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Entanglement measures under symmetry
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We show how to simplify the computation of the entanglement of formation and the relative entropy of
entanglement for states, which are invariant under a group of local symmetries. For several examples of groups
we characterize the state spaces, which are invariant under these groups. For specific examples we calculate the
entanglement measures. In particular, we derive an explicit formula for the entanglement of formation for
(U®U)-invariant states, and we find a counterexample of the additivity conjecture for the relative entropy of
entanglement.
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I. INTRODUCTION viewed as an abstract version of arguments from that paper.
What is new in the present paper is, first, the generality.
One of the reasons the general theory of entanglement ha¥e regard our theory as a toolkit for constructing examples
proved to be so difficult is the rapid growth of dimension of adapted to specific problems, and we have tried to present it
the state spaces. For bipartite entanglement betalgeand  in a self-contained way, facilitating such applications. Ex-
d,-dimensional Hilbert spaces, entanglement is a geometrigloring all the possibilities would have been too much for a
structure in the ¢2d2—1)-dimensional state space. Hence, single paper but, of course, we also have some new results in
even in the simplest nontrivial casd;(=d,=2; 15 dimen-  specific examples.
siong, naive geometric intuitions can be misleading. On the Our most striking specific result is perhaps a counterex-
other hand, the rapid growth of dimensions is partly responample of the conjecture that the relative entropy of formation
sible for the potential of quantum computing. Hence, explorshould be additive. The evidence in favor of this conjecture
ing this complexity is an important challenge for quantumhad been partly numerical, but it was perhaps clear that a
information theory. random search for counterexamples was not very strong evi-
Model studies have been an important tool for developingdence to begin with: the relative entropy of entanglement is
and testing new concepts and relations in entanglemerttefined by a variational formula in a very high dimensional
theory, both qualitative and quantitative. In this paper wespace, whose solution is itself not easy to do reliably. In
explore a method for arriving at a large class of modelsaddition, the additivity conjecture is true on a large set in the
which are equally simple, and yet show some of the intereststate space, so unless one has a specific idea where to look, a
ing features of the full structure. random search may well produce misleading evidence. The
The basic idea of, namely, looking at sets of states that arsecond strong point in favor of the additivity conjecture had
invariant under a group of local unitary operators is not newpeen a theorem by Rainf@heorems 4 and 5 in Ref13))
and goes back to the first studies of entanglerhg@ in the  implying a host of nontrivial additivity statements. However,
modern sense. Two classes, in particular, have been considur counterexample satisfies the assumptions of the Rains’
ered frequently: the so-callétferner statesgafter[1]), which ~ theorem, so that theorem is, unfortunately, false.
are invariant under all unitary operators of the foth® U, Further specific results in our paper are the formulas for
and the so-calledsotropic states[3], which are invariant entanglement of formation and relative entropy of entangle-
under allU® U*, whereU* is the complex conjugate df ment for Werner states.
in some basis. Symmetry has also been used in this way to The paper is organized as follows: In Sec. Il we review
study tripartite entanglemei,5]. A recent paper of Rains the essential techniques for the investigation of symmetric
[6] discusses distillable entanglement under symmetry, so wetates and describe how the partial transposition fit in this
have eliminated the pertinent remarks from this paper. context. Section 11D presents a zoo of different symmetry
Several of the ingredients of our general theory, for ex-groups. Some of these are used later, others are only pre-
ample, the role of the twirl projection and the commutant,sented as briefly, to illustrate special properties possible in
have been noted in these special cases and can be considetieid setup. We hope that this list will prove useful for finding
to be well known. The computation of the relative entropy ofthe right tradeoff between high symmetry, making an ex-
entanglemen(7] was known[8] for Werner states. The first ample manageable, and richness of the symmetric state
study in which symmetry is exploited to compute the en-space, which may be needed to see the phenomenon under
tanglement of formatiod9] beyond the Wootters formula investigation. In Sec. Ill we briefly recapitulate the defini-
[10] is Ref.[12], where the case of isotropic states is inves-tions of the entanglement of formation and the relative en-
tigated. Our theory of entanglement of formation can betropy of entanglement and the additivity problem. In Sec. IV
we turn to the entanglement of formation. We show first how
the computation may be simplified using local symmetry.
*Electronic address: k.vollbrecht@tu-bs.de These ideas are then applied to the basic symmetry groups
TElectronic address: R.Werner@tu-bs.de UU and UWF, arriving at an explicit formula in both cases
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(the results for UY are merely cited here for completeness mann algebras. It will be important later on ti@t is always
from work of the first author with Terh#ll2]). For the group —an algebra(closed under the operator prodyalthough in
OO of orthogonal symmetries, which unifies and extendggeneral P(AB)# (PA)(PB). Computing the commutant is
these two examples, we find formulas in large sections of th@lways the first step in applying our theory. Typically, one
state space. Section V deals with the relative entropy of erfries to pick a large symmetry group from the outset, so
tanglement. Again we begin by showing how the computathe commutant becomes a low-dimensional space, spanned
tion is simplified under symmetry. We then present the counby just a few operators.
terexample of additivity mentioned in this section. Some Our main interest does not lie in the &t of G-invariant
possible extensions are mentioned in the concluding reobservables, but dually, in th@-invariant density operators
marks. p with Pp=p. As for observables, this set is the projection
PS of the full state space under twirling. The relation be-
tween invariant observables and states is contained in the
equation
From the beginning of the theory of entanglement the
_study of special sub_classe_s of symmetric states has played an t[P(p)A]=tr pP(A)], @)
important role. In this section we give a unified treatment of
the mathematical structure underlying all these studies. For
simplicity we restrict attention to the bipartite finite dimen- which follows easily by substituting/—UT=U"" in the
sional case, although some of the generalizations to morétegral(1), and moving one factdd under the trace. Due to
than two subsystenigt] and infinite dimension are straight- this equation, we do not need to know the expectations
forward. So throughout we will consider a composite quantr(pA) for all observablesA in order to characterize a
tum system with Hilbert spacé{=7H,®H,, with dim?;  G-invariant p, but only for the invariant element®(A)
=d; <. We denote the space of statesdensity operato)s € G’. Indeed, if we have a linear functionalG’ — C, which
on H asS(H), or simply byS. The space of all separable is positive on positive operators, and normalized ) =1,
states(explained in Sec. Il Bis denoted a®. that is, astateon the algebras’ in C*-algebraic terminol-
ogy, the equation tgA)=f(P(A)) uniquely defines a
G-invariant density operatqs, becausd® preserves positiv-
ity and P(I) =1. Under this identification o6-invariant den-
Two statesp,p’ are regarded as “equally entangled” if sjty operators and states @1 it becomes easy to compute
they differ only by a choice of basis i, and’, or, equiva-  the image of a general density operajorunder twirling.
lently, if there are unitary operatots; acting onH; such that  Using again Eq(2) we find thatPp is determined simply by
p'=(U;1©U,)p(U@U,)". If in this equationp’=p, we  computing its expectation values fére G', i.e., itsrestric-
callU=(U;®U,) a(local) symmetry of the entangled state tjonto G’.
p- Clearly, the set of symmetries forms a closed group of To characterize the invariant state space we always
unitary operators oftt; ® H,. We will now turn this around, choose a basis i’ of k Hermitian operator#\,, wherek
i.e., we fix the symmetry group and study the set of states lef§enotes the dimension @’. The state space of invariant
invariant by it. states is then identified with tHetuples of expectation val-
So from now on, leG be a closed group of unitary op- yes (A, )=tr(A,p). As a simplification we will always
erators of the formJ=(U;®U,). As a closed subgroup of choose one operator to be the identity. Due to the normaliza-

the unitary group( is compact, hence carries a unique meaijon of the states, this expectation value has to be equal to 1
sure that is normalized and invariant under right and leftand we are left with K—1) parameters.

II. SYMMETRIES AND PARTIAL TRANSPOSES

A. Local symmetry groups

group translation. Integrals with respect to tHisar measure Let us demonstrate this in the two basic examples of
will just be denoted by ¥ dU,” and should be considered as  twirling.
averages over the group. In particular, wh@nis a finite Example 1: The groupJU (Werner states
group, we have dU f(U)=|G| *Z.sf(U). An important We take the Hilbert spaces of Alice and Bob to be the
ingredient of our theory is the projection same ({="H,®H,), and choose fo6 the group of all uni-
tary operators of the forrd ® U, whereU is a unitary op-
p(A):f dU UAUT, 1) erator on’H,. As an abstract topological group this is the

same as the unitary group @4, so the Haar measure @

is just invariant integration with respect td. It is a well-
for any operatoA on H;® H,, which is sometimes referred known result of group representation theory, going back to
to as thetwirl operation. It is a completely positive operator, Weyl [14] or further, that the commutant & is spanned by
and isdoubly stochastidn the sense that it takes density the permutation operators of the factors, in this case the iden-
operators to density operators and the identity operator tgty | and theflip defined byF(¢$® )= ® ¢, or in a basis
itself. Using the invariance of the Haar measure it is imme-i) of #,, with |ij)=]i)®]j),
diately clear that PA=A" is equivalent to ‘{U,A]=0 for
all U e G.” The set of all A with this property is called the
commutantof G. We will denote it byG’, which is the FZE lii il 3
standard notation for commutants in the theory of von Neu- 0
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Hence the algebr&’ consists of all operators of the form functionsu— U not equivalent to the identity are equivalent
A= al+ gl and we can takgl,I'} as a basis for the commu- to Example 2, i.e., the above list is in some sense complete.
tant. As an abstract * algebra with identi®’ is character-  However, many interesting examples arise, when the Hilbert
ized by the relations®=I and F* =F. Thus G-invariant  spaces are not of the same dimension, or the group of opera-
states can be parametrized in terms of the single parametgirs in the first factor is not the full unitary group.
(F)=tr(plF), which ranges from—-1 to 1. Note that every  ComputingPS in Examples 1 and 2 is very simple, be-
invariant density operator can be written@s al+bF with  cause it is just an interval. We will encounter more compli-
suitablea,b e R. But as we will see, the parameteash are  cated cases below, in most of which, however, the algebra
less natural to use, and more dimension-dependent thag’ is Abelian. WhenG’ has dimension, say, it is then

tr(pl). . o . generated by minimal projections, which correspond pre-
Another usual way to write such an invariant density op-cisely to the extreme points &S. Therefore, the state space
erator is in terms of the minimal projections is asimplex(generalized tetrahedrin
1
P :m(]i I (4) B. How to compute the separable states P

For the study of entanglement of symmetric states it is

and a single positive parametgrwhich ranges from 0 to 1. fundame_ntal to know which of the statesR© are;epgrable
Hered denotes the dimension of the Hilbert spa¢e With or “classically correlated’{1], i.e., convex combinations
these parameters is given by p=pp_+(1—p)p, . The
parameterp is simply connected with the flip expectation p=2, ?\aP(1a)®P(2a) (6)
value viap=((F)+1)/2. a
Example 2: The group Ul (isotropic statek
Again we take both Hilbert spaces to be the same, andf product-density operators. We denote this set of states by
moreover, we fix some basis in this space. The g@upw  D. Because we assume the groBpo consist of local uni-
consists of all unitary operators of the fotdw U*, whereU taries, it is clear that for a separable statéhe integrand of
is a unitary operator ori{;, and U* denotes the matrix Pp consists entirely of separable states, heRpeis sepa-
element-wise complex conjugate bf with respect to the rable. HencéDC (DNPS). But here we even have equality,
chosen basis. One readily checks that the maximally enbecause any state irDQPS) is its own projection. Hence
tangled vector = 3,]ii ) is invariant under such unitary op-
erators, and indeed the commutant is now spanneldamd DNPS=PD. (7
the rank one operator
In order to determine this set, recall that by decomposing
F=|o)d|= fii)i]]. 5) _p(l‘fz) in Eq. (6) into pure states, we may even a_ssumepl‘ﬁ%
i in Eq. (6) to be pure. If we comput®p termwise, we find
that eachp e PD is a convex combination of statd¥ o
This operator is positive with norrd=||d>||2=dimH1, SO ® 0,) with puregi:|¢i><¢i|, Thus we can computeD in
the invariant states are parametrized by the expectation valuwo stages:

(I, which ranges in the interv@D.d]. Every invariant state Choose a basis i6’, consisting of, sayk Hermitian op-
can be written app=al+bf with suitablea,beR or in  €ratorsA, and compute the expectations of these operators

terms of a convex combination of the two minimal projec- N arbitrary pure product states,

tions plz]ﬁ‘/d andp,=[1/(d®>—1)](1-p,). We want to use _ A

the expectation valuél’)=tr(pl") as parameter for these 0= (618 Pl Aol 619 b2),
states. This choice for the parameter is motivated by the . . _
results in Sec. Il C, where we show that these examples caffiS detérmines the projectio®f o, ® o). .

be obtained from the first example by the method of partia| Determine the set of re tuples @, . . . &) obtained
transposition. in this way, as thep; range over all normalized vectors.

It is perhaps helpful to note that there are not so many Comp_ute t_h_e convex hull of this S‘_at' ) )
. ~ . . . Two simplifications can be made in this procedure: first,
functionsU—U, taking unitary operators of{; to unitary

we always havde G', so by choosingA =1, it suffices to
operators on the same spdake, such that the operators of work with the (k—1)-tuples @, ... a, 5). Second, the

the form9®U again form a group. For this it is necessary vectors ¢, ® ¢, and U(,® ¢,) with Ue G give the same
that U—U is a homomorphism, so, for examplg,=U" expectations, so when determining the range one can make
does not work. Inner homomorphisms, i.e., those of the fornspecial choices, as long as one vector is chosen from each
U=VUV' are equivalent to Example 1 by a trivial basis orbit of product vectors undes.
change in the second factor, given WySimilarly, functions Let us illustrate this procedure in the two basic examples
differing only by a scalar phase factor give the same transabove: In Example 1 we only need to compute
formations on operators, and should thus be considered

d ) =(d|)|?. tS)

equivalent. Ther{up to base changes and phase fagtalis =
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Clearly, this quantity ranges over the interyd@,1], and a operatorsU,;®U*,, whereU,;®U,e G. For example, for

UU-invariant statep is separable if t§l")=0 [1]. Similarly, ~ G=uUU of Example 1 we ge€=UU*, and vice versa.
in Example 2, There is a slightly tricky point in this definition, because
) the mapU,;®U,—~U;@U*, is not well defined: If we mul-
_ *\|2 tiply U, by a phase antll, with the inverse phase, the op-
= ()%, ) A ;
eratorU,® U, does not change, blt;® U*, picks up twice
the phase. What the definition therefore requires is to take in
which again ranges over the intenjd,1]. Note, however, G all operators arising in this way. Repeating the “tilde”
that the state space in this case is the intef0al]. The fact  operation may thus fail to lead back®) but instead leads to
that the two state-space intervals 1,1] for UU and[0,d] G enlarged by the group of phases. It is therefore convenient
for UU* intersect precisely in the separable sulj€el] is  to assume that all groups under consideration contain the
an instance of the Peres-Horodecki criterion for separablilitygroup of phases. We may do so without loss of generality,

<¢®¢|F|¢®¢>=’§i: diti

as we now proceed to show. since the phases act trivially on operators anyhow, and hence
the twirling projectionP is unchanged.
C. Partial transposition If we integrate the above computation with respect to a

The partial transpose of an operatorkn® H, is defined group G of local unitary operatorf, and introdu&for the
in a product basis by transposing only the indices belongingwirling projection associated wits, we get the fundamen-
to the basis ofH,, and not those pertaining t;. Equiva-  tal relation
lently, we can define this operation as -

0,(A®B)=A®0(B), (10
Since®, is a linear bijection on the space of all operators on

where® (B) denotes the ordinary matrix transposeBofThis ~ H,;®H,, we immediately find the relations between the
also depends on the choice of basisHp, so from now on  ranges ofP andP,
we assume a basis &f, to be fixed. This equation suffices
to define®,, because all operators dti, ©H, can be ex- 0,(G")=G6’, (12
panded in terms of product operators. The partial transpose

operation has become a standard tool in entanglement theofy, e gperators invariant undérare precisely the partial
with the realization that the partial transpose of a separablgyngposes of those invariant undr This has a surprising
density operator is again positive. This is evident from EQS¢qnsequence: taking the partial transposes of an algebra of

(6) and (10), and the observation that the transpose of &nerators in general has little chance of producing again an
positive operator is positive. In22 and 29 3 Hilbert-space algebra of operators, sing®, is definitely not a homomor-
dimensions, this criterion, known as the Peres-Horodecki C”bhism. That is, in general, one would not expect that the

terion, is even sufficient for separabilifg5]. For all higher — herator product of two partial transposes is again the partial
dimensions sufficiency fails in general. States with pos't'Vetranspose of an element of the original algebra. If the algebra
partial transpos€éPPT statesare known not to béistillable, arises as the commutant of a grouglarfal unitary operators,
i.e., even when many copies of such a state are provided, it ﬁowever, we get again a commutant, hence an algebra.

not possible to extract any highly entangled states by local The first application of Eq(12) is the computation of the
quantum operations and classical communication alone. .o mutant in Example 2: WitlG=UU we find the partial

For special classes of states on higher-dimensional H”be'ﬂansposes of the operators @1, i.e., the operator® (!
spaces the PPT property may still be sufficient for separabil- L LT 2
lty. Pure states are a case in point, and so are some of thEiEgoThcéﬂr+aﬁFI’i:;ggi?sz (tR:dE.termination of the set of PPT
spaces of symmetric states studied in this paper. Let us Che%'fates One r?ﬁ ht think that a special form forentailed b
how the action of a product unitary operator is modified by ‘ 9 P y

; . D its G invariance, is not necessarily helpful for getting spec-
artial transposition. 1tJ; ,A; are operators oftt; (i=1,2), '®© L . :
P P v P  ( ) tral information abou®,p. However, since®,G’ is an al-

P
we find gebra, and often enough an Abelian of,p is, in fact,
A @A PN TN easily diagonalized. . o
02((U19U2)(A1®A2) (U2 U7)) A good way to represent this connection is to draw the
=0,((U1A U] @ (U,AUY)) state spaces db andG (i.e., PS andPS) in the same dia-

gram. Since, in genera’ andG' need not intersect except

in the multiples of the identitysee Examples 1 and,2he
=(U;0U%,)0,(A;0A,)(U;0U*,)T projected state spacéxS and PS in general have only the

trace state in common. Hence they do not fit naturally in the

Note that by linearity we can replace in this equati®p  same diagram. However, the partial transposeB®lie in

®A; by any other operator ofi; @ H,. This computation G’ more precisely in the hyperplane of Hermitian elements

motivates the following definition: For any gro@of prod-  with trace 1. The same hyperplane conta®ss In the pair of

uct unitary operators, we denote B the group of unitary Examples 1 and 2, we get Fig. 1.

=(U;A,UD)®(O(UDB(A)0(Uy))
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—BL i (F)
o) PD PS ) 5
-1 -0.5 0 0.5 1 q

FIG. 1. The state spaces for Werner and isotropic states are just
intervals. Drawn together in one diagram, the intersection gives us
the space of PPT states, which is in this case equivalent to the A
separable space.
PS

Note that by exchanging the roles & and G, we get
exactly the same diagram, up to maybe an affine transforma- 1
tion due to a different choice of coordinates: the two dia-
grams are simply related by taking partial transposes. When
G andG are swapped in this way, the pictureR® remains
correct: sinced,D="D, it suffices to compute the projection
of the separable subset f&:. By definition, the intersection
of PS and®,PS is the convex set oB-invariant PPT states.

It always contain$D, but this inclusion may be strict. In the
simple case of Fig. PD=PSN 0 ,PS, which is the same as
saying that the Peres-Horodecki criterion is valid for states

invariant under eithe6 or G.

=1

FIG. 2. State spaces for OO and Q@ariant states plotted for
d=3. The UU and UV invariant states are drawn as thin lines.

D. Further examples of symmetry groups which corresponds precisely to the decomposition of a gen-

Example 3: Orthogonal groups: €00. eral (3x3)-matrix into a multiple of the identity, antisym-

The two basic examples can be combined into one bynetric part, and symmetric traceless part. This decomposi-
taking theintersectionof the two groupsG=UUNUU* this  tion of tensor operators with respect to the orthogonal group
is the same as the subgroup of unitary operatbesU such  is well known, so we have identifie@’.
that U*=U, i.e., such thal is a real orthogonal matrix. The extremalG-invariant states corresponding to these
Clearly, both the UU-invariant states and the Uldvariant ~ three minimal projections are plotted in Fig. 2 in a coordinate
states will beG invariant, so we know tha’ is at leastthe  system whose axes represent the expectatioris @fd I,
algebra generated by Uland UU', i.e., it containsl, I, respectively. The plane of this drawing should be considered
and I. SinceFfi'=FF=T, the linear span of these three is @ the HermitianG-invariant operators of trace one. This
already an algebra, and is spanned by the minimal projed@ne is mapped into itself by partial transpositi@nce G
tions =G), and the coordinates are chosen such that partial trans-
position is simply the reflection along the main diagonal.

The intersection ofPS and PS is the square[ 0,1]
X[0,1]. Is the Peres-Horodecki criterion valid for these
states? All we have to do to check this is to try to get some
pure product states, whose expectations ahdi" fall on the
corners of this square. For a product vectad s we get the
pair of expectations

1.

po=5f (13

1
pi=5(1-1F) (14)

(Kl 2 olu*)1?).

—1u 0 1u?“ 15
pz—i( + )—a , (15

Here ¢* denotes the complex conjugate #fin a basis in
which the representation is real. Now, the point (1,1) in the

!In general, the commutan&(\H)' may be suitably larger than
the algebraG’\/H’ generated byG’ and H'. The equation
(ANB)'=A"\/B' is valid only for algebras, and follows readily
from the equation A4'\/B")'=(A"NB"), and the bicommutant

square is obtained wheneveér= i is real, the point (0,0) is
obtained when¢ and ¢ are real and orthogonal, and the
point (1,0) is obtained wher= ¢, and(¢|#*)=0, for ex-
ample,¢=(1,i,0)/\/2. Symmetrically, we get (0,1) with the

theorem[17], which characterize®M” as the algebra generated by sameg and = ¢* . Hence all four corners are PD, and as

M. However, the algebra&” and H” may have an intersection,

which is suitably larger than the algebra generated by their interse

tion. For example, for any irreducible represented gr@fpis the

dhis is a convex set we must halP®=PSN 0,(PS).

Example 4: SY representations.

algebra of all operators, but two such groups may intersect just in A class of examples, in Which arbitrary dimensionstof
the identity. Hence some caution has to be exercised when compu@nd H, can occur is the following. Let—D!, denote the

ing (GNH)’ for general groups.

spinj irreducible representation of SUThen we can take
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G={Die D/ uecsuy, (16)

where (4 +1) is the dimension o+, (k=1,2). Sincej,
also take half-integer values, these dimensions can be an
natural numbee1. It is known from just about any quan-
tum mechanics courg@nder the key word “addition of an-
gular momentaJ that the tensor product representatibi
®D!2 is decomposed into the direct sum of the irreducible
representationsD® with s=|j1—jo|,li1—j2/+1,...,(1
+],), each of these representations appearing with multiplic-
ity 1. Therefore, the commutant & is spanned by the pro-
jections onto these subspaces, and is an Abelian algebra.  _,
Note that since the spin-1 representation of, 3% the
orthogonal group in three dimensions, the cggej,=1 )
corresponds precisely to the previous example with3. (~02®02)
We have no general expression for the separable subsets, n 1 (—01 ® 07)
even for the partially transposed sets in these examples. We
believe, however, that this class of examples deserves further FIG. 3. State spaces for Bell diagonal states.
investigation.
Example 5: Bell diagonal states. where w=exp(2ri/p). These are unitary, and satisfy the
In this example we show that the gro@ can also be “Weyl relations”
Abelian, and we make contact with a well-investigated struc-
ture of the two-qubit system. So lé{;="MH,=C?, and let W(X1,Y1)W(X5,Y2) =0 *Y2W(X;+X5,Y1+Y2). (19
oy, k=1,2,3 be the Pauli matrices, ang=1. Then the set
Hence these operators, together with fite roots of unity
G={l,—01®01,= 02,003, ~03® 03} (170 form a group. OnC%®C® we introduce the operators

. . . . W(Xliyl1X21y2)EW(ley1)®W(X21y2)1 and take
forms a group, which is isomorphic to the Klein four-group,

and Abelian GCG’). It is even maximally Abelian, i.e, the G={w®W(Xx,y,X,y)|x,y,z=0, ... d—1}. (20)
algebraG” generated bys is equal to, and not just contained
in G’. The minimal projections inG" are |¥)(¥|, k The commutant is readily computed from the Weyl rela-

=0,1,2,3, where thel, are the magicaBell basis[9,16]: tions to be

Vo= (|11)+]22)/V2, and ¥, =i(I® o) ¥, for k=1,2,3.

In this basis the group elements and their negatives are the G’ =spafqW(x,y,—x,—Yy)|x,y=0, ... d=1}. (21

diagonal operators with diagonal elemertd, of which an

even number are-1. Hence theG-invariant states are the The Weyl operators G’ satisfy Weyl relations withw re-

tetrahedron of density operators that are diagonal in Bell baplaced byw?. If d is odd, such relations are equivalent to the

Sis. Weyl relations(19) for a d-dimensional system, and hence
The partial transpose is easy to compute: anjychanges G’ is isomorphic to thed X d matrices.

sign under transposition. Hence if we draw the state space in On the other hand, complex conjugation\&{x,y) just

a coordinate system, whose three axes are the expectationsifferts the sign ofx, so G contains the Weyl operators

the group elements- o ® oy (k=1,2,3), the Bell states are W(x,y,—x,y). But this time, rather than getting twice the

the comers (1,1,1), (£1,-1), (=1,-1,1), and €11, \yey| phase, the phases cancel, &ds Abelian One also

—1) of the unit cube, from which their partial transposes are gifies that

obtained by mirror reflectior,— — x,. That is, the partially

transposed states occupy the remaining four corners of the =, _ _ _ _

unit cube. The PPT subset, which is equal to the separable G’ =spaW(x,y, = x,y)[xy=0,... d=1} (22

subset since we are ing&?2 dimensions, is hence the inter- .

section of two tetrahedra, and is easily seen to be an octahk: SPa”T‘ed ?ﬁ S0 _th's a!gebra IS even max'”?a”y Abelian:
dron (see Fig. 3 It containsd“ one-dimensional projections, which thus form

Example 6: Finite Weyl systems. the extreme points oPS. Hence we get the following pic-
ture: the setPS of G-invariant states is isomorphic to the
phic or even equal. In this example, which extends the preSPace ofdxd density operators, and ti@-invariant opera-

vious one, we see that the two groups and their commutanto’s with positive partial transpose are a simplex spanned by
can be very different. 9 extreme points, which are mapped into each other by the

We let d be an integer, and introduce dif the Weyl ~ action of adx d Weyl system. The intersectid®Sn 0 ,(PS)

In the examples so far the grou@sandG were isomor-

operators given by is a rather complicated object. We do not know yet whether it
differs from PD.
W(X,y)|z)=w*Yz—-Y), (18 Example 7: Tensor products.
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Additivity problems for entanglemerisee Sec. 1l C for a 2
brief survey concern tensor products of bipartite states, (F2)
which are taken in such a way as to preserve the splitting
between Alice and Bob. Thus in the simplest case we have
four subsystems, described in Hilbert spatgsk;, i=1,2,
such that system®(; and k’; belong to Alice, system8{,
and /C, belong to Bob, and such that the systemg+inare
prepared together according to a density magrivon H;
®H, and, similarly, the remaining systems are prepared ac-
cording to o, a density operator ofC;® KC,. We wish to
study the entanglement propertiespab o, when both these
density matrices are assumed to be invariant under suitable
groups of local unitaries.

Let us denote byG (H) the group of local unitary opera-
tors onH,®H, (by K£1®K,), and assume and o to be
invariant under the respective group. Then, clegsly,o is -1 g 1 2
invariant under all unitary operatort);@U,QV;®V,, (F1)
where U;®U,e G and V,®V,eH. These again form a
group of local unitaries, denoted Iy H, where “local” is
understood in the sense of the Alice-Bob splitting of the
system, i.e., the unitary);®V, acts on Alice's side and  ,pa4r0n. A convenient coordinate system is given by the
U,®V, on Bob’s. In this sense the product state is 'nva”an%xpectations of the three operators
under the grougs®H of local unitaries, and we can apply

(F12)

FIG. 4. State space for UUVV-invariant states plotted for di-
mensiond=3.

the methods developed below to compute various entangle- F=Fel (25)
ment measures for it.

Computing the commutan@®H)’ is easy, because we F=I®F (26)
do not have to look at the Alice-Bob splitting of the Hilbert
space. In fact, we can invoke the “commutation theorem” Fio=FaF. (27)

for von Neumann algebras to get , )
The four extreme points are then on the edges of the unit

(G®H)'=G'@H’, (23 Cub62p51®p52 has expectation triples{,s,,S:S,). This is
) ) o drawn in Fig. 4.

where the notation on the right-hand side is the tensor prod- The extreme points are special instances of product states:
uct of algebras, i.e., this is the set of all linear combinations,vhenp’g are UU-invariant states with flip expectatiofs
of elements of the formrh\® B whereAe G’ acts on the first andf,, respectively, the product stapez o has coordinates
two andBeH' acts on the second two factors B ®H,  (f,,f,,f,f,). Hence the manifold of product states is em-
®K1®K,. In particular, if G” and H' are Abelian, so is pedded in the state space as a piece of hyperboloid. Partial
G'®H’, and we can readily compute the minimal projec-transposition turns the flip operatof5) into their counter-
tions, which correspond to the extremal invariant statgs,, if parts usingF‘ instead offi. Hence the operators with positive

are the minimal projections d&' andqy are those oH',  haria) fransposes are represented in the diagram by a tetra-
then the minimal projections d&’'®H" are allp,®qp. hedron with vertices (0,0,0), @0), (d,0,0), and d,d,d?).
Partial transposition also behaves naturally with respect t§ e ntersection, i.e., the set of states with trace equal to one
tensor products, which implies thaG@H) =G®H, and  and positive partial transposgepresented in Fig. 4 as a
allows us to compute in a simple way th@ @ H)-invariant  solid) is a polytope with the five extreme points (0,0,0),

states with positive partial transpose from the correspondingp, 1,0), (1,0,0), (1,1,1), and, on the line connecting the
data of G andH. However, for the determination &*D no  origin to the point ,d,d?), the point (14,1/d,1). The den-

such shortcut exists. sity operator corresponding to this last point is
We illustrate this in the example, which we will also use
for the counterexample to additivity of the relative entropy of d+1 d-1
entanglement discussed in the Introduction. For this we take P#= 5q P+OP+T ST P-CP . (28)

G=H=UU, with a one-particle spacél,=H,=K,=K,

=(9, for any dimensiond<o. The extreme points of the It turns out thatp, is separable: Letb=d~2S,|kk) be a
state space o’ are given by the normalized projections maximally entangled vector, and consider a pure state with
vector ¥ =@ .. ® Pgop. Note that this is a tensor product
with respect to the Alice-Bob splitting, i.e., [23} rather than

the splitting between pair 1 and pair 2, i.e.|32 We claim

that upon twirling this pure state becomgs. For this we
Hence the state space of the Abelian algeBagH') is  only need to evaluate the expectations of the three operators
spanned by the four stateg ®ps,, S1,5,=* and is a tet-  (25), and compare with those pf,. Clearly, ¥ is a symmet-

1
pizm(wﬁ‘). (29
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ric product(Bose) vector with respect to the total flip;,, this is to say that the “supergraph” of €pi.e., {(x,r) e K
hence this operator has expectation 1. The expectatiofs of x R|r=cof (x)}, is the convex hullas a subset df X R) of
andF, are equal to {(x,r) e KXR|xeM,r=f(x)}.

In this notation, the usual definitiof®] of entanglement
of formation is then

(VIFT)=7 > (ijij [(FeD|k/k/)

Er(p)=(coE)(p), (32)

= i > (ijij | kk/)y= 1 where on the right-hand sideis understood as the function
d?ifk/ d (29) defined only on the submanifol C S(H,;® H,) of

_ _ pure states.
Since the other four extreme points are separable as tensor

products of separable states, we conclude that all PPT states

are separable in this example, so the solid in Fig. 4 also o .
represents the separable subset. Another measure of entanglement, originally proposed in

Example 8: Tripartite symmetry: &(U®U). Ref. [7] is based on the idea that entanglement should be

The idea of symmetry can also be used to study multiparZero for separable density operatfsee Eq(6)], and should
tite entanglement. A natural choice of symmetry group is théncrease as we move away frdin Such a function might be
group of all unitary operators of the fortd®@ U®U. The viewed as measuring some kind of distance of the state to the
resulting five-dimensional state space has been studied #€tD of separable states. If one takes this idea literally, and
great detail in Ref[4]. This study also has a bipartite chap- Uses the relative entrogy.9]
ter, where this group is considered as a group of local unitary _ _
operatorsU® (U®U) in the sense of the present paper. The S(p,o)=trp(inp=Ino) (33
set of sep_arable states is strictly smaller than the set of states measure the
with positive partial transposes. However, if we enlarge theOf entanglement
group to include the unitary operatém I, the two once

again coincide, forming a tetrahedron. Erelp)=inf{S(p,o)|oeD}. (34)

B. Relative entropy of entanglement

distance,” one arrives at tetative entropy

IIl. ENTANGLEMENT MEASURES AND ADDITIVITY Initially, other distance functions have also been used to
define measures of entanglement. However, the one based on

A. Entanglement of formation angl the convex hull construction  tna relative entropy is the only proposal, which coincides
for functions with pure states with the “canonical” choice described in Eq.
The entanglement of a pure state is well described by th€29). Since Ege is easily shown to be convex, it must be
von Neumann entropy of its restricted density operator. Thusmaller than the largest convex function with this property,
for a pure statep=|W)(¥| such thatV is expressed in namelyEg. Another reason to prefer relative entropy over
Schmidt form asV =3, \/c,e @€, , we have other distancelike functionals is that it has good additivity
properties. The hope th&izz might be additive was borne
. out by initial explorations, and has become a folk conjecture
E(p):; 7(C)  with 29 in the field. However, we will give a counterexample below.

n(t)=—tIn(t). (30 C. Additivity
A key problem in the current discussion of entanglement
easures is the question, which of these are “additive” in
e following sense: ip,o are bipartite states on the Hilbert
spacesH;®H, and K,® K5, then p® o is a state orH;
®H,L,® 1 ® K. After sorting the factors in this tensor prod-
uct into space$t,,X; belonging to Alice andH,,X, be-
longing to Bob, we can conside® o as a bipartite state on
(H1® K1) ®(H,®K5). This corresponds precisely to the
situation of a source distributing particles to Alice and Bob,
p® o, and similar larger tensor products, being interpreted as
seM,>, ?\iSiZX], (31)  the state obtained by letting Alice and Babllect their re-
i spective particles. Additivity of an entanglement meadtire
is then the equation

The entanglement of formatiois a specific extension of this
function to mixed states. The extension method is a gener
one, known as theonvex hullconstruction for functions, and
since we will need this construction for stating our main
result, we will briefly review it.

So letK be a compact convex set, IfCK be an arbi-
trary subset, and ldt M — RU{+}. We then define a func-
tion cof :K—RU{+x} by

cof(x):infiz Nif(s)

where the infimum is over all convex combinations with

=0, 2;\j=1, and by convention the infimum over an empty E(p®o)=E(p)+E(0). (35
set is+c0. The name “convex hull” of this function is due to

the property that cis the largest convex function, which is We speak ofsubadditivityif “ <" holds instead of equality
<f at all points, wherd is defined. Another way of putting here. BothEgez andE are defined as infima, and for a prod-
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uct we can insert tensor products of convex decompositions Consider the states on the larger space appearing in the
or closest separable points into these infima, and use th@inimizing convex decomposition qgf, and lets/ denote
additivity properties of entropy to get subadditivity in both their restrictions tdH,® H,. Of course, botfs; ands; have

cases. It is the converse inequality, which presents all thghe same restriction to the first factdf;. Hence
difficulties, i.e., the statement that in these minimization

problems the tensor product solutiof@end not some en- ,
tangled optionsare already the best. EF(P)ZZ Nif(si), (38)

Additivity of an entanglement functional is a strong ex-
pression of theesource characteof entanglement. Accord-  heref (o) denotes the von Neumann entropy of the restric-
ing to an additive functional, sharing two particles from theiion of a stater to H,, and=;\;s/ = p'. Because the entropy

H H H “ : ” H ! 1 :

same preparing device is exactly “twice as useful” to Alice st the restriction is a concave function, the value of the sum
and Bob as having just one. Here preparing two pairs meafg, ¢an he made smaller by replacing eagtwith a decom-
preparingindependenpairs, expressed by the tensor productposition into pure states oft,®H,. Minimizing over all

in Eq. (35). It is interesting to investigate the influence of such decompositions qf' yields Er(p'), which is hence
correlations and entanglement between the different pairss'maller tharEx(p) F '
F .

On the one hand, Alice and Bob might not be aware of such
correlations, and use the pairs as if they were independent.

On the other hand, they might make use of the exact form of IV. ENTANGLEMENT OF FORMATION
the state, including all correlations. Is the second possibility A. Simplified computation
always preferable? Entanglement functionals answering this

guestion with “yes” have a property stronger than additivity,
called strong superadditivitylt is written as

Our method for computing the entanglement of formation
can also be explained in the general setting of the convex
hull construction in Sec. Ill A, and this is perhaps the best
way to see the geometrical content. So in an addition to a

E(p)=E(py) +Elpr), (36) subsetM CK of a compact convex set and a functiériv
—RU{+=}, consider a compact grou@ of symmetries
where p is a density operator for two pair$our particles  acting onK by transformationsy, :K— K, which preserve
altogethe), andpy, andpy are the restrictions to the first and convex combinations. We also assume thgM CM, and
second pair. An entanglement functional satisfying this ag(qs)=f(s) for se M. All this is readily verified for
We” as Subadd|t|V|ty iS Clearly add|t|Ve Since add|t|V|ty iS aU(A): UAUT andf the entang'ement defined on the Subset

tivity is not known for any of the standard measures of en{or g|| G-invariantxeK, i.e., those withay(x)=x for all

tanglement. UeG

One case of strong superadditivity is satisfied bothHpr Since the integral with respect to the Haar measure is
andEgg, and we establish this property here in order to gefself a convex combination, we can define, as before, the
a more focused search for counterexamples later on: Werojection P:K—K by Px=fdU ay(x). The set of pro-
claim that Eq(36) holds, whenevep,c is separable, in which jected pointsPx will be denoted byPK. Usually, this will be
case, of course, the second term on the right vanish®®. 3 much lower dimensional object th&h so we will try to
special case of additivity, whepy is even a product, this reduce the computation of the infimuf®1), which involves
was noted recently in Ref18]). We will show this by estab- 5 yariation over all convex decompositionsoin the high-
lishing another property, callechonotonicity for both E  dimensional seK to a computation, which can be done en-

=Er andE=Egg, we claim tirely in PK. To this end, we define the functioa:PK
—RU{+} by
E(p)=E(py). 3
(p)=E(p3) (37) (x)=inf{f(s)|se M,Ps=x}, (39)

Monotonicity for Ege follows readily from a similar prop-  4g4in with the convention that the infimum over the empty
erty of the relative entropy: ibs,, 05, denote the restrictions  get s+ . Then the main result of this subsection is that, for
of statesp,o to the same subsystem, thenpK(oy) x e PK

<S(p,o). But if o is separable in Eq(34), then so is its
restriction o;,. The infimum overall separable states on cof (X) =Ccoe(x), (40)
H,1®H, is still smaller, hence monotonicity holds.

Monotonicity for Er is similar: We may do the reduction where the convex hull on the left is defined by E81), but
in stages, i.e., first reduce Alice’s and then Bob’s system, anthe convex hull on the right is now to be computed in the
becauseEg is symmetric with respect to the exchange of convex subsePK.
Alice and Bob, it suffices to consider the case of a reduction We thus arrive at the following recipe for computing the
on only one side, i.e., the restriction froly® (H,®K,) to  entanglement of formation db-invariant states:

H1®Ho. * Find, for every state e PS, the setM , of pure statesr
Let p be a state oft{;® (H,® K,) andp’ its restriction to  such thatPo=p.
H1®H,. « Compute
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e(p):=inf{E(o)|oe M,}. (41)

cof(x’)=2 N f(s). (43
I
« For later use try to get a good understanding of the pure , o )
states achieving this minimum. Indeed, letx :Ej/vthJ be any convex combination witt)
« Compute the convex hull of the functiddd). e M. Then we can find a small number>0 such that X;

The following simplifications are sometimes possible: first of ~&A{)=0 for all i. Hence

all, all pure states in an orbit @& give the same value &,

hence we may repladd , by a suitably parametrized subset X=2, (Nj—eN)Si+ > euit
containing at least one element from every orbit. At this [ i

stage it is sometimes already possible to discard further o )
states, in favor of others “obviously” giving a smaller value IS & convex combination of elements frdvhrepresenting.
of E. The final stage is sometimes carried out by showingﬁut since the decomposition using only thes optimal, we
that the functiore is convex to begin with, but, as we will nave
see, this is not always the case.

The remainder of this subsection is devoted to the proof > (N—eN)E(s)+ >, smf(tj)ZE Nif(s)).
of Eq. (40). We will proceed by showing that both sides are [ j [

equal to ) . . . L
From this we immediately get the claimed optimality >df

=3NS .
s e M,Z )\iPSi:X}- (42) Tjhésie remarks are especially u_seful for the case (_)f_ en-
i tanglement of formation, for any mixed state the optimizing

convex decomposition necessarily involves several terms.
Hence any computation of an entanglement of formation im-
mediately extends to a larger class of states. Therefore, it is
of great interest not only to get the value of the entanglement
of formation for a given mixed state, but also to find the set
of pure states solving the variational problem definig

The symmetric situation studied in this paper is extreme
in this regard: The minimizing sets are always complete or-
bits of the symmetry group. Therefore, we get a fairly large
set of nhonsymmetric mixed states for which the computa-
tions below also give the exact value B .

z=inf[2 Nf(s)

Indeed, the only difference between EG&) and(31) is that

in Eq. (42) a weaker condition is demanded on the Hence
more s; are admissible, and this infimum is smallet,
=cof (x). On the other hand, i§; satisfying the constraint
for Z are given, inserting the definition & produces a con-
vex combination givingx, namely, the combination of the
statesay(s;), labeled by the pairi(U), and weighted with
SiN\if dU. This convex combination is admissible for
the infimum defining c¢b and gives the value
Ei)\if duU f(a’u(Si)):Ei)\if du f(Si):Ei)\if(Si), where we
have used the invariance propertyfand the normalization
of the Haar measure. Hence all numbers arising in the infi-
mum (42) also appear in the infimuri81), which proves that In this subsection we will apply the general method to
Z=cof(x), henceZ=cof (x). In order to prove the equality computing the entanglement of formation for the states of
Z=coe(X) just note that in the infimur42) the constraintis Example 1.

only in terms ofPs; , whereas the functional to be minimized  In the first step we have to determine thedgtof vectors
involvesf(s;). Therefore, we can compute the infimng2) ® e H®H such that(®|Fd)=f. In terms of the vector

in stages, by first fixing alPs; and minimizing eacH(s;) componentsp;; we get

under this constraint, which amounts to replady ¢, and

then varying over thePs;, which is the infimum defining <l//|Fl/f>=2 O. b* (44)
coe . Hence ce(x) =Z=cof(x). T

C. Results forG=UU

. _ . On the other hand, the reduced density operator has compo-
B. Extending the computation to some nonsymmetric states nentsp;; = =, P*j, or, in matrix notationp=®®T. Here

It is a basic feature of the convex hull that whenever theve may introduce a simplification due td® U symmetry,
infimum in Eq.(31) is found at a nontrivial convex combi- by choosingp diagonal. Note, however, that weannot
nation, there is a “flat piece” in the graph of £oi.e., cd is  choose the restriction to the second system, ¢ to be
also known on the convex hull of the minimizisg[11]. The  diagonal at the same time without loss of generality. In any
geometrical meaning of this elementary observation is immeease, the eigenvalues pfbecomep;; ==,|®;|>. Hence the
diately clear from low-dimensional pictures. It is also easy topure-state entanglement df, which by Eq.(29) is the en-
prove in general, as described below. tropy of p is

Suppose tha®;\;s;=X is a convex decomposition of
(with \;>0) minimizing =;\;f(s;), and letx’=3\{s; be _ 2
another convex combination of the same po@tsWe claim S E. 7]( ; [Pl ) ' (45
that this convex combination solves the minimization prob-
lem for caf(x'), i.e., where 7 is the entropy function from Ed30).
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For analyzing the variational problem it is useful to con-
sider the contributions of each pair of variableg and®; , E(|‘I’><‘b|)>i2<_ Nijea(fij)
and of each diagonal elemedt; separately. The weights of !
these contributions are

282( 2 )\ijlj>

Nij =@ ?+[@y]?,  fori<j (46)
Ni =% (47) :SZ(f_Z A“)'

The normalized contribution of one such pair or diagonaINOW suppose that=0. Then we can choose just a Sing|e
element tof is diagonal entryd;; to be nonzero, and fin&(|®)(®|)=0,
. . o which is clearly the minimum. However, <0 them the
fij=\j 2 RgD;;@5), fori<]j (48)  last equation shows that letting any diagonal erbry# 0

decreases the argument of further in a range where this
fi=1, sothat (49)  function is monotonically decreasing. Hence the optimum is

choosing all®;; =0, and allowing only two nonzero compo-
nents®;; and®;; for somei # j. This concludes the compu-
f:Z. Nijfij - (500 tation of E for UU-invariant stategsee summary below
= However, as noted in Sec. IV B, knowledge of the mini-
mizers fore automatically leads to an extension of the com-
putation to some noninvariant states. key be a solution of
the two-variable variational problem with=tr(pl"). Then
the minimizing vector is of the form

Similarly, we can write the probability distribution
P11y - - - sPdg @S @ convex combination of probability distri-
butions with respective entropies

sij = Ha(A; @), fori<] (51) x|12)+y|22) = (xI+yF)| 12). (55)

s;=0, (520 All U®U translates of this vector will do just as well and
appear in the minimizing decomposition of the UU-invariant
where we have used the abbreviatiBia(p)= n(p)+ (1  state. Hence all convex combinations of the density operators

—p) for the entropy of a two-point probability distribution + +
(p,1—p). By concavity of the entropy we have (xI+yF)(UeU)|12(12(Ue U)T(xI+yF)

with fixed x,y, and arbitraryJ, have the sam&g. For de-
E(|q>><q3|)>2 NijSij - (53  termining these convex combinations we can drop the outer
i=<] factors, and afterwards shift the operators found with (

+yF)eG'. Let

To find the lower bound os;; given f;; is just another in-

stance of the variational problem we are solving, albeit with F=co{(UaU)|12)(12(UU)'|U unitart . (56)

the considerable simplification that only one off-diagonal o .

pair of components ob is nonzero. This leaves the follow- Clearly, every operator itF is a separable density operator

ing problem: with flip expectation zero. Conversely, any operaiowith
Given two complex variablex,y with the constraint these properties may be decomposed into pure product states
[x|2+|y|?=1, with 2 Reky*)=Tf, minimize s=H(|x|?). |p® ) p® |. These must also have flip expectation zero,

Sinces is monotonically increasing ifx|? from 0 to 1/2,  which means thaéL ¢, so that there is a unitary operatdr
this_is equivalent to minimizingx|?, given f. The pairs  with ¢® #=(U®U)|12). Consequentlyp e F.
(Ix|?,f) compatible with the constraints form the convex set Hence in order to determine whether for a giyewe can

compute Eg(p), we transform it top by the appropriate
{GD]|f|<=2YN(1=N);0sA<1}. (xI+yF) "%, and then test the separability pf(Fig. 5).
. - . Let us summarize:

From this we get the minimal admissibléx|?=(1 « For the U® U)-invariant statep with
— \/1—f2)/2 in the above two-variable variational problem. tr(pF)=f<0, we have
Hence

Er(p)=H[3(1-V1-19)], (57)

independently of the dimensiath of the underlying Hilbert
This functione, can be shown to be convex by explicitly space. Wheri=0, the state is separable, anBg(p)=0.
computing the second derivative and expanding logarithms eLet p be a(not necessarily invariantdensity operator
in a power series. Combining the bour(88), (52), and(54) with tr(pl)=f and —1<f<0. Then with suitably chosen
with the convexity ofe,, we get a,BeR,

sij=eo(fij) =Ho[3(1—V1-f)]. (54)
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-1 0.5 1 (F)
FIG. 5. & function for UU-invariant states.
p=(al+BF)p(al+Br) (58)

is a density operator with (") =0. Suppose thai is sepa-
rable. Then formuld57) also holds forp.

D. Results for G=UU*

The computation of the entanglement of formation for

Example 2 is already knowfl12]. The minimizing pure
states are of the form
(xI+yf)[11), (59)

with real x,y.

PHYSICAL REVIEW /64 062307

(F)
3

0.5 (F)

FIG. 7. The state space for OO-invariant states seems to split
naturally in four regions. The separable squBf@ and the three
trianglesA, B, andC.

eLet p be a(not necessarily invariantdensity operator
with tr(pf)=f, 1<f<d and cde(f)]=¢(f). Then with
suitably choseny,Be R

The extension to noninvariant states works in principle

similarly to the UU case, but fai>2 it is getting a bit more
complicated, because thkefunction is not convex anymore

(Fig. 6).
« For the U® U*)-invariant state with tr(pl’)=f= 1/,
we have

Er(p)=cdH(y)+(1-v)in(d-1)], (60)

with y=(1/d?)[Jf+(d—1)(d—f)]% For d>2 we need

also to compute the convex hull. Whér 1/d, the statep is
separable, aneg(p)=0.

&

B 2 3 4 (F)

FIG. 6. & function for UU* -invariant states fod=2,3,4. The
functions are not convex near the right endpointder3.

p=(al+ I Tp(al+ gi) (62)

is a density operator with tp") = 1. Suppose thai is sepa-
rable. Then formuld60) also holds forp.

o If f satisfies cpe(f)]<e(f), the convex hull has a flat
section betweerf;<f<f, where f;,f, are the two end
points of the flat piece satisfying [co(f)]=e(f1,). We
can always find a convex decompositionin two states
with expectation value$,,f,. If now the above procedure
works for these two states, then we have found an optimal
decomposition forp and can easily compute the entangle-
ment of formation.

E. Results for OO-invariant states

Here the extension method of Sec. IV B turns out to do
much of the work. The state space, plotted in Fig. 7, is sepa-
rated in four regions: the separable square and the three tri-
anglesA, B, andC.

In order to apply the extension method to the
UU-invariant states, we have to see which states can be writ-
ten asp= (XI+yF)p(xI+yF)T, with p a separable state with
flip expectation zero. If we take fos any state at the left
edge of the separable square, it is clear that we will get an
OO-invariant state again. The explicit computation shows
that with this method we geEg(p) in the full triangle B.
Note that by this constructioig(p) depends only on the
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expectation(['), and not on(I") or the dimensiom. Employ- Pa
ing similarly the extension method for GUwe find E¢(p) P—g pawa=§ trp, Pe (63)
in the triangleA, getting a function depending only )
and the dimension, but not di’). where the second expression is at the same time the spectral
resolution ofp. If we compute the von Neumann entropy
F. Results for Bell states —tr(p In p) from this, we find a dependence of the result not

The Bell states were one of the first classes for WhichOnly on the expectations,=tr(pp,), but also on the mul-

entanglement of formation could be calculatéd]. Of ftiplicities tr(p,), as is quite familiar from statistical mechan-
course, our method reproduces this result, albeit with a morlS: On the other hand, the fact that relative entropy can be
economical decomposition. This is a feature shared with thgefined for states on abstract algebras shows that no such
Wootters formula[10]. It is a natural question whether the dependence can occur for relative entropies. Indeed, the
extension method, applied in this basic example, reproducd§rms involving Intrp,) from p ando cancel, and we get

the Wootters formula. However, it turns out that one gets the

result only on state manifolds of lower dimension. We also S(p,o)=2, pfIn(p,)—In(o,)], (64)

did not succeed in finding another group of local symmetries, @

which would give Wootter’s formula in full generality. ) )
wherep, and o, are the respective expectationsmy.

A typical application is the observation that for
UU-invariant states the expression for the relative entropy of
A. Simplified computation entanglement can be written down in terms of thefy,

Symmetry simplifies the computation of the relative er]_independently of the dimensiath of the underlying Hilbert

tropy of entanglement dramatically: it reduces the variatior>Pac®S:

in Eq. (34) from a variation over all separable states D to For UU- anq U -invariant states Fhe sets of .separable
those which are alsG invariant. i.e., wherp=Pp, we have states are just mterval;, and th.e 'de'fmlgon of relat!vg entropy
of entanglement requires a minimization over this interval.
Erelp)=inf{S(p,0)| o € PD}. (62) However, due to a general property of the relative entropy,
) ) _ the convexity in both arguments, it is clear that the minimum

The only ingredients of the proof are the convexity ofjs in fact, always obtained at the endpointpifis the state

o—S(p,0), the invariance of relative entropy undéocal)  whose entanglement we want to calculate, arid the mini-
unitary transformations of both its arguments, and @ a  mjzing separable state, convexity implies

convex-set invariant under local unitary operators. Indeed,

V. RELATIVE ENTROPY OF ENTANGLEMENT

the properties ofD imply that for anyo in the full varia- S(p,No+(1—=N)p)<\S(p,0)+(1—\)S(p,p)
tional problem,Poe PDCD, is also a legitimate argument, —
and the convexity properties of S show that this cannot in- =\Sp.0).

crease S¢,0). Hence the variation may be restricted as iNpence if there were any separable state on the straight-line
Eq. (62). We have listed the ingredients of the proof so &X-segment connecting and o, it would give a strictly lower

plicitly, because many variations &g may be of interest. 0o im contradicting the minimality of-.
For example, the “distance” function relative entropy can be g, UO the boundary separable state hasli=0, i.e.
replaced by a host of other functions, like norm d|f“ferencesgives equal weight to the minimal projections. We have to

of any kind. The seD, too, may be replaced, for example by compte the relative entropy with respect to a state with
the set of PPT states, as suggested by Rdifk who also probabilities (1+f)/2, i.e., the function

made similar use of symmetry.
A second simplification concerns the computation of
S(p, o) itself, when both arguments a@invariant. We have ere(f)=In2—-S
seen thaG-invariant states can be considered as states on the
commutant algebr&’. Now the relative entropy is defined \where we denote bys(p;, . .. .p,) = — Pk Inpy the en-

for pairs of states on arbitrary*Calgebrag19], and the form tropy of a probability vectorf;, . .. ,p,). This function is

(33) involving density matrices is only the special form valid piotted in Fig. 8, and determines the relative entropy of en-
for a full matrix algebra. Sinc® is a conditional expectation tanglement of UU-symmetric statgsvia

onto G', the result does not depend9] on whether we

compute the relative entropy via density matrices, or for the Ere(p)=erd tr(pl)]. (66)
corresponding abstract linear functionals®@h Without go- Similarly, the boundary point- of D for UU* invariant
ing into the details for general algebr@ here, let us see i taqis given by tn(]f?)=1. For generaf=tr(p]F‘) the mini-

how this helps in the case wh& is Abelian, as in most of L .z -
our examples. mal projections have weights¥d and (1-f/d). Hence for

(65)

1+f 1-f
22 )

Suppose,,, a=1, ... N are the minimal projections of UU”-symmetricp, we haveEgg(p)=0 for f<1, and
G’, and denote byw,=(trp,) p, the extremal density - R -
matrices ofPS. Then everyp e PS has a unique representa- Ind— ( 1— i In(d—1)— S(i 1— i) 67)
tion as a convex combination d - d
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FIG. 8. The relative entropy of entanglement for UU-invariant ~1 )
states.

otherwise. For comparison with the results of H&g], note

that f/d is the so-callednaximally entangled fractioof p.

Now we look at OO-invariant states. The state space anc
the separable states are drawn in Fig. 7. First we look at the
state with the coordinates (1,3), which is a maximal en- FIG. 9. State space for UUVV arfg-invariant states fod=3.
tangled state. The separable states, that are minimizing the
relative entropy for this state, are the states on the whole linevherep_ denotes the normalized projection on the antisym-
connecting the points (0,1) and (1,1). But now we can findmetric subspace di?® C%. From Eq.(66) we know the rela-
the minimizing separable for any state in the whole triangletive entropy of entanglement fgr_ to be In2 independent
A. We just have to draw the straight line connecting the cofrom the dimensiornd. The minimizing state was the state
ordinates of given states with the point (1,3). The intersecwith flip expectation value equal to zero now denoteg@s
tion with the border oPD is then a minimizer for (1,3) and So the expected minimizer for the tensor product would be
by the properties of the relative entropy of entanglement alspo® po located on the quadratic product line with the expec-
the minimizer for all states on the connecting line. The saméation values (0,0). This one gives us the expected value of
argumentation works for the edge point {,0) and the sepa- In4 for the relative entropy. Now we calculate the relative
rable border between (0,0) and (0,1) giving us all minimiz-entropy betweenp®?=p_®p_ andpy:
ers for the triangleB. The whole triangleC has the same
minimizer, namely, (0,1). S(p®2,pa)=tr(p®?In p®2—p®2n p,) (70)

B. Counterexample of additivit d-1
| P Y | =tr| p®2In p®2 = p®2In ——p*? (71)
To find a counterexample of the additivity of the relative 2d
entropy of entanglement, we use the group introduced in

Example 7 . We also know that additivity will hold for any I d_—1=In4—In 2(d-1) 72
state where one of the two independently prepared states is 2d d -

separable. So, in our example, we can restrict to the area

where expectation values of bofh andF, are negative. Indeed, the minimum must be attained on the line connecting

For simplicity, we increase the group withyice® Feop  po®po and py, and it can easily be verified that the mini-
leading us to a smaller commutant only spannedi®y,I*  mum always is attained gp,. Ford= 2 the whole line gives
o IeF+F®Il. As coordinate system we use the expectathe same value and although there exits a minimizer that
tion values of does not belong to the product space, additivity holds. For
N . d>2 the expectation values of state given by (14,1) shift
F=z(IoF+Fal) (68 near to theF,, axis and from a geometrical point of view
closer top_®p_ . Although the relative entropy is not a real
Fi=FoF. (69 kind of geometrical measure this intuition did not fail. In
these cases the additivity is violated with an amount of

The state space is drawn in Fig. 9. In{[2(d—1))/d}. For very high dimensiod we get the really
It is just the intersection of the state space of the originakurprising resul€re(p_®p_)=Ere(p_).

group (see Fig. 4 with the plane given by(F;)=(F,)
=(F). The product states, in the sense of additivity, are
given by the line (F),(F)?).

The counterexample we want to look at is the state refer- We have concentrated on just two basic entanglement
ring to the coordinates<1,1), which is given byp_®p_ measures. Clearly, there are many more, and for many of

VI. CONCLUDING REMARKS
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them the computation can be simplified for symmetric statesdone by carrying out the program outlined in this paper for
Among these measures of entanglement are the “best sepal the groups of local symmetries listed in, Sec. Il A.

rable approximation” of a statf20], the trace norm of the

partial transposg21], the base norm associated wifh ACKNOWLEDGMENTS
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