ w,e,— w) and ' (e,— w,&,)
are analytic functions ofv in the complex plane with the
branch cuts[m+eg,—i0,0—i0) and [-m+g,+i0,—x
+i0).
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