PHYSICAL REVIEW A, VOLUME 64, 062308
Entangling capacity of global phases and implications for the Deutsch-Jozsa algorithm
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We investigate the creation of entanglement by the application of phases whose value depends on the state
of a collection of qubits. First we give the necessary and sufficient conditions for a given set of phases to result
in the creation of entanglement in a state comprising of an arbitrary number of qubits. Then we consider the
maximum entanglement generation by global phases. We analyze the creation of entanglement between any
two qubits in three-qubit pure and mixed states. We use our result to prove that entanglement is necessary for
the Deutsch-Jozsa algorithm to have an exponential advantage over its classical counterpart.
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[. INTRODUCTION dependent global phagéj) is now applied to each statg).
This is shown as the second giant transformaffom the
In recent years, entanglement has become an importafigure. This converts the total state to

resource for quantum communicatidrig. Quantum compu- oN_q
tation[2], which is more efficient than the classical compu- _i i) 5
tation for certain problemg3-5], could also potentially owe ¥, NToN2 &) "), @
its efficiency to entanglemen®—9]. Though the precise role
of entanglement in quantum computation is not yet well unwhere{f(j)} are real and &f(j)<2 [f(j)=2m is reas-
derstood, entangled states are certainly generated during teigned the value D This state|#),  n, generated as a
course of certain quantum computations. A quantum compueesult of global phases, can be entangled. We propose to halt
tation, when halted at an appropriate point, can be regardde guantum computation at this stage and investigate the
as a method of generating entanglement. Typically, a quar@mount of entanglement generated. A complete quantum
tum computation is a multiparticle interference experimentt®mputation, of course, consists of one more step in which
with different phases applied to distinct multiparticle statesdther giant Hadamard transformation is applied to all the
[10]. In general, the phases applied to the multiparticle stateQUb'tS as shown in Fig. 1. But in this paper we are interested

during a quantum computation agiobal phasesas they ![?oahe entanglement of the stgteior to this last transforma-

depend on t_he_ total_state of a collection of qubits. In this The entanglement of#);  comes from the global
paper, we will investigate the types of ent_a_nglement genelnpase factorg(j). First, we 'stu’dy conditions on the phase
ated by such global phases and the conditions under whi Uinction f(j) for the s:tate|¢>1 ’’’’’ \ to be disentangled.
such phases do not generate any gntanglgment. . Next, we consider the maximum entanglement creation by
The model of quantum computation, which motivates oufgiha| phases. Then we derive the entanglement of three-
work is that presented by Cleve, Ekert, Macchiavello a”ngubit pure statesN=3) for the special case in which only
Mosca[10]. This model(with a slight alteration that does not gne or two of the global phase parameters are nonzero. We
change its principal ingredienis illustrated in Fig. 1. Each  study variation of the entanglement as a function of one glo-
of the qubits, initially in the|0) state, is first transformed pal phase parameter for a mixed state of three qubits by
according to a Hadamard transformation. This is shown imumerical calculations. Finally, we discuss the implications
the figure by the giant Hadamard transformation acting on albf this type of entanglement arising in Deutsch-Jozsa algo-
the qubits and which converts the total state of the qubits teithm. In particular, we show that for obtaining exponential
advantage over its classical counterpart, entangled states

1 N1 must necessarily arise in Deutsch-Jozsa algorithm.

= i 1
@)1 oN/2 ;o D @ Il. NECESSARY AND SUFFICIENT CONDITIONS
FOR THE GENERATION OF ENTANGLEMENT

whereN is the total number of qubits and the indebabels BY GLOBAL PHASES

the 2V possible states of the typgy, . . . ,jn) in which each We first derive the conditions off(j)} for | ),
ji=0 or 1. |¢);  n is a disentangled state. A state- pe disentangled, i.e.,

N to
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|91, n=lU)©- - |Yy). ©)

In a case of two qubitsN=2), we can write the condition as
follows:

[f(0)=f(1)]-[f(2)—f(3)]=2mn, 4
wheren is an arbitrary integer.
We now consider the case of three qubits,
1 7
|‘//ABC>:ZT/21_ZO e'"0]j). 5

First, we derive condition that the qubi is disentangled
from the qubitsAB. The density matrix of the qubi€ is
given by

1[4 7
pc=1ras(|¥asc)(¥arc) = gl v 4] (6)
with taking a basig|0),|1)} and

y=exp(i[f(0)—f(1) ]} +exp{i[f(2)—f(3)]}

+expli[f(4)—f(5) ]} +texgfi[f(6)—f(7)]}. (7)

(From now on, when we give a matrix representation of a
density operator on a"2dimensional space, we always take

a logical basis of|x):xe{0,1}"}.) If and only if tr(p2) =1,
the qubitC is disentangled from the qubisB. Hence we
obtain the following constraints:

[F(0)—f(D)]-[f(2)—f(3)]=27ny, 8
[F(O)—f(1)]-[f(4)—f(5)]=27n,, ©)
[F(0)—f(D)]-[f(6)—F(7)]=27n;. (10

Next, we consider the condition that the quBitis disen-
tangled from the qubit&C. From similar considerations as
before, we obtain another constraint

[f(0)—f(2)]-[f(4)—f(6)]=2mn,. (11
From these results, we obtain four constraints, Egjs-(11),
wherengy, ... ,n, are arbitrary integers, so th&@agc) is
disentangled perfectly.

Next consider the general caseMfubits. Before deriv-
ing the condition forl¢); . n to be disentangled, we think
how many constraints off(j)} do we need to disentangle
|)1 .. n completely. In Eq(2), the number of real param-

entangled, we can describe it as
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)1, n=€'(|0)+e (1))@ - ®(]0)+e N|1)),
12

where 0<6,<2m for O=< Vi=<N and the number of real
parameters is equal toN@#1). Therefore, to disentangle
|¢)1 .. n to an N-qubit product state, we ned®"—(N
+1)] constraints. The constraints are given as follows;

[F(0)—f(D)]-[f(2)~f(3)]=27ny,
[F(0)—f(1)]-[f(4)—f(5)]=2mn,,

[f(0)—f(1)]-[f(2"-2)—f(2"-1)]
:27Tn2Nfl_1,
[f(0)—f(2)]-[f(4)—f(6)]=2mmy,

[f(O)—f(2)]-[f(2"-4)—f(2"-2)]

=2mTMyN-2_1,

[f(0)—f(2N"?)]-[F(2N"H—f(3x2N"?)]

=2l (13

and we can confirm that the number of the above constraints
is

N
k21(2“—k—1)=2N—(N+1). (14)

As | )1 . being disentangled automatically implies that
all the above constraints hold, if any of them fajlg); . n
is necessarily entangled. Aufficient condition for global
phase functiond(j) to produce entanglement is thus the
violation of any of the above constraints.

In a compact form the above expression can be rewritten
as

f(j)=6-]+ 6, (mod 27), (15)
where 6=(64, ...,0x), 1=(i1, ...,jn), and the compo-
nentsj; are obtained from the binary expression joas
jis+---4n, and means the inner product of
N-component vectors. An easy argument now proves that the
violation of Eg. (15) is also a necessary condition for the
generation of entanglement by global phases. Consider a
phase functiorf(j) expressible in the form of E¢15). Then

the whole state, after application of the global phases, can be
rewritten in the form of Eq(12). This is a disentangled state.
This means that the ability to expreg) in the form of Eq.

(15) implies no generation of entanglement. In other words,
to generate entanglement it is necessary to have a violation
of Eq. (15). We have thus found that the necessary and suf-
ficient condition for the generation of entanglement by glo-
bal phases is the impossibility of the expansion given by Eq.
(15) of the global phase function. In the subsequent sections,
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we proceed to study the degree and type of entanglemetit we carry out the following procedure, we can obtain an
generated by some global phase functions that generate eexample forN=4. Suppose we havéfy(x)} that satisfy

tanglement. Eq. (18 for N-qubit case already. We construigi, 1(x) as
follows:
Ill. GLOBAL PHASES AND THE MAXIMUM fne1(0,2)=Fn41(1,2)=0

ENTANGLEMENT GENERATION

. N —
In this section, we discuss the maximum entanglement for half of {z:ze {0,137, fn(2) =0},

generation by global phases and show some examples of it.

As we are handlindN(=2)-qubit states and a quantitative f,,,(0,2)=0, fy.(1,2)=7

definition of entanglement for three or more qubits has not

defined in general, we have to clarify the meaning of the for the other half off zze {0, 1}, f\(2) =0},
maximum entanglement at first. We use this terminology as

follows. Let us consider an arbitraN(=2)-qubit pure state. f 0 7)=f 17)=

If we regard it as a bipartite pure state of one arbitrary qubit N+1(0.2)=fya(L2)=7
and the others, we can consider its von Neumann entropy as . N .
entanglemeni11]. As we are thinking aboul qubits, we for half of {z:z& {0, 17, fn(2) =},
can obtainN different von Neumann entropies. If all of them

take the maximum value of unity, we regard the state to be fne1(0,2)=m, fni1(1,2)=0
maximally entangled.
Here, we derive some examples of the maximally en- for the other half off zze {0,1N, f\(z)=7}. (20

tangled states. An arbitrary state with global phases is given

by Eq.(2). We separate it into the first qubit and the others agpplying this procedure in iteration, we can obtain the maxi-
mally entangled states for arbitrary number of qubits. For

N=4, we obtain
1
FHOleo +Dled], (16) (0,  x=0000,1000,0001,1001,
0010,0110,1011,1111

where f4(x) =4 (21)
T, x=0100,1100,0101,1101,

S i 22) forj=0.1 L 1010,1110,0011,0111.

|‘Pj>:
zefo,pN—1

2N—l
(17 IV. ENTANGLEMENT BETWEEN TWO QUBITS

ON THREE-QUBIT PURE STATES

If (¢ol@1)=0, the von Neumann entropy of the reduced The general problem of entanglement generation by glo-
density matrix of the first qubit reaches unityhis condition  bal phase functions foN qubits is very complicated as it
serves special cases that take the maximized von Neumaiiivolves 2V phase parameters. We will consider the simpler
entropy. It is only just a sufficient conditionAs we can give  case of three-qubit pure states that have just one or two non-
a similar discussion for every qubit, we find that zero phase parameters. We first derive how the entanglement
between two qubits of a three-qubit pure state varies as a
function of global phase functions. For this, we evaluate the
i complete three-qubit pure state after application of the global
> exdif(zy, 210,240, - 20) phases, compute the reduced density matrix for any two qu-
bits, and obtain the entanglement between these two qubits
—if(zy, ... zj-1,1, 2544, ... Z0)]=0 using the formula for entanglement of formation by Wootters
and coworkelf12]. We estimate values of phase parameters
forj=1,... N, (18 that give the maximum entanglement.
First, we consider the following pure state with only one
s dlobal phase paramet@y

ze{o,gN"1

is a sufficient condition for the maximally entangled state
Let us show examples d{x), which satisfy Eq(18). In the

case ofN=3, the following global phase satisfies EG8), 1
| ¥asc)= = (€000 +|00D) + - - - +|11D). (22)
2\2
fo(X)= . x=000,001,010,110 19  Defining pec=1ral ¥asc)H¥asd, We obtain pag=psc
T, x=100,101,011,111. =pca and we geE(pag) =E(pgc) =E(pca)- If we decided
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to apply the phase facta'’ to |001), instead ofl000), and E
calculated the entanglement between any two qubits, we 0.4
would obtain the same amount of entanglement as before. To
understand this, we appf¥®1® e o{® to Eq.(22), and 0.3
we obtain
0.2
[¥as0) = (V@1 ® e o) ¢)rsc
0.1
:i(|ooo>+e”’|001>+|01o>+---+|111,>). o
2\/5 T 2n

23
@3 FIG. 2. EntanglemeriE against phase parameterfor Eq. (24).
In general, due to local convertibility, applying a phase factor
e'’ to any of the ket$x) (Vxe{0,11%) is equivalent in terms 1 1
of entanglement as long as it is thely phase that is applied. C=-(VA,—\_)=—=V1-cos6(=0), (30)
Here, we evaluate the entanglement between the gBbits 8 22

and C for the state given by Eq22). The reduced densit .
matrix for pgc for thg qubits)I/B acrfdc is given by y and entanglement can be written <) =H(p), where

1 1
2 1+7 1+7 1+7 p=§ 1+ 1_5(1_(:039) : (3D
| 2 2 2
e ) , |, (24)  From Egs.(30) and(31), we find
_ 1 1 3
1+ 7 2 2 2 0<Cs§, > 1+\/7— sp=<], (32

where r=¢e'’. Before computing the entanglement, we havewherep gets maximum a#=0 (C=0) and gets minimum

to compute another density matrixfrom p following the  at =7 (C=1/2). (In this rangeH(p) decreases monoto-

prescription given in Ref.12]. We get nously) H(p) gets the maximum value oH((1/2)[1
+(4/3/2)])=0.36 at =7 and gets the minimum one of

X =X =X Z H(1)=0 at =0. In Fig. 2, we show a variation of the
~ 1lY =Y =Y X entanglemenE as a function ofg.
PBCPBC™ 7y _ _ ) (25) The physical reason for the entanglement peaking at
64| Y Y Y X . . )
=7 can be understood [f/agc) is rewritten in the follow-
Y -y -y X ing manner
where [ asc)*[0)a® (€'700)+]01) +[10) +[11)) e

_ 5 The statepgc is essentially a mixture of the stat?|00)

Z=2(1-1). (26) +]01)+|10)+|11), which is maximally entangled for

Defining an eigenvalue opgcpsc as (\/64), we can
write an equation foh as

de*PBC’Z)BC_ &' =0, (27

and finally we obtain the following equation:
N2 [A2+ 2N (Y —X)+X?~Y Z]=0. (28
Solutions of this equation ane=0 for a double root and

M. =2(1/2+1)3(1—cosh)(=0). (29

Therefore, because of , =\ _, the concurrencgl?] is FIG. 3. EntanglemenE against phase parametetsand o for
given by Eq. (35).
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6=, and |00)+|01)+|10)+|11), which is always disen- This makes it clear that the staigc is a mixture of the state
tangled. (If we apply Hadamard transformation to the first [€'?|0)(|0)+€'("~ ?|1)) +|1)(|0)+|1))]gc, Which is en-
qubit of the Bell singlet, we obtain—-|00)+|01)+|10) tangled foro+ #, and the always disentangled stat®)(
+|11).) Hence it is only expected that the entanglement of+|1))g(|0)+|1))c. The entanglement gfgc will thus de-
the mixture will be maximum av= . It is also clear that pend entirely on the entanglement ofe'?/0)(|0)
the entanglement can never be maximal in magnitude be+e'(?~9|1))+|1)(]0)+|1))]gc, whose entanglement will

cause the entangled and the disentangled states are alwdys zero wherd= ¢ and maximum whem@— o= 7.

mixed in equal proportions ipg¢ -

The entanglement between the quiitandC will depend

Next, we consider pure states with two phase parameteisn the choice of the two kets from the gét):x e {0,1}%} to

0 and o. For example, consider the following state:

(€'%1000 +€'?]001) + |010) + - - - +]111)),
(34

1
|¥apc) —ﬁ
we trace out the qubiA and get

1 .
pec=5[(€7]00)+€”|01) +[10)+| 1)

X (e71% 00+ e "7(01] +(10/+(11))
+(|00)+]01)+|10) +] 1))
X ({00 +(02f+(10/+(11) ]

[ 2 ¢r+1 7+l r+17

ir+l 2 (+1 ¢+1

(35

1 (+1 2 2 |-

|

1 (+1 2 2

wherer=¢'? and /=€'?. Writing an eigenvalue opgcpsc
as (\/64), we obtail\ =0 and

A.=2(y2+1)y1-cog6—0)](=0). (36)
Hence, the concurrence is
1
C= ﬁ\/l—COSH—U)(ZO), (37)

and the entanglement can be writtené4€) =H(p), where

p=%[1+ \/1—%[1—(:05{0—0)] . (38
From Egs.(37) and (38), we find thatC and p can take
values in the ranges of E¢32). Because gets maximum at
=0 (C=0) and gets minimum av=cxm (C=1/2),
H(p) gets the maximum value ad=o=* 7 and gets the
minimum one atd=o. In Fig. 3, we show a variation of

which we decide to apply the global phase&’(and e'?).
[It is different from the one-parameter case of Eg2)].
Imagine that we had applied the phase$d@0 and|011).
Then the reduced density matrix fpf would be

1 . _
pac= gl(€""|00)+[01) +[10)+€'7|11))

X (e71%00[+ (01 +(10/+ e '7(11))
+(|00)+|02) +|10) +|11))

X ({00/+ (01| +(10/+(11))]. (40)
Because we cannot transform the density magriof Eq.
(40) to that of Eq.(35) by local unitary transformations
UPNeUEBU©), the entanglement of E¢35) need not be
equal to that of Eq(40) in general.

Writing pgc as

[ 2 1+l 7+l 41T
1| 12 2 +1
pec=g| 741 2 2 +1 | (42)
Ti+1 (+1 o+l 2

and an eigenvalue ¢f;-ppc as (\/64), we obtail\ =0 and

N =2{3r+2ts*+2[2r(r +ts)]"3, (42)
wheret=1-cosf, s=1—coso, andr=1-cos@+o). The
concurrence is given b =(1/8)(yA.—+A_) and 0<C
<1/2. At 0+ 0=0 (mod 2r), C=0 and the entanglement
E gets minimum. A9+ o= w(mod 27), C=1/2 andE gets
maximum. In Fig. 4, we show a variation of entanglemgnt
as a function of¢ and o. As in the previous cases, the en-
tanglement is entirely due to the entanglement of the first
part €'/00)+|01)+|10)+€'?|11) of the density matrix
PBc-

Note that in both the cases of Eq35) and(40) maximal
entanglement betweeB and C can never be reached by
varying # ando. However, one could get maximal entangle-

entanglemenE as a function ofg ando. . , .
T o ment if one applied the two phase parameters to two different
Again, in this case it is easy to see why the entanglement

is minimum for #= o. The whole state can be rewritten as global states. This is equivalent to applying same sets of

phases as before, but examining the entanglement between
|¢ABC>OC|0>A®[ei0|0>(|0>+ei(o— 0)|1>)+|1>(|0>+|1>)]BC the pair of qubitsA and C or A andB. Let us consider the
+11)a®(10)+]1))g(|0) +]1))c - (39

three-qubit pure state of Eq34) again and trace out the
qubit C (in contrast toA) to get
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FIG. 4. EntanglemeniE against phase parametetsand o for

Eq. (40).

1

pae=gl(€"’|00)+|01)+[10)+[11)
X (e71%00+ (01 +(10+(11))
+(e'7|00)+|01) +|10) +|11))
X (€'9(00+ (01 + (10 +(11))]

2 (7 (+T7 [+T
s 2 2 2
| 7
:g (+T 2 2 2
Z—|—? 2 2 2

If we write an eigenvalue 0pagpag as (\/64), we obtain

A=0 and

Ao =2[4(t+S)—ux2{2(t+s)[2(t+s)—u]}1?,

(43

(44)

wheret and s are defined before and=1-cos@—o). In

Fig. 5, we show a variation of entanglement m{g as a

function of @ ando.

We now compare the entanglement @fg for Eq. (43

and pgc for Eq. (35) with fixed 6. In Fig. 6, we show the

FIG. 5. EntanglemenE against phase parametetsand o for

Eq. (43.
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0.8
0.6
04

02 ~ -

FIG. 6. Entanglemert of pg for Eq.(43) andpgc for Eq. (35)
againsto with fixed 6(= 7). A solid line representk of p,g and a
dashed line represenisof pgc .-

variation of entanglement gfsg and pgc with 6= . From
Fig. 6, we notice the following facts. When the entanglement
E of pgc decreasesk of pap increasesp,p becomes the
maximally entangled state #= o= 7. To understand this,
we rewritepag With 6= 7 as follows:

1
pas= 7 L(10)[ =) +|D)[+))(O[(—|+(L/(+])
+(10) o) + DI+ N0l b, | +(1[(+])]. (45)

where
|=)=(1N2)(~]0)+]1)),
|+)=(12)(|0)+]1)),
| boy=(112)(€"7|0)+|1)). (46)

Note that (0)|—)+|1)|+)) is the maximally entangled
state and the phase paramatecontrols the entanglement of
the second term in Eq45). As |¢,_.)=|—), AandB are
maximally entangled in the stat¢0f|—)+|1)|+)) (with C
being completely disentangled from thefor o= .

V. ENTANGLEMENT BETWEEN TWO QUBITS ON
THREE-QUBIT MIXED STATES

In previous sections, we have studied the entanglement
between two qubits on pure states with phase factors. The
pure state of E(22) is prepared by taking a three-qubit state
(|+ )X +)®3, and giving a phase'’ on the ket vector
|000). (In this section, we will often use the basfs+)
= (112)(|0)=[1))})

Here, instead of the pure state+()(+])®3, we take a
mixed state

[(A=a)[+)(+]+al=}-[1%", (47)

where 0sq=<1/2. Then, we consider the application of a
single phase factor as follows:

|000)— €'?|000). (48)
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Tracing out any qubit out of the three qubits, we obtain the
density matrix in the form of

1 (1+7a (1+7na 2(1+7)a?

1 (1+7)a 1 402 2a
P=3 (1+7)a 4a? 1 2a '
2(1+7a?  2a 2a 1

(49

where r=€'? and a=(1/2)—q. Now we proceed to derive
the entanglemeri(p) as a function of¢ andq.

We already know that entanglement takes the maximum
value atd= 7 when we fixq=0. The interesting question is
whether that peak of entanglement remains in the same pla
for a nonzerag. Before evaluatind=(p) explicitly, we show
that it gets a local stationary value &t 7 for arbitrary fixed
p (0<Vg=1/2). (It remains stationary locally along axis —[dellpf)—)\l 1l
at any fixedq.) a0 T

We first show that an infinitesimal variation éffrom 6
= does not affect an equation of eigenvaluesppf The

ce FIG. 7. EntanglemeriE against phase paramet@and probabil-
ity g for the mixed state of Eq49).

aX  aN  IN W

equation of eigenvalues gfp with =7+ 5 and|s|<1 is B Yoozt -2 oV
given by - Y —-Z —-Z+L -V
~ Z -Y -Y X+L
detpp—N|lp=r+ s
B P ~ X+L V \% W
=de{pp—\l| 0=W+5%[deljpp—)\l|]|9=w+0(52) Y =042 —d,2 —aN
t21 y -z -z+L -V
=0. 0 z -Y -Y  X+L
Hence, if 9,[detpp—AI1|]|,-,=0, the equation is not af- )
fected by and the eigenvalues gfp get stationary around X+L v v W
a neighborhood of= 7 for fixed q. Y —-Z+L A -V
Writing +| vy -7  —7Z4L -V =0.
X+Lo v v w 92— =Y X
Y —Z+L -Z -V d1o=n
pp=N=| 'y -z —z+L -v | O (53
Z -Y -Y X+L

Therefore,E(p) remains stationary ai= = for any fixedq
and we can expect that it gets maximum there al@raxis.

where By numerical calculations, we get Fig. 7. It is clear from

_ TN 2riq N2 this figure that the basic behavior of entanglement with

X=- (A= nel(1=na’+], variation of a single phase parametedoes not change for a

— 5 mixed initial state and it is still maximum &= 7. Figure 8
Y=—(116(1-7a(l+4a%), shows variation of as a function ofj for 6= 7. This figure
_ illustrates that the entanglement is lost rapidly qagets

Z=—(1U4(1-1)a? larger. This is also an expected result: the more mixed the
o initial state is, the harder it is to entangle it by global phase
V=(1/16)(1— 1) e[ 2a?+ (1 +2a2)], functions.
W=(1/8)(1—7%)a?, VI. NECESSITY OF ENTANGLEMENT
FOR EXPONENTIAL SPEEDUP
L=—N+(116(1+2a)%(1-2a)? (52) IN THE DEUTSCH-JOZSA ALGORITHM

we can obtain the following result with some calculations We now present an application of our results on entan-
[13]: gling by global phases to the question of necessity of en-
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E to those which ar@onentanglement producing polynomial
time classical algorithm exists. In other words, there is only
a polynomial advantage of quantum computation over clas-
sical computation. To make the quantum algorithm have an
exponential advantage over its classical counterpart, we must
0.2 remove the restriction of E455) on the global phase func-

tions f(j), which implies that entanglement cannot be pre-

vented from arising any more during the course of the quan-

tum computation. As no entanglement implies only
q polynomial advantage, to get exponential advantage, en-
0.05 0.1 0.15 02 0.25 tanglement is necessary.

04

FIG. 8. EntanglemenE against probabilityq for 6= = for the

mixed state of Eq(49). VII. CONCLUSIONS

_ _ In this paper, we have investigated the generation of en-
tanglement in quantum computation. In the Deutsch-Jozsgynglement through global phase functions. We have ob-

algorithm, the following state apped3: tained the necessary and sufficient conditions for the appli-
cation of global phases to the pure product stéte - 00)
[Ty=2""2 3 @it} (54  +[0---01)+---+|1---11) to result in entanglement. We
je{oy" have considered the maximum entanglement creation by glo-

bal phases and shown examples of it. Though we have ob-
tained a sufficient condition, this is a very genefial the
sense of all global phases being pregstiatement. We have
; X ) then investigated the amount of two-qubit entanglement that
hand, if {f(j)} takes on values O ofr randomly but in a 5, he generated in three-qubit pure states when only one or
balanced mannéi.e., equal occurrences of 0 and, [W)is o of the global phase parameters are nonzero. An interest-
orthogonal to the uniform superposition and we get a statg,y though potentially difficult, future direction will be the
orthogonal t00- - - 0) after QFT. Therefore, we can investi- j,yestigation of the quantity of entanglement when all phase
gate whethef is constant or balanced by a single app"cat'onparameters are present for an arbitrary number of qubits.
of the global phase function using a quantum computer. Ofyile we have obtained the conditions foresenceor ab-
the other hand, in the worst case scenario using a classicghnceof entanglement in the general case, it would be inter-
algorithm, one may have to evaluate this function for at 'easésting to classify functions according to tdegreeof en-
half the number of possible argumentsThis implies 2'/2 tanglement they can generate. We have also examined
(exponentia)_l func_tion evaluations. T_his is why the D_eutsch- entanglement generation through a single global phase pa-
Jozsa algorithm is regarded as having an exponential advapsmeter for mixed initial states. The general problem of find-
tage over its classical counterpart. ing necessary and sufficient conditions for entanglement by
To see that entanglement is necessary for the exponentig|oha| phases for mixed states remains open. One could ex-
advantage of this algorithm, consider the following scenariopect counterintuitive results in that case as the same global
It is given that the global pha_se functions, apart from beingphase function might entangle one pure component and dis-
constant or balanced and taking values Omorare also re-  eptangle another pure component of a mixture of two pure
stricted in such a manner that they never produce an engates. Finally, we have applied our conditions to prove the
tangled state in the course of the entire computation. Thigecessity of entanglement in the Deutsch-Jozsa algorithm for
implies (according to the conditions obtained in Se¢. Il the algorithm to have an exponential advantage over its clas-
sical counterpart. It would be interesting to apply similar
techniques to the investigation of the role of entanglement in
other quantum algorithms.

where O<f(j)<2w Vj. If f(j) is constantVj, |¥) is a
uniform superposition, and we gf- - - 0) by applying the
quantum Fourier transformatig®FT) to |¥'). On the other

f(j)=6-]+ 6, (mod 2m). (55)

If we know beforehand thétcan be written as Eq55), we

can estimaté completely withO(n) steps of classical algo-
rithm, even in the worst case. We supply-(00) and strings
where only one digit is 1 and the others are 0, -(1@), H.A. is grateful to Clarendon Laboratory, University of

..., (0---01), asj of inputs forf, and we get, and@ as  Oxford, for its hospitality. V.V. acknowledges support from
outputs. Hence, when we restrict the possible set of functionEPSRC and the European Commissi{@noject EQUIP.
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