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Two-loop self-energy correction in H-like ions
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Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets, St. Petersburg 198504, Russia
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A part of the two-loop self-energy correction, the so-calledP term, is evaluated numerically for the 1s state
to all orders inZa. Our calculation, combined with the previous investigation@S. Mallampalli and J. Sa-
pirstein, Phys. Rev. A57, 1548~1998!#, yields the total answer for the two-loop self-energy correction in H-like
uranium and bismuth. As a result, the major uncertainty is eliminated from the theoretical prediction for the
Lamb shift in these systems. The total value of the ground-state Lamb shift in H-like uranium is found to be
463.95~50! eV.

DOI: 10.1103/PhysRevA.64.062507 PACS number~s!: 31.30.Jv, 31.10.1z
e
g
y
m
-

-

c

nt
-

u

te

re

ch
th
e.
-
nt
e
d

ig
pt
nd
s
e
-

p
r

lf-

se
p
is

on-

as

ra-
or-
ive
the

der
a-

ion

r

the

4,
yn-

tion,

oint

ond
INTRODUCTION

The calculation of all two-loop QED diagrams for th
Lamb shift of H-like ions is one of the most challengin
problems in bound-state QED. The experimental accurac
1 eV aimed at in measurements of the ground-state La
shift in H-like uranium@1# requires a calculation of the com
plete set of QED corrections of the ordera2 without any
expansion in the parameterZa (Z is the nuclear-charge num
ber, a is the fine-structure constant!. In high-Z Li-like ions,
these diagrams are the source of the major theoretical un
tainty for the 2p1/2-2s transition energy@2# and, therefore,
the limiting factor in comparison of theory and experime
Also in the low-Z region, the two-loop Lamb shift is impor
tant from the experimental point of view@3#. What is more,
its Za expansion exhibits a rather peculiar behavior, with
very slow convergence even in case of hydrogen@3#. In order
to eliminate the uncertainty due to higher-order contrib
tions, it is important to perform a nonperturbative~in Za)
calculation of two-loop corrections even in the low-Z region.

The most problematic part of the one-electrona2 contri-
bution is the two-loop self-energy correction, represen
diagrammatically in Fig. 1. The diagram in Fig. 1~a! is usu-
ally divided into two parts, which are referred to as the ir
ducible and the reducible contribution.~The reducible con-
tribution is defined as a part of this diagram in whi
intermediate states in the spectral decomposition of
middle electron propagator coincide with the initial stat!
The irreducible contribution~also referred to as the loop
after-loop correction! can be shown to be gauge invaria
when covariant gauges are used. Its evaluation is not v
cumbersome and was accomplished in several indepen
investigations@4–6#.

The reducible part of the diagram in Fig. 1~a! should be
evaluated together with the remaining two diagrams in F
1. This calculation is by far more difficult. The first attem
to attack this problem was performed by Mallampalli a
Sapirstein@7#. In that work, the contribution of interest wa
rearranged into three parts~referred to by the authors as th
M, P, andF terms!, only two of which were actually evalu
ated. The remaining part~the P term! was left out since a
new numerical technique had to be developed for its com
tation. In our present investigation, we perform the nume
cal evaluation of the missing part of the two-loop se
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energy, theP term. Results of our evaluation, added to tho
from Ref. @7#, yield the final answer for the total two-loo
self-energy correction for H-like uranium and bismuth. Th
result disagrees with the recent calculation of the total c
tribution reported by Goidenkoet al. @8#, which is based on
the partial-wave renormalization approach.

The plan of the paper is the following. The basic formul
needed for the evaluation of theP term are given in the first
section, along with the discussion of the treatment of ult
violet and infrared divergences. In the next section, we f
mulate the scheme of the numerical evaluation and g
some technical details. Numerical results are discussed in
last section. In that section, we also collect all second-or
contributions to the ground-state Lamb shift of H-like ur
nium and to the 2p1/2-2s transition energy in Li-like ura-
nium. In the latter case, the two-loop self-energy contribut
is estimated by scaling the 1s result.

In this paper, we use the relativistic units (\5c5m51).
The roman style (p) is used for four vectors, bold face (p)
for three vectors and italic style~p! for scalars. Four vectors
have the form p[(p0 ,p). The scalar product of two fou
vectors is (p•k)5p0k02(p•k). We use the notations p”

5pmgm, p̂5p/upu.

I. BASIC FORMALISM

In this paper, we are concerned with the evaluation of
correction

DE5DEN11DEN212DEO1, ~1!

where the contributionsDEN1, DEN2, andDEO1 are repre-
sented by Feynman diagrams shown in Figs. 2, 3, and
respectively. Our consideration of these three sets of Fe
man diagrams should be considered as an investiga
complementary to Ref.@7#, to which we refer hereafter asI.
In our calculation, we use the Feynman gauge and the p

FIG. 1. One-electron self-energy Feynman diagrams of sec
order ina.
©2001 The American Physical Society07-1
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nuclear model, the same as inI. Our results, combined with
those fromI, should yield the complete answer for the tw
loop self-energy correction.

All the contributionsDEN1, DEN2, andDEO1 are ultra-
violet ~UV! divergent. FollowingI, we refer to their UV-
finite part as the ‘‘P term.’’ We note that subtractions in thes
contributions are chosen in such a way that each of them
free from overlapping divergences. The main problem in
evaluation of these diagrams is that they contain bou
electron propagators as well as UV divergences. While
divergences are normally separated in momentum space
Dirac-Coulomb Green function is generally treated in t
coordinate representation. The most direct way for the ca
lation of the P term consists in developing a numeric
scheme for the evaluation of the Dirac-Coulomb Green fu
tion in momentum space, which is one of the aims of
present paper.

The nested contributions,DEN1 andDEN2, possess in ad
dition some infrared~IR! divergences, which are associat
with the so-caled reference-state singularities. These di
gences are canceled out when considered together with
corresponding parts of the reducible contribution of the d
gram in Fig. 1~a!. Following I, we handle the IR divergence
by introducing a regulator. This makes it clear that great c
should be taken in order to separate all divergences exa
in the same way as inI, in order not to miss a finite
contribution.

A. One-loop self-energy

We start with some basic formulas for the first-order se
energy correction. The formal expression for the unrenorm
ized first-order self-energy matrix element in the Feynm
gauge is given by

DEunren
(1) 5

ia

2pE2`

`

dvE dx1 dx2 ca
†~x1!

3amG~«a2v,x1 ,x2!amca~x2!
exp~ i uvux12!

x12
, ~2!

wheream5(1,a) are the Dirac matrices, andG is the Dirac-
Coulomb Green function,

FIG. 2. Diagrammatic representation of the correctionDEN1.
For brevity, we do not explicitly display the diagrams involvin
mass counterterms; the inner self-energy loops should be un
stood with the corresponding mass counterterm subtracted.

FIG. 3. Diagrammatic representation of the correctionDEN2.
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G~«,x1 ,x2!5(
n

cn~x1!cn
†~x2!

«2«n~12 i0!
. ~3!

Equation~2! is written completely in coordinate space. W
will also need the corresponding expression in the mix
momentum-coordinate representation. It is obtained by
Fourier transformation of Eq.~2! over one of the radial vari-
ables,

DEunren
(1) 52

ia

2pE2`

`

dvE dp1

~2p!3

dp2

~2p!3

3(
n

Am
an~v,q!cn

†~p1!amca~p2!

«a2v2«n~12 i0!
, ~4!

Am
an~v,q!5

4p

v22q21 i0
E dx ca

†~x!amcn~x!e2 iq•x, ~5!

whereq5p12p2, and

c~p!5E dx e2 ip•xc~x!. ~6!

We note that while the integration overv in Eq. ~4! can be
carried out by Cauchy’s theorem, we prefer to keep it, hav
in mind future generalizations to the two-loop case.

The renormalization of the one-loop self-energy is w
known. In our paper, we employ the method based on
expansion of the bound-electron propagator in Eq.~2! in
terms of the interaction with the nuclear Coulomb field@9#.
For the detailed description of our renormalization proc
dure, we refer the reader to@10#. The renormalized self-
energy correction is represented by the sum of three fi
terms,

DEren
(1)5DEzero

(1) 1DEone
(1)1DEmany

(1) , ~7!

where

DEzero
(1) 5E dp

~2p!3
ca

†~p!g0SR
(0)~«a ,p!ca~p!, ~8!

DEone
(1)5E dp1

~2p!3

dp2

~2p!3
ca

†~p1!g0GR
0~«a ,p1 ;«a ,p2!

3VC~q!ca~p2!, ~9!

where VC(q)524paZ/uqu2, and SR
(0)(p) and GR

m(p1 ,p2)
are the renormalized free self-energy and vertex opera
introduced in Appendix A. The expression forDEmany

(1) is

FIG. 4. Diagrammatic representation of the correctionDEO1.
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given by Eq. ~2!, where the Green functionG(«a
2v,x1 ,x2) is replaced withG(21)(«a2v,x1 ,x2),

G(21)~«,x1 ,x2!5G~«,x1 ,x2!2G(0)~«,x1 ,x2!

2G(1)~«,x1 ,x2!, ~10!

G(0)(«,x1 ,x2) is the free Dirac Green function, and

G(1)~«,x1 ,x2!52E dzG(0)~«,x1 ,z!
aZ

uzu
G(0)~«,z,x2!.

~11!

B. Basic formulas for two-loop diagrams

The formal expression for the first diagram in Fig. 2 c
be obtained from Eq.~2! by the substitution G(«a
2v,x1 ,x2)→GN1(«a2v,x1 ,x2), where

GN1~«,x1 ,x2!5E dp

~2p!3
G~«,x1 ,p!

3g0@S (0)~«,p!2dm#G~«,p,x2!,

~12!

G~«,x1 ,p!5E dx2 eip•x2G~«,x1 ,x2!, ~13!

G~«,p,x2!5E dx1 e2 ip•x1G~«,x1 ,x2!, ~14!

andS (0)(p) is the free one-loop self-energy operator defin
in Appendix A.

The expression for the first diagram in Fig. 3 is obtain
from Eq. ~2! by the replacement G(«a2v,x1 ,x2)
→GN2(«a2v,x1 ,x2), where

GN2~«,x1 ,x2!5E dp1

~2p!3

dp2

~2p!3
G~«,x1 ,p1!VC~q!g0

3G0~«,p1 ;«,p2!G~«,p2 ,x2!, ~15!

whereGm(p1 ,p2) is the free one-loop vertex operator defin
in Appendix A, andVC is the Coulomb potential in momen
tum space.

We obtain the expression for the first diagram in Fig. 4
replacing one of theg matrices in Eq.~4! with the vertex
operatorG,

DEunren
O1 52

ia

2pE2`

`

dvE dp1

~2p!3

dp2

~2p!3

3(
n

Am
an~v,q!

«a2v2«n~12 i0!
cn

†~p1!g0

3Gm~«a2v,p1 ;«a ,p2!ca~p2!, ~16!

with Am
an(v,q) given by Eq.~5!.
06250
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The expressions for the remaining diagrams in Fi
2–4 are obtained in a similar way, by replacing the Dira
Coulomb Green functionG in Eqs. ~12!, ~15!, and ~16! by
G(0) or G(1).

C. Separation of ultraviolet divergences

In this section, we isolate the UV-finite part ofDE. Fol-
lowing I, we refer to this contribution as theP term. Consid-
ering the renormalization of the diagrams in Fig. 2, w
should keep in mind that the inner self-energy loops are
ways accompanied by the corresponding mass counterte

The renormalization of the one-loop self-energy and v
tex operators is defined in Appendix A. To handle the U
divergences, we regularize them by working inD542e di-
mensions. The resulting expressions are

S (0)~p!2dm5B̃(1)~p”2m!1SR
(0)~p!, ~17!

Gm~p1 ,p2!5L̃ (1)gm1GR
m~p1 ,p2!, ~18!

whereB̃(1) andL̃ (1) are UV-divergent constants, andSR
(0)(p)

and GR
m(p1 ,p2) are finite. According to the Ward identity

B̃(1)52L̃ (1).
For the renormalization of the two-loop self-energy d

grams, we refer the reader to a~very pedagogical! descrip-
tion given by Fox and Yennie@11#. Applying their arguments
to the diagrams in Figs. 2–4, we have

DEN11DEN25B̃(1)DEmany,D
(1) 1DEP

N11DEP
N2 , ~19!

2DEO152L̃ (1)DEmany,D
(1) 12DEP

O1 , ~20!

where the subscriptP means that the corresponding cont
bution is UV convergent, and the subscriptD of DEmany,D

(1)

indicates that this correction should be evaluated inD dimen-
sions, keeping terms of ordere. ~These terms yield a finite
contribution when multiplied by divergent renormalizatio
constants.!

The resulting expression reads

DE5L̃ (1)DEmany,D
(1) 1DEP

N11DEP
N212DEP

O1 . ~21!

Here, the correctionDEP
N1 is obtained from the correspond

ing expression for DEN1 by the replacementS (0)(p)
→SR

(0)(p), and the correctionsDEP
N2 andDEP

O1 by the cor-
responding substitutionGm(p1 ,p2)→GR

m(p1 ,p2). Since all
the P terms are UV convergent, in their evaluation, we m
disregard terms of ordere in definition of SR

(0)(p) and
GR

m(p1 ,p2). We note also that the UV-divergent part ofDE
separated in Eq.~21!, exactly corresponds to that inI.

D. Separation of infrared divergences

Infrared divergences occur in the correctionsDEP
N1 and

DEP
N2 due to so-called reference-state singularities. Th

arise when the energy of intermediate states in the spe
decomposition of both electron propagators in Eqs.~12! and
~15! coincide with the energy of the reference sta
7-3
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V. A. YEROKHIN AND V. M. SHABAEV PHYSICAL REVIEW A 64 062507
As shown, e.g., inI, the divergent terms disappear whe
considered together with the related contributions from
reducible part of the diagram in Fig. 1~a!. However, since we
are going to evaluate the contributionsDEP

N1 and DEP
N2

separately, a proper regularization of the IR divergence
needed. In order to preserve the compatibility of our res
with those ofI, we have to employ exactly the same proc
dure for the regularization of the IR divergences.

Following I, we introduce in the IR-divergent parts o
DEP

N1 , DEP
N2 a regulatord that modifies the location of the

reference-state pole of the Green function,«a→«a(11d).
After that, we have for the IR-divergent part ofDEP

N1

DEP,IR
N1 ~d!5

ia

2p (
m ā

E
2`

`

dv
^āuSR

(0)~«a2v!uā&

~2«ad2v1 i0!2

3^aāu
12a1a2

x12
ei uvux12uāa&, ~22!

where ā denotes the electron with the energy«a and the
angular-momentum projectionm ā . In Appendix B, we dem-
onstrate thatSR

(0)(«a2v) as a function ofv can be analyti-
cally continued to the first quadrant starting from the rig
half of the realv axis, and to the third quadrant from the le
half of the realv axis. Therefore, we may perform the Wic
rotation of thev integration contour in Eq.~22!,

DEP,IR
N1 ~d!52

a

p (
m ā

ReE
0

`

dv,
^āuSR

(0)~«a2 iv!uā&

~«ad1 iv!2

3^aāu
12a1a2

x12
e2vx12uāa&. ~23!

Let us investigate the behavior ofDEP,IR
N1 for small values of

d. Writing it in a compact form, we have

DEP,IR
N1 ~d!5ReE

0

`

dv
f ~v!

~«ad1 iv!2

5ReE
0

`

dv
f ~v!2 f ~0!

~«ad1 iv!2

5Re@ f 8~0!# ln d1terms, regular ind. ~24!

Taking into account that

Re
d

dv U
v50

F(
m ā

^āuSR
(0)~«a2 iv!uā&

3^aāu
12a1a2

x12
e2vx12uāa&G

52^auSR
(0)~«a!ua&, ~25!

we have

DEP,IR
N1 ~d!5

a

p
DEzero

(1) ln d1DEP, infr
N1 1O~d!. ~26!
06250
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Here, we have introduced the correctionDEP, infr
N1 that does

not depend on the regulatord and can be obtained by fitting
numerical results forDEP,IR

N1 (d).
An analogous evaluation for the IR-divergent part

DEP
N2 yields

DEP,IR
N2 ~d!5

a

p
DEone

(1) ln d1DEP, infr
N2 1O~d!. ~27!

As can be seen, the IR-divergent parts separated in Eqs.~26!
and ~27! are exactly canceled by the corresponding terms
Eqs.~50! and ~55! of I.

II. NUMERICAL EVALUATION

A. Green function in the mixed representation

The main problem of the numerical evaluation of theP
terms is that they involve the Dirac-Coulomb Green functi
in momentum space. Until recently, there has been no c
venient method for its evaluation. As was pointed out inI,
new numerical tools should be developed for the calculat
of the P terms.

Here, we address two main features that allow us
evaluate theP terms. First, we express them in a form th
involves the Fourier transform of the Green function ov
only one radial variable@Eqs.~13! and~14!#. We refer to this
as the mixed~momentum-coordinate! representation. Sec
ond, we develop a convenient scheme for the numer
evaluation of the Green function in the mixed representati
This scheme was proposed and tested in our previous ev
ation of the irreducible part of the diagram in Fig. 1~a! ~the
loop-after-loop contribution! @6#. Here, we describe the bas
idea of this approach.

We start from theB-splines method for the Dirac equatio
@12#. For a fixed angular-momentum quantum numberk, it
provides a finite set of radial wave functions$wk,n

i (x)%n51
N ,

where the superscripti 51,2 indicates the upper and th
lower component of the radial wave function, andn numer-
ates the wave functions in the set. The wave functions
found as a linear combination of theB-splines@13#,

wk,n
i ~x!5

1

x (
l

ai~k,n,l !Bl~x!, ~28!

where$Bl(x)%, l 51,2, . . . , is the set of theB splines defined
on the grid $xl%. Since each ofBl(x) is represented as
piecewise polynomial, we can build the correspondi
piecewise-polynomial representation for the wave functio

wk,n
i ~x!5

1

x (
k

ck
i ~k,n,l !~x2xl !

k, xP@xl ,xl 11#.

~29!

Consequently, the radial Dirac-Coulomb Green functi
in the coordinate space, defined as

Gk
i j ~«,x1 ,x2!5(

n

wk,n
i ~x1!wk,n

j ~x2!

«2«n
, ~30!
7-4
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is written in an analogous form,

Gk
i j ~«,x1 ,x2!5

1

x1x2
(
k1k2

Ak1k2

i j ~«,k,l 1 ,l 2!

3~x12xl 1
!k1~x22xl 2

!k2,

x1P@xl 1
,xl 111#, x2P@xl 2

,xl 211#. ~31!

Here, the coefficientsAk1k2

i j are given by

Ak1k2

i j ~«,k,l 1 ,l 2!5(
n

ck1

i ~k,n,l 1!ck2

j ~k,n,l 2!

«2«n
. ~32!

At this point, we have built the Dirac-Coulomb Green fun
tion in the piecewise-polynomial form. This representation
very convenient for the numerical evaluation. After the co
ficients Ak1k2

i j are stored for given values ofk and «, the

computation of the Green function is reduced to the eva
tion of a simple polynomial over each of the radial variabl
We note one additional advantage of this representatio
the Green function, as compared to its closed analyt
form. The Green function in the form~31! and its derivative
are continuous functions of the radial arguments, while
analytic representation contains a discontinuous func
u(x12x2) ~see, e.g.,@14#!.

Now we turn to the Green function in the mixed represe
tation. The Fourier transform of the radial Green functi
over the second radial argument is written as

Gk
i j ~«,x1 ,p2!54ps~L j !E

0

`

dx2 x2
2 j L j

~p2x2!Gk
i j ~«,x1 ,x2!,

~33!

whereL1,25uk61/2u21/2, s(L1)51, s(L2)52k/uku, and
j L(z) denotes the spherical Bessel function. Introducing
Fourier-transformed basic polynomials,

P l
ik~p!54ps~Li !E

xl

xl 11
dx x~x2xl !

kj Li
~px!, ~34!

we write the Green function in the mixed representation,

Gk
i j ~«,x1 ,p2!5

1

x1
(
k1

~x12xl 1
!k1

3(
l 2k2

Ak1k2

i j ~«,k,l 1 ,l 2!P l 2

jk2~p2!,

x1P@xl 1
,xl 111#. ~35!

Certainly, a computation in the mixed representation is
sentially more time consuming than that in coordinate spa
due to necessity to evaluate the whole set of the integ
P l 2

jk2(p2) for each new value ofp2. Still, in actual calcula-

tions, we perform the numerical integration overx1 first, and
the total amount of computational time may be kept ve
reasonable.
06250
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B. Evaluation of DEP
N1

First, we separate the total contributionDEP
N1 into two

pieces, the IR-divergent partDEP,IR
N1 given by Eq.~22!, and

the finite remainderDEP,r
N1 . The expression forDEP,r

N1 is
given by

DEP,r
N1 5

ia

2pE2`

`

dvE dp

~2p!3E dx1 dx2

3
exp~ i uvux12!

x12
ca

†~x1!

3amGN1~«a2v,x1 ,p,x2!amca~x2!, ~36!

where

GN1~«,x1 ,p,x2!5G~«,x1 ,p!g0SR
(0)~«,p!G~«,p,x2!

2G(0)~«,x1 ,p!g0SR
(0)~«,p!G(0)~«,p,x2!

2G(1)~«,x1 ,p!g0SR
(0)~«,p!G(0)~«,p,x2!

2G(0)~«,x1 ,p!g0SR
(0)~«,p!G(1)~«,p,x2!

2(
m ā

c ā~x1!c ā
†
~p!

«2«a1 i0
g0SR

(0)~«,p!

3
c ā~p!c ā

†
~x2!

«2«a1 i0
. ~37!

The next step is to perform the Wick rotation of th
v-integration contour in Eq.~36!. This is very convenient for
the numerical evaluation since, first, the Dirac Green fu
tion as well as the photon propagator are exponentially
caying functions for imaginary values ofv. Second, by this
deformation of the contour, we escape most of the proble
connected with poles of the electron propagators and w
the analytic structure ofSR

(0)(«). The analysis given in Ap-
pendix B shows thatSR

(0)(«a2v) as a function of realv
allows the analytical continuation to the first quadrant of t
complex plane starting from the right half of the real ax
and to the third quadrant from the left half of the axis. The
fore, we may rotate the integration contour on the imagin
axis dividing DEP,r

N1 into two pieces,DEP,Im
N1 corresponding

to the integral along the imaginary axis, and the pole te
DEP,pole

N1 that arises from the pole of electron propagator w
«n5«a . ~At this moment, we assume thata corresponds to
the 1s state.! We have

DEP,Im
N1 52

a

p
ReE

0

`

dvE dp

~2p!3E dx1 dx2

3
exp~2vx12!

x12
ca

†~x1!

3amGN1~«a2 iv,x1 ,p,x2!amca~x2!, ~38!
7-5
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DEP,pole
N1 5

a

2
ReE dp

~2p!3E dx1 dx2

1

x12
ca

†~x1!am

3G N1
pole~«a ,x1 ,p,x2!amca~x2!, ~39!

where

G N1
pole~«a ,x1 ,p,x2!5(

m ā

@c ā~x1!c ā
†
~p!g0SR

(0)~«a ,p!

3Gred~«a ,p,x2!1Gred~«a ,x1 ,p!g0

3SR
(0)~«a ,p!c ā~p!c ā

†
~x2!#, ~40!

andGred is the reduced Dirac-Coulomb Green function,

Gred~«,x1 ,x2!5 (
n

«nÞ«a cn~x1!cn
†~x2!

«2«n~12 i0!
. ~41!

Finally, we collect all contributions toDEP
N1 ,

DEP
N1~d!5

a

p
DEzero

(1) lnd1DEP, infr
N1 1DEP,pole

N1 1DEP,Im
N1

1O~d!. ~42!

We note that instead of dividingDEP
N1 into three parts, we

could have introduced the regulatord right from the begin-
ning in DEP

N1 , as it was done inI for the ‘‘M terms.’’ How-
ever, this would cause a rapidly varying structure of the
tegrand in the low-v region, which makes calculations muc
more time consuming.~E.g., for the pole term introducing
regulator would involve a numerical evaluation of the in
gral that yields thed function in the limit d→0.! In our
approach, on the contrary, only the IR-divergent part
evaluated with the regulator; the corresponding calculatio
relatively simple and allows accurate fitting to the form~26!.

Let us now outline essential features of our numeri
evaluation. As can be seen, the dependence of the func
GN1 andG N1

pole on the angular parts ofx1 andx2 is exactly the
same as that of the Dirac Green function. Therefore, the
gular integration causes no problems and was performed
straightforward generalization of formulas given in Ref.@10#.
The most problematic part of the numerical evaluation
DEP

N1 is the calculation ofDEP,Im
N1 . All numerical integra-

tions were performed by the Gauss-Legendre quadratu
The ordering of integrations in our computation coincid
with that of Eq.~38!, with the summation over the angula
momentum quantum number of intermediate statesk moved
outside. For each value ofk and v, we store three sets o
complex coefficientsAk1k2

i j corresponding to the functionsG,

G(0), andG(1). For each value ofp, we calculate also a set o
the Fourier-transformed polynomialsP l

ik(p). After this, the
integrations over the radial variablesx1 , x2 are performed.
This scheme is rather efficient and was used for the eva
tion of DEP,Im

N1 . The correctionsDEP, infr
N1 and DEP,pole

N1 were
calculated in several different ways, which served as a g
test for our numerical procedure.
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The actual calculation was performed with the basis
constructed typically with 50–60B splines of order six and
employing the point nuclear model. The cavity size of 1 a
was employed forZ580, which was scaled asg/Z with Z,
g5A12(aZ)2. We use an exponential grid with the firs
knot of about 0.001 a.u. forZ580. This particular grid was
chosen since it yields an optimal convergence in the eva
tion of the first-order self-energy correction with respect
the number of knots. The infinite summation over t
angular-momentum quantum number of intermediate st
k was terminated typically atukmaxu57. The tail of the ex-
pansion was estimated by polynomial fitting in 1/uku. The
results of the numerical evaluation of the individual cont
butions toDEP

N1 are presented in Table I forZ583, 90, and
92. The numerical errors, quoted in the table, origin
mainly from the sensitivity of the result to the number
knots and different grids.

C. Evaluation of DEP
N2

The correctionDEP
N2 can be written in the same way a

DEP
N1 ,

DEP
N2~d!5

a

p
DEone

(1) ln d1DEP, infr
N2 1DEP,pole

N2 1DEP,Im
N2

1O~d!. ~43!

Here, we again separate the IR-divergent part@Eq. ~27!# and
perform the Wick rotation of thev-integration contour, sepa
rating the corresponding pole contribution (DEP,pole

N2 ). We
note that the rotation of the contour is possible because
vertex operatorGm(«a2v,«a2v) as a function of realv
allows an analytic continuation in the region of interest,
shown in Appendix C. The resulting expression reads

DEP,Im
N2 52

a

p
ReE

0

`

dvE dp1

~2p!3

dp2

~2p!3E dx1 dx2

3
exp~2vx12!

x12
VC~q!ca

†~x1!

3amGN2~«a2 iv,x1 ,p1 ,p2 ,x2!amca~x2!,

~44!

where

GN2~«,x1 ,p1 ,p2 ,x2!5G~«,x1 ,p1!g0GR
0~«,p1 ;«,p2!

3G~«,p2 ,x2!2G(0)~«,x1 ,p1!g0

3GR
0~«,p1 ;«,p2!G(0)~«,p2 ,x2!

TABLE I. The individual contributions toDEP
N1, in a.u.

Z DEP, infr
N1 DEP,pole

N1 DEP,Im
N1 Total

83 20.03419 0.00480 20.03951 20.068 90(20)
90 20.03484 0.00430 20.03780 20.068 34(20)
92 20.03489 0.00438 20.03737 20.067 88(20)
7-6
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2(
m ā

c ā~x1!c ā
†
~p1!

«2«a1 i0
g0GR

0~«,p1 ;«,p2!

3
c ā~p2!c ā

†
~x2!

«2«a1 i0
. ~45!

Assuming thata is the 1s state, the pole contribution is give
by

DEP,pole
N2 5

a

2
ReE dp1

~2p!3

dp2

~2p!3E dx1 dx2

1

x12
VC~q!

3ca
†~x1!amG N2

pole~«a ,x1 ,p1 ,p2 ,x2!amca~x2!,

~46!

where

G N2
pole~«a ,x1 ,p1 ,p2 ,x2!

5(
m ā

@c ā~x1!c ā
†
~p1!g0GR

0~«a ,p1 ;«a ,p2!

3Gred~«a ,p2 ,x2!1Gred~«a ,x1 ,p1!g0

3GR
0~«a ,p1 ;«a ,p2!c ā~p2!c ā

†
~x2!#. ~47!

The angular integration in these expressions is straight
ward, due to the fact that the functionsGN2 and G N2

pole have
the same dependence on the angular parts ofx1 andx2 as the
Dirac Green functionG. The numerical evaluation of th
correctionDEP,Im

N2 is much more time consuming than that
DEP,Im

N1 . This is because the integration overupu in Eq. ~38!
~after the angular integration has been carried out! is substi-
tuted by the triple integration overup1u, up2u, and j

5(p̂1•p̂2). So, the numerical evaluation ofDEP,Im
N2 involves

one infinite partial-wave summation and a sevenfold num
cal integration. ~One additional integral comes from th
evaluation of the Green function in the mixed represen
tion.! While it is possible to evaluateDEP,Im

N2 in a similar way
as DEP,Im

N1 , we have found a more efficient method for i
computation. To this end, we rewrite Eq.~44! as follows:

DEP,Im
N2 52

a

p
ReE

0

`

dvE dp1

~2p!3

dp2

~2p!3
VC~q!

3H (
n1n2

8
cn1

† ~p1!g0GR
0cn2

~p2!

~«a2 iv2«n1
!~«a2 iv2«n2

!

3^an2u
12a1a2

x12
e2vx12un1a&

2(
bg

ub
†~p1!g0GR

0ug~p2!

~«a2 iv2«b!~«a2 iv2«g!

3^agu
12a1a2

x12
e2vx12uba&J , ~48!
06250
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where GR
0[GR

0(«a2 iv,p1 ;«a2 iv,p2), cn1
and cn2

stand
for solutions of the Dirac equation with the Coulomb pote
tial, ub and ug denote solutions of the free Dirac equatio
and the prime on the sum indicates that the term with«n1

5«n2
5«a is omitted. In order to evaluate Eq.~48!, we in-

troduce the matrixS,

Sk
i j ~v,p1 ,p2!5 (

n1n2

8
wk,n1

i ~p1!wk,n2

j ~p2!

~«a2 iv2«n1
!~«a2 iv2«n2

!

3^an2u
12a1a2

x12
e2vx12un1a&, ~49!

wherew i(p) ( i 51,2) stands for the radial components of t
corresponding wave function. An analogous matrixS(0) is
introduced also for the second part of Eq.~48!. For each
value ofk andv, we calculate coefficients of the piecewis
polynomial representation ofS, S(0). Then, for each value o
p1 andp2, we store two sets of the Fourier-transformed po
nomials,P l

ik(p1) andP l
ik(p2). Finally, the integration overj

is performed.
The results of the numerical evaluation of the individu

contributions toDEP
N2 are presented in Table II forZ583,

90, and 92.

D. Evaluation of DEP
O1

The expression forDEP
O1 can be easily obtained from Eq

~16!, after rewriting it in terms of the Green function an
making the substitutionsG→G(21) andGm→GR

m ,

DEP
O1522iaE

2`

`

dvE dp1

~2p!3

dp2

~2p!3

3E dz
exp~2 iq•z!

v22q21 i0
ca

†~z!

3amG(21)~«a2v,z,p1!

3g0GR
m~«a2v,p1 ;«a ,p2!ca~p2!, ~50!

where q5p12p2 , G(21)(«,z,p1) is the many-potential
Green function@Eq. ~10!# in the momentum-coordinate rep
resentation. The analysis given in Appendix C shows that
vertex operatorGR

m(«a2v,«a) as a function of realv allows
the analytical continuation to the first quadrant of the co
plex v plane starting from the right half of the real axis, an
to the third quadrant from the left half of the axis. Therefo
we may perform the Wick rotation of the integration conto
separating the corresponding pole contribution,

TABLE II. The individual contributions toDEP
N2, in a.u.

Z DEP, infr
N2 DEP,pole

N2 DEP,Im
N2 Total

83 0.06563 20.02127 0.02178 0.066 14~20!

90 0.07200 20.02675 0.02460 0.069 85~20!

92 0.07403 20.02881 0.02570 0.070 92~20!
7-7
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DEP
O15DEP,pole

O1 1DEP,Im
O1 . ~51!

The angular integration in Eq.~50! is by far more difficult as
compared to the contributions considered so far. As the
volved expressions are rather lengthy, we do not give th
detailed consideration here. However, in order to give
reader an idea how the angular integration is performed,
note that Eq.~16! is very similar to the free-vertex contribu
tion which is encountered in a calculation of the self-ene
screening diagrams@compare with Eq.~68! in Ref. @15##.
Basically, the angular integration in Eq.~50! is the same as
described in detail in Ref.@15#. The only difference is that in
Ref. @15# the integration was demonstrated for two particu
states,n52p1/2 and 2s. In Eq.~50!, we need a generalizatio
of that procedure for an arbitraryn, which is somewhat te-
dious but straightforward.

Let us discuss now the numerical evaluation ofDEP
O1 .

After the angular integration is carried out, a typical cont
bution toDEP,Im

O1 is written as follows:

t5(
k
E

0

`

dvE
0

`

dp1E
0

`

dp2E
21

1

djE
0

`

dz
p1

2p2
2z2

v21q2

3 j l~qz!wa
i ~z!Gk

(21) i j
~«a2 iv,z,p1! f ~p1 ,p2 ,j!wa

j ~p2!,

~52!

where p15up1u, p25up2u, j5(p̂1•p̂2), q25p1
21p2

2

22p1p2j, w i is a radial component of the wave functio

Gk
(21) i j

denotes a radial component ofG(21), j L is a spheri-
cal Bessel function, andf (p1 ,p2 ,j) originates from the ver-
tex operator. Equation~52! involves one infinite partial-wave
summation and a sixfold numerical integration.@The sixth
integral is the momentum integration in the evaluation of
Green function in the mixed representation. Two additio
integrations may be also mentioned, one over the Feyn
parameter in the evaluation off (p1 ,p2 ,j), and another a
radial integration in the computation ofG(1). This makes the
total dimension of the integral to be 8.# Two of these inte-
grations involve spherical Bessel functions, which oscill
strongly in the high-momenta region. In order to keep
amount of computational time within an acceptable limit, t
general scheme of the calculation should be chosen care
In our approach, we introduce the following change of va
ables@10#: $p1 ,p2 ,j%→$x,y,q%, wherex5p11p2 , y5p.

2p, , q25p1
21p2

222p1p2j, p.5max(p1,p2), p,

5min(p1,p2). After that, we have

E
0

`

dp1E
0

`

dp2E
21

1

dj F~p1 ,p2 ,j!

5E
0

`

dxE
0

x

dyE
y

x

dq
q

2p1p2

3@F~p1 ,p2 ,j!1F~p2 ,p1 ,j!#. ~53!

In the actual calculation, the outermost loop was the sum
tion over k. The next loop is thev integration. For given
values of k and v, we store a set of coefficients of th
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piecewise-polynomial representation ofGk
(21) . These coeffi-

cients are obtained as the difference of the correspond
coefficients forGk , Gk

(0) , and Gk
(1) , as stated in Eq.~11!.

The next two loops are the integrations overx and y. For
each value ofp1, we store a set of the Fourier-transforme
polynomialsP l

ik(p1). The next step is the integration overq
and the evaluation off (p1 ,p2 ,j), which involves an integra-
tion over the Feynman parameter~see, e.g., Ref.@10#!. The
innermost loop is the integration overz. Its optimization is
the most critical part from the point of view of computation
time. For small values ofq, we use Gauss-Legendre quadr
tures. Whenq is large, we decomposej l(qx) in a combina-
tion of sin(qx) and cos(qx), and use the standard routine fo
the sin- and cos-Fourier transforms based on the genera
Clenshaw-Curtis algorithm. At that stage of the computati

bothwa
i andGk

(21) i j
are represented by piecewise polynom

als and, therefore, thez integration can be performed rathe
fast.

A good test for our numerical procedure is to evaluate
many-potential part of the first-oder self-energy correctio
which can be obtained from Eq.~50! by the substitution
GR

m→gm.
The results of the numerical calculation of the individu

contributions toDEP
O1 are presented in Table III forZ583,

90, and 92.

III. RESULTS AND DISCUSSION

In this paper, we present the numerical evaluation of
correctionDE, given by the three sets of diagrams that a
shown in Figs. 2–4. Putting together Eqs.~1!, ~21!, ~42!,
~43!, and~51!, we have

DE5L̃ (1)DEmany,D
(1) 1

a

p
@DEzero

(1) 1DEone
(1)# ln d1DEP, infr

N1

1DEP,pole
N1 1DEP,Im

N1 1DEP, infr
N2 1DEP,pole

N2 1DEP,Im
N2

12DEP,pole
O1 12DEP,Im

O1 1O~d!. ~54!

The UV-finite differenceDE2L̃ (1)DEmany,D
(1) corresponds to

what in I is called theP term. The IR-divergent contribu
tions, still presented in theP term, are canceled when con
sidered together with Eqs.~50! and ~55! of I. When all
d-dependent terms are put together, the limitd→0 may be
taken, and contributions of orderd and higher vanish. Finite
individual contributions toDEP

N1 , DEP
N2 , and DEP

O1 are
listed in Tables I–III, respectively. In Table IV, we collect a
finite contributions toDE.

TABLE III. The individual contributions toDEP
O1, in a.u.

Z DEP,pole
O1 DEP,Im

O1 Total

83 20.03602 0.02496 20.011 06(15)
90 20.03599 0.02417 20.011 82(15)
92 20.03605 0.02392 20.012 13(15)
7-8
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Now, we can obtain a finite, gauge-independent~within
the covariant gauges! result for the sum of the diagrams i
Figs. 1~b! and 1~c! and the reducible part of the diagram
Fig. 1~a!. In order to get this, we should add together t
contributions listed in Table IV, the results fromI for the M
terms @Eqs. ~50!, ~52!, and ~55! of I # and those for theF
terms ~Table IV of I ). This yields20.903(11) eV for the
ground state of H-like uranium and20.575(11) eV for bis-
muth. Adding this to the irreducible part of the diagram
Fig. 1~a! (20.971 eV forZ592 @4,5# and 20.544 eV for
Z583, this paper!, we have for the total two-loop self
energy correction, given by the diagrams in Fig. 1,21.874
(11) eV for Z592 and21.119(11) eV forZ583.

The numerical results for the sum of the diagrams in Fi
1~b! and 1~c! and the reducible part of the diagram in Fi
1~a!, obtained by combining the present calculation w
that of I, may be compared with the recent evaluation a
nounced in Ref.@8#. The results of20.903(11) eV (Z
592) and20.575(11) eV (Z583) obtained in this pape
should be compared with 1.28~15! and 0.73~9! eV, respec-
tively, reported in Ref.@8#. Surprisingly enough, the com
parison shows that the results disagree even with respe
the overall sign of the contribution. Commenting on this d
agreement, one may mention that the partial-wave renorm
ization procedure, used in Ref.@8#, is known to produce cer
tain spurious terms due to the noncovariant nature of
regularization~see Ref.@16# and a discussion given in Refs
@17,6#!. We also note that some assumptions employed in
numerical evaluation of Ref.@8# make it difficult to keep
accuracy under proper control in the computation. Still,
order to resolve this disagreement, it is desirable to perfo
an evaluation of the total two-loop self-energy correcti
within the covariant approach from the beginning up to
end by the same authors. This will be the aim of our futu
investigation.

With this evaluation of the two-loop self-energy corre
tion, we complete the long-lasting problem of calculation
all second-order~in a) QED corrections for the hydrogenlik
ions without an expansion in the parameterZa. The com-
plete set of these corrections is presented in Fig. 5.
whole set is conveniently divided into several gauge inva
ant subsets:SESE~a–c!, VPVP ~d!, VPVP ~e!, VPVP ~f!,
SEVP ~g–i!, S(VP)E ~k!. In Table V, we collect all avail-
able contributions to the ground-state Lamb shift in238U911.
The nuclear-size correction is calculated for the Fe
nuclear model witĥ r 2&1/255.860(2) fm @18#. The uncer-
tainty of 0.38 eV ascribed to the nuclear-size effect is eva
ated as the difference between the corrections obta
within the Fermi model and with the homogeneously charg
sphere distribution, employing the same rms radius. So

TABLE IV. Finite parts of the individual contributions toDE,
in a.u.

Z DEN1 DEN2 2DEO1 Total

83 20.06890 0.06614 20.02212 20.024 88(40)
90 20.06834 0.06985 20.02364 20.022 13(40)
92 20.06788 0.07092 20.02426 20.021 22(40)
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of the a2 QED corrections@VPVP ~f! and S(VP)E ~k!#
are evaluated only within the Uehling approximation
present. We ascribe the uncertainty of 50% to them. To
tain the binding energy, the Dirac point-nucleus eigenva
of 2132 279.92(1) eV should be added to the Lamb sh
presented in Table V. The error of 0.01 eV of the Dir
binding energy results from the uncertainty of the Rydbe
energy@19#. As can be seen from the Table, the present le
of experimental precision provides a test of QED effects
first order ina on the level of 5%.

With the two-loop self-energy calculated for the 1s state,
we can estimate its value for the 2p1/2-2s transition in Li-
like ions. As is known, the leading contribution to the se
energy arises from small distances, where the self-ene
operator is close to ad-functional potential. This gives the
well-known 1/n3 scaling for thes states and zero for thep
states. Assuming this scaling, we have a 0.23~20! eV contri-
bution for the one-electron two-loop self-energy correcti
to the 2p1/2-2s transition energy in Li-like uranium. Now we
collect all second-order QED contributions to this transiti
energy in uranium, as shown in Table VI. In the first line
the Table, our previous result of 280.48~11! eV @2# is given,
in which all available contributions are included, except on
electron second-order QED effects. The total value of
transition energy amounts to 280.64~11!~21! eV, which
agrees well with the experimental result of 280.59~10! eV
@34#. In the theoretical prediction, the first quoted error aris
from the uncertainty due to the finite-nuclear-size effect a
due to higher-order electron correlations~see discussion in
Ref. @2#!. The second quoted error corresponds to the un
tainty of the second-order one-electron QED effects.

CONCLUSION

In this paper, we developed a convenient numerical
proach to the evaluation of two-loop corrections in the mix

FIG. 5. One-electron QED corrections of second order ina.
7-9
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TABLE V. The ground-state Lamb shift in238U911, in eV.

Finite nuclear size 198.81~38!

First order self-energy 355.05 @20#

vacuum polarization 288.60 @21#

Second order SESE~a, irred.! 20.97 @4#

SESE~a, red.! ~b,c! 20.90(1) This work1 @7#

VPVP ~d! 20.22 @22,23#
VPVP ~e,f! 20.75(30) @24–26#
SEVP~g–i! 1.14 @22#

S(VP)E ~k! 0.13~6! @22,27#
Total ~a–k! 21.57(31)

Nuclear recoil 0.46 @28#

Nuclear polarization 20.20(10) @29–31#

Lamb shift ~theory! 463.95~50!

Lamb shift ~experiment! 468.613. @1#
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an
momentum-coordinate representation. The elabora
scheme was applied to the evaluation of a part of the t
loop self-energy correction that was omitted in the previo
study @7#. It is worth mentioning that our numerical proce
dure is relatively cheap from computational point of vie
The total computation requires 100–150 h on a Pentium-
computer for a given value ofZ.

The results of our calculation combined with those of@7#
yield the total value for the two-loop self-energy correcti
of 21.874(11) eV for the ground state of H-like uraniu
and of 21.119(11) eV for bismuth. As this correction ha
been the last uncalculated second-order QED contributio
these systems up to now, our calculation improves sign
cantly the accuracy of the theoretical prediction in on
electron ions. The total result for the ground-state Lamb s
in H-like uranium amounts to 463.95~50! eV. While the
present experimental precision of613 eV @1# is not high
enough to test the second-order QED effects, it is going to
improved by an order of magnitude in the near future@1#.

The evaluation of the two-loop self-energy correction
the 1s state allows us to make an estimate of this contri
tion for the 2p1/2-2s transition energy in Li-like ions. This is
of particular importance, since in that case, the experime
accuracy is much better than for H-like ions, which mak
06250
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Li-like ions very promising for testing second-order QE
effects. The first estimate of the two-loop self-energy corr
tion allows us to ascribe a well-defined uncertainty to t
theoretical prediction. For the 2p1/2-2s transition in Li-like
uranium, the total result amounts to 280.64~24! eV, which
should be compared with the experimental value
280.59~10! eV @34#.
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APPENDIX A: ONE-LOOP SELF-ENERGY AND VERTEX
OPERATORS

The free one-loop self-energy operator in the Feynm
gauge is defined by
l
r-order
er one-
TABLE VI. The 2p1/2-2s transition energy in Li-like238U, in eV. The first quoted error in the tota
theoretical prediction arises from the uncertainty due to the finite-nuclear-size effect and due to highe
electron correlations. The second quoted error corresponds to the uncertainty of the second-ord
electron QED effects.

Transition energy without second-order one-electron QED effects 280.48~11! @2#

One-electron second-order SESE~a–c! 0.23~20! This work
VPVP ~d! 0.04 @32,22,23#
VPVP ~e,f! 0.10~5! @24–26#
SEVP~g–i! 20.19 @33,22#
S(VP)E ~k! 20.02(1) @22#

Total ~a–k! 0.16~21!

Transition energy~theory! 280.64~11!~21!

Transition energy~experiment! 280.59~10! @34#
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S (0)~p!524p iaE dDk

~2p!D

1

k21 i0
gs

p”2k”1m

~p2k!22m21 i0
gs.

~A1!

To separate UV divergences, we write the self-energy op
tor in D542e dimensions as

S (0)~p!5dm1B̃(1)~p”2m!1SR
(0)~p!. ~A2!

Here,dm is the mass counterterm,

dm5
3a

4p
mS De1

4

3D1O~e!, ~A3!

B̃(1) is the UV divergent part of the renormalization consta
12Z2

21,

B̃(1)52
a

4p
De1O~e!, ~A4!

De52/e2gE1 ln 4p, andgE is the Euler constant. The con
tribution SR

(0)(p) is finite; its definition agrees with that ofI
@denoted inI as Sc

(2:0P)(p)#. We note that, evaluating two
loop corrections, one should keep terms of ordere, since
they can yield a finite contribution when multiplied by
divergent constant of order 1/e. However, in our presen
evaluation of theP terms, we do not need explicit expre
sions for these contributions.

The one-loop free vertex operator in the Feynman ga
is given by

Gm~p1 ,p2!524p iaE dDk

~2p!D

1

k21 i0
gs

3
p”12k”1m

~p12k!22m21 i0
gm

p”22k”1m

~p22k!22m21 i0
gs.

~A5!

We define a finite part of the vertex operator through

Gm~p1 ,p2!5L̃ (1)gm1GR
m~p1 ,p2!, ~A6!

where L̃ (1) is the UV divergent part of the renormalizatio
constantZ1

2121,

L̃ (1)5
a

4p
De1O~e!, ~A7!

and the Ward identityB̃(1)52L̃ (1) is satisfied. Again, our
definition of GR

m exactly corresponds to that ofI (Lcm
(2) in

notations ofI ).
The explicit expressions for the operatorsSR

(0) , GR
m in the

limit e→0 may be found in Ref.@10#. For their exact
e-dependent form, we refer the reader toI.
06250
a-

t

e

APPENDIX B: ANALYTIC PROPERTIES OF THE ONE-
LOOP SELF-ENERGY OPERATOR

In this section, we consider analytical properties of t
one-loop self-energy operatorS (0)(«a2v,p) as a function
of v. From the definition~A1!, one can deduce that the sel
energy operator is two basic integrals,

$J,Jm%5
16p2

i E dDk

~2p!D

$1,km%

~k21 i0!@~p2k!22m21 i0#
.

~B1!

By introducing the Feynman parametrization of the deno
nator, we rewrite this as

$J,Jm%5
16p2

i E
0

1

dxE dDk

~2p!D

3
$1,km%

$@k2~12x!p#22~12x!~m̃22xp2!%2
,

~B2!

where m̃25m22 i0. Shifting the integration variable k→k
2(12x)p, we obtain

$J,Jm%5
16p2

i E
0

1

dxE dDk

~2p!D

$1,~12x!pm%

@k22~12x!~m̃22xp2!#2
,

~B3!

where we have taken into account the identity

E dDk

~2p!D

km

A~k2!
50, ~B4!

with A(k2) being a function of k2. The k integration yields

$J,Jm%5
2

e
~4p!e/2G~11e/2!E

0

1

dx
$1,~12x!pm%

Ne/2
,

~B5!

whereN5(12x)(m̃22xp2). In the limit e→0, we have

2

e
N2e/25

2

e
2 ln N1O~e!. ~B6!
7-11
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Roots ofN can be easily found,

N5x~12x!~v12v2 i0!~v21v2 i0!, ~B7!

wherev65Am2/x1p26«a . Obviously,v1>v1
0 5m1«a

andv2>v2
0 5m2«a for all values ofupu andxP@0,1#.

We find that forvP] 2v2
0 ,v1

0 @ , the integralsJ, Jm and,
therefore, the self-energy operatorS (0)(«a2v) as functions
of real v may be analytically continued both into the upp
and into the lower half-plane. However, forv.v1

0 the self-
energy operator allows the analytical continuation in the
per half-plane only, and forv,2v2

0 in the lower half-plane
only. We conclude thatS (0)(«a2v) is an analytic func-
k

06250
-

tion of v in the complex plane with the branch cuts@m
1«a2 i0,̀ 2 i0) and@2m1«a1 i0,2`1 i0).

APPENDIX C: ANALYTIC PROPERTIES
OF THE VERTEX OPERATOR

Here, we are interested in analytical properties of the v
tex operatorGs(p1 ,p2) as a function ofv in two kinematics:
~a! p15(«a2v,p1), p25(«a2v,p2); and ~b! p15(«a
2v,p1), p25(«a ,p2).

From the definition~A5!, we deduce that the vertex op
erator can be written as a combination of three basic in
grals,
$I ,I m ,I mn%5
16p2

i E dDk

~2p!D

$1; km ;kmkn%

~k21 i0!@~p12k!22m21 i0#@~p22k!22m21 i0#
. ~C1!

Introducing the Feynman parametrization of the denominator and shifting the integration variable k→k2yq2xp2, we obtain

$I ,I m ,I mn%5
32p2

i E
0

1

dxE
0

x

dyE dDk

~2p!D

$1;~yq1xp2!m ;~yq1xp2!m~yq1xp2!n1kmkn%

$k22~yq1xp2!22@xm̃22yp1
22~x2y!p2

2#%3
, ~C2!

where q5p12p2 , m̃25m22 i0, and the identity~B4! has been taken into account. Shifting the integration variabley→xy
yields

$I ,I m ,I mn%5
32p2

i E
0

1

dyE
0

1

dx xE dDk

~2p!D

$1; x~yq1p2!m ;x2~yq1p2!m~yq1p2!n1kmkn%

$k22x2~yq1p2!22x@m̃22yp1
22~12y!p2

2#%3
. ~C3!
l

Now, we separate the integralI mn into two parts,I mn5I mn
a

1I mn
b . Here,I mn

b corresponds to the part ofI mn with kmkn in
the numerator, andI mn

a is the remainder. Integration over
yields (D542e),

$I ,I m ,I mn
a %52G~11e/2!~4p!e/2E

0

1

dyE
0

1

dx

3
$1;x~yq1p2!m ;x2~yq1p2!m~yq1p2!n%

xe/2N11e/2
,

~C4!

I mn
b 5

2

e
G~11e/2!~4p!e/2

gmn

2 E
0

1

dyE
0

1

dx
x12e/2

Ne/2
,

~C5!

whereN5x@yp11(12y)p2#21m̃22yp1
22(12y)p2

2. In the
limit e→0, we have
$I ,I m ,I mn
a %52E

0

1

dyE
0

1

dx

3
$1;x~yq1p2!m ;x2~yq1p2!m~yq1p2!n%

N

1O~e!, ~C6!

I mn
b 5

gmn

4
De2

gmn

2 E
0

1

dyE
0

1

dx x ln N1O~e!, ~C7!

whereDe52/e2gE1 ln 4p.
Obviously, the denominatorN is a quadratic polynomia

with respect tov. Let us find its roots. In kinematics ‘‘a,’’ we
have:

N52~12x!~«a2v!21m̃21B2, ~C8!

where B25xy(12y)q21(12x)yp1
21(12x)(12y)p2

2, B2

>0. We writeN as

N5~12x!~v12v2 i0!~v21v2 i0!, ~C9!

where
7-12
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v65Am21B2

12x
6«a . ~C10!

As can easily be seen,v6>v6
0 5m6«a .

In kinematics ‘‘b,’’ we have analogously,

N5y~12xy!~v12v2 i0!~v21v2 i0!, ~C11!

where
e,
.
A

,

nd

.
s

.

-

ntu

le

06250
v65
12x

12xy HA«a
21

12xy

y~12x!2
@m22~12x!«a

21B2#

6«aJ . ~C12!

Again, one can show thatv6>v6
0 5m6«a .

So, we find thatGs(«a2v,«a2v) and Gs(«a2v,«a)
are analytic functions ofv in the complex plane with the
branch cuts @m1«a2 i0,̀ 2 i0) and @2m1«a1 i0,2`
1 i0).
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