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Entangling capacity of global phases and implications for the Deutsch-Jozsa algorithm
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We investigate the creation of entanglement by the application of phases whose value depends on the state
of a collection of qubits. First we give the necessary and sufficient conditions for a given set of phases to result
in the creation of entanglement in a state comprising of an arbitrary number of qubits. Then we consider the
maximum entanglement generation by global phases. We analyze the creation of entanglement between any
two qubits in three-qubit pure and mixed states. We use our result to prove that entanglement is necessary for
the Deutsch-Jozsa algorithm to have an exponential advantage over its classical counterpart.
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I. INTRODUCTION

In recent years, entanglement has become an impo
resource for quantum communications@1#. Quantum compu-
tation @2#, which is more efficient than the classical comp
tation for certain problems@3–5#, could also potentially owe
its efficiency to entanglement@6–9#. Though the precise role
of entanglement in quantum computation is not yet well u
derstood, entangled states are certainly generated durin
course of certain quantum computations. A quantum com
tation, when halted at an appropriate point, can be rega
as a method of generating entanglement. Typically, a qu
tum computation is a multiparticle interference experim
with different phases applied to distinct multiparticle sta
@10#. In general, the phases applied to the multiparticle sta
during a quantum computation areglobal phasesas they
depend on the total state of a collection of qubits. In t
paper, we will investigate the types of entanglement gen
ated by such global phases and the conditions under w
such phases do not generate any entanglement.

The model of quantum computation, which motivates o
work is that presented by Cleve, Ekert, Macchiavello a
Mosca@10#. This model~with a slight alteration that does no
change its principal ingredient! is illustrated in Fig. 1. Each
of the qubits, initially in theu0& state, is first transformed
according to a Hadamard transformation. This is shown
the figure by the giant Hadamard transformation acting on
the qubits and which converts the total state of the qubit

uf&1,•••,N5
1

2N/2 (
j 50

2N21

u j &, ~1!

whereN is the total number of qubits and the indexj labels
the 2N possible states of the typeu j 1 , . . . ,j N& in which each
j i50 or 1. uf&1, . . . ,N is a disentangled state. A stat
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dependent global phasef ( j ) is now applied to each stateu j &.
This is shown as the second giant transformationF in the
figure. This converts the total state to

uc&1, . . . ,N5
1

2N/2 (
j 50

2N21

ei f ( j )u j &, ~2!

where$ f ( j )% are real and 0< f ( j ),2p @f ( j )52p is reas-
signed the value 0#. This stateuc&1, . . . ,N , generated as a
result of global phases, can be entangled. We propose to
the quantum computation at this stage and investigate
amount of entanglement generated. A complete quan
computation, of course, consists of one more step in wh
another giant Hadamard transformation is applied to all
qubits as shown in Fig. 1. But in this paper we are interes
in the entanglement of the stateprior to this last transforma-
tion.

The entanglement ofuc&1, . . . ,N comes from the globa
phase factorsf ( j ). First, we study conditions on the phas
function f ( j ) for the stateuc&1, . . . ,N to be disentangled
Next, we consider the maximum entanglement creation
global phases. Then we derive the entanglement of th
qubit pure states (N53) for the special case in which onl
one or two of the global phase parameters are nonzero.
study variation of the entanglement as a function of one g
bal phase parameter for a mixed state of three qubits
numerical calculations. Finally, we discuss the implicatio
of this type of entanglement arising in Deutsch-Jozsa al
rithm. In particular, we show that for obtaining exponent
advantage over its classical counterpart, entangled st
must necessarily arise in Deutsch-Jozsa algorithm.

II. NECESSARY AND SUFFICIENT CONDITIONS
FOR THE GENERATION OF ENTANGLEMENT

BY GLOBAL PHASES

We first derive the conditions on$ f ( j )% for uc&1, . . . ,N to
be disentangled, i.e.,

-
s:

FIG. 1. A typical quantum computation network.
©2001 The American Physical Society08-1
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uc&1, . . . ,N5uc1& ^ •••^ ucN&. ~3!

In a case of two qubits (N52), we can write the condition a
follows:

@ f ~0!2 f ~1!#2@ f ~2!2 f ~3!#52pn, ~4!

wheren is an arbitrary integer.
We now consider the case of three qubits,

ucABC&5
1

23/2 (
j 50

7

ei f ( j )u j &. ~5!

First, we derive condition that the qubitC is disentangled
from the qubitsAB. The density matrix of the qubitC is
given by

rC5trAB~ ucABC&^cABCu!5
1

8 S 4 g

g* 4D , ~6!

with taking a basis$u0&,u1&% and

g5exp$ i @ f ~0!2 f ~1!#%1exp$ i @ f ~2!2 f ~3!#%

1exp$ i @ f ~4!2 f ~5!#%1exp$ i @ f ~6!2 f ~7!#%. ~7!

~From now on, when we give a matrix representation o
density operator on a 2N-dimensional space, we always tak
a logical basis of$ux&:xP$0,1%N%.! If and only if tr(rC

2 )51,
the qubitC is disentangled from the qubitsAB. Hence we
obtain the following constraints:

@ f ~0!2 f ~1!#2@ f ~2!2 f ~3!#52pn1 , ~8!

@ f ~0!2 f ~1!#2@ f ~4!2 f ~5!#52pn2 , ~9!

@ f ~0!2 f ~1!#2@ f ~6!2 f ~7!#52pn3 . ~10!

Next, we consider the condition that the qubitB is disen-
tangled from the qubitsAC. From similar considerations a
before, we obtain another constraint

@ f ~0!2 f ~2!#2@ f ~4!2 f ~6!#52pn4 . ~11!

From these results, we obtain four constraints, Eqs.~8!–~11!,
where n1 , . . . ,n4 are arbitrary integers, so thatucABC& is
disentangled perfectly.

Next consider the general case ofN qubits. Before deriv-
ing the condition foruc&1, . . . ,N to be disentangled, we thin
how many constraints of$ f ( j )% do we need to disentangl
uc&1, . . . ,N completely. In Eq.~2!, the number of real param
eters is equal to 2N. On the other hand, ifuc&1, . . . ,N is dis-
entangled, we can describe it as
06230
a

uc&1, . . . ,N5eiu0~ u0&1eiu1u1&) ^ •••^ ~ u0&1eiuNu1&),
~12!

where 0<u i,2p for 0< ; i<N and the number of rea
parameters is equal to (N11). Therefore, to disentangl
uc&1, . . . ,N to an N-qubit product state, we need@2N2(N
11)# constraints. The constraints are given as follows;

@ f ~0!2 f ~1!#2@ f ~2!2 f ~3!#52pn1 ,

@ f ~0!2 f ~1!#2@ f ~4!2 f ~5!#52pn2 ,

A

@ f ~0!2 f ~1!#2@ f ~2N22!2 f ~2N21!#

52pn2N2121 ,

@ f ~0!2 f ~2!#2@ f ~4!2 f ~6!#52pm1 ,

A

@ f ~0!2 f ~2!#2@ f ~2N24!2 f ~2N22!#

52pm2N2221 ,

A

@ f ~0!2 f ~2N22!#2@ f ~2N21!2 f ~332N22!#

52p l , ~13!

and we can confirm that the number of the above constra
is

(
k51

N

~2N2k21!52N2~N11!. ~14!

As uc&1, . . . ,N being disentangled automatically implies th
all the above constraints hold, if any of them fails,uc&1, . . . ,N
is necessarily entangled. Asufficient condition for global
phase functionsf ( j ) to produce entanglement is thus th
violation of any of the above constraints.

In a compact form the above expression can be rewri
as

f ~ j !5uW • jW1u0 ~mod 2p!, ~15!

where uW 5(u1 , . . . ,uN), jW5( j 1 , . . . ,j N), and the compo-
nents j i are obtained from the binary expression ofj as
j 1 , . . . ,j N , and ‘‘• ’’ means the inner product o
N-component vectors. An easy argument now proves that
violation of Eq. ~15! is also a necessary condition for th
generation of entanglement by global phases. Conside
phase functionf ( j ) expressible in the form of Eq.~15!. Then
the whole state, after application of the global phases, ca
rewritten in the form of Eq.~12!. This is a disentangled state
This means that the ability to expressf ( j ) in the form of Eq.
~15! implies no generation of entanglement. In other wor
to generate entanglement it is necessary to have a viola
of Eq. ~15!. We have thus found that the necessary and s
ficient condition for the generation of entanglement by g
bal phases is the impossibility of the expansion given by
~15! of the global phase function. In the subsequent sectio
8-2
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ENTANGLING CAPACITY OF GLOBAL PHASES AND . . . PHYSICAL REVIEW A64 062308
we proceed to study the degree and type of entanglem
generated by some global phase functions that generate
tanglement.

III. GLOBAL PHASES AND THE MAXIMUM
ENTANGLEMENT GENERATION

In this section, we discuss the maximum entanglem
generation by global phases and show some examples
As we are handlingN(>2)-qubit states and a quantitativ
definition of entanglement for three or more qubits has
defined in general, we have to clarify the meaning of
maximum entanglement at first. We use this terminology
follows. Let us consider an arbitraryN(>2)-qubit pure state.
If we regard it as a bipartite pure state of one arbitrary qu
and the others, we can consider its von Neumann entrop
entanglement@11#. As we are thinking aboutN qubits, we
can obtainN different von Neumann entropies. If all of them
take the maximum value of unity, we regard the state to
maximally entangled.

Here, we derive some examples of the maximally e
tangled states. An arbitrary state with global phases is gi
by Eq.~2!. We separate it into the first qubit and the others

1

A2
@ u0&uw0&1u1&uw1&], ~16!

where

uw j&5
1

A2N21 (
zP$0,1%N21

ei f ( j ,z)uz& for j 50,1.

~17!

If ^w0uw1&50, the von Neumann entropy of the reduc
density matrix of the first qubit reaches unity.~This condition
serves special cases that take the maximized von Neum
entropy. It is only just a sufficient condition.! As we can give
a similar discussion for every qubit, we find that

(
zP$0,1%N21

exp@ i f ~z1 , . . . ,zj 21,0, zj 11 , . . . ,zN!

2 i f ~z1 , . . . ,zj 21,1, zj 11 , . . . ,zN!#50

for j 51, . . . ,N, ~18!

is a sufficient condition for the maximally entangled stat
Let us show examples off (x), which satisfy Eq.~18!. In the
case ofN53, the following global phase satisfies Eq.~18!,

f 3~x!5H 0, x5000,001,010,110

p, x5100,101,011,111.
~19!
06230
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If we carry out the following procedure, we can obtain
example forN>4. Suppose we have$ f N(x)% that satisfy
Eq. ~18! for N-qubit case already. We constructf N11(x) as
follows:

f N11~0,z!5 f N11~1,z!50

for half of $z:zP$0,1%N, f N~z!50%,

f N11~0,z!50, f N11~1,z!5p

for the other half of$z:zP$0,1%N, f N~z!50%,

f N11~0,z!5 f N11~1,z!5p

for half of $z:zP$0,1%N, f N~z!5p%,

f N11~0,z!5p, f N11~1,z!50

for the other half of$z:zP$0,1%N, f N~z!5p%. ~20!

Applying this procedure in iteration, we can obtain the ma
mally entangled states for arbitrary number of qubits. F
N54, we obtain

f 4~x!55
0, x50000,1000,0001,1001,

0010,0110,1011,1111

p, x50100,1100,0101,1101,

1010,1110,0011,0111.

~21!

IV. ENTANGLEMENT BETWEEN TWO QUBITS
ON THREE-QUBIT PURE STATES

The general problem of entanglement generation by g
bal phase functions forN qubits is very complicated as i
involves 2N phase parameters. We will consider the simp
case of three-qubit pure states that have just one or two n
zero phase parameters. We first derive how the entanglem
between two qubits of a three-qubit pure state varies a
function of global phase functions. For this, we evaluate
complete three-qubit pure state after application of the glo
phases, compute the reduced density matrix for any two
bits, and obtain the entanglement between these two qu
using the formula for entanglement of formation by Wootte
and coworker@12#. We estimate values of phase paramet
that give the maximum entanglement.

First, we consider the following pure state with only on
global phase parameteru,

ucABC&5
1

2A2
~eiuu000&1u001&1•••1u111&). ~22!

Defining rBC5trAucABC&^cABCu, we obtain rAB5rBC
5rCA and we getE(rAB)5E(rBC)5E(rCA). If we decided
8-3
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to apply the phase factoreiu to u001&, instead ofu000&, and
calculated the entanglement between any two qubits,
would obtain the same amount of entanglement as before
understand this, we applyI (A)

^ I (B)
^ sx

(C) to Eq. ~22!, and
we obtain

ucABC8 &5~ I (A)
^ I (B)

^ sx
(C)!uc&ABC

5
1

2A2
~ u000&1eiuu001&1u010&1•••1u111&).

~23!

In general, due to local convertibility, applying a phase fac
eiu to any of the ketsux& (;xP$0,1%3) is equivalent in terms
of entanglement as long as it is theonly phase that is applied

Here, we evaluate the entanglement between the qubB
and C for the state given by Eq.~22!. The reduced density
matrix for rBC for the qubitsB andC is given by

rBC5
1

8F 2 11t 11t 11t

11 t̄ 2 2 2

11 t̄ 2 2 2

11 t̄ 2 2 2
G , ~24!

wheret5eiu. Before computing the entanglement, we ha
to compute another density matrixr̃ from r following the
prescription given in Ref.@12#. We get

rBCr̃BC5
1

64F X 2X 2X Z

Y 2Y 2Y X

Y 2Y 2Y X

Y 2Y 2Y X

G , ~25!

where

X524t1u11tu2, Y54~211 t̄ !,

Z52~12t2!. ~26!

Defining an eigenvalue ofrBCr̃BC as (l/64), we can
write an equation forl as

detUrBCr̃BC2
l

64
IU50, ~27!

and finally we obtain the following equation:

l2@l212l~Y2X!1X22YZ#50. ~28!

Solutions of this equation arel50 for a double root and

l652~A261!2~12cosu!~>0!. ~29!

Therefore, because ofl1>l2 , the concurrence@12# is
given by
06230
e
To

r

C5
1

8
~Al12Al2!5

1

2A2
A12cosu~>0!, ~30!

and entanglement can be written asE(C)5H(p), where

p5
1

2 F11A12
1

8
~12cosu!G . ~31!

From Eqs.~30! and ~31!, we find

0<C<
1

2
,

1

2 S 11
A3

2 D<p<1, ~32!

wherep gets maximum atu50 (C50) and gets minimum
at u5p (C51/2). ~In this range,H(p) decreases monoto
nously.! H(p) gets the maximum value ofH„(1/2)@1
1(A3/2)#….0.36 at u5p and gets the minimum one o
H(1)50 at u50. In Fig. 2, we show a variation of the
entanglementE as a function ofu.

The physical reason for the entanglement peaking au
5p can be understood ifucABC& is rewritten in the follow-
ing manner

ucABC&}u0&A^ ~eiuu00&1u01&1u10&1u11&)BC

1u1&A^ ~ u00&1u01&1u10&1u11&)BC . ~33!

The staterBC is essentially a mixture of the stateeiuu00&
1u01&1u10&1u11&, which is maximally entangled for

FIG. 3. EntanglementE against phase parametersu and s for
Eq. ~35!.

FIG. 2. EntanglementE against phase parameteru for Eq. ~24!.
8-4
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u5p, and u00&1u01&1u10&1u11&, which is always disen-
tangled.~If we apply Hadamard transformation to the fir
qubit of the Bell singlet, we obtain2u00&1u01&1u10&
1u11&.! Hence it is only expected that the entanglement
the mixture will be maximum atu5p. It is also clear that
the entanglement can never be maximal in magnitude
cause the entangled and the disentangled states are a
mixed in equal proportions inrBC .

Next, we consider pure states with two phase parame
u ands. For example, consider the following state:

ucABC&5
1

2A2
~eiuu000&1eisu001&1u010&1•••1u111&),

~34!

we trace out the qubitA and get

rBC5
1

8
@~eiuu00&1eisu01&1u10&1u11&)

3~e2 iu^00u1e2 is^01u1^10u1^11u!

1~ u00&1u01&1u10&1u11&!

3(^00u1^01u1^10u1^11u!#

5
1

8F 2 z̄t11 t11 t11

zt̄11 2 z11 z11

t̄11 z̄11 2 2

t̄11 z̄11 2 2
G , ~35!

wheret5eiu andz5eis. Writing an eigenvalue ofrBCr̃BC
as (l/64), we obtainl50 and

l652~A261!2@12cos~u2s!#~>0!. ~36!

Hence, the concurrence is

C5
1

2A2
A12cos~u2s!~>0!, ~37!

and the entanglement can be written asE(C)5H(p), where

p5
1

2 H 11A12
1

8
@12cos~u2s!#J . ~38!

From Eqs.~37! and ~38!, we find thatC and p can take
values in the ranges of Eq.~32!. Becausep gets maximum at
u5s (C50) and gets minimum atu5s6p (C51/2),
H(p) gets the maximum value atu5s6p and gets the
minimum one atu5s. In Fig. 3, we show a variation o
entanglementE as a function ofu ands.

Again, in this case it is easy to see why the entanglem
is minimum foru5s. The whole state can be rewritten a

ucABC&}u0&A^ @eiuu0&~ u0&1ei (s2u)u1&)1u1&~ u0&1u1&)] BC

1u1&A^ ~ u0&1u1&)B~ u0&1u1&)C . ~39!
06230
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This makes it clear that the staterBC is a mixture of the state
@eiuu0&(u0&1ei (s2u)u1&)1u1&(u0&1u1&)] BC , which is en-
tangled for sÞu, and the always disentangled state (u0&
1u1&)B(u0&1u1&)C . The entanglement ofrBC will thus de-
pend entirely on the entanglement of@eiuu0&(u0&
1ei (s2u)u1&)1u1&(u0&1u1&)] BC , whose entanglement wil
be zero whenu5s and maximum whenu2s5p.

The entanglement between the qubitsB andC will depend
on the choice of the two kets from the set$ux&:xP$0,1%3% to
which we decide to apply the global phases (eiu and eis).
@It is different from the one-parameter case of Eq.~22!#.
Imagine that we had applied the phases tou000& and u011&.
Then the reduced density matrix forrBC8 would be

rBC8 5
1

8
@~eiuu00&1u01&1u10&1eisu11&)

3~e2 iu^00u1^01u1^10u1e2 is^11u!

1~ u00&1u01&1u10&1u11&!

3~^00u1^01u1^10u1^11u!#. ~40!

Because we cannot transform the density matrixr of Eq.
~40! to that of Eq. ~35! by local unitary transformations
U (A)

^ U (B)
^ U (C), the entanglement of Eq.~35! need not be

equal to that of Eq.~40! in general.
Writing rBC8 as

rBC8 5
1

8F 2 t11 t11 tz̄11

t̄11 2 2 z̄11

t̄11 2 2 z̄11

t̄z11 z11 z11 2
G , ~41!

and an eigenvalue ofrBC8 r̃BC8 as (l/64), we obtainl50 and

l652$3r 12ts62@2r ~r 1ts!#1/2%, ~42!

where t512cosu, s512coss, and r 512cos(u1s). The
concurrence is given byC5(1/8)(Al12Al2) and 0<C
<1/2. At u1s50 (mod 2p), C50 and the entanglemen
E gets minimum. Atu1s5p(mod 2p), C51/2 andE gets
maximum. In Fig. 4, we show a variation of entanglemenE
as a function ofu and s. As in the previous cases, the e
tanglement is entirely due to the entanglement of the fi
part eiuu00&1u01&1u10&1eisu11& of the density matrix
rBC8 .

Note that in both the cases of Eqs.~35! and~40! maximal
entanglement betweenB and C can never be reached b
varyingu ands. However, one could get maximal entangl
ment if one applied the two phase parameters to two differ
global states. This is equivalent to applying same sets
phases as before, but examining the entanglement betw
the pair of qubitsA and C or A and B. Let us consider the
three-qubit pure state of Eq.~34! again and trace out the
qubit C ~in contrast toA) to get
8-5
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rAB5
1

8
@~eiuu00&1u01&1u10&1u11&)

3~e2 iu^00u1^01u1^10u1^11u!

1~eisu00&1u01&1u10&1u11&!

3(eis^00u1^01u1^10u1^11u!#

5
1

8F 2 z1t z1t z1t

z̄1 t̄ 2 2 2

z̄1 t̄ 2 2 2

z̄1 t̄ 2 2 2
G . ~43!

If we write an eigenvalue ofrABr̃AB as (l/64), we obtain
l50 and

l652@4~ t1s!2u62$2~ t1s!@2~ t1s!2u#%1/2#,
~44!

where t and s are defined before andu512cos(u2s). In
Fig. 5, we show a variation of entanglement ofrAB as a
function of u ands.

We now compare the entanglement ofrAB for Eq. ~43!
and rBC for Eq. ~35! with fixed u. In Fig. 6, we show the

FIG. 4. EntanglementE against phase parametersu and s for
Eq. ~40!.

FIG. 5. EntanglementE against phase parametersu and s for
Eq. ~43!.
06230
variation of entanglement ofrAB andrBC with u5p. From
Fig. 6, we notice the following facts. When the entanglem
E of rBC decreases,E of rAB increases.rAB becomes the
maximally entangled state atu5s5p. To understand this
we rewriterAB with u5p as follows:

rAB5
1

4
@~ u0&u2&1u1&u1&)~^0u^2u1^1u^1u!

1~ u0&ufs&1u1&u1&!~^0u^fsu1^1u^1u!#, ~45!

where

u2&5~1/A2!~2u0&1u1&),

u1&5~1/A2!~ u0&1u1&),

ufs&5~1/A2!~eisu0&1u1&). ~46!

Note that (u0&u2&1u1&u1&) is the maximally entangled
state and the phase parameters controls the entanglement o
the second term in Eq.~45!. As ufs5p&5u2&, A andB are
maximally entangled in the state (u0&u2&1u1&u1&) ~with C
being completely disentangled from them! for s5p.

V. ENTANGLEMENT BETWEEN TWO QUBITS ON
THREE-QUBIT MIXED STATES

In previous sections, we have studied the entanglem
between two qubits on pure states with phase factors.
pure state of Eq.~22! is prepared by taking a three-qubit sta
(u1&^1u) ^ 3, and giving a phaseeiu on the ket vector
u000&. ~In this section, we will often use the basis$u6&
5(1/A2)(u0&6u1&)%.!

Here, instead of the pure state (u1&^1u) ^ 3, we take a
mixed state

@~12q!u1&^1u1qu2&^2u# ^ 3, ~47!

where 0<q<1/2. Then, we consider the application of
single phase factor as follows:

u000&→eiuu000&. ~48!

FIG. 6. EntanglementE of rAB for Eq. ~43! andrBC for Eq. ~35!
againsts with fixed u(5p). A solid line representsE of rAB and a
dashed line representsE of rBC .
8-6
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Tracing out any qubit out of the three qubits, we obtain
density matrix in the form of

r5
1

4F 1 ~11t!a ~11t!a 2~11t!a2

~11 t̄ !a 1 4a2 2a

~11 t̄ !a 4a2 1 2a

2~11 t̄ !a2 2a 2a 1
G ,

~49!

wheret5eiu and a5(1/2)2q. Now we proceed to derive
the entanglementE(r) as a function ofu andq.

We already know that entanglement takes the maxim
value atu5p when we fixq50. The interesting question i
whether that peak of entanglement remains in the same p
for a nonzeroq. Before evaluatingE(r) explicitly, we show
that it gets a local stationary value atu5p for arbitrary fixed
p (0<;q<1/2). ~It remains stationary locally alongu axis
at any fixedq.!

We first show that an infinitesimal variation ofu from u

5p does not affect an equation of eigenvalues ofrr̃. The
equation of eigenvalues ofrr̃ with u5p1d and udu!1 is
given by

deturr̃2lI uuu5p1d

5deturr̃2lI uUu5p1d
]

]u
[deturr̃2lI u] uu5p1O~d2!

50. ~50!

Hence, if ]u@deturr̃2lI u#uu5p50, the equation is not af
fected byd and the eigenvalues ofrr̃ get stationary around
a neighborhood ofu5p for fixed q.

Writing

rr̃2lI5F X1L V V W

Y 2Z1L 2Z 2V

Y 2Z 2Z1L 2V

Z 2Y 2Y X1L
G , ~51!

where

X52~1/16!~12 t̄ !a2@~12t!a21t#,

Y52~1/16!~12 t̄ !a~114a2!,

Z52~1/4!~12 t̄ !a2,

V5~1/16!~12 t̄ !a@2a21t~112a2!#,

W5~1/8!~12t2!a2,

L52l1~1/16!~112a!2~122a!2, ~52!

we can obtain the following result with some calculatio
@13#:
06230
e

m

ce

]

]u
@deturr̃2lI u#uu5p

5FU ]uX ]uV ]uV ]uW

Y 2Z1L 2Z 2V

Y 2Z 2Z1L 2V

Z 2Y 2Y X1L
U

12UX1L V V W

]uY 2]uZ 2]uZ 2]uV

Y 2Z 2Z1L 2V

Z 2Y 2Y X1L
U

1UX1L V V W

Y 2Z1L 2Z 2V

Y 2Z 2Z1L 2V

]uZ 2]uY 2]uY ]uX
UGU

u5p

50.

~53!

Therefore,E(r) remains stationary atu5p for any fixedq
and we can expect that it gets maximum there alongu axis.

By numerical calculations, we get Fig. 7. It is clear fro
this figure that the basic behavior of entanglement w
variation of a single phase parameteru does not change for a
mixed initial state and it is still maximum atu5p. Figure 8
shows variation ofE as a function ofq for u5p. This figure
illustrates that the entanglement is lost rapidly asq gets
larger. This is also an expected result: the more mixed
initial state is, the harder it is to entangle it by global pha
functions.

VI. NECESSITY OF ENTANGLEMENT
FOR EXPONENTIAL SPEEDUP

IN THE DEUTSCH-JOZSA ALGORITHM

We now present an application of our results on ent
gling by global phases to the question of necessity of

FIG. 7. EntanglementE against phase parameteru and probabil-
ity q for the mixed state of Eq.~49!.
8-7
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tanglement in quantum computation. In the Deutsch-Jo
algorithm, the following state appears@3#:

uC&522n/2 (
j P$0,1%n

ei f ( j )u j &, ~54!

where 0< f ( j )<2p ; j . If f ( j ) is constant; j , uC& is a
uniform superposition, and we getu0•••0& by applying the
quantum Fourier transformation~QFT! to uC&. On the other
hand, if $ f ( j )% takes on values 0 orp randomly but in a
balanced manner~i.e., equal occurrences of 0 andp), uC& is
orthogonal to the uniform superposition and we get a s
orthogonal tou0•••0& after QFT. Therefore, we can invest
gate whetherf is constant or balanced by a single applicati
of the global phase function using a quantum computer.
the other hand, in the worst case scenario using a clas
algorithm, one may have to evaluate this function for at le
half the number of possible argumentsj. This implies 2n/2
~exponential! function evaluations. This is why the Deutsc
Jozsa algorithm is regarded as having an exponential ad
tage over its classical counterpart.

To see that entanglement is necessary for the expone
advantage of this algorithm, consider the following scena
It is given that the global phase functions, apart from be
constant or balanced and taking values 0 orp, are also re-
stricted in such a manner that they never produce an
tangled state in the course of the entire computation. T
implies ~according to the conditions obtained in Sec. II!

f ~ j !5uW • jW1u0 ~mod 2p!. ~55!

If we know beforehand thatf can be written as Eq.~55!, we
can estimatef completely withO(n) steps of classical algo
rithm, even in the worst case. We supply (0•••0) and strings
where only one digit is 1 and the others are 0, (10•••0),
. . . , (0•••01), asj of inputs for f, and we getu0 and ū as
outputs. Hence, when we restrict the possible set of funct

FIG. 8. EntanglementE against probabilityq for u5p for the
mixed state of Eq.~49!.
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to those which arenonentanglement producing, a polynomial
time classical algorithm exists. In other words, there is o
a polynomial advantage of quantum computation over c
sical computation. To make the quantum algorithm have
exponential advantage over its classical counterpart, we m
remove the restriction of Eq.~55! on the global phase func
tions f ( j ), which implies that entanglement cannot be p
vented from arising any more during the course of the qu
tum computation. As no entanglement implies on
polynomial advantage, to get exponential advantage,
tanglement is necessary.

VII. CONCLUSIONS

In this paper, we have investigated the generation of
tanglement through global phase functions. We have
tained the necessary and sufficient conditions for the ap
cation of global phases to the pure product stateu0•••00&
1u0•••01&1•••1u1•••11& to result in entanglement. We
have considered the maximum entanglement creation by
bal phases and shown examples of it. Though we have
tained a sufficient condition, this is a very general~in the
sense of all global phases being present! statement. We have
then investigated the amount of two-qubit entanglement
can be generated in three-qubit pure states when only on
two of the global phase parameters are nonzero. An inter
ing, though potentially difficult, future direction will be th
investigation of the quantity of entanglement when all pha
parameters are present for an arbitrary number of qub
While we have obtained the conditions forpresenceor ab-
senceof entanglement in the general case, it would be int
esting to classify functions according to thedegreeof en-
tanglement they can generate. We have also exam
entanglement generation through a single global phase
rameter for mixed initial states. The general problem of fin
ing necessary and sufficient conditions for entanglement
global phases for mixed states remains open. One could
pect counterintuitive results in that case as the same gl
phase function might entangle one pure component and
entangle another pure component of a mixture of two p
states. Finally, we have applied our conditions to prove
necessity of entanglement in the Deutsch-Jozsa algorithm
the algorithm to have an exponential advantage over its c
sical counterpart. It would be interesting to apply simil
techniques to the investigation of the role of entanglemen
other quantum algorithms.
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