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Probabilistic quantum logic operations using polarizing beam splitters
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~Received 22 July 2001; published 16 November 2001!

It has previously been shown that probabilistic quantum logic operations may be performed using linear
optical elements, additional photons~ancilla!, and post-selection based on the output of single-photon detec-
tors. Here we describe the operation of several quantum logic operations of an elementary nature, including a
quantum parity check and a quantum encoder, and we show how they may be combined to implement a
controlled-NOT ~CNOT! gate. All of these gates may be constructed using polarizing beam splitters that com-
pletely transmit one state of polarization and totally reflect the orthogonal state of polarization, which allows a
simple explanation of each operation. We also describe a polarizing beam splitter implementation of aCNOT

gate that is closely analogous to the quantum teleportation technique previously suggested by Gottesman and
Chuang@Nature402, 390 ~1999!#. Finally, our approach has the interesting feature that it makes practical use
of a quantum-eraser technique.

DOI: 10.1103/PhysRevA.64.062311 PACS number~s!: 03.67.Lx, 42.50.2p
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I. INTRODUCTION

An optical approach to quantum information process
would have several advantages, including the ability to tra
port qubits from one location to another using optical fib
or waveguides. The main difficulty with any optical a
proach is that nonlinear interactions between individual p
tons are required in order to implement quantum logic ga
that operate with 100% efficiency. It was recently shown
two pioneering papers@1,2#, however, that probabilistic
quantum logic gates may be implemented using linear o
cal elements, additional photons~ancilla!, and post selection
based on the output of single-photon detectors. Probabil
logic gates of this kind will give the desired result with ce
tainty when a specific output from the detectors is obtain
but that will only occur for some fraction of the events, typ
cally with a probability of 1/16 to 1/4. Somewhat remar
ably, Knill, LaFlamme, and Milburn~KLM ! @1# have shown
that the probability of success of a given operation can
proach unity in the limit of large numbers of ancilla an
detectors@3#.

In this paper, we describe a variety of quantum logic ga
that may be constructed using polarizing beam splitters
completely transmit one state of polarization and totally
flect the orthogonal state of polarization. One advantage
this approach is that it enables us to give simple explanat
for the operation of all of the relevant quantum logic gat
In addition, polarization-encoded qubits are typically le
sensitive to phase drifts than are interferometric implem
tations. We describe several kinds of probabilistic quant
logic gates, including a quantum parity check and a quan
encoder, along with two different implementations of t
controlled-NOT ~CNOT! gate.

The original two approaches@1,2# for implementing
probabilistic quantum logic gates using linear elements
closely related to an earlier paper by Gottesman and Chu
~GC! @4#, who showed that aCNOT gate could be imple-
mented using a modified form of quantum teleportation@5#
and a four-qubit entangled state as a resource~ancilla!. The
Bell-state measurements@6# required for teleportation are in
1050-2947/2001/64~6!/062311~9!/$20.00 64 0623
g
s-
s

-
s

i-

tic

d,

-

s
at
-
of
ns
.

s
-

m

re
ng

herently nonlinear@7–9#, but a partial set of Bell measure
ments may be performed probabilistically using linear op
cal elements@10–12#. Combining these two ideas leads to
CNOT gate that we describe in Sec. II using polarizing be
splitters. As we already mentioned, this approach provide
straightforward way to understand the operation of the lo
gate as well as some potential experimental advantages
operation. ThisCNOT gate is similar in some respects to tho
previously described by KLM@1# as well as by Koashi,
Yamamoto, and Imoto~KYI ! @2#.

In Sec. III, we introduce several simple quantum log
gates that combine two photons on a single polarizing be
splitter to perform a variety of elementary functions, inclu
ing a destructive-CNOT gate in addition to the quantum parit
check and quantum encoder mentioned above. These
ementary operations are then combined to give an alterna
implementation of a complete probabilisticCNOT gate that
does not rely on teleportation in any obvious way.

Our approach makes use of a technique that may
viewed as being equivalent to a quantum eraser@13–15#, as
is described in the Appendix. We summarize our results
consider the prospects for future applications in Sec. IV.

II. CNOT GATE USING FOUR-PHOTON
ENTANGLED STATES

As we mentioned earlier, Gottesman and Chuang sho
in a pioneering paper@4# that a CNOT operation could be
performed using a modified form of quantum teleportatio
Although the required Bell-state measurements are inh
ently nonlinear@7–9#, a partial or incomplete set of Bell
state measurements may be implemented using linear op
elements and post selection, as has been demonstrate
perimentally by Zeilinger’s group@10–12#. A combination of
these two techniques might be expected to allow the imp
mentation of a probabilisticCNOT, which formed part of the
motivation for earlier work in this area@1,2#. Here, we de-
scribe an implementation of a probabilisticCNOT along these
lines using polarizing beam splitters and a quantum eras
technique. This approach requires ancilla in the form o
©2001 The American Physical Society11-1
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T. B. PITTMAN, B. C. JACOBS, AND J. D. FRANSON PHYSICAL REVIEW A64 062311
four-photon entangled stateux& that can be created in variou
ways @1,2,4#, as will be discussed further in Sec. IV below
The implementation given here is similar in spirit to those
Refs. @1# and @2#, but our approach allows a more straigh
forward understanding of the operation of theCNOT gate and
may have some practical advantages as well.

The polarization conventions that will be used through
the paper are shown in Fig. 1. The photonic qubitsu0& and
u1& will be represented by horizontaluH& and verticaluV&
polarizations, respectively, but measurements will also
made in theuF& and uS& basis shown in the figure@16#.
Polarizing beam splitters oriented in theHV basis will al-
ways transmitH-polarized photons and reflectV-polarized
photons, while polarizing beam splitters oriented in theFS
basis will transmit F-polarized photons and reflec
S-polarized photons. It will be assumed throughout the pa
that the beam splitters and detectors are ideal and that a
photons in a given optical path are in the same spatial m
@17–20#.

Figure 2 shows an implementation of aCNOT gate using

FIG. 1. ~a! Orientations of theHV and FS polarization bases
used throughout the text. TheFS basis is rotated145° with respect
to the HV basis.~b! and ~c! show the symbols used to represe
polarizing beam splitters in theHV andFS bases, respectively.

FIG. 2. A polarization-encoded version of the Gottesma
Chuang protocol. This scheme relies on a four-photon entan
stateux& to perform a probabilisticCNOT operation on the two inpu
photonic qubits in modesA and B. Four polarization-sensitive de
tectors in theFS basis are labeledDm , Dn , Dp , andDq .
06231
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the GC protocol@4# with polarization-encoded photonic qu
bits and partial Bell-state measurements. At the center of
figure is a source that emits the four-photon entangled s
ux&, whose properties we will now investigate. The stateux&
is created in such a way that one photon is emitted into e
of the four modes labeled 1 through 4.

The input photon in modeA is mixed with the photon in
mode 1 by a polarizing beam splitter in theHV basis with
ideal single-photon detectorsDp andDq in its output ports.
The photons in modesB and 4 are mixed in another polariz
ing beam splitter in a similar way. The remaining two ph
tons ofux& in modes 2 and 3 will serve as the output qubi

In a CNOT gate, the value of the target qubit is to b
reversed (0↔1) if the control qubit has the value 1. If th
input photons in modesA andB are considered the ‘‘control’’
and ‘‘target’’ photons, respectively, then the desiredCNOT

gate operation corresponds to the following state transfor
tion:

a1uHA&uHB&1a2uHA&uVB&1a3uVA&uHB&1a4uVA&uVB&

→a1uH2&uH3&1a2uH2&uV3&1a3uV2&uV3&1a4uV2&uH3&

~2.1!

where thea are arbitrary coefficients (( i 51
4 ua i u251), and,

for example,uHA& denotes a single horizontally polarize
photon in modeA. From here out, the kets will be droppe
from the notation for simplicity.

In Fig. 2, the partial Bell measurements at the upper a
lower beam splitters simply consist of only accepting t
outputs in modes 2 and 3 if one-and-only-one~1AO1! pho-
ton is detected in each of the four detectors. Combined w
the polarization-dependent reflections and transmission
the beam splitters, this condition allows the required prop
ties of the statex to be simply read off from theCNOT state
transformation in Eq.~2.1!.

For example, for the input amplitudea1HAHB , the partial
Bell measurements will only succeed if each of the photo
in modes 1 and 4 are alsoH polarized~having one of themV
polarized would result in two photons at one detector a
zero at another!. Furthermore, theCNOT transformation for
this particular input amplitude requires the output photons
modes 2 and 3 to beH polarized, so that the statex must
contain an amplitude of the formH1H4H2H3.

The three remaining amplitudes may be read off in a si
lar manner to reveal the required form ofx:

x5
1

2
~H1H4H2H31H1V4H2V31V1H4V2V3

1V1V4V2H3!. ~2.2!

It can be seen from this argument that the required polar
tions will be generated in the output modes whenever eac
the detectors registers 1AO1 photon.

Although the above argument determines the requi
form of the statex, we must also consider the way in whic
the output photons are entangled with the polarizations of
photons in the pathsm, n, p, andq leading to the detectors
Any such entanglement would result in a more complica

-
d
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PROBABILISTIC QUANTUM LOGIC OPERATIONS . . . PHYSICAL REVIEW A64 062311
final state than that shown in Eq.~2.1!. Roughly speaking,
entanglement of this kind would provide information rega
ing the state of the input qubits, which would destroy t
coherence of a quantum computing algorithm. This situat
is analyzed in detail in the Appendix, where it is shown th
this kind of information can be ‘‘erased’’ if each of the fou
detectors measure the polarization of the photons in theFS
basis. This is the case because anF-polarized photon is an
equal superposition ofH andV polarizations, for example, s
that such a measurement provides no information regar
the original values of the qubits. In this particular examp
the use of a quantum erasure technique of this kind is equ
lent to auf1& Bell-state measurement@10#, but that is not the
case for the more general quantum erasure operations
scribed in Sec. III below.

It is shown in the appendix that the specified output fro
the detectors will be obtained 1/4 of the time, so that t
CNOT gate succeeds with a probability of 25%, provided th
the statex has been created with certainty.

III. CNOT USING TWO-PHOTON ENTANGLED STATES

In this section, we describe the implementation of seve
kinds of probabilistic quantum logic gates using polarizi
beam splitters. We then combine these elementary opera
to give an implementation of aCNOT gate that does not rely
upon quantum teleportation in any obvious way. In addit
to providing additional insight into the nature of probabilis
quantum logic gates, this implementation may have so
practical advantages in certain applications, as will be d
cussed in the next section. In particular, theCNOT described
here uses a two-photon entangled state as a resource, r
than the four-photon entangled state required for theCNOT of
the previous section.

A. Quantum parity check

The first logic operation of interest is the probabilis
quantum parity check shown in Fig. 3. The goal of this d
vice is to transfer the value of the input qubit in mode 28 to
the output in mode 2, provided that its value is the same
that of a second input qubit in modea ~even parity!. The
device fails and no output is produced if the two qubits ha

FIG. 3. Implementation of a probabilistic quantum parity che
of the qubits in mode 28 and modea using a polarizing beam
splitter in theHV basis and a polarization-sensitive detectorDc in
theFS basis. The dashed-box inset shows the details ofDc , which
consists of a polarizing beam splitter in theFS basis followed by
two ordinary single-photon detectors.
06231
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different values~odd parity!, and one of the qubits is de
stroyed in any event. The operation of this device does
measure or determine the values of either input qubit. T
input and output modes have been labeled in this way
facilitate the subsequent construction of aCNOT gate. Pan
et al. @21# have independently proposed the use of polariz
beam splitters to compare the polarization of two photons
use in entanglement purification, and similar parity chec
have been proposed for other applications@22–26#.

As illustrated in Fig. 3, the quantum parity check may
implemented by mixing the photons in a polarizing bea
splitter and accepting the output in mode 2 only for tho
cases in which polarization-sensitive detectorDc receives
1AO1 photon. This may only occur if the two photons ha
the same polarization. In order to preserve the coherenc
an arbitrary input superposition state, however,
polarization-sensitive detectorDc consists of a polarizing
beam splitter oriented in theFS basis and two ordinary
single-photon detectors as shown in the inset of Fig. 3.

The operation of the quantum parity check can be und
stood as follows: Consider an arbitrary polarization state
the input qubitu in&285aH281bV28 , and a single photon in
the state ufa&51/A2(Ha1Va). The total state, C28a
[u in&28^ ufa&, is transformed by the polarizing beam spl
ter as follows:

C28a→
a

A2
H2Hc1

b

A2
V2Vc1

1

A2
c I , ~3.1!

wherec I[aH2V21bHcVc is composed of amplitudes tha
will lead to unsuccessful cases in whichDc receives two or
zero photons.

Using the polarization conventions shown in Fig. 1~a! to
write the modec amplitudes in theFS basis leads to

C28a→
1

2
@Fc~aH21bV2!1Sc~2aH21bV2!#1

1

A2
c I .

~3.2!

From the first term inside the square brackets of Eq.~3.2!,
we see that if we passively accept the output only when
receive 1AO1 photon inDc

F and zero photons inDc
S , the

arbitrary polarization of the input photon in mode 28 will be
mapped onto the photon in mode 2 with a probability
success equal to 1/4.

Furthermore, it can be seen from the second term ins
the square brackets of Eq.~3.2! that we may improve this
probability from 1/4 to 1/2 if we also accept the case wh
we receive 1AO1 photon inDc

S and zero photons inDc
F . In

this case however, we need to actively impart an additio
phase shift that transforms mode 2 in the following wa
2aH21bV2→aH21bV2.

Note that accepting either of these two detection o
comes does not provide any type of ‘‘which-polarization
information that would essentially serve to measure the
put. Imparting the additionalp phase shift could be done b
rapidly changing the bias voltage on a Pockel’s cell in mo
2 upon detection of a photon inDc

S . The quantum erasure
1-3
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T. B. PITTMAN, B. C. JACOBS, AND J. D. FRANSON PHYSICAL REVIEW A64 062311
technique used here to eliminate any knowledge of the in
qubit is not equivalent to a Bell-state measurement or
quantum teleportation, since it only involves the detection
a single photon.

B. Destructive-CNOT

A probabilistic logic device that we refer to as a destru
tive CNOT is shown in Fig. 4. In this device, the ‘‘target
input photon in mode 38 is mixed with another input photon
in modeb at a polarizing beam splitter that is oriented in t
FS basis. The goal of this device is to flip the polarizati
state~e.g., H↔V) of the ‘‘target’’ photon if the ‘‘control’’
photon in modeb is V polarized, and do nothing if it isH
polarized. This operation is equivalent to a probabilis
CNOT gate except that the information contained in the c
trol photon is destroyed in the process.

As in the quantum parity check, the output in mode 3 w
only be accepted if the polarization-sensitive detectorDd
~see inset box in Fig. 4! receives 1AO1 photon. The opera
tion of Fig. 4 can be understood by first considering the c
of an arbitrary polarization state of the ‘‘target’’ photo
u in&385aH381bV38 , and a singleV-polarized photon in
modeb, ufb&5Vb .

Writing these states in theFS basis, the total stateC38b
[u in&38^ ufb& is given by

C38b5F a

A2
~F382S38!1

b

A2
~F381S38!G ^

1

A2
~Fb1Sb!.

~3.3!

The polarizing beam splitter transforms this into

C38b→
1

2
@a~FdF32SdS3!1b~FdF31SdS3!#1

1

A2
c II ,

~3.4!

where c II[a/A2(F3S32FdSd)1b/A2(F3S31SdFd) in-
cludes the amplitudes that would lead to the unsucces
cases in whichDd does not receive 1AO1 photon. Rewritin
the amplitudes in moded back in theHV basis leads to

FIG. 4. Implementation of a destructiveCNOT that performs a
state flip on the photon in mode 38 that is controlled by the polar
ization of a single photon in modeb. Its successful operation re
quires the destruction of the control photon. The dashed-box i
shows the details of the polarization-sensitive detectorDd .
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C38b→
1

2
@Hd~aV31bH3!1Vd~aH31bV3!#1

1

A2
c II .

~3.5!

If we accept only outcomes in which detectorDd
H receives

1A01 photon andDd
V receives zero photons, the output co

lapses to the stateaV31bH3. This corresponds to a ‘‘flip’’
of the input stateaH381bV38 and occurs with a probability
of 1/4.

From Eq. ~3.5!, we see that this probability can be in
creased to 1/2 if we also accept the outcomes in whichDd

V

receives 1A01 photon andDd
H receives zero photons. For th

outcome, however, we need to apply classically control
single-qubit operations that accomplish the transformat
aH31bV3→aV31bH3. This could be done, for example
by first rotating the polarization of the photon in mode 3
90°, and then imparting the same type of polarization dep
dent p-phase shift that was used in quantum parity che
device.

To complete the description of the destructive-CNOT op-
eration, we now consider the case where we have the s
arbitrary state of the input ‘‘target’’ photon,u in&385aH38
1bV38 , but a singleH-polarized photon in modeb, ufb&
5Hb . Following the steps that lead to Eq.~3.5!, it can be
shown that

C38b
8 →1

2
@Hd~aH31bV3!1Vd~aV31bH3!#1

1

A2
c III ,

~3.6!

where c III[a/A2(F3S31FdSd)1b/A2(F3S32SdFd)
again includes the amplitudes that lead to unsuccessful
tection. In comparison with Eq.~3.5!, we see that using the
same detection scheme and single-qubit operations for
case of anH-polarized control photon will leave the state
the target photon unchanged.

From Eqs.~3.5! and ~3.6!, it is clear that the destructive
CNOT performs a polarization state-flip transformation of t
input photon in mode 38 that is controlled by the polarization
of the control photon in modeb. However, this transforma
tion is only realized by a post-selection process that destr
the control photon.

C. Quantum encoder

Although theCNOT described above destroys the contr
photon, such a device would still be useful if we could co
the value of the control qubit before theCNOT operation, so
that all of the information would still be available after th
operation was completed. With that in mind, we now d
scribe the operation of a probabilistic quantum encoder
shown in Fig. 5. The intended function of this device is
copy ~encode! the value of the input qubit in mode 28 into
both of the output modes 2 andb. An operation of this kind
is not equivalent to quantum cloning@27# and is convention-
ally referred to as a quantum encoder@28#. Once again, the
modes have been labeled in such a way as to facilitate
subsequent construction of aCNOT.

et
1-4
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PROBABILISTIC QUANTUM LOGIC OPERATIONS . . . PHYSICAL REVIEW A64 062311
A quantum encoder may be implemented by combin
the quantum parity check described above with a two-pho
entangled state of the formfab

1 51/A2(HaHb1VaVb),
where one member of the two-photon entangled state
vides the input to modea of the quantum parity check. Thi
is illustrated in Fig. 5, where we use the same detec
scheme and single-qubit operations used in the quantum
ity check.

Recall that in the quantum parity check, a successful
tection event post-selected outcomes that effectively real
the transformationaH281bV28→aH21bV2, provided that
the values of the qubits in modesa and 28 were the same
Based on the same arguments used to derive Eq.~3.2!, it may
be shown that successful detection in Fig. 5 post selects
following transformation of the same arbitrarily polarize
input state:

aH281bV28→aH2Hb1bV2Vb . ~3.7!

As in the quantum parity check, the operation of the quant
encoder succeeds with a probability of 1/2.

It should be apparent from Eq.~3.7! that the operation of
a quantum encoder is not equivalent to quantum clon
@27#, even though the value of the input qubit is copied on
two output qubits. The value of the input and output qubits
not determined or measured during the operation of this
vice.

D. Nondestructive CNOT

The elementary logic operations described above m
now be combined to implement a nondestructiveCNOT gate
as illustrated in Fig. 6. The quantum encoder of Fig. 5 is u
to copy the value of the control qubit of mode 28 directly
into the output in mode 2 as well as into the input modeb of
the destructive-CNOT gate of Fig. 4. The output in mode
will then contain the result of the destructive-CNOT operation
while the value of the control qubit is preserved in the oth
output mode. All of the mode labels have been preserve
facilitate comparisons of Figs. 4, 5, and 6.

FIG. 5. A quantum encoder circuit that is identical to the qua
tum parity check of Fig. 3 except the single photon in modea is
now part of a two-photon Bell-statefab

1 51/A2(HaHb1VaVb).
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Since the quantum parity check and destructive-CNOT op-
erations both succeed with a probability of 1/2, it follow
that theCNOT gate of Fig. 6 will succeed with an overa
probability of 1/4. The operation of the gate may be expl
itly verified by considering an arbitrary input state of th
form

C28385a1H28H381a2H28V381a3V28H381a4V28V38 ,
~3.8!

and calculating the evolution of the total stateC t[C2838
^ fab

1 . Based on the same types of arguments used in
descriptions of the earlier logic devices, it can be shown t

C t→
1

4
$FcHd@1a1H2H31a2H2V31a3V2V31a4V2H3#

1ScHd@2a1H2H32a2H2V31a3V2V31a4V2H3#

1FcVd@1a1H2V31a2H2H31a3V2H31a4V2V3#

1ScVd@2a1H2V32a2H2H31a3V2H31a4V2V3#%

1
A3

2
c IV, ~3.9!

wherec IV is a normalized combination of all of the ampl
tudes that would not lead to 1AO1 photon in each of t
polarization-sensitive detectorsDc andDd . The amplitudes
of interest are grouped together as the four main terms in
the curly brackets of Eq.~3.9!.

From the first of these four terms, we see that if we p
sively accept only those cases in which we receive 1A
photon in Dc

F and 1AO1 photon inDd
H ~e.g., the passive

success conditions of the quantum parity check device
the destructiveCNOT, respectively!, then we accomplish the
desiredCNOT transformation on the input state of Eq.~3.8!
with a success probability of 1/16. However, if we also a
cept the three other terms inside the curly brackets of

-

FIG. 6. Construction of a probabilisticCNOT gate by combining
a quantum encoder with a destructiveCNOT. The mode labels have
been preserved to facilitate comparisons with Figs. 4 and 5.
1-5
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T. B. PITTMAN, B. C. JACOBS, AND J. D. FRANSON PHYSICAL REVIEW A64 062311
~3.9! and implement the appropriate combinations of
classically controlled single-qubit operations used in
quantum parity check and the destructiveCNOT, then the four
main terms all combine and increase this probability fro
1/16 to 1/4.

For example, in the second term inside the curly brack
of Eq. ~3.9!, the detection of a singleS-polarized photon in
detectorDc triggers the polarization-dependentp-phase shift
on mode 2 (H2→2H2). In the third term, the detection of
singleV-polarized photon inDd requires the state flip on th
photon in mode 3~e.g., H3↔V3). Finally, we see that the
fourth term inside the curly brackets of Eq.~3.9! requires
both of these single-qubit operations.

The net result is that the desiredCNOT operation may be
performed with a probability of 1/4 without measuring
determining the values of the input qubits. The operation
known to be successful with certainty when the specifi
combination of detectors each registers a single photon,
also the case for previous implementations@1,2#.

IV. SUMMARY AND CONCLUSIONS

One of the main results of this paper is the probabilis
CNOT implementation shown in Fig. 6. Although our pap
was inspired by Refs.@1# and@2#, our CNOT in Fig. 6 differs
from earlier implementations in several respects. Our imp
mentation uses only polarizing beam splitters with total
flection or transmission, which simplifies the analysis. W
showed how aCNOT gate could be constructed from mo
elementary operations, such as a quantum parity ch
which also clarifies the operation of the resultingCNOT gate.
Our approach is not directly related to quantum teleporta
and depends, instead, on a quantum erasure technique
nally, our implementation provides a higher probability
success for a given number of ancilla than is the case for
earlier implementations, and it uses half as many detecto
do several other implementations. We now discuss som
these features in more detail.

From a basic physics perspective, one conclusion fr
our paper is that quantum erasure may play an essential
in the implementation of a probabilisticCNOT gate. The
implementation of the elementary logic operations descri
above were all based on the mixing of two input photons
a single beam splitter, followed by a single polarizatio
sensitive detector. Quantum erasure techniques were us
eliminate any information regarding the values of the t
inputs. In contrast, quantum teleportation uses the outpu
two single-photon detectors to recreate the state of one o
original photons, as was discussed in connection with
Gottesman-Chuang protocol in Sec. II. The fundamental
ture of quantum logic operations as opposed to class
logic operations is that the input qubits must remain unc
tain, which can be accomplished using quantum erasure t
niques.

The fundamental role of quantum erasure may be furt
understood by comparing our implementation in Fig. 6 w
that of Koashi, Yamamoto, and Imoto@2#. Without going into
any detail, our Fig. 6 bears a~superficial! resemblance to the
inner portion of their implementation, in which they use
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four ancilla photons to generate a state analogous to the f
photon entangled statex. They followed this by quantum
teleportation of the two input qubits using two Bell-sta
measurements, which constituted the remainder of th
implementation. Our implementation is roughly equivalent
eliminating their teleportation and Bell state measureme
while replacing two of their ancilla with the actual inpu
qubits. The net result is that our approach achieves aCNOT

with a probability of 1/4 using only two ancilla, while th
basic KYI implementation@2# requires four ancilla and suc
ceeds with a probability of 1/16. Our approach also requi
half as many detectors. This result may be interpreted a
more efficient use of quantum erasure without quantum t
portation.

One of the original implementations suggested by Kn
LaFlamme, and Milburn@1# also involves the generation of
four-mode entangled state analogous tox followed by partial
Bell-state measurements similar to those of Sec. II. ACNOT

gate could also be implemented without teleportation us
their nonlinear phase shift, which would also achieve a pr
ability of success of 1/16 using two ancilla, whereas o
implementation achieves a probability of success of 1/4
ing two ancilla. As a practical matter, however, it should
noted that our implementation requires the two ancilla to
entangled whereas the KLM approach does not.

Although theCNOT scheme of Fig. 6 requires only tw
ancilla in contrast to the four-photon entangled statex re-
quired for theCNOT scheme of Fig. 2, the latter approac
does offer some computational advantages. For example
reliance on four ancilla photons in the original KYI propos
@2# allows them to overcome certain problems associa
with imperfect sources and photon loss. Furthermore, KL
have described a remarkable process in which the suc
probability of the teleportations required in a GC-like prot
col may be increased arbitrarily close to one using m
complex linear optics techniques@1#. In this way, they show
that any GC-like protocol could, in principle, be reduced
the problem of preparing a special four-qubit state analog
to x. The beauty of the KLM proposal is that this allows th
statex to be prepared probabilistically. Upon successful ge
eration ofx, a GC-like protocol can then be carried out o
the qubits of interest.

Within this context, it is interesting to note that the prob
bilistic CNOT described in Fig. 6 could itself be used to ge
erate the statex by a method suggested in Ref.@4# ~see Fig.
7!. Given a reliable source of triggered two-photon B
states, it would require, on average, only four attempts
generate the four-photon entangled statex. In this sense, the
CNOT scheme of Fig. 6 could offer a speed up in the ba
state preparation step for subsequent use in the original K
proposal@1#.

Experimental realizations of the quantum parity che
quantum encoder, and destructive-CNOT devices used to
build theCNOT scheme of Fig. 6 will require reliable source
of single photons to serve as the qubits of interest, as we
reliable sources of triggered two-photon entangled state
serve as the ancilla. Several promising approaches tow
generating single photons on demand are currently being
vestigated~see, for example@29–37#!. Parametric down con-
1-6
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version may be used to produce entangled pairs of photon
the required Bell state, but the pairs are created at ran
times that cannot be determined without destroying one
the photons. Entanglement swapping@38,39# between two
parametric down-conversion pairs may be used to prod
heralded pairs of entangled photons, while recently disc
ered quantum dot techniques@40# may eventually provide a
triggered source of entangled photon pairs.

In summary, we have described the operation of sev
photonic quantum logic devices of an elementary nature,
cluding a quantum parity check, a quantum encoder, an
destructive-CNOT. These devices may be combined to p
form a probabilistic CNOT operation on two arbitrary
polarization-encoded photonic qubits. These quantum lo
operations rely on linear optical elements in the form of p
larizing beam splitters, additional photons~ancilla!, and a
post-selection process based on the outcome of single-ph
detectors. Our results provide additional insight into the
ture of probabilistic logic operations using linear eleme
and they suggest that quantum erasure techniques can p
fundamental role in these devices.
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APPENDIX

In Sec. II, we introduced the basic idea behind a limit
version of the GC protocol@4# that relied on polarization-
encoded qubits and partial Bell measurements. In this c
the partial Bell-measurement procedure was simply to ac
the output in modes 2 and 3 if and only if each of the fo
detectors received 1AO1 photon. That approach allowed
required properties of the special four-photon entangled s
x to be understood in a straightforward manner.

In this Appendix, we provide a more detailed analysis t
includes the entanglement between the output photons
the polarizations of the photons in the modesm, n, p, and
q leading to the four detectors. It will be found that th
entanglement would provide information regarding the v

FIG. 7. GC method@4# for creation of the four-photon entangle
state x from two two-photon entangled states. Here,f i j 8

1

51/A2(HiH j 81ViVj 8), wherei , j 51,2 or 4,3. TheCNOT between
modes 28 and 38 converts the productf128

1
^ f438

1 into the four-
photon statex.
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ues of the input qubits unless that information is ‘‘erase
using polarization sensitive detectors in theFS basis. Fur-
thermore, additional single-qubit operations on the out
modes are required to achieve the highest possible prob
ity of successful operation.

The initial state of the system is given by the product
the arbitrary input state,c in , defined by the left-hand side o
Eq. ~2.1!, and the statex whose properties are given in Eq
~2.2!

C t[~a1HAHB1a2HAVB1a3VAHB1a4VAVB!

^
1

2
~H1H4H2H31H1V4H2V31V1H4V2V3

1V1V4V2H3!. ~A1!

Expanding Eq.~A1! and carrying out the polarizing beam
splitter transformations on the amplitudes in modesA, B, 1,
and 4, results in a total of 16 amplitudes. Of these 16 am
tudes, only four correspond to a ‘‘successful’’ outcome
which there is 1AO1 photon in each of the four detectors;
other 12 amplitudes correspond to ‘‘unsuccessful’’ outcom
in which one or two detectors received two or zero photo

It is straightforward to show that

C t5
1

2
$a1H2H3~HpHqHnHm!1a2H2V3~HpHqVnVm!

1a3V2V3~VpVqHnHm!1a4V2H3~VpVqVnVm!%

1
A3

2
cV ~A2!

where the four ‘‘successful’’ amplitudes are explicitly show
and cV is a normalized combination of the 12 ‘‘unsucces
ful’’ amplitudes.

The potential difficulty due to entanglement is appare
from the terms inside the curly brackets of Eq.~A2!. In prin-
ciple, we are able to distinguish the polarizations of the t
photons in the output modes 2 and 3 based on the comb
tions of the polarizations of the four photons in the detect
modes. This information essentially serves to measure
output, thereby spoiling theCNOT transformation of the arbi-
trary input state.

In order to ‘‘erase’’ this information@13–15# and preserve
the coherence of the output amplitudes, each of the f
polarization-sensitive detectors will consist of a polarizi
beam splitter in theFS basis and two ordinary single-photo
detectors. This type of polarization-sensitive detector
shown in the inset of Fig. 3.

We therefore write each of the detection mode amplitu
in Eq. ~A2! in the FS basis. This leads to a total of 1
possible detection outcomes that correspond to the ‘‘succ
condition of having 1A01 photon in each of the detec
packages. It is convenient to group the amplitudes of
expansion of Eq.~A2! in terms of these 16 detection ou
comes. The details are straightforward, but only the first a
last two terms are shown here to save space
1-7
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C t5
1

8
$FpFqFnFm@1a1H2H31a2H2V31a3V2V31a4V2H3#

1FpFqFnSm@2a1H2H31a2H2V32a3V2V31a4V2H3#

A

A

1SpSqSnFm@2a1H2H31a2H2V32a3V2V31a4V2H3#

1SpSqSnSm@1a1H2H31a2H2V31a3V2V31a4V2H3#%

1
A3

2
cV . ~A3!
ha
ac

-
ili

ibe
iv
he
ing
fo
pu
u
/4

of
s.
ed

for

lied
From the first term inside the curly brackets, we see t
passively accepting only the detection outcome in that e
of the four detectors receives 1AO1F-polarized photon
projects the desiredCNOT transformation of the arbitrary in
put onto the output modes 2 and 3 with a success probab
of 1/64. However, employing the same techniques descr
in the text for the quantum parity check and destruct
CNOT, we may increase this probability by accepting t
other 15 ‘‘successful’’ detection outcomes and perform
classically controlled single-qubit operations to correct
the various minus signs on the amplitudes in the out
modes. In this way all 16 terms contribute to the same o
come and the probability of success goes from 1/64 to 1

One way to correct the minus signs in Eq.~A3! is to use
a protocol in which detection of anS-polarized photon in any
tu
e

d

, a

ett
A

ys

.

06231
t
h

ty
d

e

r
t

t-
.

of the detectors activates a specific combination
polarization-dependentp-phase shifts on the output mode
For example, the following protocol will achieve the desir
corrections:

Sp or Sq⇒~H2→2H2!,

Sm or Sn⇒~H2→2H2! and ~V3→2V3!. ~A4!

These phase shifts are to be applied independently
each detector outcome. For example, ifSp andSq outcomes
are both obtained, then the sign reversal is to be app
twice, which has no net effect in that case.
.
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