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It is known in density-functional theory that the noninteracting kinetic-energy density funcligngl is not
first-degree homogeneous in density scaling. However, it is shown here that, for every particle Nuthbes
is anN-particle noninteracting kinetic-energy density functiomg| p], that is, a density functional that gives
the noninteracting kinetic energy fdi-particle densities, which is of first-degree homogeneity in the density
p(r). This gives a powerful tool, a strong requirement, for constructing such functionals. A systematic proce-
dure to obtain the real part @i\[ p], the full T\[ p] in one-dimension, for ead is also proposed. It is pointed
out, further, that in the Euler-Lagrange equations that determine the one-particle orbitals thatl deflnéhe
Lagrange multiplier that forces the orbitals to yieidr) is not other than the first derivative afyp],
8Ty pl/ép(F), which yields a natural derivation of the Kohn-Sham equations. Utilizing the same idea, it is
shown for ground states how the Stttimger equation can be derived from the basics of density-functional

theory as well.
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I. INTRODUCTION

The ultimate goal of density-functional theof] is to

determine ground-state properties of particle systems directly
from the ground-state particle density without the use of
wave functions. This would require the knowledge of the

ground-state-energy density functiorg)[ p], which, for a

PACS nuntber31.15.Ew, 03.65-w, 31.15-p, 71.15.Mb

for the determination of the ground-state density, instead of
the direct use of Eq3), through

N
p<r>=§1 u* (Fu;(F), (6)

given external potential v, takes its minimum at the real Nereby treating a large part of the energy exactly, as

ground-stateN-particle density of théN-particle systenj2],
that is, for ground-state densities

SoE
;[‘ﬂz : (1)
onp(F)
or, resolving the constraint
| pirar=n @

on the functional differentiatior(utilizing the formula of
number-conserving functional differentiatioB], or by the
usual method of Lagrange multipligrs

SELp] _
G ®

where u is determined by Eq2). A major part ofE,[p] is
the noninteracting kinetic-energy density functioiag] p],

the concept of which is introduced into density-functional
theory to get single-particle Schtimger equations, the

Kohn-Sham equationigt—6],

EU:TS[UIY"'!UN]+Ev[p]_Ts[p]! (7)

where

N
TJdu,,ul ,...,uN,um:f 21 u* (F)(— V2 u;(Fdr.
(8

Though the Kohn-Sham method eliminates the problem
of the lack of knowledge ofT{ p], investigatingTg as a
functional of p(F) is of great importance as the introduction
of orbitalsu;(f) means a step backward on the road to using
the particle density as the basic variable in determining
ground-state properties, which gets more and more disadvan-
tageous with increasing number of particles. To discover the
properties ofT | p] and derive exact relations for it is essen-
tial to obtain adequate approximations for it. One of its sub-
stantial properties is its behavior under coordinate scaling
namely, scaling of degree-two homogeneity in coordinate
[7], from which

Td ]=—5f v 222 g ©
— 1V20,(F) + s F) Uy (F) =XSu,(F), i=1,... N sPimT2) P 3p(r)
4
_ follows [8], giving the virial theorem of density-functional
with theory through Eq(3).
Recently, the question of homogeneity Bf in density
Des(F) = S(E,[p]-TdpD) 5) scaling has attracted much attention, which was induced by a
KS Sp(1) ’ result of Liu and Parf9], namely,
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S[P]

5 (r) (10

Tipl= [ o0 S22

that is, T p] is first-degree homogeneous [ Equation
(10), however, as was shown latglr0], cannot be correct as
this would mean that [ p] is equal to the Weizs&ker func-
tional [11]

[Vp(DI?
p(F)
for all p(r), not only for one-particle densities, for which Eq.

(1) is an exact expression fofp]. The source of the
problem with the derivation of Eq10) in Ref.[9] has been

Twlp]= f (11)
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N
T[¢]=<wli§1 —3Vily). (16)

Yp denotes normalized Slater determinants, that is,

Eu(r)( 2)u(FdF, (17

Tdpl= min
{uit—p

u;(r) being normalized one-particle functions. Equati@b)
defines ai/p[ p] Mmapping,

pl¥pl=p, (18

p—ip: Tlpl=Tdpl,

where

pointed out to be the inappropriate handling of the complex

wave-function—density—wave-function mapping of density-

functional theory[12]; with this, the conclusion made to re-
solve the contradiction about E(LO) [10], that T p] does
not have an unconstrained derivatfwvehich is quite obvious,
considering the definition given by E(L7), but note that the
logic behind the proof of Ref.9] could be applied to frac-
tional particle-number generalizations of Efj7) as well, is
avoided. Also, a proposed correction of H40), namely,

replacing the unconstrained functional differentiation with
has been

number-conserving functional
proved to be wrong3] as
dr

fp()é ()

like for any number-conserving functional derivative.
In this paper it will be shown that E¢10) can be true for

differentiation,

sLp] .

=0, (12)

N-particle noninteracting kinetic-energy density functionals,

Tnlpl, which are exact expressions foy p] for N-particle
systems, that is,
Tslpn]=Tnlends 13

wherep, denotesN-particle densities; the Weizsker func-

L] =(Y1p(7)| ). (19
For a givenp(f), thus, Eq.(18) gives the{u;(F)}., from
which T p] can be produced through E@®), establishing a
minimization problem withu;(f) as variational variables.
One approach of this problefg] (or see p. 151 of1]) is to
minimize T u,uy ,...,uy,uy] with Eq. (6) and

as constraints, getting the Euler-Lagrange equations

—%Vzui(F)+)\p(F)ui(F)=siui(F), i:].,...,N,

(21)

in canonical form, for the minimizingu; (F)}, , wherex,,
is a Lagrange multiplier corresponding to the constraint Eq.
6) and ¢; are due to the normalization constraint, E20)
with j=i. In Eqg.(21), thus,\ , is determined by E((6), that
is by p(r), but Eg.(21) does not say anything more about it,
though, of course, for v-representable densities, it must give
vks() of Eq. (4) within an additive constant.

With a different approach to the variational problem es-

tional giving an example, being a one-particle noninteractingablished by Eq(18) for determining{u;(F)}{L, for a given

kinetic-energy density functional,
Tdp1]=Tulpl. (14

For simplicity in notation, throughout spin is not taken into

account; see Appendix B for the discussion of the case when
multiple occupations of the Kohn-Sham orbitals are allowed.

II. NONINTERACTING KINETIC ENERGY AND
ONE-PARTICLE EQUATIONS

The noninteracting kinetic energy of a Fermion system of

density distributionp(r) is defined in density-functional
theory aq13,6]

Tdpl= minT[yp] (15

Yp—p

with

p(r), however,\ , can be identified. Instead of minimizing
Tug,uy,...,.uy ,u’,t,], the minimization of

Ar[ug,uf ... un, uN]=Tdug,ul ... uy, Ux]

,UN !u’l'\cl]]
(22

—Tdplug,uj,...

also leads to the propéu;(f)}N, for a p(f) since

ATs[ul,u’{ ;- oUNLUR]=0 (23
for any normalizedu;(r) (i=1,...N) for any N, with
equality for the{u;(f)}I., determined by Eq(18). (Equa-
tion (23) holds by definition ofT{ p]: a set ofu;() deter-
mines a p(r), for which TJp] gives the minimum of
TJUy,UT ... 0N, UK ]) Minimizing Ag [ug,u7 ... Uy, U],

with only orthonormalization constrainf&q. (20)], gives all
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{u;(F)}, that correspond to some() of normalizationN A[#]=0 (30

through the mapping Eq(18). The corresponding Euler-

Lagrange equations (for similar reasons as in the case ®f p]). Minimizing

Ar[ ] for a givenN under the normalization constraint on
oT4p] P — . . b,
(Yly)=1, (3D

yields the ¢ that is associated to a by density-functional
theory, through

(24

show that the functional derivative af p] itself is what is
responsible for the constraint of “fixe@g(r)”; giving a
p(r), 6T p/ p(F) provides the correspondingi (N}, p—u plyl=p, TIYI1+VIyl=Flp], (32
through Eq.(24). From Eq.(24) the Kohn-Sham equations

(4) follow straight away fori-representable, ground-state the Euler-Lagrange equation
densities through the Hohenberg-Kohn Euler-equati®n

N N
that is, 1v2y, oF[p]
i 2 +.<J| V=24 5oty VEW
Sl k=1 (25 33
arising for ¢, where the Lagrange multiplieE, is deter-
with mined by the constraint31). [See Appendix A for the deri-
vation of Eq.(33).] Among the solutions of Eq33) that give
efS=g+u, (26)  (the given p(r),y,, that one corresponds te(f) [by Eg.

(32)] that has the least,, since
giving a simple derivation of them. Equatid@5) brings a
new constraint, the given external potentigli), into Eq. [p]
(24) [as vis(7) = »(7) + v;(F) + v,o(F), ¥;(F) being the clas- o= T+ VI, - J p(0) 5o @ (34)
sical Coulomb part andv,(r) being the exchange-
correlation part of the potential of the interaction between thehe last term being constant for fixge(r). This leastE,
particles of the given systertN,v)]; thus, while Eq.(24) gives a functional op(r),
gives {u;(F)}; for any p(f), the Kohn-Sham equations
give {u;(F)}, for the p(F) that is determined by(f), Cp]=Flp]- j gl [p] (35
therefore being usable to determing@). Also, from Eq. Eolp p PAS (r)
(24), Eq.(9), that is, the behavior of | p] under coordinate
scaling, is derivable directly, just as the virial theorem of For (ground-stater-representablp(r), Eq.(33) leads to the
density-functional theory can be derived from the Kohn-Schrainger equation
Sham equation$l14], by integrating their gradients multi- N
plied by p(f)f and doing some algebraic manipulation. It is 2 _1iy
worth pointing out that the reason why the procedure leading = 2V
to Eg. (21) cannot given, explicitly is that by minimizing
only TJuy,u¥ ,...,uy,uy], available informatiofiEq. (23)],  through the Hohenberg-Kohn Euler-equation,
given by the definition ofT [ p], is lost, while the second
variational procedure utilizes the definition @f p] fuIIy, SFLp] + ()= (37)
this way relaxing the external constraint of “fixge(r),” op(r) 'u’
incorporating it into the Euler-Lagrange equations naturally.
The case of Levy’s generalization of the Hohenberg- Kohrwith
functional is similar, as it is defined by

Flp]l=min{T[ 4]+ V[ ]} (27)

y—p

z

E (MY=Ey (36)

& - =

E=E,+uN. (39)

(For not ground-state-representable densitigs if F[p] is
differentiable Eq[ p] is not the minimunE, , that is, none of
with the minimum stateg, of Eq. (33) givesp (o# ¢,). ) Itis
worth emphasizing that Eq33) could not have been ob-
tained by minimizing just|[ ]+ V[ ], similarly to the case
VIidl= <”/’|2 - ||'f/’> (28) of TJ p]. It is important to note that Eq33) itself is just a
mathematical construction without any physics, and the
and ¢ denoting normalized antisymmetric wave functions; Hohenberg-Kohn Euler-equatigthe Hohenberg-Kohn theo-
thus, with remsg is what brings physical meaning into it, making it a
physical law: the Schiinger equation. It has been shown
A[&]=T[ ]+ V[ &]—FLpl 1], (29 for ground states, thus, how Scdieger’s quantum mechan-
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ics and the Kohn-Sham quantum mechanics emerge from

density-functional theorywith its energy density functional

EV[P]EF[/J]JFJp(F)V(F)deEé[P]JrMN (39

and variational principle foE,[ p] for the determination of
the ground-state densjty through the minimization of

Ae[¢] and Aq[uy, ...,

density functionals, which are defined by Ef3) though, of
course, not uniquely, it is easy to see thgf p] can take the
place of TJp] in density-functional theory folN-particle
systems. From the definitiof13) it follows that[3]

oTdpn]  OTnLpN]

Bup(F) ~ onpl(r) 40

henceTg can be replaced by in Eg. (1), thus the Euler
equation

oTnlp]

Sp(1) + vrs(M) = un (41)

arises for the determination of the ground-statg where
un is determined by Eq(2) but, of course, is not the of

Eqg. (25 (from Eq. (40), using the number-conserving

functional-differentiation formuld3],

O6Tnlpen] 0T pn]

op(r) op(r)
1 ~, oTnlpn] 6T pn] .
_NJPN(r )( 5p(r:‘l) - 5p(r/) dr =C, (42)

with uy— = c for ground states With Eq. (41), then, the

Kohn-Sham equations can be derived through minimizing

Aq [ug,uf ..Uy, uR]=Tdug,ug ..Uy, Uy
_-I—N[p[u]_lu.:'l_c ,...,UN,U:\]]]
(43
under normalization constraint an(r) (i=1, ... N), get-
ting the Euler-Lagrange equations
_ OTn[p] N .
—iveu(f)— —— G ui(F)=eMui(F), i=1,...N
(44)
with, utilizing Eq. (41),
8iKS:8iN+/.LN, (45)
and
el =i+ p—py; (46)

as, for normalizedu;(F)} N, ,

uy ] under normalization constraint,

using the Hohenberg-Kohn Euler-equation as postulatum.
Turning to the N-particle noninteracting kinetic-energy

PHYSICAL REVIEW A 64 062503

ATN[ul,u’l‘ ,...,uN,u{\‘,]zATS[ul,u’l‘ ssUnL U], (47)
since
pluz,ul ... .uy,uN]=pn(). (48
For Eq.(9)
_ 1 OTnlpn] .
TN[pN]__EJ pn(NF VWW (49

arises, which is quite natural since coordinate scaling con-
serves the normalization ofp(r). From Ty[p] (N
=1,2,...),formally TJp] can be constructed for integer

Ip(N)dr,

Tdpl= Nzl INE (50)

From T4 p] a type of Ty[p] may be constructed by fixing
the explicit N's, that is, [p(F)di, in Tgp], considering
T p] as a two-variable functional,

Ts[p]=Ts[p,f p}, (51)
thus
TN[p]::‘rS[va]v (52)
and its derivative
STl p] _( (ﬁs[p,N])
50\ ep(0 |’ 59

emphasizing that the right side of E&3) is not a number-
conserving functional derivative but just a partial functional
derivative (only the explicit N's in T p] (a variable of

TJdp,N]) are fixed, the variation of the remaining part is

unconstrained In the next two sections, it will be shown
how a degree-one homogenedlg p] can be defined for
arbitrary particle numbeN, for which

el [ o0 S, 54
consequently,
N
-21 eN= (55)
that is,
N
2, &= puyN (56)

(not uN). It is worth noting here that with the concept of
N-particle noninteracting kinetic energy, the local tempera-
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ture () [15,16, introduced by Ghosh, Berkowitz, and Parr o o
[15] into density-functional theory, may be redefined as f p(N) @i (1) ;(Ndr= 5y, (62)
TN:f 3 (M) k(7 dF to get the Euler-Lagrange equations that deterngif(€) (i
? ’ =1,...N—=1) for a given p(f). The resultingN—1
N—-1

oupled differential equations fdwb; ()} =, , however, are
uite complicated.

A great simplification of the problem can be achieved by
writing | #;(F)|’s as hyperspherical functions,

giving a local temperature of degree-zero homogeneity witt
respect to density scaling in the case of degree-one homogg
neousTy[p]’s.

lIl. ORBITALS INCORPORATING THE “GIVEN j-1
DENSITY” CONSTRAINT || =11 sino(F)cosg;(r), j=1,...N-1
k=0
In the previous section it was pointed out that the given (62a

p(r) constraint in the determination of the one-particle orbit-

als u;(F) from which T p] is constructed is secured in the and

Euler-Lagrange equations far(r) (i=1,... ,N) by none N—1

other thansT[ p]/dp(r) itself. Since Ty p]/Sp(F) is not S : -

known and the lack of knowledge @t[ p] is why the deter- |én ()] = kHo SinOi(r), (62b)

mination ofu;(F)’s is a question, finding some other way to

ensure the fixing op(r) in the construction off [ p] is of  with

great importance. A natural way arises straight away as one

of the orbitals, the one corresponding to the lowest state of

Eq. (24) therefore being choosable to be real and positive,

can be expressed simply by the otiher 1 orbitals from Eq.

(6), as did Dawson and MarcHL9] and Holas and Marcliifor
generalN) [24] in one dimension, where);(F)’s are real

0o(F)= 5. (63

N 112 ) : . o

_ _ R functions. In three dimensions generallyp;(f) (]
U1(F)=(P(r)—i22 |ui(r)|2) , (57 —1,... N—1) are complex, thus J

consequently, with the use of the first of the one-particle bi(F)=]¢;()]e*iD, (64)

equations(24), using Eq.(57), 8T4 p]/ dp(F) can be elimi-
nated, gettind— 1 equations without unknowm(r) depen-
dence forN—1 variables.(This approach has been consid- N
ered by several papers from various aspects on different T=T +f Lo(F Vi (P2
levels[17—-25, the work of Holas and Marcf24] giving a s=Twlr] 2p( )121 (¥l Ol
thorough general summary of the subjedtith the separa-

with which

tion of p(F) in ui(F), +[¢i(DIZV g5()[)dF, (65)
u(F)=\o(N b _1(F), i=2,...N, 58 where the second term in the brackets does not appear for
()= VP bi-a(1) (589 real ¢;(F) [¢;(F)=0]. With the transformation(62), the
and “real” part in T is given as
U3 (1) =p(F) (P, (58D) ST e e
" T=Tulpl+ [ 103, T1 sit? 0,0[F 0y ar,
the Weizsaker functional appears as a natural component of =1 k=0 66
Tdpl, (66)
N This expression can be obtained by mathematical induction,
Ts:Tw[p]Jrf %p(F)E |V ,(F)|2dF (59 deriving theN-particle case from theN—1)-particle case by
i=1 writing
with N N
- s Tpl= 2 Tulp]=Tulpcos 6:]+ 2 Tulpj],
j=1 j=2
¢N<r‘>={1—i21 |¢i(r‘>|2} (60) (67)

then applying the transformation
In Eq. (59), with Eq. (60), the p constraint(6) is fully incor-

porated, so the functiondl| p,¢1,...,¢n_1] Obtained with p—p Sirt 6y, (683
Egs.(59) and (60) has to be minimized irp;(r) with only
orthonormalization constraint, 0j— 011, j=1,...N—-2 (68b
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on the variables of theN—1)-particleT'[p,6,...,0n_>] tO
get the second term in E¢67), and using the expression

T=Tulpl+ [ oIV ou(r)Far 69

PHYSICAL REVIEW A 64 062503

cog 0,(F) V2, (F)+ F('—%) - cog 0,(F)V ¢4(F)

—5sin20,(F)V 6(F) - Vo(F)

\
p

=—N\oSin 260,(r)sing4(F), (77)

of the two-particle case, thereby getting the recursion for-

mula

T'[p,01,....00-11=T'[p, 641+ T} p sir? 01,92,...,9N,(1],)
70

To get T{p] for a given p(r), then, the functional
Ts[p,01,...,0N_1,(,01,...,QDN_1] giVen by Eq(65) W|th Eq
(62 has to be minimized ing;(f) (j=1,... N—1) and
¢j(r) (j=1,... N—1) with the orthonormalization con-
straint(61) [with Eq. (64)],

[ polgiar=1 7D

and

fP(r‘>|¢j(r‘>ll</>k(r‘)|exp{i[qok(r‘)—goj(m}dr:o,

(72)
using Eq.(62). For the two-particle case, with
Tp. 0 eal=Tulpl+ [ 2o(I ()P
+cod 6,(N|Vey(N|ZdF, (79
f p(F)cog 6,(Mdr=1 (74)
as the normalization constraint from E@J1), and
J p(r)sin 264(r)cose4(r)dir=0 (759
and
J’ p(r)sin 264(1)sing4(rdr=0 (75b)

as the two real orthogonality constraints coming from the
complex constraint72), the resulting Euler-Lagrange equa-

tions are
Vp(f) - .
V201(F)+%-V01(F)—%Sin201(F)|Vso1(F)|2
=—N\pSin264(F)+\y2 cos 04(F)cose,(F)  (76)
and

with the Lagrange multipliera.,, and A\, corresponding to
the constraints(74) and (75a, respectively. The other
Lagrange multiplier corresponding to the orthogonality con-
straint(75) can be eliminated by the transformation

Na=AoCO0S¢pg, Ap=2MA,SiNgg (78
[where\, and\,, are the original Lagrange multipliers asso-
ciated with Egs.(758 and (75b), respectively and setting
®o=0, as the addition of an arbitrary constantdr)’s is
allowed by Egs.(65) and (72). For one dimension, where
¢j(N=0(j=1,... N—1) can be taken, Eq$76) and(77)
reduce to the well-known equatigt8,19

0"(r)+ p_(r) 0'(r)=\sin20(r).

p(r) (79

It is worth pointing out that Eq(65) takes its minimum at
¢;(r) taking the value of an arbitrary constant, which allows
real ¢;()’s; and the normalizatiori71) does not give any
restriction with this respect, as there is go(r) in it; the
only reason whyp; (1) # 0 in general, that is¢;(F) has to be
complex, is the orthogonality constraifit2).

IV. HOMOGENEOUS N-PARTICLE NONINTERACTING
KINETIC-ENERGY FUNCTIONALS

It has been shown that the noninteracting kinetic energy
can be obtained for any giveN-particle densitypy(F) by
the minimization of the functional'{ p,¢4,...,¢n_1], de-
fined by Egs.(59 and (60), with respect to¢;(r) (i
=1,... N—1) under normalization constrainf&q. (61)].
The {¢;(F)}]-}! that givesTJ py] can thus be determined
from the correspondingN—1 Euler-Lagrange equations.
TheseN—1 equations, however, give{a;(F)}\-;* for any
p(r), not only for apy(r), but theseg;[p] (i=1,... N
—1) yield T p] only for py(F)’s, that is, in this way an
N-particle noninteracting kinetic-energy density functional is
defined,

TN[p] =Ts[p!¢l[p]!v¢Nfl[p]]1 (80)
for theN=1 case having
Tilp]=Tulp]. (81

An interesting question is whether thig[p] has any
degree of homogeneity in density scaling, likg[ p], which
is of degree-one homogeneity. Examining the- 2 case in
one dimension in the hyperspherical function representation
of ¢i(r)’s, it can be seen thai(r) appears in the Euler-
Lagrange equatioki79) only in the formp’(r)/p(r), which
is of degree-zero homogeneity @tr), on the basis of which
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the degree-one homogeneity of the emerging kinetic-energy 5T [p] 6Tdp,d1[p].....dn—1lp]]

functional, which is To[p]=Twlp]+S3p(r)[6'(r)]%dr, op(F) Sp(F)
has been concluded a few times in the literaturefé&9
must be a functional op’(r)/p(r). However, 6(r) has a _OTdpid1,. iyl
dependence on the Lagrange multiplieas well, Sp(r)
& [ OTdpidbri by 1l SH(F)
0=0—,\|, (82 i=1 i p
g (85

which ruins the degree-one homogeneity, since it would conNote that while after the first equality sign in E@S), there
tradict with the constrain(74), which determinesx and IS @ full functional derivative with respect {@(r), after the
which allows homogeneity of only degree minus ongi)  Second equality sign, a partial functional differentiation with
for co€ ¢(f). The connection between the possible homoge!€SPect tg(r) appearsin the first term. [Throughout, when
neity properties off ;[ p] and coé 6(F) can be exhibited more & differentiation with respect t@(r) is a full one, thep

directly, without concerning(r) itself, through the identity ~dependence of the variables of the functional considered
is displayed} Following from the minimizational definition

of TJp], the partial functional derivatives of
[V co 6(F)1>=4[V 6(F)]? co 6(F)[1—cos 6(F)]. Tep,¢1,....dn-1] with respect to its variableg;() are
(83 related to the constraint84) and (61) (with i#j),

ke Ip(D)dT
Equation(83) shows that cdsi(f) has to be of degree-zero Cjk[P'¢1,---,¢N—1]=f p(F) ¢7 (1) (N di— N Ok

homogeneity to yieldV 6(F)]? of degree-zero homogeneity,

that is, T,[ p] of degree-one homogeneity. The normalization =0, (86)
constraint, thus, leads tdy[ p], which are not first-degree

homogeneous, even more, not homogeneous at all, as can by the Euler-Lagrange equations

seen from Eq(83). However, Eq.(71) has to hold only for

the givenN, that is, forN-particle densitiegy(f); for gen- OTp, b1, spn-1] N Ciklp: 1, Pn-1]
eraIAp(r“) it can be _modified in a way to yield Eq71) fo_r S¢i(F) = S5¢hi(F)

pn(F). The most simple and, also, reasonable extension of

Eq. (72) is (i=1,.N—-1), (87

1 with \j, being the Lagrange multipliers ensuring the fullfil-
f p(F)| ¢;(F)|2dF= _f p(Ndi (j=1,...N-1), ment of the(orthonormalizatioh constraints. From the con-
N straints themselves, being required for eve(y), by differ-
84 entiation with respect tp(r),

with N being the giverN, that is,N= [ py(F)dr, and for the 0= Cik[p’d’l[p]";"d’Nfl[p]]
above case, giving 5p(1)
_ Cjk[pi(ﬁl!"'v(ﬁN*l]
So(7
f p(F)cod el(r)dr=%f p(F)dF. (849 . p(r)
Ciklps o1, Pn-1] 6i(T)
=t f Spi(f") o 47 (89

Equation(84) can be considered as a natural generalization
of the normalization(71), there being no reason to require arises, that is, the partial functional derivative of a
the componentp ()| (N[> (j=1,... N=1) of a p(F) Ciklp,b1,....dn—1] With respect to its variablp(r) is
with [p(F)dir#N to be normalized to 1. It can be seen im-
mediately that this generalized normalization does not spoil Ciulp,d1,--bn-1]
the degree-zero homogeneous nature ¢gfp]’'s, which 5p(1)
emerges from the Euler-Lagrange equations, which contain
p(r) explicitly only in the formV p(r)/p(r). N—1 .
The degree-one homogeneity ©f[ p] defined with the _ _ z f Ciulp #1,--sPn-1] (T )dF’ (89)
normalization(84) can be proved explicitly for generéih- =1 oi(r") op(r)
teger, greater than) N in the following way. The functional
derivative of Ty[ p] can be expressed as With Eq. (87), Eqg. (85) gives
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STalp]  6Tdp, b1, Pn-1] Weizsaker functional (which is T,[p]) for arbitrary N,
Sp(F) Sp(F) Twlp] itself being in accordance with the generalized nor-
No1 malization constraint84) and not with Eq(71), as it can be
N 2 2 N derived usingp(f)=uj (F)u.(F), which gives the normal-
=) ATk ization (72) only for N=1.

Finally, it is worth pointing out that, utilizing the recur-
sive structure ofT'[p,0,,...,0h_1] [characterized by the
formula Eq.(70)], with the knowledge off [ p] for a given
N considering the “real parts,” to obtaify, [ p], only one

XCjk[pad’l!---vngfl] O¢i(r")

5 (F) sp(r) 4r (90

which, with the use of Eq(89), yields variational variable needs to be determined as a functional of
p(r) (that is, only one differential equation has to be so)jyed
6Tnlp]l _0Tdp #1,-. N1l applying the transformatio68g to the Pauli part(P) of
Sp(T) Sp(r) Tnlpl, herewith having a systematic procedure to Tigtp]
for everyN; e.g., for the three-particle cagmn one dimen-
_z A C]k[pv(ﬁl!vqu*l] (91) S|On),
i=k Ik op(r)
since Talp1=Tulpl+ | 30000/ Pr+TELp i 0]
_Cilp.b1,....n-1] . (94)
f P(r) 5p(r) dr—cjk[prd)l!"'!(ﬁN*l]!

(92) with Tg[p]sz[p]—TW[p], for which the corresponding
Euler-Lagrange equation that determirégg] is
that is, Cju[ p, ¢1,...,n—1] are (partially) homogeneous of

degree one Inp(F)i and Cjk[pvd)l[p]!"'1¢Nfl[p]]:01 p’(r) 5T2P[p]
from Eq. (91) 49”(r)+m0’(r)+sin20(r) 3p(1)
p Sir? 0
. OTnlp] o L OTdpidr,pn-a] L
f p(r) 3p(F) dr—f () 5p(F) dr =\ sin26(r). (95
:Ts[p!d)l[p]a---:d)N1[p]]:TN[p(]u ) V. SUMMARY
93

In this study it has been shown that, in the Euler-Lagrange
where the (partia) degree-one homogeneity of equations that determine the orbitals from which the nonin-
Tdp,b1,....6n-1] in p(F), following from its construction, teracting kinetic energys is built, the Lagrange multiplier
(59), has been usedin the second equalily and which that forces the orbitals to yield a given density) can be
means thafl\[p]=Tdp,P1[p]l,....dn_1lp]] itself is also identified with the first derivative o p], giving a new,
of degree-one homogeneity (), not just partially but simple derivation of the Kohn-Sham equations; and on a
fully as well. Note that the key to this proof is the expressionsimilar basis, for ground states, the Sainger equation has
of the full derivative of Tp,¢4[p],....én—1[p]] in terms  also been shown to emerge from the Hohenberg-Kohn Euler-
of partial functional derivatives with respect p¢) of func-  equation. After pointing out thalp] can be replaced in
tionals, for which degree-one homogeneity(r) follows  density-functional theory by N-particle noninteracting
from the explicitp(r) dependence in theiknown) form. kinetic-energy density functional$y[ p], that is, functionals

It has to be emphasized that this degree-one homogeneityf p(r) that give T for N-particle densities, a natural defi-
of Ty[p] (N=1,2,...) ofcourse does not mean thB{ p] nition for Ty[p] has been given byi) constructingT from
itself is of degree-one homogeneity, as shown formally byN—1 functions¢;(f) that incorporate the givep(f) con-

Eqg. (50) too. With this property ofT\[p], a strong require- straint and(ii) using the Euler-Lagrange equations resulting
ment is obtained, which can be used to construct densitfor the ¢;(f)’s for the given N to define ¢i[p] (i
functionals that give the exact noninteracting kinetic energy=1, ... N—1) for p(f) of fp(F)di#N as well. The hyper-

for a given particle number. A method proposed byt @&  spherical function representation ¢f(f)’s has been consid-
Nagy [26] gives an example for how the degree-one homo-ered for complex;(f)’s, generalizing the earlier results for
geneity inp(r), together with the degree-two homogeneity one dimension. Finally, the normalization constraints on
in f, that is, Eqs(10) and(9), can be used to derive explicit ¢;(f)’s have been generalized in a reasonable way to lead to
analytical expressions fofg as a functional ofp(r), if the  Ty[p] functionals of degree-one homogeneity, this property
noninteracting kinetic-energy density is assumed to be giving a powerful tool, being a strong requirement, to con-
function of p(f) and its derivatives, yielding the Weizdar struct density functionals that givie[ p] for a given particle
functional as a general component, in agreement with Eqaumber. In addition, a systematic procedure has been pre-
(59). Note that thel [ p]'s of degree-one homogeneity con- sented by which the “real part” of \[ p] can be obtained for
structed here can be considered as the generalizations of teachN by the solution of uncoupled differential equations.
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APPENDIX A: DERIVATION OF EQ. (33

Because of its third term, the derivation of E§3) may
need some explanation; the kinetic energy and the electro
electron repulsion energy terms arise similarly as in the deri
vation of the (ground-state Schralinger equation through
the minimization of the usual energy wave-function func-
tional, E,[ ], of quantum mechanics.

The third term in Eq(33) comes from the functional dif-
ferentiation of —F[p[¢]] [in Eqg. (29)] with respect to

Y*(Fq,...,Fy), that is,
SFlp) . _ SFlply]]
izl 5p(F)) w(rl,...,ri,...,rN)—m,

(A1)

wherep[ /] is given by Eq(19). Writing the s dependence of
p in the generally used detailed form

p(F)=Nf f lﬁ*(r,rz,,FN)¢(F,F2,,FN)dF2dFN,
(A2)

the origin of the summation over the electron indices is,

however, hidden. To get to EGAL) (throughp[ ¢]), formally
that expression g in terms ofis has to be used in which the
antisymmetric nature of Fermion wave functions is not uti-
lized, which is

N
(=3 ff U (Free P WAFr e ) ATy T
i=1

Xdri+1"'dFN (AS)

r=r

as in the case of the componentsef ] to get the Schro
dinger equation. With Eq(A3), applying the chain rule of
functional differentiation, Eq(A1) follows straight away.

APPENDIX B: INCLUSION OF SPIN IN THE DERIVATION
OF FIRST-DEGREE HOMOGENEITY

PHYSICAL REVIEW A 64 062503
wheren; andn, are the occupation numbers of the corre-

sponding orbitals. From E@B1) the lowest-lying orbital can
be expressed as

_[p(N)=nyluy(r)]|
T

Following the procedure described in Sec. lll, that is, insert-

(B2)

dng Eqg.(B2) into the orbital equation&24) and then solving

them for u,(r), yields u,(r) as a functional ofp(f), and

also ofe=¢,— ¢4,
UZ(F):UZ[pIS]!

wheree =¢[ p] is determined by the normalization o§(r).
Now, to examine the behavior af,[ p]=U,[p,e[p]] under
density scaling, multiply Eq¥B2) and (24) with some/k,

\/Eul( M= \/

kp(1)— Nyl Vkuy(7) 2

(B3)
ng
and
. oTdp] . ,
—1v2 ku(7)— 5pS(F) Vku (F)=gvku(F), (B4
from which
Vkup(7)=uzlkp,™]. (B5)
Taking the generalized normalization
rdr
f |uy(F)|2dF= fp(N) =12 (B6)
and multiplying it withk gives
rdr
f k(=17 (N) , (B7)
from which&® in Eq. (B5) emerges as
e =sg[kp], (B8)

which, note, would not be the case if the traditional normal-
ization constraint was used. Equatidigb) with (B8) give

Vkug[ pl=uslkp], (B9)

In this appendix the spin of the electrons will be incorpo-that is,u[ p] is homogeneous of degree half. On the basis of
rated into the derivation of the first-degree homogeneou&d: (B2), the same can be said abaufp] as well. '
N-particle noninteracting kinetic-energy density functionals. FOr systems with more than two Kohn-Sham orbitals,
To give a wider view on the subject, the derivation this timeWhere
will be based directly on the Kohn-Sham orbitals, proving
that, with the generalized normalization proposed in Sec. IV,
the Kohn-Sham orbitals can be taken as degree-half homo-
geneous functionals of the denspyr).

Consider a system with two Kohn-Sham orbitals, that is,the foregoing proof is trivially extendable, giving functionals
u;[ p] of degree-half homogeneity. From this result then the
degree-one homogeneity of thd-particle noninteracting

p(r‘>=i§1 niui(7)?, (B10)

p(F)=ng|us (M |2+ nyluy(M)]?, (B1)
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kinetic-energy density functionalBy[ p] constructed as de-
scribed in Secs. lll and IV follows straight away via

Th= Zlniur(rv(—%Vz)ui(r‘)dr‘ (B11)
with

m
N:E n;.
i=1

PHYSICAL REVIEW A 64 062503

It is important to point out thal [ p] depends on the occu-
pation structure of the orbitals; however, considering, for ex-
ample, only Fermion systems with only the highéstcu-
pied) orbitals allowed to be singly occupied, while the others
being doubly occupied, the particle nhumhiérdetermines
Tn[ p] without ambiguity of course. Note also that different
occupation of a given number of orbitals does not necessarily
lead to differentTy[p], as in the case of one- and two-
electron ground-state systems, where

Tilpl=Tolp]=Tulp]. (B12)
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