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Probabilistic quantum logic operations using polarizing beam splitters
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It has previously been shown that probabilistic quantum logic operations may be performed using linear
optical elements, additional photofencilla), and post-selection based on the output of single-photon detec-
tors. Here we describe the operation of several quantum logic operations of an elementary nature, including a
guantum parity check and a quantum encoder, and we show how they may be combined to implement a
controlledNnoT (cNOT) gate. All of these gates may be constructed using polarizing beam splitters that com-
pletely transmit one state of polarization and totally reflect the orthogonal state of polarization, which allows a
simple explanation of each operation. We also describe a polarizing beam splitter implementationoaf a
gate that is closely analogous to the quantum teleportation technique previously suggested by Gottesman and
Chuang[Nature402, 390(1999]. Finally, our approach has the interesting feature that it makes practical use
of a quantum-eraser technique.
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[. INTRODUCTION herently nonlineaf7-9], but a partial set of Bell measure-
ments may be performed probabilistically using linear opti-
An optical approach to quantum information processingcal element§10—-12. Combining these two ideas leads to a
would have several advantages, including the ability to transcNOT gate that we describe in Sec. Il using polarizing beam
port qubits from one location to another using optical fiberssplitters. As we already mentioned, this approach provides a
or waveguides. The main difficulty with any optical ap- Straightforward way to understand the operation of the logic
proach is that nonlinear interactions between individual phogate as well as some potential experimental advantages in its
tons are required in order to implement quantum logic gate§peration. ThisSNOT gate is similar in some respects to those
that operate with 100% efficiency. It was recently shown inpreviously described by KLM1] as well as by Koashi,
two pioneering paperg1,2], however, that probabilistic Yamamoto, and ImoteKYI) [2].
quantum logic gates may be implemented using linear opti- In Sec. lll, we introduce several simple quantum logic
cal elements, additional photofancilla), and post selection gates that combine two photons on a single polarizing beam
based on the output of single-photon detectors. Probabilistigplitter to perform a variety of elementary functions, includ-
logic gates of this kind will give the desired result with cer- ing a destructivesNOT gate in addition to the quantum parity
tainty when a specific output from the detectors is obtained¢heck and quantum encoder mentioned above. These el-
but that will only occur for some fraction of the events, typi- ementary operations are then combined to give an alternative
cally with a probability of 1/16 to 1/4. Somewhat remark- implementation of a complete probabilisttnoT gate that
ably, Knill, LaFlamme, and MilburdkKLM ) [1] have shown does not rely on teleportation in any obvious way.
that the probability of success of a given operation can ap- Our approach makes use of a technique that may be
proach unity in the limit of large numbers of ancilla and viewed as being equivalent to a quantum ergs8r-15, as
detectorq3]. is described in the Appendix. We summarize our results and
In this paper, we describe a variety of quantum logic gate§onsider the prospects for future applications in Sec. IV.
that may be constructed using polarizing beam splitters that
completely transmit one state of polarization and totally re-
flect the orthogonal state of polarization. One advantage of
this approach is that it enables us to give simple explanations
for the operation of all of the relevant quantum logic gates. As we mentioned earlier, Gottesman and Chuang showed
In addition, polarization-encoded qubits are typically lessin a pioneering papef4] that acNOT operation could be
sensitive to phase drifts than are interferometric implemenperformed using a modified form of quantum teleportation.
tations. We describe several kinds of probabilistic quantunAlthough the required Bell-state measurements are inher-
logic gates, including a quantum parity check and a quanturently nonlinear[7—9], a partial or incomplete set of Bell-
encoder, along with two different implementations of thestate measurements may be implemented using linear optical
controlledNOT (CNOT) gate. elements and post selection, as has been demonstrated ex-
The original two approache$l,2] for implementing perimentally by Zeilinger’'s groupl0—12. A combination of
probabilistic quantum logic gates using linear elements ar¢hese two techniques might be expected to allow the imple-
closely related to an earlier paper by Gottesman and Chuangentation of a probabilisticNoT, which formed part of the
(GC) [4], who showed that &NOT gate could be imple- motivation for earlier work in this arefl,2]. Here, we de-
mented using a modified form of quantum teleportafibh  scribe an implementation of a probabilistizoT along these
and a four-qubit entangled state as a resogaceilla. The lines using polarizing beam splitters and a quantum erasure
Bell-state measurement§] required for teleportation are in- technique. This approach requires ancilla in the form of a

Il. cNoT GATE USING FOUR-PHOTON
ENTANGLED STATES
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the GC protoco[4] with polarization-encoded photonic qu-
*-Eﬂ—* bits and partial Bell-state measurements. At the center of the
figure is a source that emits the four-photon entangled state
15) V) \F) | x), whose properties we will now investigate. The siagte
(5) is created in such a way that one photon is emitted into each
|H) of the four modes labeled 1 through 4.
FS.PBS The input photor_1 _in mod4 is m_ixed _with the ph_otoq in
_E% mode 1 by a polarizing beam splitter in th&/ basis with
ideal single-photon detectoB, andD in its output ports.
The photons in modeB and 4 are mixed in another polariz-
(c) ing beam splitter in a similar way. The remaining two pho-
tons of| x) in modes 2 and 3 will serve as the output qubits.
FIG. 1. (a) Orientations of theHV and FS polarization bases In a cNOT gate, the value of the target qubit is to be
used throughoyt the text. TIeS basis is rotated-45° with respect  rayersed (6-1) if the control qubit has the value 1. If the
to the HV basis.(b) and (c) show the symbols used to represent jyn,t photons in modes andB are considered the “control”
polarizing beam splitters in thdV andFS bases, respectively. and “target” photons, respectively, then the desiredoT
gate operation corresponds to the following state transforma-
four-photon entangled stalg) that can be created in various tion:
ways[1,2,4], as will be discussed further in Sec. IV below.
The implementation given here is similar in spirit to those of @1lHa)|He) + a2|Ha)|Ve) + a3 Va) He) + as|Va)|Ve)
Refs.[1] and[2], but our approach allows a more straight-
forward understanding of the operation of teoT gate and —a1[Ha)[Ha) + aglH)|Va) + gl Vo) | Va) + sl Vo) Ha)
may have some practical advantages as well. 2.1
The polarization conventions that will be used throughout . - 4 5
the paper are shown in Fig. 1. The photonic qubits and where thea are arbitrary coeff|.(:|ents§(i:.1|ai| =1), anq,
1) will be represented by horizont4H) and vertical|V/) for exar_nple,|HA) denotes a single horizontally polarized
polarizations, respectively, but measurements will also be?hOton in modeA. From here out, the kets will be dropped
made in the|F) and |S) basis shown in the figurgl6]. fom the notation for simplicity.
Polarizing beam splitters oriented in tih&V basis will al- In Fig. 2, the.par'ual _BeII measurements at the upper and
ways transmitH-polarized photons and refle&t-polarized lower bgam splitters S|mpl'y consist of only accepting the
photons, while polarizing beam splitters oriented in F@ outputs in modes 2 and 3 if one-and-only-ddé01) pho-
basis will transmit F-polarized photons and reflect ton is det_ectgd in each of the four_detectors. Comb_lne_d with
S-polarized photons. It will be assumed throughout the paperrhe polarlzatl_on—depe_ndent F‘?f'eC“O”S and transmissions at
that the beam splitters and detectors are ideal and that all tﬁBe beam splitters, this qondmon allows the required proper-
photons in a given optical path are in the same spatial modies of the statey to be simply read off from thenoT state
[17-20. transformation in Eq(2._1). . .
Figure 2 shows an implementation ofcaoT gate using For example, forthg Input amplltuquAHB, the partial
Bell measurements will only succeed if each of the photons
in modes 1 and 4 are al$® polarized(having one of thenV
}]D,, polarized would result in two photons at one detector and

HV-PBS

(a)

zero at another Furthermore, theNoOT transformation for
‘fontml P D this particular input amplitude requires the output photons in
Ian—"—Ea—q—’} ¢ modes 2 and 3 to bkl polarized, so that the stape must
contain an amplitude of the fordd;H,H,H3.
1 The three remaining amplitudes may be read off in a simi-
a 2 lout)s lar manner to reveal the required form ypf
b o .
4 X:E(H1H4H2H3+H1V4H2V3+V1H4V2V3
target
i) =25 FV1VaVaHa). (22
m It can be seen from this argument that the required polariza-

LRD tions will be generated in the output modes whenever each of
m the detectors registers 1A01 photon.

FIG. 2. A polarization-encoded version of the Gottesman- Although the above argument determines the required
Chuang protocol. This scheme relies on a four-photon entanglefPrm of the statey, we must also consider the way in which
state| ) to perform a probabilisticNoT operation on the two input  the output photons are entangled with the polarizations of the
photonic qubits in modeA and B. Four polarization-sensitive de- photons in the paths, n, p, andqleading to the detectors.
tectors in theF'S basis are labele®,,, D,, D,, andD,. Any such entanglement would result in a more complicated
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""" DF different values(odd parity, and one of the qubits is de-
PA T s stroyed in any event. The operation of this device does not
iD,; E SDe! measure or determine the values of either input qubit. The
T c input and output modes have been labeled in this way to
facilitate the subsequent construction ofcBOT gate. Pan
) et al.[21] have independently proposed the use of polarizing
fin) 2 rJ g lout) beam splitters to compare the polarization of two photons for
use in entanglement purification, and similar parity checks
have been proposed for other applicatip2g—2§.
As illustrated in Fig. 3, the quantum parity check may be
FIG. 3. Implementation of a probabilistic quantum parity checkimplemented by mixing the photons in a polarizing beam
of the qubits in mode 2 and modea using a polarizing beam splitter and accepting the output in mode 2 only for those
splitter in theHV basis and a polarization-sensitive deteddqrin cases in which polarization-sensitive detecidy receives
the FS basis. The dashed-box inset shows the detaiBafwhich ~ 1AO1 photon. This may only occur if the two photons have
consists of a polarizing beam splitter in tF&S basis followed by  the same polarization. In order to preserve the coherence of
two ordinary single-photon detectors. an arbitrary input superposition state, however, the
polarization-sensitive detectdd. consists of a polarizing
final state than that shown in E(.1). Roughly speaking, beam splitter oriented in th€S basis and two ordinary
entanglement of this kind would provide information regard-single-photon detectors as shown in the inset of Fig. 3.
ing the state of the input qubits, which would destroy the The operation of the quantum parity check can be under-
coherence of a quantum computing algorithm. This situatiorstood as follows: Consider an arbitrary polarization state of
is analyzed in detail in the Appendix, where it is shown thatthe input qubitin), = aH, + 8V, , and a single photon in
this kind of information can pe “_erased" if each of the four the state |¢,)=1/\y2(H,+V,). The total state, ¥, ,
detectors measure the polarization of the photons irFtBe =|in), ®|¢,), is transformed by the polarizing beam split-
basis. This is the case becauseFapolarized photon is an ter as follows:
equal superposition dfi andV polarizations, for example, so
that such a measurement provides no information regarding @ 1
the original values of the qubits. In this particular example, Wora— —=HoHc+—=VoVet—=14, (3.1
the use of a quantum erasure technique of this kind is equiva- V2 2 2
lentto a| ¢ ") Bell-state measuremefit0], but that is not the
case for the more general quantum erasure operations d
scribed in Sec. Il below.
It is shown in the appendix that the specified output from?€° photons. o . -
the detectors will be obtained 1/4 of the time, so that this 'Usmg the polarizaiion coiiventions shpwn in Figa)lto
CNOT gate succeeds with a probability of 25%, provided thatV"te the modec amplitudes in the=S basis leads to
the statey has been created with certainty.

\é/_herezz/,Easzer,BHcvc is composed of amplitudes that
will lead to unsuccessful cases in whiEh, receives two or

1

\/Elﬂi-

(3.2

1
W, = [Fo(aH,+ BV,) + S — aH,+ BV,) ]+
lll. cNoT USING TWO-PHOTON ENTANGLED STATES 27a—5 [ Felabat BV2)+Si( 2+ BV2)]

In this section, we describe the implementation of several

kinds of probabilistic quanturr_i logic gates using polarizir_ig From the first term inside the square brackets of G),
beam splittgrs. We then_ combine these elementary operatiog% see that if we passively accept the output only when we
to give an implementation of anOT gate that does notrely o aive 1A01 photon iD" and zero photons DS, the

. . . e C c?
upon guantum tg_leport_atic_)n in any obvious way. In ad_d_'t'pnarbitrary polarization of the input photon in modé ®ill be
to providing additional insight into the nature of probabilistic mapped onto the photon in mode 2 with a probability of
guantum logic gates, this implementation may have SOME | ~cess equal to 1/4
practical advantages in certain applications, as will be dis- Furthermore, it can be seen from the second term inside

cussed in the next section. In particular, tteoT described the square brackets of E¢8.2) that we may improve this
here uses a two-photon entangled state as a resource, rat ) o
than the four-photon entangled state required forcther of rﬁB?{)bability from 1/4 to 1/2 if we also accept the case when

. . we receive 1A01 photon iB? and zero photons i®f . In
the previous section. ; c . . c
this case however, we need to actively impart an additional
_ phase shift that transforms mode 2 in the following way:
A. Quantum parity check — aHy+ BV, aHy+ BVs.

The first logic operation of interest is the probabilistic  Note that accepting either of these two detection out-
quantum parity check shown in Fig. 3. The goal of this de-comes does not provide any type of “which-polarization”
vice is to transfer the value of the input qubit in modetd8  information that would essentially serve to measure the in-
the output in mode 2, provided that its value is the same aput. Imparting the additionair phase shift could be done by
that of a second input qubit in mode (even parity. The  rapidly changing the bias voltage on a Pockel’s cell in mode
device fails and no output is produced if the two qubits have2 upon detection of a photon iﬁf. The quantum erasure
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control

1

\/E‘//u :
(3.9

If we accept only outcomes in which detec®j receives
1A01 photon and:))j’ receives zero photons, the output col-
lapses to the stateV;+ BH5. This corresponds to a “flip”
of the input statexH s, + BV3, and occurs with a probability
of 1/4.

From Eg. (3.5, we see that this probability can be in-

FIG. 4. Implementation of a destructieoT that performs a . .
state flip on the photon in mod€ 2hat is controlled by the polar- crea§ed to 1/2 if we also accept the outcomes in ngh

ization of a single photon in mode Its successful operation re- eceives 1A01 photon arﬂg receives zero photons. For this

quires the destruction of the control photon. The dashed-box ins€utcome, however, we need to apply classically controlled

shows the details of the polarization-sensitive detebtgr single-qubit operations that accomplish the transformation
aHs+ BV;— aV3+ BH;. This could be done, for example,

technique used here to eliminate any knowledge of the inpu first rotating the polarization of the photon in mode 3 by
qubit is not equivalent to a Bell-state measurement or t§0°, and then imparting the same type of polarization depen-
quantum teleportation, since it only involves the detection ofdent m-phase shift that was used in quantum parity check

a single photon. device. . _
To complete the description of the destructieoT op-

_ eration, we now consider the case where we have the same
B. Destructive-cNOT arbitrary state of the input “target” photorjjn)s = aHs,
A probabilistic logic device that we refer to as a destruc-+BVa:, but a singleH-polarized photon in modb, |¢;,)
tive CNOT is shown in Fig. 4. In this device, the “target” =H,. Following the steps that lead to E(B.5), it can be
input photon in mode 3is mixed with another input photon shown that
in modeb at a polarizing beam splitter that is oriented in the
FS basis. The goal of this device is to flip the polarization . 1
state(e.g., H—V) of the “target” photon if the “control” ‘I’a'b—’i[Hd(“H3+:3V3)+Vd(“v3+:3H3)]+
photon in modeb is V polarized, and do nothing if it i$l
polarized. This operation is equivalent to a probabilistic

CNOT gate except that the information contained in the CONyyhere dn=al\2 _
. . =/ \2(F3S;3+F¢Sg) + B/ 2(F3S;—~ SuF g)
trol photon is destroyed in the process. _ _again includes the amplitudes that lead to unsuccessful de-
As in the q“a”‘“m parity chepk,_the outp_u.t in mode 3 will tection. In comparison with Eq3.5), we see that using the
only be accepted if the polarization-sensitive detedr  game detection scheme and single-qubit operations for the

(see inset box in Fig.)dreceives 1AO01 photon. The opera- ;,qe of arH-polarized control photon will leave the state of
tion of Fig. 4 can be understood by first considering the casg,q target photon unchanged.

of an arbitrary polarization state of the “target” photon,
lin)s;=aH3 4+ BV3, and a singleV-polarized photon in
modeb, |¢p)=V,.

Writing these states in thES basis, the total stat® s/,

1
Wap— E[Hd(avs"‘ BH3)+Vy(aH3z+ BV3) ]+

1

\/E‘rblll '

(3.6

From Egs.(3.5 and(3.6), it is clear that the destructive
CNOT performs a polarization state-flip transformation of the
input photon in mode 3that is controlled by the polarization
of the control photon in modb. However, this transforma-

=[in)s ®|yp) is given by tion is only realized by a post-selection process that destroys
the control photon.
Wy | Py S0+ (Fa+5) |8 - (Fyt )
P \/E \/E \/E C. Quantum encoder
33 Although thecNoT described above destroys the control
. ) o photon, such a device would still be useful if we could copy
The polarizing beam splitter transforms this into the value of the control qubit before tleaioT operation, so
that all of the information would still be available after the
1 1 operation was completed. With that in mind, we now de-
Warp— s[a(FaF3—S4Ss) + B(FaFs+SuSe) 1+ = scribe the operation of a probabilistic quantum encoder as
V2 (3.4) shown in Fig. 5. The intended function of this device is to

copy (encodé the value of the input qubit in mode’ dnto

both of the output modes 2 ard An operation of this kind
where = al\2(F3S;—F4Sy) + B/2(F3S;+S4Fg) in-  is not equivalent to quantum clonifig7] and is convention-
cludes the amplitudes that would lead to the unsuccessfidlly referred to as a quantum encod@8]. Once again, the
cases in whictD4 does not receive 1A01 photon. Rewriting modes have been labeled in such a way as to facilitate the
the amplitudes in modd back in theHV basis leads to subsequent construction ofcaloT.
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iDef D
c
C
control ,
, lin)g 2 l"_} 2 |out)s
jin)y—2 2 Jout),

(Parity-Check)

@_p b (Encoder)

target

b lin)g—3 2 lout)s
|out)y d
(Destructive-CNOT)
FIG. 5. A quantum encoder circuit that is identical to the quan- Dy
tum parity check of Fig. 3 except the single photon in madis et
+
now part of a two-photon Bell-staig,,=1/V2(H Hy+V,Vy). FIG. 6. Construction of a probabilistcnoT gate by combining

a quantum encoder with a destructieroT. The mode labels have

A quantum encoder may be implemented by combiningoeen preserved to facilitate comparisons with Figs. 4 and 5.
the quantum parity check described above with a two-photon
entangled state of the formp,, = 1\2(HoHp+VaVy), Since the quantum parity check and destructweT op-
where one member of the two-photon entangled state preerations both succeed with a probability of 1/2, it follows
vides the input to moda of the quantum parity check. This that thecNoOT gate of Fig. 6 will succeed with an overall
is illustrated in Fig. 5, where we use the same detectiorprobability of 1/4. The operation of the gate may be explic-
scheme and single-qubit operations used in the quantum paitly verified by considering an arbitrary input state of the
ity check. form

Recall that in the quantum parity check, a successful de-
tection event post-selected outcomes that effectively realized Wz =aiHaHg +azHa Ve + agVaHg + asVa Va,
the transformatiorrH,, + BV, — aH,+ BV,, provided that (3.9
the values of the qubits in modesand 2 were the same. ) )
Based on the same arguments used to derivéE®), it may and calculating the evolution of the total stalg=V,, 5,
be shown that successful detection in Fig. 5 post selects tH& $an- Based on the same types of arguments used in the
following transformation of the same arbitrarily polarized descriptions of the earlier logic devices, it can be shown that

input state: L

aH2,+ﬂV2,_)a,H2Hb+BV2Vb' (37) \Pt—>Z{FCHd[+alH2H3+ C(2H2V3+Q3V2V3+ a4V2H3]

As in the quantum parity check, the operation of the quantum T ScHal — aaHoHa = apHoVst asVaVat agVoHs)

encoder succeeds with a probability of 1/2. +F Vo[ + agHoVa+ asHoHs+ asVoH s+ agV,Vs]
It should be apparent from E€B.7) that the operation of

a quantum encoder is not equivalent to quantum cloning + SVl — asHoVa— asHoHs+ azVoHs+ agVoVa]}

[27], even though the value of the input qubit is copied onto 3

two output qubits. The value of the input and output qubits is + iy, (3.9

not determined or measured during the operation of this de- 2

vice.

where ¢, is a normalized combination of all of the ampli-
, tudes that would not lead to 1AO1 photon in each of the
D. Nondestructive cnoT polarization-sensitive detectoB, andDy. The amplitudes
The elementary logic operations described above mawpf interest are grouped together as the four main terms inside
now be combined to implement a nondestructxeoT gate  the curly brackets of Eq.3.9).
as illustrated in Fig. 6. The quantum encoder of Fig. 5 is used From the first of these four terms, we see that if we pas-
to copy the value of the control qubit of modé Birectly  sively accept only those cases in which we receive 1A01
into the output in mode 2 as well as into the input mbdef  photon inDY and 1A01 photon DY (e.g., the passive
the destructivesNOT gate of Fig. 4. The output in mode 3 success conditions of the quantum parity check device and
will then contain the result of the destructieetoT operation  the destructivecNoT, respectively, then we accomplish the
while the value of the control qubit is preserved in the otherdesiredcNOT transformation on the input state of E@.8
output mode. All of the mode labels have been preserved twith a success probability of 1/16. However, if we also ac-
facilitate comparisons of Figs. 4, 5, and 6. cept the three other terms inside the curly brackets of Eq.
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(3.9 and implement the appropriate combinations of thefour ancilla photons to generate a state analogous to the four-
classically controlled single-qubit operations used in thephoton entangled statg. They followed this by quantum
quantum parity check and the destructdreoT, then the four  teleportation of the two input qubits using two Bell-state
main terms all combine and increase this probability frommeasurements, which constituted the remainder of their
1/16 to 1/4. implementation. Our implementation is roughly equivalent to
For example, in the second term inside the curly bracketgliminating their teleportation and Bell state measurements
of Eq. (3.9), the detection of a singl&polarized photon in  while replacing two of their ancilla with the actual input
detectorD. triggers the polarization-dependemtphase shift  qubits. The net result is that our approach achievesiar
on mode 2 f1,— —H>). In the third term, the detection of a with a probability of 1/4 using only two ancilla, while the
singleV-polarized photon irD4 requires the state flip on the pasic KYI implementatio2] requires four ancilla and suc-
photon in mode 3Je.g., Hz<V3). Finally, we see that the ceeds with a probability of 1/16. Our approach also requires
fourth term inside the curly brackets of E(B.9) requires half as many detectors. This result may be interpreted as a
both of these single-qubit operations. more efficient use of quantum erasure without quantum tele-
The net result is that the desiredioT operation may be portation.
performed with a probability of 1/4 without measuring or  One of the original implementations suggested by Knill,
determining the values of the input qubits. The operation i3 aFlamme, and Milburfil] also involves the generation of a
known to be successful with certainty when the specifiedour-mode entangled state analogoug tfwllowed by partial
combination of detectors each registers a single photon, as Bell-state measurements similar to those of Sec. IEN®T
also the case for previous implementati¢fs?]. gate could also be implemented without teleportation using
their nonlinear phase shift, which would also achieve a prob-
ability of success of 1/16 using two ancilla, whereas our
implementation achieves a probability of success of 1/4 us-
One of the main results of this paper is the probabilisticing two ancilla. As a practical matter, however, it should be
CNOT implementation shown in Fig. 6. Although our paper noted that our implementation requires the two ancilla to be
was inspired by Ref§1] and[2], ourcNoT in Fig. 6 differs  entangled whereas the KLM approach does not.
from earlier implementations in several respects. Our imple- Although thecNoT scheme of Fig. 6 requires only two
mentation uses only polarizing beam splitters with total re-ancilla in contrast to the four-photon entangled statee-
flection or transmission, which simplifies the analysis. Wequired for thecNoT scheme of Fig. 2, the latter approach
showed how acNOT gate could be constructed from more does offer some computational advantages. For example, the
elementary operations, such as a quantum parity checkeliance on four ancilla photons in the original KYI proposal
which also clarifies the operation of the resultingoT gate.  [2] allows them to overcome certain problems associated
Our approach is not directly related to quantum teleportationwith imperfect sources and photon loss. Furthermore, KLM
and depends, instead, on a quantum erasure technique. liave described a remarkable process in which the success
nally, our implementation provides a higher probability of probability of the teleportations required in a GC-like proto-
success for a given number of ancilla than is the case for theol may be increased arbitrarily close to one using more
earlier implementations, and it uses half as many detectors @mplex linear optics techniqués]. In this way, they show
do several other implementations. We now discuss some dhat any GC-like protocol could, in principle, be reduced to
these features in more detalil. the problem of preparing a special four-qubit state analogous
From a basic physics perspective, one conclusion fronto . The beauty of the KLM proposal is that this allows the
our paper is that quantum erasure may play an essential rogatey to be prepared probabilistically. Upon successful gen-
in the implementation of a probabilisticNOoT gate. The eration ofy, a GC-like protocol can then be carried out on
implementation of the elementary logic operations describethe qubits of interest.
above were all based on the mixing of two input photons on  Within this context, it is interesting to note that the proba-
a single beam splitter, followed by a single polarization-bilistic cNOT described in Fig. 6 could itself be used to gen-
sensitive detector. Quantum erasure techniques were usedéaate the statg by a method suggested in Rg4] (see Fig.
eliminate any information regarding the values of the two7). Given a reliable source of triggered two-photon Bell
inputs. In contrast, quantum teleportation uses the output dftates, it would require, on average, only four attempts to
two single-photon detectors to recreate the state of one of thgenerate the four-photon entangled statén this sense, the
original photons, as was discussed in connection with theNnoT scheme of Fig. 6 could offer a speed up in the basic
Gottesman-Chuang protocol in Sec. Il. The fundamental feastate preparation step for subsequent use in the original KLM
ture of quantum logic operations as opposed to classicgiroposal[1].
logic operations is that the input qubits must remain uncer- Experimental realizations of the quantum parity check,
tain, which can be accomplished using quantum erasure teclguantum encoder, and destructioeoT devices used to
niques. build thecNnoT scheme of Fig. 6 will require reliable sources
The fundamental role of quantum erasure may be furtheof single photons to serve as the qubits of interest, as well as
understood by comparing our implementation in Fig. 6 withreliable sources of triggered two-photon entangled states to
that of Koashi, Yamamoto, and Imof2]. Without going into  serve as the ancilla. Several promising approaches towards
any detail, our Fig. 6 bears(auperficial resemblance to the generating single photons on demand are currently being in-
inner portion of their implementation, in which they used vestigatedsee, for examplg29—37). Parametric down con-

IV. SUMMARY AND CONCLUSIONS
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ues of the input qubits unless that information is “erased”
using polarization sensitive detectors in th& basis. Fur-
thermore, additional single-qubit operations on the output
modes are required to achieve the highest possible probabil-
ity of successful operation.

The initial state of the system is given by the product of
the arbitrary input statel;,, , defined by the left-hand side of
Eqg. (2.1), and the statey whose properties are given in Eq.
(2.2

‘I’tE(alHAHB-I- azHAVB+ a'3VAHB+ Of4VAVB)
FIG. 7. GC methodl4] for creation of the four-photon entangled

1
state y from two two-photon entangled states. Her¢,fj', ® = (HH4HoH3+H{VHoV3+V HLV Vg
=12(H{H;,+V,V; ), wherei,j=1,2 or 4,3. ThecnoT between 2
modes 2 and 3 converts the produci,, ® ¢, into the four- +V;V,VoHs). (A1)

photon statey.

. . Expanding Eq(Al) and carrying out the polarizing beam-

version may be used to produce entangled pairs of photons Wlitter transformations on the amplitudes in modesB, 1
the required Bell state, but the pairs are created at randor’rPd 4 Its i | of 16 ? des. Of th 1é ’ i
times that cannot be determined without destroying one o nd » results in a total o amp |Eu es. Ort ,?Se ampli-
the photons. Entanglement swappif@8,39 between two udes, only .four correspond_ to a “successful outcomg in
parametric down-conversion pairs may be used to produc\éVh'Ch there |s_1A01 photon in each“of the fourdeEectors, the
heralded pairs of entangled photons, while recently discov?ther.12 amplitudes correspond to' unsuccessful” outcomes
ered quantum dot techniquB40] may eventually provide a in wh|ch one or two detectors received two or zero photons.
triggered source of entangled photon pairs. Itis straightforward to show that

In summary, we have described the operation of several 1
photonic quantum logic devices of an elementary nature, in- _-
cluding a quantum parity check, a quantum encoder, and a V=g lasHaHa(HpHgHHm) T agHaVa(HpH Vo V)
destructiveeNOT. These devices may be combined to per-
form a probabilistic cNOT operati0¥1 on two arbitrarpy + agVoVa(VpVaHaHm) + agVoHs(VpVoVaVim)}
polarization-encoded photonic qubits. These quantum logic J3
operations rely on linear optical elements in the form of po- + — iy (A2)
larizing beam splitters, additional photoancilla), and a 2
post-selection process based on the outcome of single-photon
detectors. Our results provide additional insight into the nawhere the four “successful” amplitudes are explicitly shown,
ture of probabilistic logic operations using linear elementsand ¢ is a normalized combination of the 12 “unsuccess-

and they suggest that quantum erasure techniques can play’ amplitudes. _
fundamental role in these devices. The potential difficulty due to entanglement is apparent

from the terms inside the curly brackets of E42). In prin-
ciple, we are able to distinguish the polarizations of the two
photons in the output modes 2 and 3 based on the combina-
This work was supported by the Office of Naval ResearcHions of the polarizations of the four photons in the detection
and by internal IR&D funds. modes. This information essentially serves to measure the
output, thereby spoiling thenoT transformation of the arbi-
trary input state.
In order to “erase” this informatioi13—15 and preserve
In Sec. Il, we introduced the basic idea behind a limitedthe coherence of the output amplitudes, each of the four
version of the GC protocdl4] that relied on polarization- polarization-sensitive detectors will consist of a polarizing
encoded qubits and partial Bell measurements. In this casegam splitter in théS basis and two ordinary single-photon
the partial Bell-measurement procedure was simply to acceptetectors. This type of polarization-sensitive detector is
the output in modes 2 and 3 if and only if each of the fourshown in the inset of Fig. 3.
detectors received 1AO1 photon. That approach allowed the We therefore write each of the detection mode amplitudes
required properties of the special four-photon entangled state Eq. (A2) in the FS basis. This leads to a total of 16
x to be understood in a straightforward manner. possible detection outcomes that correspond to the “success”
In this Appendix, we provide a more detailed analysis thatcondition of having 1A01 photon in each of the detector
includes the entanglement between the output photons arghckages. It is convenient to group the amplitudes of the
the polarizations of the photons in the moadies n, p, and expansion of Eq(A2) in terms of these 16 detection out-
g leading to the four detectors. It will be found that this comes. The details are straightforward, but only the first and
entanglement would provide information regarding the val-last two terms are shown here to save space
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1
\I’tzg{FquFnFm[ + alH2H3+ a2H2V3+ a3V2V3+ a4V2H3]

+FpFgFnSml — aiHoH3+ apHRVs— agVoVa+ asVoHs]

+ SquSnFm[ - a1H2H3+ a2H2V3— (13V2V3+ C(4V2H3]
+ SquSnSm[ + a1H2H3+ 012H2V3+ a3V2V3+ CY4V2H3]}

V3

t 5 v (A3)

From the first term inside the curly brackets, we see thabf the detectors activates a specific combination of
passively accepting only the detection outcome in that eacholarization-dependent-phase shifts on the output modes.
of the four detectors receives 1AOH-polarized photon For example, the following protocol will achieve the desired
projects the desiredNOT transformation of the arbitrary in- corrections:
put onto the output modes 2 and 3 with a success probability
of 1/64. However, employing the same techniques described
in the text for the quantum parity check and destructive
CNOT, we may increase this probability by accepting the
other 15 “successful” detection outcomes and performing S, or S;=(Hy——H,) and (Va——Vj). (Ad)
classically controlled single-qubit operations to correct for
the various minus signs on the amplitudes in the output
modes. In this way all 16 terms contribute to the same out- These phase shifts are to be applied independently for
come and the probability of success goes from 1/64 to 1/4.each detector outcome. For exampleSifand S, outcomes

One way to correct the minus signs in EA3) is to use  are both obtained, then the sign reversal is to be applied
a protocol in which detection of a&polarized photon in any twice, which has no net effect in that case.

S, or Sg=(H,— —Hy),
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