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First-degree homogeneousN-particle noninteracting kinetic-energy density functionals
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It is known in density-functional theory that the noninteracting kinetic-energy density functionalTs@r# is not
first-degree homogeneous in density scaling. However, it is shown here that, for every particle numberN, there
is anN-particle noninteracting kinetic-energy density functionalTN@r#, that is, a density functional that gives
the noninteracting kinetic energy forN-particle densities, which is of first-degree homogeneity in the density
r(rY). This gives a powerful tool, a strong requirement, for constructing such functionals. A systematic proce-
dure to obtain the real part ofTN@r#, the full TN@r# in one-dimension, for eachN is also proposed. It is pointed
out, further, that in the Euler-Lagrange equations that determine the one-particle orbitals that defineTs@r#, the
Lagrange multiplier that forces the orbitals to yieldr(rY) is not other than the first derivative ofTs@r#,
dTs@r#/dr(rY), which yields a natural derivation of the Kohn-Sham equations. Utilizing the same idea, it is
shown for ground states how the Schro¨dinger equation can be derived from the basics of density-functional
theory as well.
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I. INTRODUCTION

The ultimate goal of density-functional theory@1# is to
determine ground-state properties of particle systems dire
from the ground-state particle density without the use
wave functions. This would require the knowledge of t
ground-state-energy density functionalEv@r#, which, for a
given external potential v(rY), takes its minimum at the rea
ground-stateN-particle density of theN-particle system@2#,
that is, for ground-state densities

dEn@r#

dNr~rY !
50, ~1!

or, resolving the constraint

E r~rY !drY5N ~2!

on the functional differentiation~utilizing the formula of
number-conserving functional differentiation@3#, or by the
usual method of Lagrange multipliers!,

dEn@r#

dr~rY !
5m, ~3!

wherem is determined by Eq.~2!. A major part ofEn@r# is
the noninteracting kinetic-energy density functionalTs@r#,
the concept of which is introduced into density-function
theory to get single-particle Schro¨dinger equations, the
Kohn-Sham equations@4–6#,

2 1
2 ¹2ui~rY !1nKS~rY !ui~rY !5« i

KSui~rY !, i 51, . . . ,N
~4!

with

nKS~rY !5
d~En@r#2Ts@r#!

dr~ r̄ !
, ~5!
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for the determination of the ground-state density, instead
the direct use of Eq.~3!, through

r~rY !5(
i 51

N

ui* ~rY !ui~rY !, ~6!

hereby treating a large part of the energy exactly, as

Ev5Ts@u1 ,...,uN#1Ev@r#2Ts@r#, ~7!

where

Ts@u1 ,u1* ,...,uN ,uN* #5E (
i 51

N

ui* ~rY !~2 1
2 ¹2!ui~rY !drY.

~8!

Though the Kohn-Sham method eliminates the probl
of the lack of knowledge ofTs@r#, investigatingTs as a
functional ofr(rY) is of great importance as the introductio
of orbitalsui(rY) means a step backward on the road to us
the particle density as the basic variable in determin
ground-state properties, which gets more and more disad
tageous with increasing number of particles. To discover
properties ofTs@r# and derive exact relations for it is esse
tial to obtain adequate approximations for it. One of its su
stantial properties is its behavior under coordinate sca
namely, scaling of degree-two homogeneity in coordin
@7#, from which

Ts@r#52
1

2 E r~rY !rY•¹
dTs@r#

dr~rY !
drY ~9!

follows @8#, giving the virial theorem of density-functiona
theory through Eq.~3!.

Recently, the question of homogeneity ofTs in density
scaling has attracted much attention, which was induced b
result of Liu and Parr@9#, namely,
©2001 The American Physical Society03-1
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Ts@r#5E r~rY !
dTs@r#

dr~rY !
drY, ~10!

that is, Ts@r# is first-degree homogeneous inr. Equation
~10!, however, as was shown later@10#, cannot be correct a
this would mean thatTs@r# is equal to the Weizsa¨cker func-
tional @11#

TW@r#5
1

8 E u¹W r~rY !u2

r~rY !
drY ~11!

for all r(rY), not only for one-particle densities, for which E
~11! is an exact expression forTs@r#. The source of the
problem with the derivation of Eq.~10! in Ref. @9# has been
pointed out to be the inappropriate handling of the comp
wave-function–density–wave-function mapping of densi
functional theory@12#; with this, the conclusion made to re
solve the contradiction about Eq.~10! @10#, that Ts@r# does
not have an unconstrained derivative@which is quite obvious,
considering the definition given by Eq.~17!, but note that the
logic behind the proof of Ref.@9# could be applied to frac-
tional particle-number generalizations of Eq.~17! as well#, is
avoided. Also, a proposed correction of Eq.~10!, namely,
replacing the unconstrained functional differentiation w
number-conserving functional differentiation, has be
proved to be wrong@3# as

E r~rY !
dTs@r#

dNr~rY !
drY50, ~12!

like for any number-conserving functional derivative.
In this paper it will be shown that Eq.~10! can be true for

N-particle noninteracting kinetic-energy density functiona
TN@r#, which are exact expressions forTs@r# for N-particle
systems, that is,

Ts@rN#5TN@rN#, ~13!

whererN denotesN-particle densities; the Weizsa¨cker func-
tional giving an example, being a one-particle noninteract
kinetic-energy density functional,

Ts@r1#5TW@r1#. ~14!

For simplicity in notation, throughout spin is not taken in
account; see Appendix B for the discussion of the case w
multiple occupations of the Kohn-Sham orbitals are allow

II. NONINTERACTING KINETIC ENERGY AND
ONE-PARTICLE EQUATIONS

The noninteracting kinetic energy of a Fermion system
density distributionr(rY) is defined in density-functiona
theory as@13,6#

Ts@r#5 min
cD→r

T@cD# ~15!

with
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T@c#5^cu(
i 51

N

2 1
2 ¹ i

2uc&. ~16!

cD denotes normalized Slater determinants, that is,

Ts@r#5 min
$ui %→r

E (
i 51

N

ui* ~rY !~2 1
2 ¹2!ui~rY !drY, ~17!

ui(rY) being normalized one-particle functions. Equation~15!
defines acD@r# mapping,

r→cD : r@cD#5r, T@cD#5Ts@r#, ~18!

where

r@c#5^cur̂~rY !uc&. ~19!

For a givenr(rY), thus, Eq.~18! gives the$ui(rY)% i 51
N from

which Ts@r# can be produced through Eq.~8!, establishing a
minimization problem withui(rY) as variational variables
One approach of this problem@6# ~or see p. 151 of@1#! is to
minimize Ts@u1 ,u1* ,...,uN ,uN* # with Eq. ~6! and

E ui* ~rY !uj~rY !drY5d i j ~20!

as constraints, getting the Euler-Lagrange equations

2 1
2 ¹2ui~rY !1lr~rY !ui~rY !5« iui~rY !, i 51, . . . ,N,

~21!

in canonical form, for the minimizing$ui(rY)% i 51
N , wherelr

is a Lagrange multiplier corresponding to the constraint E
~6! and « i are due to the normalization constraint, Eq.~20!
with j 5 i . In Eq. ~21!, thus,lr is determined by Eq.~6!, that
is by r(rY), but Eq.~21! does not say anything more about
though, of course, for v-representable densities, it must g
vKS(rY) of Eq. ~4! within an additive constant.

With a different approach to the variational problem e
tablished by Eq.~18! for determining$ui(rY)% i 51

N for a given
r(rY), however,lr can be identified. Instead of minimizin
Ts@u1 ,u1* ,...,uN ,uN* #, the minimization of

DTs
@u1 ,u1* ,...,uN ,uN* #ªTs@u1 ,u1* ,...,uN ,uN* #

2Ts†r@u1 ,u1* ,...,uN ,uN* #‡

~22!

also leads to the proper$ui(rY)% i 51
N for a r(rY) since

DTs
@u1 ,u1* ,...,uN ,uN* #>0 ~23!

for any normalizedui(rY) ( i 51, . . . ,N) for any N, with
equality for the$ui(rY)% i 51

N determined by Eq.~18!. „Equa-
tion ~23! holds by definition ofTs@r#: a set ofui(rY) deter-
mines a r(rY), for which Ts@r# gives the minimum of
Ts@ ũ1 ,ũ1* ,...,ũN ,ũN* #.… Minimizing DTs

@u1 ,u1* ,...,uN ,uN* #,
with only orthonormalization constraints@Eq. ~20!#, gives all
3-2
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FIRST-DEGREE HOMOGENEOUSN-PARTICLE . . . PHYSICAL REVIEW A 64 062503
$ui(rY)% i 51
N that correspond to somer(rY) of normalizationN

through the mapping Eq.~18!. The corresponding Euler
Lagrange equations,

2 1
2 ¹2ui~rY !2

dTs@r#

dr~rY !
ui~rY !5« iui~rY !, i 51, . . . ,N,

~24!

show that the functional derivative ofTs@r# itself is what is
responsible for the constraint of ‘‘fixedr(rY)’’; giving a
r(rY), dTs@r#/dr(rY) provides the corresponding$ui(rY)% i 51

N

through Eq.~24!. From Eq.~24! the Kohn-Sham equation
~4! follow straight away forn-representable, ground-sta
densities through the Hohenberg-Kohn Euler-equation~3!,
that is,

dTs@r#

dr~rY !
1nKS~rY !5m, ~25!

with

« i
KS5« i1m, ~26!

giving a simple derivation of them. Equation~25! brings a
new constraint, the given external potentialn(rY), into Eq.
~24! @asnKS(rY)5n(rY)1n j (rY)1nxc(rY), n j (rY) being the clas-
sical Coulomb part andnxc(rY) being the exchange
correlation part of the potential of the interaction between
particles of the given system~N,n!#; thus, while Eq.~24!
gives $ui(rY)% i 51

N for any r(rY), the Kohn-Sham equation
give $ui(rY)% i 51

N for the r(rY) that is determined byn(rY),
therefore being usable to determine ar(rY). Also, from Eq.
~24!, Eq. ~9!, that is, the behavior ofTs@r# under coordinate
scaling, is derivable directly, just as the virial theorem
density-functional theory can be derived from the Koh
Sham equations@14#, by integrating their gradients multi
plied by r(rY)rY and doing some algebraic manipulation. It
worth pointing out that the reason why the procedure lead
to Eq. ~21! cannot givelr explicitly is that by minimizing
only Ts@u1 ,u1* ,...,uN ,uN* #, available information@Eq. ~23!#,
given by the definition ofTs@r#, is lost, while the second
variational procedure utilizes the definition ofTs@r# fully,
this way relaxing the external constraint of ‘‘fixedr(rY), ’’
incorporating it into the Euler-Lagrange equations natura
The case of Levy’s generalization of the Hohenberg-Ko
functional is similar, as it is defined by

F@r#5min
c→r

$T@c#1V@c#% ~27!

with

V@c#5^cu(
i , j

1

urY i2rY j u
uc& ~28!

and c denoting normalized antisymmetric wave function
thus, with

DF@c#ªT@c#1V@c#2F†r@c#‡, ~29!
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DF@c#>0 ~30!

~for similar reasons as in the case ofTs@r#!. Minimizing
DF@c# for a givenN under the normalization constraint o
c,

^cuc&51, ~31!

yields thec that is associated to ar by density-functional
theory, through

r→c: r@c#5r, T@c#1V@c#5F@r#, ~32!

the Euler-Lagrange equation

(
i 51

N

2 1
2 ¹ i

2c1(
i , j

1

urY i2rY j u
c2(

i 51

N
dF@r#

dr~rY i !
c5Er8c

~33!

arising for c, where the Lagrange multiplierEr8 is deter-
mined by the constraint~31!. @See Appendix A for the deri-
vation of Eq.~33!.# Among the solutions of Eq.~33! that give
~the given! r(rY),cr , that one corresponds tor(rY) @by Eq.
~32!# that has the leastEr8 since

Er85T@cr#1V@cr#2E r~rY !
dF@r#

dr~rY !
drY, ~34!

the last term being constant for fixedr(rY). This leastEr8
gives a functional ofr(rY),

E08@r#5F@r#2E r~rY !
dF@r#

dr~rY !
drY. ~35!

For ~ground-state! n-representabler(rY), Eq.~33! leads to the
Schrödinger equation

(
i 51

N

2 1
2 ¹ i

2c1(
i , j

1

urY i2rY j u
c1(

i 51

N

n~rY i !c5Ec ~36!

through the Hohenberg-Kohn Euler-equation,

dF@r#

dr~rY !
1n~rY !5m, ~37!

with

E5Er81mN. ~38!

„For not ground-staten-representable densitiesr, if F@r# is
differentiable,E08@r# is not the minimumEr8 , that is, none of
the minimum statesc0 of Eq. ~33! givesr (c0Þcr). … It is
worth emphasizing that Eq.~33! could not have been ob
tained by minimizing justT@c#1V@c#, similarly to the case
of Ts@r#. It is important to note that Eq.~33! itself is just a
mathematical construction without any physics, and
Hohenberg-Kohn Euler-equation~the Hohenberg-Kohn theo
rems! is what brings physical meaning into it, making it
physical law: the Schro¨dinger equation. It has been show
for ground states, thus, how Schro¨dinger’s quantum mechan
3-3
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ics and the Kohn-Sham quantum mechanics emerge f
density-functional theory„with its energy density functiona

En@r#[F@r#1E r~rY !n~rY !drY5E08@r#1mN ~39!

and variational principle forEn@r# for the determination of
the ground-state density…, through the minimization of
DF@c# and DTs

@u1 ,...,uN # under normalization constrain
using the Hohenberg-Kohn Euler-equation as postulatum

Turning to the N-particle noninteracting kinetic-energ
density functionals, which are defined by Eq.~13! though, of
course, not uniquely, it is easy to see thatTN@r# can take the
place of Ts@r# in density-functional theory forN-particle
systems. From the definition~13! it follows that @3#

dTs@rN#

dNr~rY !
5

dTN@rN#

dNr~rY !
, ~40!

henceTs can be replaced byTN in Eq. ~1!, thus the Euler
equation

dTN@r#

dr~rY !
1nKS~rY !5mN ~41!

arises for the determination of the ground-staterN , where
mN is determined by Eq.~2! but, of course, is not them of
Eq. ~25! ~from Eq. ~40!, using the number-conservin
functional-differentiation formula@3#,

dTN@rN#

dr~rY !
2

dTs@rN#

dr~rY !

5
1

N E rN~rY8!H dTN@rN#

dr~rY8!
2

dTs@rN#

dr~rY8! J drY85c, ~42!

with mN2m5c for ground states!. With Eq. ~41!, then, the
Kohn-Sham equations can be derived through minimizin

DTN
@u1 ,u1* ,...,uN ,uN* #ªTs@u1 ,u1* ,...,uN ,uN* #

2TN†r@u1 ,u1* ,...,uN ,uN* #‡

~43!

under normalization constraint onui(rY) ( i 51, . . . ,N), get-
ting the Euler-Lagrange equations

2 1
2 ¹2ui~rY !2

dTN@r#

dr~rY !
ui~rY !5« i

Nui~rY !, i 51, . . . ,N

~44!

with, utilizing Eq. ~41!,

« i
KS5« i

N1mN , ~45!

and

« i
N5« i1m2mN ; ~46!

as, for normalized$ui(rY)% i 51
N ,
06250
m DTN
@u1 ,u1* ,...,uN ,uN* #5DTs

@u1 ,u1* ,...,uN ,uN* #, ~47!

since

r@u1 ,u1* ,...,uN ,uN* #5rN~rY !. ~48!

For Eq.~9!

TN@rN#52
1

2E rN~rY !rY ¹
dTN@rN#

dr~rY !
drY ~49!

arises, which is quite natural since coordinate scaling c
serves the normalization ofr(rY). From TN@r# (N
51,2, . . . ), formally Ts@r# can be constructed for intege
*r(rY)drY,

Ts@r#5 (
N51

`

TN@r#dN,*r . ~50!

From Ts@r# a type ofTN@r# may be constructed by fixing
the explicit N’s, that is, *r(rY)drY, in Ts@r#, considering
Ts@r# as a two-variable functional,

Ts@r#5T̃sFr,E r G , ~51!

thus

TN@r#5T̃s@r,N#, ~52!

and its derivative

dTN@r#

dr~rY !
5S dT̃s@r,N#

dr~rY !
D

N

, ~53!

emphasizing that the right side of Eq.~53! is not a number-
conserving functional derivative but just a partial function
derivative „only the explicit N’s in Ts@r# ~a variable of
T̃s@r,N#! are fixed, the variation of the remaining part
unconstrained…. In the next two sections, it will be show
how a degree-one homogeneousTN@r# can be defined for
arbitrary particle numberN, for which

TN@r#5E r~rY !
dTN@r#

dr~rY !
drY, ~54!

consequently,

(
i 51

N

« i
N50, ~55!

that is,

(
i 51

N

« i
KS5mNN ~56!

~not mN!. It is worth noting here that with the concept o
N-particle noninteracting kinetic energy, the local tempe
3-4
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turet(rY) @15,16#, introduced by Ghosh, Berkowitz, and Pa
@15# into density-functional theory, may be redefined as

TN5E 3
2 r~rY !kt~rY !drY,

giving a local temperature of degree-zero homogeneity w
respect to density scaling in the case of degree-one hom
neousTN@r# ’s.

III. ORBITALS INCORPORATING THE ‘‘GIVEN
DENSITY’’ CONSTRAINT

In the previous section it was pointed out that the giv
r(rY) constraint in the determination of the one-particle orb
als ui(rY) from which Ts@r# is constructed is secured in th
Euler-Lagrange equations forui(rY) ( i 51, . . . ,N) by none
other thandTs@r#/dr(rY) itself. SincedTs@r#/dr(rY) is not
known and the lack of knowledge ofTs@r# is why the deter-
mination ofui(rY)’s is a question, finding some other way
ensure the fixing ofr(rY) in the construction ofTs@r# is of
great importance. A natural way arises straight away as
of the orbitals, the one corresponding to the lowest state
Eq. ~24! therefore being choosable to be real and positi
can be expressed simply by the otherN21 orbitals from Eq.
~6!,

u1~rY !5S r~rY !2(
i 52

N

uui~rY !u2D 1/2

, ~57!

consequently, with the use of the first of the one-parti
equations~24!, using Eq.~57!, dTs@r#/dr(rY) can be elimi-
nated, gettingN21 equations without unknownr(rY) depen-
dence forN21 variables.~This approach has been consi
ered by several papers from various aspects on diffe
levels @17–25#, the work of Holas and March@24# giving a
thorough general summary of the subject.! With the separa-
tion of r(rY) in ui(rY),

ui~rY !5Ar~rY !f i 21~rY !, i 52, . . . ,N, ~58a!

and

u1~rY !5Ar~rY !fN~rY !, ~58b!

the Weizsa¨cker functional appears as a natural componen
Ts@r#,

Ts5TW@r#1E 1
2 r~rY !(

i 51

N

u¹W f i~rY !u2drY ~59!

with

fN~rY !5F12 (
i 51

N21

uf i~rY !u2G1/2

. ~60!

In Eq. ~59!, with Eq. ~60!, ther constraint~6! is fully incor-
porated, so the functionalTs@r,f1 ,...,fN21# obtained with
Eqs. ~59! and ~60! has to be minimized inf i(rY) with only
orthonormalization constraint,
06250
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E r~rY !f i* ~rY !f j~rY !drY5d i j , ~61!

to get the Euler-Lagrange equations that determinef i(rY) ( i
51, . . . ,N21) for a given r(rY). The resulting N21
coupled differential equations for$f i(rY)% i 51

N21, however, are
quite complicated.

A great simplification of the problem can be achieved
writing uf i(rY)u ’s as hyperspherical functions,

uf j~rY !u5)
k50

j 21

sinuk~rY !cosu j~rY !, j 51, . . . ,N21

~62a!

and

ufN~rY !u5 )
k50

N21

sinuk~rY !, ~62b!

with

u0~rY !5
p

2
, ~63!

as did Dawson and March@19# and Holas and March~for
generalN! @24# in one dimension, wheref i(rY)’s are real
functions. In three dimensions generallyf j (rY) ( j
51, . . . ,N21) are complex, thus

f j~rY !5uf j~rY !ueiw j ~rY !, ~64!

with which

Ts5TW@r#1E 1
2 r~rY !(

j 51

N

~ u¹ zf j~rY !zu2

1uf j~rY !u2u¹w j~rY !u2!drY, ~65!

where the second term in the brackets does not appea
real f j (rY) @w j (rY)50#. With the transformation~62!, the
‘‘real’’ part in Ts is given as

Tr5TW@r#1E 1
2 r~rY ! (

j 51

N21

)
k50

j 21

sin2 uk~rY !u¹W u j~rY !u2drY.

~66!

This expression can be obtained by mathematical induct
deriving theN-particle case from the (N21)-particle case by
writing

Tr@r#5(
j 51

N

TW@r j #5TW@r cos2 u1#1(
j 52

N

TW@r j #,

~67!

then applying the transformation

r→r sin2 u1 , ~68a!

u j→u j 11, j 51, . . . ,N22 ~68b!
3-5
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on the variables of the (N21)-particleTr@r,u1 ,...,uN22# to
get the second term in Eq.~67!, and using the expression

Tr5TW@r#1E 1
2 r~rY !u¹W u1~rY !u2drY ~69!

of the two-particle case, thereby getting the recursion
mula

Tr@r,u1 ,...,uN21#5Tr@r,u1#1Tp
r @r sin2 u1 ,u2 ,...,uN21#,

~70!

with TP5T2TW .
To get Ts@r# for a given r(rY), then, the functional

Ts@r,u1 ,...,uN21 ,w1 ,...,wN21# given by Eq.~65! with Eq.
~62! has to be minimized inu j (rY) ( j 51, . . . ,N21) and
w j (rY) ( j 51, . . . ,N21) with the orthonormalization con
straint ~61! @with Eq. ~64!#,

E r~rY !uf j~rY !u2drY51 ~71!

and

E r~rY !uf j~rY !uufk~rY !uexp$ i @wk~rY !2w j~rY !#%drY50,

~72!

using Eq.~62!. For the two-particle case, with

Ts@r,u1 ,w1#5TW@r#1E 1
2 r~rY !$u¹W u1~rY !u2

1cos2 u1~rY !u¹W w1~rY !u2%drY, ~73!

E r~rY !cos2 u1~rY !drY51 ~74!

as the normalization constraint from Eq.~71!, and

E r~rY !sin 2u1~rY !cosw1~rY !drY50 ~75a!

and

E r~rY !sin 2u1~rY !sinw1~rY !drY50 ~75b!

as the two real orthogonality constraints coming from
complex constraint~72!, the resulting Euler-Lagrange equ
tions are

¹2u1~rY !1
¹W r~rY !

r~rY !
•¹W u1~rY !2 1

2 sin 2u1~rY !u¹W w1~rY !u2

52ln sin 2u1~rY !1lo2 cos 2u1~rY !cosw1~rY ! ~76!

and
06250
r-

e

cos2 u1~rY !¹2w1~rY !1
¹W r~rY !

r~rY !
• cos2 u1~rY !¹W w1~rY !

2sin 2u1~rY !¹W u1~rY !•¹w1~rY !

52lo sin 2u1~rY !sinw1~rY !, ~77!

with the Lagrange multipliersln and lo corresponding to
the constraints~74! and ~75a!, respectively. The othe
Lagrange multiplier corresponding to the orthogonality co
straint ~75! can be eliminated by the transformation

la5lo cosw0 , lb5lo sinw0 ~78!

@wherela andlb are the original Lagrange multipliers ass
ciated with Eqs.~75a! and ~75b!, respectively# and setting
w050, as the addition of an arbitrary constant tow j (rY)’s is
allowed by Eqs.~65! and ~72!. For one dimension, where
w j (rY)50 ( j 51, . . . ,N21) can be taken, Eqs.~76! and~77!
reduce to the well-known equation@18,19#

u9~r !1
r8~r !

r~r !
u8~r !5l sin 2u~r !. ~79!

It is worth pointing out that Eq.~65! takes its minimum at
w j (rY) taking the value of an arbitrary constant, which allow
real f j (rY)’s; and the normalization~71! does not give any
restriction with this respect, as there is now j (rY) in it; the
only reason whyw j (rY)Þ0 in general, that is,f j (rY) has to be
complex, is the orthogonality constraint~72!.

IV. HOMOGENEOUS N-PARTICLE NONINTERACTING
KINETIC-ENERGY FUNCTIONALS

It has been shown that the noninteracting kinetic ene
can be obtained for any givenN-particle densityrN(rY) by
the minimization of the functionalTs@r,f1 ,...,fN21#, de-
fined by Eqs. ~59! and ~60!, with respect tof i(rY) ( i
51, . . . ,N21) under normalization constraints@Eq. ~61!#.
The $f i(rY)% i 51

N21 that givesTs@rN# can thus be determine
from the correspondingN21 Euler-Lagrange equations
TheseN21 equations, however, give a$f i(rY)% i 51

N21 for any
r(rY), not only for arN(rY), but thesef i@r# ( i 51, . . . ,N
21) yield Ts@r# only for rN(rY)’s, that is, in this way an
N-particle noninteracting kinetic-energy density functional
defined,

TN@r#ªTs†r,f1@r#,...,fN21@r#‡, ~80!

for the N51 case having

T1@r#[TW@r#. ~81!

An interesting question is whether thisTN@r# has any
degree of homogeneity in density scaling, likeTW@r#, which
is of degree-one homogeneity. Examining theN52 case in
one dimension in the hyperspherical function representa
of f i(rY)’s, it can be seen thatr(r ) appears in the Euler
Lagrange equation~79! only in the formr8(r )/r(r ), which
is of degree-zero homogeneity inr(r ), on the basis of which
3-6
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the degree-one homogeneity of the emerging kinetic-ene

functional, which is T2@r#5TW@r#1* 1
2 r(r )@u8(r )#2dr,

has been concluded a few times in the literature, asu(r )
must be a functional ofr8(r )/r(r ). However,u(r ) has a
dependence on the Lagrange multiplierl as well,

u5uFr8

r
,lG , ~82!

which ruins the degree-one homogeneity, since it would c
tradict with the constraint~74!, which determinesl and
which allows homogeneity of only degree minus one inr(rY)
for cos2 u(rY). The connection between the possible homo
neity properties ofT2@r# and cos2 u(rY) can be exhibited more
directly, without concerningu(r ) itself, through the identity

@¹W cos2 u~rY !#254@¹W u~rY !#2 cos2 u~rY !@12cos2 u~rY !#.
~83!

Equation~83! shows that cos2 u(rY) has to be of degree-zer
homogeneity to yield@¹u(rY)#2 of degree-zero homogeneity
that is,T2@r# of degree-one homogeneity. The normalizati
constraint, thus, leads toTN@r#, which are not first-degree
homogeneous, even more, not homogeneous at all, as ca
seen from Eq.~83!. However, Eq.~71! has to hold only for
the givenN, that is, forN-particle densitiesrN(rY); for gen-
eral r(rY) it can be modified in a way to yield Eq.~71! for
rN(rY). The most simple and, also, reasonable extension
Eq. ~71! is

E r~rY !uf j~rY !u2drY5
1

N E r~rY !drY ~ j 51, . . . ,N21!,

~84!

with N being the givenN, that is,N5*rN(rY)drY, and for the
above case, giving

E r~rY !cos2 u1~rY !drY5 1
2 E r~rY !drY. ~84a!

Equation~84! can be considered as a natural generaliza
of the normalization~71!, there being no reason to requi
the componentsr(rY)uf j (rY)u2 ( j 51, . . . ,N21) of a r(rY)
with *r(rY)drYÞN to be normalized to 1. It can be seen im
mediately that this generalized normalization does not s
the degree-zero homogeneous nature off i@r# ’s, which
emerges from the Euler-Lagrange equations, which con
r(rY) explicitly only in the form¹r(rY)/r(rY).

The degree-one homogeneity ofTN@r# defined with the
normalization~84! can be proved explicitly for general~in-
teger, greater than 1! N in the following way. The functional
derivative ofTN@r# can be expressed as
06250
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dTN@r#

dr~rY !
5

dTs†r,f1@r#,...,fN21@r#‡

dr~rY !

5
dTs@r,f1 ,...,fN21#

dr~rY !

1 (
i 51

N21 E dTs@r,f1 ,...,fN21#

df i~rY8!

df i~rY8!

dr~rY !
drY8.

~85!

Note that while after the first equality sign in Eq.~85!, there
is a full functional derivative with respect tor(rY), after the
second equality sign, a partial functional differentiation w
respect tor(rY) appears~in the first term!. @Throughout, when
a differentiation with respect tor(rY) is a full one, ther
dependence of the variablesf i of the functional considered
is displayed.# Following from the minimizational definition
of Ts@r#, the partial functional derivatives o
Ts@r,f1 ,...,fN21# with respect to its variablesf i(rY) are
related to the constraints~84! and ~61! ~with iÞ j !,

Cjk@r,f1 ,...,fN21#5E r~rY !f j* ~rY !fk~rY !drY2
*r~rY !drY

N
d jk

50, ~86!

by the Euler-Lagrange equations

dTs@r,f1 ,...,fN21#

df i~rY !
5(

j <k
l jk

Cjk@r,f1 ,...,fN21#

df i~rY !

~ i 51,...,N21!, ~87!

with l jk being the Lagrange multipliers ensuring the fullfi
ment of the~orthonormalization! constraints. From the con
straints themselves, being required for everyr(rY), by differ-
entiation with respect tor(rY),

05
Cjk†r,f1@r#,...,fN21@r#‡

dr~rY !

5
Cjk@r,f1 ,...,fN21#

dr~rY !

1 (
i 51

N21 E Cjk@r,f1 ,...,fN21#

df i~rY8!

df i~rY8!

dr~rY !
drY8 ~88!

arises, that is, the partial functional derivative of
Cjk@r,f1 ,...,fN21# with respect to its variabler(rY) is

Cjk@r,f1 ,...,fN21#

dr~rY !

52 (
i 51

N21 E Cjk@r,f1 ,...,fN21#

df i~rY8!

df i~rY8!

dr~rY !
drY8. ~89!

With Eq. ~87!, Eq. ~85! gives
3-7
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dTN@r#

dr~rY !
5

dTs@r,f1 ,...,fN21#

dr~rY !

1 (
i 51

N21 E (
j <k

l jk

3
Cjk@r,f1 ,...,fN21#

df i~rY8!

df i~rY8!

dr~rY !
drY8, ~90!

which, with the use of Eq.~89!, yields

dTN@r#

dr~rY !
5

dTs@r,f1 ,...,fN21#

dr~rY !

2(
j <k

l jk

Cjk@r,f1 ,...,fN21#

dr~rY !
. ~91!

Since

E r~rY !
Cjk@r,f1 ,...,fN21#

dr~rY !
drY5Cjk@r,f1 ,...,fN21#,

~92!

that is,Cjk@r,f1 ,...,fN21# are ~partially! homogeneous o
degree one inr(rY), and Cjk†r,f1@r#,...,fN21@r#‡50,
from Eq. ~91!

E r~rY !
dTN@r#

dr~rY !
drY5E r~rY !

dTs@r,f1 ,...,fN21#

dr~rY !
drY

5Ts†r,f1@r#,...,fN21@r#‡5TN@r#,

~93!

where the ~partial! degree-one homogeneity o
Ts@r,f1 ,...,fN21# in r(rY), following from its construction,
~59!, has been used~in the second equality!, and which
means thatTN@r#5Ts†r,f1@r#,...,fN21@r#‡ itself is also
of degree-one homogeneity inr(rY), not just partially but
fully as well. Note that the key to this proof is the expressi
of the full derivative ofTs†r,f1@r#,...,fN21@r#‡ in terms
of partial functional derivatives with respect tor(rY) of func-
tionals, for which degree-one homogeneity inr(rY) follows
from the explicitr(rY) dependence in their~known! form.

It has to be emphasized that this degree-one homogen
of TN@r# ~N51,2, . . . ) ofcourse does not mean thatTs@r#
itself is of degree-one homogeneity, as shown formally
Eq. ~50! too. With this property ofTN@r#, a strong require-
ment is obtained, which can be used to construct den
functionals that give the exact noninteracting kinetic ene
for a given particle number. A method proposed by Ga´l and
Nagy @26# gives an example for how the degree-one hom
geneity inr(rY), together with the degree-two homogene
in rY, that is, Eqs.~10! and~9!, can be used to derive explic
analytical expressions forTs as a functional ofr(rY), if the
noninteracting kinetic-energy density is assumed to b
function ofr(rY) and its derivatives, yielding the Weizsa¨cker
functional as a general component, in agreement with
~59!. Note that theTN@r# ’s of degree-one homogeneity con
structed here can be considered as the generalizations o
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Weizsäcker functional ~which is T1@r#! for arbitrary N,
TW@r# itself being in accordance with the generalized n
malization constraint~84! and not with Eq.~71!, as it can be
derived usingr(rY)5u1* (rY)u1(rY), which gives the normal-
ization ~71! only for N51.

Finally, it is worth pointing out that, utilizing the recur
sive structure ofTr@r,u1 ,...,uN21# @characterized by the
formula Eq.~70!#, with the knowledge ofTN@r# for a given
N considering the ‘‘real parts,’’ to obtainTN11@r#, only one
variational variable needs to be determined as a functiona
r(rY) ~that is, only one differential equation has to be solve!,
applying the transformation~68a! to the Pauli part~P! of
TN@r#, herewith having a systematic procedure to getTN@r#
for every N; e.g., for the three-particle case~in one dimen-
sion!,

T3@r#5TW@r#1E 1
2 r~r !@u8~r !#2dr1T2

P@r sin2 u#,

~94!

with T2
P@r#5T2@r#2TW@r#, for which the corresponding

Euler-Lagrange equation that determinesu@r# is

u9~r !1
r8~r !

r~r !
u8~r !1sin 2u~r !

dT2
P@r#

dr~r !
U

r sin2 u

5l sin 2u~r !. ~95!

V. SUMMARY

In this study it has been shown that, in the Euler-Lagran
equations that determine the orbitals from which the non
teracting kinetic energyTs is built, the Lagrange multiplier
that forces the orbitals to yield a given densityr(rY) can be
identified with the first derivative ofTs@r#, giving a new,
simple derivation of the Kohn-Sham equations; and on
similar basis, for ground states, the Schro¨dinger equation has
also been shown to emerge from the Hohenberg-Kohn Eu
equation. After pointing out thatTs@r# can be replaced in
density-functional theory by N-particle noninteracting
kinetic-energy density functionals,TN@r#, that is, functionals
of r(rY) that giveTs for N-particle densities, a natural defi
nition for TN@r# has been given by~i! constructingTs from
N21 functionsf i(rY) that incorporate the givenr(rY) con-
straint and~ii ! using the Euler-Lagrange equations resulti
for the f i(rY)’s for the given N to define f i@r# ( i
51, . . . ,N21) for r(rY) of *r(rY)drYÞN as well. The hyper-
spherical function representation off i(rY)’s has been consid
ered for complexf i(rY)’s, generalizing the earlier results fo
one dimension. Finally, the normalization constraints
f i(rY)’s have been generalized in a reasonable way to lea
TN@r# functionals of degree-one homogeneity, this prope
giving a powerful tool, being a strong requirement, to co
struct density functionals that giveTs@r# for a given particle
number. In addition, a systematic procedure has been
sented by which the ‘‘real part’’ ofTN@r# can be obtained for
eachN by the solution of uncoupled differential equations
3-8
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APPENDIX A: DERIVATION OF EQ. „33…

Because of its third term, the derivation of Eq.~33! may
need some explanation; the kinetic energy and the elect
electron repulsion energy terms arise similarly as in the d
vation of the ~ground-state! Schrödinger equation through
the minimization of the usual energy wave-function fun
tional, Ev@c#, of quantum mechanics.

The third term in Eq.~33! comes from the functional dif-
ferentiation of 2F†r@c#‡ @in Eq. ~29!# with respect to
c* (rY1 ,...,rYN), that is,

(
i 51

N
dF@r#

dr~rY i !
c~rY1 ,...,rY i ,...,rYN!5

dF†r@c#‡

dc* ~rY1 ,...,rYN!
,

~A1!

wherer@c# is given by Eq.~19!. Writing thec dependence o
r in the generally used detailed form

r~rY !5NE ¯E c* ~rY,rY2 ,...,rYN!c~rY,rY2 ,...,rYN!drY2¯drYN ,

~A2!

the origin of the summation over the electron indices
however, hidden. To get to Eq.~A1! ~throughr@c#!, formally
that expression ofr in terms ofc has to be used in which th
antisymmetric nature of Fermion wave functions is not u
lized, which is

r~rY !5(
i 51

N E ¯E c* ~rY1 ,...,rYN!c~rY1 ,...,rYN!drY1¯drY i 21

3drY i 11¯drYNU
rY i5rY

, ~A3!

as in the case of the components ofEv@c# to get the Schro¨-
dinger equation. With Eq.~A3!, applying the chain rule of
functional differentiation, Eq.~A1! follows straight away.

APPENDIX B: INCLUSION OF SPIN IN THE DERIVATION
OF FIRST-DEGREE HOMOGENEITY

In this appendix the spin of the electrons will be incorp
rated into the derivation of the first-degree homogene
N-particle noninteracting kinetic-energy density functiona
To give a wider view on the subject, the derivation this tim
will be based directly on the Kohn-Sham orbitals, provi
that, with the generalized normalization proposed in Sec.
the Kohn-Sham orbitals can be taken as degree-half ho
geneous functionals of the densityr(rY).

Consider a system with two Kohn-Sham orbitals, that

r~rY !5n1uu1~rY !u21n2uu2~rY !u2, ~B1!
06250
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wheren1 and n2 are the occupation numbers of the corr
sponding orbitals. From Eq.~B1! the lowest-lying orbital can
be expressed as

u1~rY !5Ar~rY !2n2uu2~rY !u2

n1
. ~B2!

Following the procedure described in Sec. III, that is, inse
ing Eq. ~B2! into the orbital equations~24! and then solving
them for u2(rY), yields u2(rY) as a functional ofr(rY), and
also of«5«22«1 ,

u2~rY !5u2@r,«#,

where«5«@r# is determined by the normalization ofu2(rY).
Now, to examine the behavior ofu2@r#5u2†r,«@r#‡ under
density scaling, multiply Eqs.~B2! and ~24! with someAk,

Aku1~rY !5Akr~rY !2n2uAku2~rY !u2

n1

~B3!

and

2 1
2 ¹2Akui~rY !2

dTs@r#

dr~rY !
Akui~rY !5« iAkui~rY !, ~B4!

from which

Aku2~rY !5u2@kr,«~k!#. ~B5!

Taking the generalized normalization

E uui~rY !u2drY5
*r~rY !drY

N
, i 51,2 ~B6!

and multiplying it withk gives

E uAku2~rY !u2drY5
*r~rY !drY

N
, ~B7!

from which « (k) in Eq. ~B5! emerges as

«~k!5«@kr#, ~B8!

which, note, would not be the case if the traditional norm
ization constraint was used. Equations~B5! with ~B8! give

Aku2@r#5u2@kr#, ~B9!

that is,u2@r# is homogeneous of degree half. On the basis
Eq. ~B2!, the same can be said aboutu1@r# as well.

For systems with more than two Kohn-Sham orbita
where

r~rY !5(
i 51

m

ni uui~rY !u2, ~B10!

the foregoing proof is trivially extendable, giving functiona
ui@r# of degree-half homogeneity. From this result then t
degree-one homogeneity of theN-particle noninteracting
3-9
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TAMÁ S GÁL PHYSICAL REVIEW A 64 062503
kinetic-energy density functionalsTN@r# constructed as de
scribed in Secs. III and IV follows straight away via

TN5E (
i 51

m

niui* ~rY !~2 1
2 ¹2!ui~rY !drY ~B11!

with

N5(
i 51

m

ni .
s

06250
It is important to point out thatTN@r# depends on the occu
pation structure of the orbitals; however, considering, for
ample, only Fermion systems with only the highest~occu-
pied! orbitals allowed to be singly occupied, while the othe
being doubly occupied, the particle numberN determines
TN@r# without ambiguity of course. Note also that differe
occupation of a given number of orbitals does not necessa
lead to differentTN@r#, as in the case of one- and two
electron ground-state systems, where

T1@r#[T2@r#[TW@r#. ~B12!
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