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Entanglement measures under symmetry
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We show how to simplify the computation of the entanglement of formation and the relative entropy of
entanglement for states, which are invariant under a group of local symmetries. For several examples of groups
we characterize the state spaces, which are invariant under these groups. For specific examples we calculate the
entanglement measures. In particular, we derive an explicit formula for the entanglement of formation for
(U ^ U)-invariant states, and we find a counterexample of the additivity conjecture for the relative entropy of
entanglement.

DOI: 10.1103/PhysRevA.64.062307 PACS number~s!: 03.67.2a, 03.65.Ta, 03.65.Ca, 89.70.1c
t h
of

tr
e

th
on
or
m

in
e

w
ls

es

a
ew

ns

y

w

x
nt
id
o
t
n

s
b

per.
lity.
les
nt it
x-

r a
ts in

ex-
ion
re
t a
evi-
t is
al
In

the
ok, a
The
ad

r,
ins’

for
le-

w
tric
this
try
pre-

in
g
x-
tate
nder
i-

en-
IV
ow
ry.
ups
s

I. INTRODUCTION

One of the reasons the general theory of entanglemen
proved to be so difficult is the rapid growth of dimension
the state spaces. For bipartite entanglement betweend1- and
d2-dimensional Hilbert spaces, entanglement is a geome
structure in the (d1

2d2
221)-dimensional state space. Henc

even in the simplest nontrivial case (d15d252; 15 dimen-
sions!, naive geometric intuitions can be misleading. On
other hand, the rapid growth of dimensions is partly resp
sible for the potential of quantum computing. Hence, expl
ing this complexity is an important challenge for quantu
information theory.

Model studies have been an important tool for develop
and testing new concepts and relations in entanglem
theory, both qualitative and quantitative. In this paper
explore a method for arriving at a large class of mode
which are equally simple, and yet show some of the inter
ing features of the full structure.

The basic idea of, namely, looking at sets of states that
invariant under a group of local unitary operators is not n
and goes back to the first studies of entanglement@1,2# in the
modern sense. Two classes, in particular, have been co
ered frequently: the so-calledWerner states~after@1#!, which
are invariant under all unitary operators of the formU ^ U,
and the so-calledisotropic states@3#, which are invariant
under allU ^ U* , whereU* is the complex conjugate ofU
in some basis. Symmetry has also been used in this wa
study tripartite entanglement@4,5#. A recent paper of Rains
@6# discusses distillable entanglement under symmetry, so
have eliminated the pertinent remarks from this paper.

Several of the ingredients of our general theory, for e
ample, the role of the twirl projection and the commuta
have been noted in these special cases and can be cons
to be well known. The computation of the relative entropy
entanglement@7# was known@8# for Werner states. The firs
study in which symmetry is exploited to compute the e
tanglement of formation@9# beyond the Wootters formula
@10# is Ref. @12#, where the case of isotropic states is inve
tigated. Our theory of entanglement of formation can
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viewed as an abstract version of arguments from that pa
What is new in the present paper is, first, the genera

We regard our theory as a toolkit for constructing examp
adapted to specific problems, and we have tried to prese
in a self-contained way, facilitating such applications. E
ploring all the possibilities would have been too much fo
single paper but, of course, we also have some new resul
specific examples.

Our most striking specific result is perhaps a counter
ample of the conjecture that the relative entropy of format
should be additive. The evidence in favor of this conjectu
had been partly numerical, but it was perhaps clear tha
random search for counterexamples was not very strong
dence to begin with: the relative entropy of entanglemen
defined by a variational formula in a very high dimension
space, whose solution is itself not easy to do reliably.
addition, the additivity conjecture is true on a large set in
state space, so unless one has a specific idea where to lo
random search may well produce misleading evidence.
second strong point in favor of the additivity conjecture h
been a theorem by Rains~Theorems 4 and 5 in Ref.@13#!
implying a host of nontrivial additivity statements. Howeve
our counterexample satisfies the assumptions of the Ra
theorem, so that theorem is, unfortunately, false.

Further specific results in our paper are the formulas
entanglement of formation and relative entropy of entang
ment for Werner states.

The paper is organized as follows: In Sec. II we revie
the essential techniques for the investigation of symme
states and describe how the partial transposition fit in
context. Section II D presents a zoo of different symme
groups. Some of these are used later, others are only
sented as briefly, to illustrate special properties possible
this setup. We hope that this list will prove useful for findin
the right tradeoff between high symmetry, making an e
ample manageable, and richness of the symmetric s
space, which may be needed to see the phenomenon u
investigation. In Sec. III we briefly recapitulate the defin
tions of the entanglement of formation and the relative
tropy of entanglement and the additivity problem. In Sec.
we turn to the entanglement of formation. We show first h
the computation may be simplified using local symmet
These ideas are then applied to the basic symmetry gro
UU and UU* , arriving at an explicit formula in both case
©2001 The American Physical Society07-1
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~the results for UU* are merely cited here for completene
from work of the first author with Terhal@12#!. For the group
OO of orthogonal symmetries, which unifies and exten
these two examples, we find formulas in large sections of
state space. Section V deals with the relative entropy of
tanglement. Again we begin by showing how the compu
tion is simplified under symmetry. We then present the co
terexample of additivity mentioned in this section. Som
possible extensions are mentioned in the concluding
marks.

II. SYMMETRIES AND PARTIAL TRANSPOSES

From the beginning of the theory of entanglement
study of special subclasses of symmetric states has playe
important role. In this section we give a unified treatment
the mathematical structure underlying all these studies.
simplicity we restrict attention to the bipartite finite dime
sional case, although some of the generalizations to m
than two subsystems@4# and infinite dimension are straigh
forward. So throughout we will consider a composite qua
tum system with Hilbert spaceH5H1^ H2, with dimHi
5di,`. We denote the space of states~5density operators!
on H as S(H), or simply byS. The space of all separabl
states~explained in Sec. II B! is denoted asD.

A. Local symmetry groups

Two statesr,r8 are regarded as ‘‘equally entangled’’
they differ only by a choice of basis inH1 andH2 or, equiva-
lently, if there are unitary operatorsUi acting onHi such that
r85(U1^ U2)r(U1^ U2)†. If in this equationr85r, we
call U5(U1^ U2) a ~local! symmetry of the entangled sta
r. Clearly, the set of symmetries forms a closed group
unitary operators onH1^ H2. We will now turn this around,
i.e., we fix the symmetry group and study the set of states
invariant by it.

So from now on, letG be a closed group of unitary op
erators of the formU5(U1^ U2). As a closed subgroup o
the unitary group,G is compact, hence carries a unique me
sure that is normalized and invariant under right and
group translation. Integrals with respect to thisHaar measure
will just be denoted by ‘‘* dU,’’ and should be considered a
averages over the group. In particular, whenG is a finite
group, we have* dU f(U)5uGu21(UPGf (U). An important
ingredient of our theory is the projection

P~A!5E dU UAU†, ~1!

for any operatorA on H1^ H2, which is sometimes referre
to as thetwirl operation. It is a completely positive operato
and is doubly stochasticin the sense that it takes densi
operators to density operators and the identity operato
itself. Using the invariance of the Haar measure it is imm
diately clear that ‘‘PA5A’’ is equivalent to ‘‘@U,A#50 for
all UPG.’’ The set of all A with this property is called the
commutantof G. We will denote it byG8, which is the
standard notation for commutants in the theory of von N
06230
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mann algebras. It will be important later on thatG8 is always
an algebra~closed under the operator product!, although in
generalP(AB)Þ(PA)(PB). Computing the commutant is
always the first step in applying our theory. Typically, o
tries to pick a large symmetry groupG from the outset, so
the commutant becomes a low-dimensional space, span
by just a few operators.

Our main interest does not lie in the setG8 of G-invariant
observables, but dually, in theG-invariant density operators
r with Pr5r. As for observables, this set is the projectio
PS of the full state space under twirling. The relation b
tween invariant observables and states is contained in
equation

tr@P~r!A#5tr@rP~A!#, ~2!

which follows easily by substitutingU°U†5U21 in the
integral~1!, and moving one factorU under the trace. Due to
this equation, we do not need to know the expectatio
tr(rA) for all observablesA in order to characterize a
G-invariant r, but only for the invariant elementsP(A)
PG8. Indeed, if we have a linear functionalf :G8→C, which
is positive on positive operators, and normalized tof (I)51,
that is, astateon the algebraG8 in C*-algebraic terminol-
ogy, the equation tr(rA)5 f „P(A)… uniquely defines a
G-invariant density operatorr, becauseP preserves positiv-
ity andP(I)5I. Under this identification ofG-invariant den-
sity operators and states onG8 it becomes easy to comput
the image of a general density operatorr under twirling.
Using again Eq.~2! we find thatPr is determined simply by
computing its expectation values forAPG8, i.e., its restric-
tion to G8.

To characterize the invariant state space we alw
choose a basis inG8 of k Hermitian operatorsAa , wherek
denotes the dimension ofG8. The state space of invarian
states is then identified with thek tuples of expectation val-
ues ^Aa&5tr(Aar). As a simplification we will always
choose one operator to be the identity. Due to the normal
tion of the states, this expectation value has to be equal
and we are left with (k21) parameters.

Let us demonstrate this in the two basic examples
twirling.

Example 1: The groupUU (Werner states!.
We take the Hilbert spaces of Alice and Bob to be t

same (H5H1^ H1), and choose forG the group of all uni-
tary operators of the formU ^ U, whereU is a unitary op-
erator onH1. As an abstract topological group this is th
same as the unitary group onH1, so the Haar measure onG
is just invariant integration with respect toU. It is a well-
known result of group representation theory, going back
Weyl @14# or further, that the commutant ofG is spanned by
the permutation operators of the factors, in this case the id
tity I and theflip defined byF(f ^ c)5c ^ f, or in a basis
u i & of H1, with u i j &5u i & ^ u j &,

F5(
i , j

u i j &^ j i u. ~3!
7-2
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ENTANGLEMENT MEASURES UNDER SYMMETRY PHYSICAL REVIEW A64 062307
Hence the algebraG8 consists of all operators of the form
A5aI1bF and we can take$I,F% as a basis for the commu
tant. As an abstract * algebra with identityG8 is character-
ized by the relationsF25I and F* 5F. Thus G-invariant
states can be parametrized in terms of the single param
^F&5tr(rF), which ranges from21 to 1. Note that every
invariant density operator can be written asr5aI1bF with
suitablea,bPR. But as we will see, the parametersa,b are
less natural to use, and more dimension-dependent
tr(rF).

Another usual way to write such an invariant density o
erator is in terms of the minimal projections

r65
1

d~d61!
~I6F! ~4!

and a single positive parameterp, which ranges from 0 to 1
Hered denotes the dimension of the Hilbert spaceH1. With
these parametersr is given by r5pr21(12p)r1 . The
parameterp is simply connected with the flip expectatio
value viap5(^F&11)/2.

Example 2: The group UU* (isotropic states!.
Again we take both Hilbert spaces to be the same,

moreover, we fix some basis in this space. The groupG now
consists of all unitary operators of the formU ^ U* , whereU
is a unitary operator onH1, and U* denotes the matrix
element-wise complex conjugate ofU with respect to the
chosen basis. One readily checks that the maximally
tangled vectorF5( i u i i & is invariant under such unitary op
erators, and indeed the commutant is now spanned byI and
the rank one operator

F̂5uF&^Fu5(
i , j

u i i &^ j j u. ~5!

This operator is positive with normd5iFi25dimH1, so
the invariant states are parametrized by the expectation v

^F̂&, which ranges in the interval@0,d#. Every invariant state
can be written asr5aI1bF̂ with suitable a,bPR or in
terms of a convex combination of the two minimal proje
tions r15F̂/d andr25@1/(d221)#(I2r1). We want to use
the expectation valuêF̂&5tr(rF̂) as parameter for thes
states. This choice for the parameter is motivated by
results in Sec. II C, where we show that these examples
be obtained from the first example by the method of par
transposition.

It is perhaps helpful to note that there are not so ma
functionsU°Ũ, taking unitary operators onH1 to unitary
operators on the same spaceH1, such that the operators o
the formU ^ Ũ again form a group. For this it is necessa
that U°Ũ is a homomorphism, so, for example,Ũ5U†

does not work. Inner homomorphisms, i.e., those of the fo
Ũ5VUV† are equivalent to Example 1 by a trivial bas
change in the second factor, given byV. Similarly, functions
differing only by a scalar phase factor give the same tra
formations on operators, and should thus be conside
equivalent. Then~up to base changes and phase factors! all
06230
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functionsU°Ũ not equivalent to the identity are equivale
to Example 2, i.e., the above list is in some sense compl
However, many interesting examples arise, when the Hilb
spaces are not of the same dimension, or the group of op
tors in the first factor is not the full unitary group.

ComputingPS in Examples 1 and 2 is very simple, be
cause it is just an interval. We will encounter more comp
cated cases below, in most of which, however, the alge
G8 is Abelian. WhenG8 has dimension, say,k, it is then
generated byk minimal projections, which correspond pre
cisely to the extreme points ofPS. Therefore, the state spac
is a simplex~generalized tetrahedron!.

B. How to compute the separable states PD
For the study of entanglement of symmetric states it

fundamental to know which of the states inPS areseparable
or ‘‘classically correlated’’@1#, i.e., convex combinations

r5(
a

lar1
(a)

^ r2
(a) ~6!

of product-density operators. We denote this set of states
D. Because we assume the groupG to consist of local uni-
taries, it is clear that for a separable stater the integrand of
Pr consists entirely of separable states, hencePr is sepa-
rable. HencePD,(DùPS). But here we even have equalit
because any state in (DùPS) is its own projection. Hence

DùPS5PD. ~7!

In order to determine this set, recall that by decompos
r1,2

(a) in Eq. ~6! into pure states, we may even assume ther1,2
(a)

in Eq. ~6! to be pure. If we computePr termwise, we find
that eachrPPD is a convex combination of statesP(s1
^ s2) with pures i5uf i&^f i u. Thus we can computePD in
two stages:

Choose a basis inG8, consisting of, say,k Hermitian op-
eratorsAa and compute the expectations of these opera
in arbitrary pure product states,

aa5^f1^ f2uAauf1^ f2&,

this determines the projectionsP(s1^ s2).
Determine the set of realk tuples (a1 , . . . ,ak) obtained

in this way, as thef i range over all normalized vectors.
Compute the convex hull of this set.
Two simplifications can be made in this procedure: fir

we always haveIPG8, so by choosingAk5I, it suffices to
work with the (k21)-tuples (a1 , . . . ,ak21). Second, the
vectorsf1^ f2 and U(f1^ f2) with UPG give the same
expectations, so when determining the range one can m
special choices, as long as one vector is chosen from e
orbit of product vectors underG.

Let us illustrate this procedure in the two basic examp
above: In Example 1 we only need to compute

^f ^ cuFuf ^ c&5u^fuc&u2. ~8!
7-3
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Clearly, this quantity ranges over the interval@0,1#, and a
UU-invariant stater is separable if tr(rF)>0 @1#. Similarly,
in Example 2,

^f ^ cuF̂uf ^ c&5U(
i

f ic iU2

5u^fuc* &u2, ~9!

which again ranges over the interval@0,1#. Note, however,
that the state space in this case is the interval@0,d#. The fact
that the two state-space intervals@21,1# for UU and @0,d#
for UU* intersect precisely in the separable subset@0,1# is
an instance of the Peres-Horodecki criterion for separabli
as we now proceed to show.

C. Partial transposition

The partial transpose of an operator onH1^ H2 is defined
in a product basis by transposing only the indices belong
to the basis ofH2, and not those pertaining toH1. Equiva-
lently, we can define this operation as

Q2~A^ B!5A^ Q~B!, ~10!

whereQ(B) denotes the ordinary matrix transpose ofB. This
also depends on the choice of basis inH2, so from now on
we assume a basis ofH2 to be fixed. This equation suffice
to defineQ2, because all operators onH1^ H2 can be ex-
panded in terms of product operators. The partial transp
operation has become a standard tool in entanglement th
with the realization that the partial transpose of a separa
density operator is again positive. This is evident from E
~6! and ~10!, and the observation that the transpose o
positive operator is positive. In 2̂2 and 2̂ 3 Hilbert-space
dimensions, this criterion, known as the Peres-Horodecki
terion, is even sufficient for separability@15#. For all higher
dimensions sufficiency fails in general. States with posit
partial transpose~PPT states! are known not to bedistillable,
i.e., even when many copies of such a state are provided,
not possible to extract any highly entangled states by lo
quantum operations and classical communication alone.

For special classes of states on higher-dimensional Hil
spaces the PPT property may still be sufficient for separa
ity. Pure states are a case in point, and so are some o
spaces of symmetric states studied in this paper. Let us c
how the action of a product unitary operator is modified
partial transposition. IfUi ,Ai are operators onHi ( i 51,2),
we find

Q2„~U1^ U2!~A1^ A2!~U1
†

^ U2
†!…

5Q2„~U1A1U1
†! ^ ~U2A2U2

†!…

5~U1A1U1
†! ^ „Q~U2

†!Q~A2!Q~U2!…

5~U1^ U* 2!Q2~A1^ A2!~U1^ U* 2!†.

Note that by linearity we can replace in this equationA1
^ A2 by any other operator onH1^ H2. This computation
motivates the following definition: For any groupG of prod-
uct unitary operators, we denote byG̃ the group of unitary
06230
y,

g

se
ory
le
.

a

i-

e

is
al

rt
il-
he
ck

operatorsU1^ U* 2, where U1^ U2PG. For example, for
G5UU of Example 1 we getG̃5UU* , and vice versa.

There is a slightly tricky point in this definition, becaus
the mapU1^ U2°U1^ U* 2 is not well defined: If we mul-
tiply U1 by a phase andU2 with the inverse phase, the op
eratorU1^ U2 does not change, butU1^ U* 2 picks up twice
the phase. What the definition therefore requires is to tak
G̃ all operators arising in this way. Repeating the ‘‘tilde
operation may thus fail to lead back toG, but instead leads to
G enlarged by the group of phases. It is therefore conven
to assume that all groups under consideration contain
group of phases. We may do so without loss of genera
since the phases act trivially on operators anyhow, and he
the twirling projectionP is unchanged.

If we integrate the above computation with respect to
group G of local unitary operators, and introduceP̃ for the
twirling projection associated withG̃, we get the fundamen
tal relation

Q2P5P̃Q2 . ~11!

SinceQ2 is a linear bijection on the space of all operators
H1^ H2, we immediately find the relations between th
ranges ofP and P̃,

Q2~G8!5G̃8, ~12!

i.e., the operators invariant underG̃ are precisely the partia
transposes of those invariant underG. This has a surprising
consequence: taking the partial transposes of an algebr
operators in general has little chance of producing again
algebra of operators, sinceQ2 is definitely not a homomor-
phism. That is, in general, one would not expect that
operator product of two partial transposes is again the pa
transpose of an element of the original algebra. If the alge
arises as the commutant of a group oflocal unitary operators,
however, we get again a commutant, hence an algebra.

The first application of Eq.~12! is the computation of the
commutant in Example 2: WithG5UU we find the partial
transposes of the operators inG8, i.e., the operatorsQ2(aI
1bF)5aI1bF̂, sinceQ2(F)5F̂.

Another application is the determination of the set of P
states. One might think that a special form forr, entailed by
its G invariance, is not necessarily helpful for getting spe
tral information aboutQ2r. However, sinceQ2G8 is an al-
gebra, and often enough an Abelian one,Q2r is, in fact,
easily diagonalized.

A good way to represent this connection is to draw t
state spaces ofG and G̃ ~i.e., PS and P̃S) in the same dia-
gram. Since, in general,G8 andG̃8 need not intersect excep
in the multiples of the identity~see Examples 1 and 2!, the
projected state spacesPS and P̃S in general have only the
trace state in common. Hence they do not fit naturally in
same diagram. However, the partial transposes ofP̃S lie in
G8, more precisely in the hyperplane of Hermitian eleme
with trace 1. The same hyperplane containsPS. In the pair of
Examples 1 and 2, we get Fig. 1.
7-4
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Note that by exchanging the roles ofG and G̃, we get
exactly the same diagram, up to maybe an affine transfor
tion due to a different choice of coordinates: the two d
grams are simply related by taking partial transposes. W
G andG̃ are swapped in this way, the picture ofPD remains
correct: sinceQ2D5D, it suffices to compute the projectio
of the separable subset forG. By definition, the intersection
of PS andQ2P̃S is the convex set ofG-invariant PPT states
It always containsPD, but this inclusion may be strict. In th
simple case of Fig. 1PD5PSùQ2P̃S, which is the same as
saying that the Peres-Horodecki criterion is valid for sta
invariant under eitherG or G̃.

D. Further examples of symmetry groups

Example 3: Orthogonal groups: G5OO.
The two basic examples can be combined into one

taking theintersectionof the two groups:G5UUùUU* this
is the same as the subgroup of unitary operatorsU ^ U such
that U* 5U, i.e., such thatU is a real orthogonal matrix
Clearly, both the UU-invariant states and the UU* -invariant
states will beG invariant, so we know thatG8 is at least1 the
algebra generated by UU8 and UU* 8, i.e., it containsI,F,
and F̂. SinceFF̂5F̂F5F̂, the linear span of these three
already an algebra, and is spanned by the minimal pro
tions

p05
1

d
F̂ ~13!

p15
1

2
~I2F! ~14!

p25
1

2
~I1F!2

1

d
F̂, ~15!

1In general, the commutant (GùH)8 may be suitably larger than
the algebraG8~H8 generated byG8 and H8. The equation
(AùB)85A8~B8 is valid only for algebras, and follows readil
from the equation (A8~B8)85(A9ùB9), and the bicommutan
theorem@17#, which characterizesM 9 as the algebra generated b
M. However, the algebrasG9 and H9 may have an intersection
which is suitably larger than the algebra generated by their inter
tion. For example, for any irreducible represented groupG9 is the
algebra of all operators, but two such groups may intersect jus
the identity. Hence some caution has to be exercised when com
ing (GùH)8 for general groups.

FIG. 1. The state spaces for Werner and isotropic states are
intervals. Drawn together in one diagram, the intersection give
the space of PPT states, which is in this case equivalent to
separable space.
06230
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which corresponds precisely to the decomposition of a g
eral (333)-matrix into a multiple of the identity, antisym
metric part, and symmetric traceless part. This decomp
tion of tensor operators with respect to the orthogonal gro
is well known, so we have identifiedG8.

The extremalG-invariant states corresponding to the
three minimal projections are plotted in Fig. 2 in a coordina
system whose axes represent the expectations ofF and F̂,
respectively. The plane of this drawing should be conside
as the HermitianG-invariant operators of trace one. Th
plane is mapped into itself by partial transposition~sinceG

5G̃), and the coordinates are chosen such that partial tr
position is simply the reflection along the main diagonal.

The intersection ofPS and P̃S is the square@0,1#
3@0,1#. Is the Peres-Horodecki criterion valid for thes
states? All we have to do to check this is to try to get so
pure product states, whose expectations ofF andF̂ fall on the
corners of this square. For a product vectorf ^ c we get the
pair of expectations

~ u^fuc&u2,u^fuc* &u2!.

Here c* denotes the complex conjugate ofc in a basis in
which the representation is real. Now, the point (1,1) in t
square is obtained wheneverf5c is real, the point (0,0) is
obtained whenf and c are real and orthogonal, and th
point (1,0) is obtained whenc5f, and^fuf* &50, for ex-
ample,f5(1,i ,0)/A2. Symmetrically, we get (0,1) with the
samef andc5f* . Hence all four corners are inPD, and as
this is a convex set we must havePD5PSùQ2(P̃S).

Example 4: SU2 representations.
A class of examples, in which arbitrary dimensions ofH1

and H2 can occur is the following. Letu°D u
j denote the

spin j irreducible representation of SU2. Then we can take
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in
ut-
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FIG. 2. State spaces for OO and OO¯ invariant states plotted for
d53. The UU and UU* invariant states are drawn as thin lines.
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G5$D u
j 1^ D u

j 2uuPSU2%, ~16!

where (2j k11) is the dimension ofHk (k51,2). Sincej k
also take half-integer values, these dimensions can be
natural number>1. It is known from just about any quan
tum mechanics course~under the key word ‘‘addition of an
gular momenta’’! that the tensor product representationD j 1

^ D j 2 is decomposed into the direct sum of the irreduci
representationsD s with s5u j 12 j 2u,u j 12 j 2u11, . . . ,(j 1
1 j 2), each of these representations appearing with multip
ity 1. Therefore, the commutant ofG is spanned by the pro
jections onto these subspaces, and is an Abelian algebra

Note that since the spin-1 representation of SU2 is the
orthogonal group in three dimensions, the casej 15 j 251
corresponds precisely to the previous example withd53.
We have no general expression for the separable subsets
even for the partially transposed sets in these examples
believe, however, that this class of examples deserves fu
investigation.

Example 5: Bell diagonal states.
In this example we show that the groupG can also be

Abelian, and we make contact with a well-investigated str
ture of the two-qubit system. So letH15H25C2, and let
sk , k51,2,3 be the Pauli matrices, ands05I. Then the set

G5$I,2s1^ s1 ,2s2^ s2 ,2s3^ s3% ~17!

forms a group, which is isomorphic to the Klein four-grou
and Abelian (G,G8). It is even maximally Abelian, i.e, the
algebraG9 generated byG is equal to, and not just containe
in G8. The minimal projections inG8 are uCk&^Cku, k
50,1,2,3, where theCk are the magicalBell basis@9,16#:
C05(u11&1u22&)/A2, and Ck5 i (I^ sk)C0 for k51,2,3.
In this basis the group elements and their negatives are
diagonal operators with diagonal elements61, of which an
even number are21. Hence theG-invariant states are th
tetrahedron of density operators that are diagonal in Bell
sis.

The partial transpose is easy to compute: onlys2 changes
sign under transposition. Hence if we draw the state spac
a coordinate system, whose three axes are the expectatio
the group elements2sk^ sk (k51,2,3), the Bell states ar
the corners (1,1,1), (1,21,21), (21,21,1), and (21,1,
21) of the unit cube, from which their partial transposes
obtained by mirror reflectionx2°2x2. That is, the partially
transposed states occupy the remaining four corners of
unit cube. The PPT subset, which is equal to the separ
subset since we are in 2̂2 dimensions, is hence the inte
section of two tetrahedra, and is easily seen to be an oct
dron ~see Fig. 3!

Example 6: Finite Weyl systems.

In the examples so far the groupsG andG̃ were isomor-
phic or even equal. In this example, which extends the p
vious one, we see that the two groups and their commut
can be very different.

We let d be an integer, and introduce onCd the Weyl
operators, given by

W~x,y!uz&5vxzuz2y&, ~18!
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where v5exp(2pi/p). These are unitary, and satisfy th
‘‘Weyl relations’’

W~x1 ,y1!W~x2 ,y2!5v2x1y2W~x11x2 ,y11y2!. ~19!

Hence these operators, together with thepth roots of unity
form a group. On Cd

^ Cd we introduce the operator
W(x1 ,y1 ,x2 ,y2)[W(x1 ,y1) ^ W(x2 ,y2), and take

G5$vzW~x,y,x,y!ux,y,z50, . . . ,d21%. ~20!

The commutant is readily computed from the Weyl re
tions to be

G85span$W~x,y,2x,2y!ux,y50, . . . ,d21%. ~21!

The Weyl operators inG8 satisfy Weyl relations withv re-
placed byv2. If d is odd, such relations are equivalent to t
Weyl relations~19! for a d-dimensional system, and henc
G8 is isomorphic to thed3d matrices.

On the other hand, complex conjugation ofW(x,y) just
inverts the sign ofx, so G̃ contains the Weyl operator
W(x,y,2x,y). But this time, rather than getting twice th
Weyl phase, the phases cancel, andG̃ is Abelian. One also
verifies that

G̃85span$W~x,y,2x,y!ux,y50, . . . ,d21% ~22!

is spanned byG̃, so this algebra is even maximally Abelian
it containsd2 one-dimensional projections, which thus for
the extreme points ofP̃S. Hence we get the following pic-
ture: the setPS of G-invariant states is isomorphic to th
space ofd3d density operators, and theG-invariant opera-
tors with positive partial transpose are a simplex spanned
9 extreme points, which are mapped into each other by
action of ad3d Weyl system. The intersectionPSùQ2(P̃S)
is a rather complicated object. We do not know yet whethe
differs from PD.

Example 7: Tensor products.

FIG. 3. State spaces for Bell diagonal states.
7-6
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ENTANGLEMENT MEASURES UNDER SYMMETRY PHYSICAL REVIEW A64 062307
Additivity problems for entanglement~see Sec. III C for a
brief survey! concern tensor products of bipartite state
which are taken in such a way as to preserve the split
between Alice and Bob. Thus in the simplest case we h
four subsystems, described in Hilbert spacesHi ,Ki , i 51,2,
such that systemsH1 and K1 belong to Alice, systemsH2
andK2 belong to Bob, and such that the systems inHi are
prepared together according to a density matrixr on H1
^ H2 and, similarly, the remaining systems are prepared
cording to s, a density operator onK1^ K2. We wish to
study the entanglement properties ofr ^ s, when both these
density matrices are assumed to be invariant under suit
groups of local unitaries.

Let us denote byG ~H! the group of local unitary opera
tors onH1^ H2 ~by K1^ K2), and assumer and s to be
invariant under the respective group. Then, clearly,r ^ s is
invariant under all unitary operatorsU1^ U2^ V1^ V2,
where U1^ U2PG and V1^ V2PH. These again form a
group of local unitaries, denoted byG^ H, where ‘‘local’’ is
understood in the sense of the Alice-Bob splitting of t
system, i.e., the unitaryU1^ V1 acts on Alice’s side and
U2^ V2 on Bob’s. In this sense the product state is invari
under the groupG^ H of local unitaries, and we can appl
the methods developed below to compute various entan
ment measures for it.

Computing the commutant (G^ H)8 is easy, because w
do not have to look at the Alice-Bob splitting of the Hilbe
space. In fact, we can invoke the ‘‘commutation theore
for von Neumann algebras to get

~G^ H !85G8^ H8, ~23!

where the notation on the right-hand side is the tensor p
uct of algebras, i.e., this is the set of all linear combinatio
of elements of the formA^ B whereAPG8 acts on the first
two andBPH8 acts on the second two factors ofH1^ H2
^ K1^ K2. In particular, if G8 and H8 are Abelian, so is
G8^ H8, and we can readily compute the minimal proje
tions, which correspond to the extremal invariant states: ifpa
are the minimal projections ofG8 and qb are those ofH8,
then the minimal projections ofG8^ H8 are allpa ^ qb .

Partial transposition also behaves naturally with respec
tensor products, which implies that (G^ H)˜5G̃^ H̃, and
allows us to compute in a simple way the (G^ H)-invariant
states with positive partial transpose from the correspond
data ofG andH. However, for the determination ofPD no
such shortcut exists.

We illustrate this in the example, which we will also u
for the counterexample to additivity of the relative entropy
entanglement discussed in the Introduction. For this we t
G5H5UU, with a one-particle spaceH15H25K15K2
5Cd, for any dimensiond,`. The extreme points of the
state space ofG8 are given by the normalized projections

r65
1

d~d61!
~I6F!. ~24!

Hence the state space of the Abelian algebra (G8^ H8) is
spanned by the four statesrs1

^ rs2
, s1 ,s256 and is a tet-
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rahedron. A convenient coordinate system is given by
expectations of the three operators

F15F^ I ~25!

F25I^ F ~26!

F125F^ F. ~27!

The four extreme points are then on the edges of the
cube: rs1

^ rs2
has expectation triple (s1 ,s2 ,s1s2). This is

drawn in Fig. 4.
The extreme points are special instances of product sta

when r,s are UU-invariant states with flip expectationsf 1
and f 2, respectively, the product stater ^ s has coordinates
( f 1 , f 2 , f 1f 2). Hence the manifold of product states is em
bedded in the state space as a piece of hyperboloid. Pa
transposition turns the flip operators~25! into their counter-
parts usingF̂ instead ofF. Hence the operators with positiv
partial transposes are represented in the diagram by a t
hedron with vertices (0,0,0), (0,d,0), (d,0,0), and (d,d,d2).
The intersection, i.e., the set of states with trace equal to
and positive partial transpose~represented in Fig. 4 as
solid! is a polytope with the five extreme points (0,0,0
(0,1,0), (1,0,0), (1,1,1), and, on the line connecting
origin to the point (d,d,d2), the point (1/d,1/d,1). The den-
sity operator corresponding to this last point is

r#5
d11

2d
r1 ^ r11

d21

2d
r2 ^ r2 . ~28!

It turns out thatr# is separable: LetF5d21/2(kukk& be a
maximally entangled vector, and consider a pure state w
vector C5FAlice^ FBob. Note that this is a tensor produc
with respect to the Alice-Bob splitting, i.e., 13u24 rather than
the splitting between pair 1 and pair 2, i.e., 12u34. We claim
that upon twirling this pure state becomesr# . For this we
only need to evaluate the expectations of the three opera
~25!, and compare with those ofr# . Clearly,C is a symmet-

FIG. 4. State space for UUVV-invariant states plotted for
mensiond53.
7-7
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ric product~Bose-! vector with respect to the total flipF12,
hence this operator has expectation 1. The expectations oF1
andF2 are equal to

^CuF1C&5
1

d2 ( ^ i j i j u~F^ I!ukl kl &

5
1

d2 (
i , j ,k,l

^ i j i j ul kkl &5
1

d
.

Since the other four extreme points are separable as te
products of separable states, we conclude that all PPT s
are separable in this example, so the solid in Fig. 4 a
represents the separable subset.

Example 8: Tripartite symmetry: Û(U ^ U).
The idea of symmetry can also be used to study multip

tite entanglement. A natural choice of symmetry group is
group of all unitary operators of the formU ^ U ^ U. The
resulting five-dimensional state space has been studie
great detail in Ref.@4#. This study also has a bipartite cha
ter, where this group is considered as a group of local uni
operatorsU ^ (U ^ U) in the sense of the present paper. T
set of separable states is strictly smaller than the set of s
with positive partial transposes. However, if we enlarge
group to include the unitary operatorI^ F, the two once
again coincide, forming a tetrahedron.

III. ENTANGLEMENT MEASURES AND ADDITIVITY

A. Entanglement of formation and the convex hull construction
for functions

The entanglement of a pure state is well described by
von Neumann entropy of its restricted density operator. T
for a pure stater5uC&^Cu such thatC is expressed in
Schmidt form asC5(kAckek^ ek8 , we have

E~r!5(
k

h~ck! with ~29!

h~ t !52t ln~ t !. ~30!

Theentanglement of formationis a specific extension of thi
function to mixed states. The extension method is a gen
one, known as theconvex hullconstruction for functions, and
since we will need this construction for stating our ma
result, we will briefly review it.

So letK be a compact convex set, letM,K be an arbi-
trary subset, and letf :M→Rø$1`%. We then define a func
tion cof :K→Rø$1`% by

cof ~x!5 infH(
i

l i f ~si !UsiPM ,(
i

l isi5xJ , ~31!

where the infimum is over all convex combinations withl i
>0, ( il i51, and by convention the infimum over an emp
set is1`. The name ‘‘convex hull’’ of this function is due to
the property that cof is the largest convex function, which i
< f at all points, wheref is defined. Another way of putting
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this is to say that the ‘‘supergraph’’ of cof , i.e., $(x,r )PK
3Rur>cof (x)%, is the convex hull~as a subset ofK3R) of
$(x,r )PK3RuxPM ,r> f (x)%.

In this notation, the usual definition@9# of entanglement
of formation is then

EF~r!5~coE!~r!, ~32!

where on the right-hand sideE is understood as the functio
~29! defined only on the submanifoldM,S(H1^ H2) of
pure states.

B. Relative entropy of entanglement

Another measure of entanglement, originally proposed
Ref. @7# is based on the idea that entanglement should
zero for separable density operators@see Eq.~6!#, and should
increase as we move away fromD. Such a function might be
viewed as measuring some kind of distance of the state to
setD of separable states. If one takes this idea literally, a
uses the relative entropy@19#

S~r,s!5tr r~ ln r2 ln s! ~33!

to measure the ‘‘distance,’’ one arrives at therelative entropy
of entanglement

ERE~r!5 inf$S~r,s!usPD%. ~34!

Initially, other distance functions have also been used
define measures of entanglement. However, the one base
the relative entropy is the only proposal, which coincid
with pure states with the ‘‘canonical’’ choice described in E
~29!. Since ERE is easily shown to be convex, it must b
smaller than the largest convex function with this proper
namelyEF . Another reason to prefer relative entropy ov
other distancelike functionals is that it has good additiv
properties. The hope thatERE might be additive was borne
out by initial explorations, and has become a folk conject
in the field. However, we will give a counterexample belo

C. Additivity

A key problem in the current discussion of entanglem
measures is the question, which of these are ‘‘additive’’
the following sense: ifr,s are bipartite states on the Hilbe
spacesH1^ H2 and K1^ K2, then r ^ s is a state onH1
^ H2^ K1^ K2. After sorting the factors in this tensor prod
uct into spacesH1 ,K1 belonging to Alice andH2 ,K2 be-
longing to Bob, we can considerr ^ s as a bipartite state on
(H1^ K1) ^ (H2^ K2). This corresponds precisely to th
situation of a source distributing particles to Alice and Bo
r ^ s, and similar larger tensor products, being interpreted
the state obtained by letting Alice and Bobcollect their re-
spective particles. Additivity of an entanglement measureE
is then the equation

E~r ^ s!5E~r!1E~s!. ~35!

We speak ofsubadditivityif ‘‘ < ’’ holds instead of equality
here. BothERE andEF are defined as infima, and for a prod
7-8
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ENTANGLEMENT MEASURES UNDER SYMMETRY PHYSICAL REVIEW A64 062307
uct we can insert tensor products of convex decomposit
or closest separable points into these infima, and use
additivity properties of entropy to get subadditivity in bo
cases. It is the converse inequality, which presents all
difficulties, i.e., the statement that in these minimizati
problems the tensor product solutions~and not some en
tangled options! are already the best.

Additivity of an entanglement functional is a strong e
pression of theresource characterof entanglement. Accord
ing to an additive functional, sharing two particles from t
same preparing device is exactly ‘‘twice as useful’’ to Alic
and Bob as having just one. Here preparing two pairs me
preparingindependentpairs, expressed by the tensor produ
in Eq. ~35!. It is interesting to investigate the influence
correlations and entanglement between the different pa
On the one hand, Alice and Bob might not be aware of s
correlations, and use the pairs as if they were independ
On the other hand, they might make use of the exact form
the state, including all correlations. Is the second possib
always preferable? Entanglement functionals answering
question with ‘‘yes’’ have a property stronger than additivi
calledstrong superadditivity. It is written as

E~r!>E~rH!1E~rK!, ~36!

where r is a density operator for two pairs~four particles
altogether!, andrH andrK are the restrictions to the first an
second pair. An entanglement functional satisfying this
well as subadditivity is clearly additive. Since additivity
already difficult to decide, it is clear that strong superad
tivity is not known for any of the standard measures of e
tanglement.

One case of strong superadditivity is satisfied both forEF
andERE, and we establish this property here in order to
a more focused search for counterexamples later on:
claim that Eq.~36! holds, wheneverrK is separable, in which
case, of course, the second term on the right vanishes~as a
special case of additivity, whenrK is even a product, this
was noted recently in Ref.@18#!. We will show this by estab-
lishing another property, calledmonotonicity: for both E
5EF andE5ERE, we claim

E~r!>E~rH!. ~37!

Monotonicity forERE follows readily from a similar prop-
erty of the relative entropy: ifrH ,sH denote the restrictions
of states r,s to the same subsystem, then S(rH ,sH)
<S(r,s). But if s is separable in Eq.~34!, then so is its
restriction sH . The infimum overall separable states o
H1^ H2 is still smaller, hence monotonicity holds.

Monotonicity for EF is similar: We may do the reductio
in stages, i.e., first reduce Alice’s and then Bob’s system,
becauseEF is symmetric with respect to the exchange
Alice and Bob, it suffices to consider the case of a reduct
on only one side, i.e., the restriction fromH1^ (H2^ K2) to
H1^ H2.

Let r be a state onH1^ (H2^ K2) andr8 its restriction to
H1^ H2.
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Consider the statessi on the larger space appearing in th
minimizing convex decomposition ofr, and letsi8 denote
their restrictions toH1^ H2. Of course, bothsi andsi8 have
the same restriction to the first factorH1. Hence

EF~r!5(
i

l i f ~si8!, ~38!

wheref (s) denotes the von Neumann entropy of the restr
tion of a states to H1, and( il isi85r8. Because the entropy
of the restriction is a concave function, the value of the s
~38! can be made smaller by replacing eachsi8 with a decom-
position into pure states onH1^ H2. Minimizing over all
such decompositions ofr8 yields EF(r8), which is hence
smaller thanEF(r).

IV. ENTANGLEMENT OF FORMATION

A. Simplified computation

Our method for computing the entanglement of formati
can also be explained in the general setting of the con
hull construction in Sec. III A, and this is perhaps the b
way to see the geometrical content. So in an addition t
subsetM,K of a compact convex set and a functionf :M
→Rø$1`%, consider a compact groupG of symmetries
acting onK by transformationsaU :K→K, which preserve
convex combinations. We also assume thataUM,M , and
f (aUs)5 f (s) for sPM . All this is readily verified for
aU(A)5UAU† andf the entanglement defined on the sub
M,K of pure bipartite states. Our task is to compute cof (x)
for all G-invariant xPK, i.e., those withaU(x)5x for all
UPG.

Since the integral with respect to the Haar measure
itself a convex combination, we can define, as before,
projection P:K→K by Px5* dU aU(x). The set of pro-
jected pointsPx will be denoted byPK. Usually, this will be
a much lower dimensional object thanK, so we will try to
reduce the computation of the infimum~31!, which involves
a variation over all convex decompositions ofx in the high-
dimensional setK to a computation, which can be done e
tirely in PK. To this end, we define the function«:PK
→Rø$1`% by

«~x!5 inf$ f ~s!usPM ,Ps5x%, ~39!

again with the convention that the infimum over the emp
set is1`. Then the main result of this subsection is that,
xPPK,

cof ~x!5coe~x!, ~40!

where the convex hull on the left is defined by Eq.~31!, but
the convex hull on the right is now to be computed in t
convex subsetPK.

We thus arrive at the following recipe for computing th
entanglement of formation ofG-invariant states:

• Find, for every staterPPS, the setM r of pure statess
such thatPs5r.

• Compute
7-9
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«~r!ª inf$E~s!usPM r%. ~41!

• For later use try to get a good understanding of the p
states achieving this minimum.

• Compute the convex hull of the function~41!.
The following simplifications are sometimes possible: first
all, all pure states in an orbit ofG give the same value ofE,
hence we may replaceM r by a suitably parametrized subs
containing at least one element from every orbit. At th
stage it is sometimes already possible to discard fur
states, in favor of others ‘‘obviously’’ giving a smaller valu
of E. The final stage is sometimes carried out by show
that the function« is convex to begin with, but, as we wi
see, this is not always the case.

The remainder of this subsection is devoted to the pr
of Eq. ~40!. We will proceed by showing that both sides a
equal to

Z5 infH(
i

l i f ~si !UsiPM ,(
i

l iPsi5xJ . ~42!

Indeed, the only difference between Eqs.~42! and~31! is that
in Eq. ~42! a weaker condition is demanded on thesi . Hence
more si are admissible, and this infimum is smaller,Z
<cof (x). On the other hand, ifsi satisfying the constrain
for Z are given, inserting the definition ofP produces a con-
vex combination givingx, namely, the combination of th
statesaU(si), labeled by the pair (i ,U), and weighted with
( il i* dU. This convex combination is admissible fo
the infimum defining cof , and gives the value
( il i* dU f„aU(si)…5( il i* dU f(si)5( il i f (si), where we
have used the invariance property off and the normalization
of the Haar measure. Hence all numbers arising in the i
mum ~42! also appear in the infimum~31!, which proves that
Z<cof (x), henceZ5cof (x). In order to prove the equality
Z5coe(x) just note that in the infimum~42! the constraint is
only in terms ofPsi , whereas the functional to be minimize
involves f (si). Therefore, we can compute the infimum~42!
in stages, by first fixing allPsi and minimizing eachf (si)
under this constraint, which amounts to replacingf by «, and
then varying over thePsi , which is the infimum defining
coe . Hence coe(x)5Z5cof (x).

B. Extending the computation to some nonsymmetric states

It is a basic feature of the convex hull that whenever
infimum in Eq. ~31! is found at a nontrivial convex combi
nation, there is a ‘‘flat piece’’ in the graph of cof , i.e., cof is
also known on the convex hull of the minimizingsi @11#. The
geometrical meaning of this elementary observation is imm
diately clear from low-dimensional pictures. It is also easy
prove in general, as described below.

Suppose that( il isi5x is a convex decomposition ofx
~with l i.0) minimizing ( il i f (si), and letx85( il i8si be
another convex combination of the same pointssi . We claim
that this convex combination solves the minimization pro
lem for cof (x8), i.e.,
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cof ~x8!5(
i

l i8 f ~si !. ~43!

Indeed, letx85( jm j t j be any convex combination witht j
PM . Then we can find a small number«.0 such that (l i

2«l i8)>0 for all i. Hence

x5(
i

~l i2«l i8!si1(
j

«m j t j

is a convex combination of elements fromM representingx.
But since the decomposition using only thesi is optimal, we
have

(
i

~l i2«l i8! f ~si !1(
j

«m j f ~ t j !>(
i

l i f ~si !.

From this we immediately get the claimed optimality ofx8
5( jl j8sj .

These remarks are especially useful for the case of
tanglement of formation, for any mixed state the optimizi
convex decomposition necessarily involves several ter
Hence any computation of an entanglement of formation
mediately extends to a larger class of states. Therefore,
of great interest not only to get the value of the entanglem
of formation for a given mixed state, but also to find the s
of pure states solving the variational problem definingEF .

The symmetric situation studied in this paper is extre
in this regard: The minimizing sets are always complete
bits of the symmetry group. Therefore, we get a fairly lar
set of nonsymmetric mixed states for which the compu
tions below also give the exact value ofEF .

C. Results for GÄUU

In this subsection we will apply the general method
computing the entanglement of formation for the states
Example 1.

In the first step we have to determine the setM f of vectors
FPH^ H such that^FuFF&5 f . In terms of the vector
componentsF i j we get

^cuFc&5(
i j

F i j F j i* . ~44!

On the other hand, the reduced density operator has com
nentsr i j 5(kF ikF* jk or, in matrix notation,r5FF†. Here
we may introduce a simplification due toU ^ U symmetry,
by choosingr diagonal. Note, however, that wecannot

choose the restriction to the second system, i.e.,FTF̄ to be
diagonal at the same time without loss of generality. In a
case, the eigenvalues ofr becomer i i 5(kuF iku2. Hence the
pure-state entanglement ofF, which by Eq.~29! is the en-
tropy of r is

E~ uF&^Fu!5(
i

hS (
k

uF iku2D , ~45!

whereh is the entropy function from Eq.~30!.
7-10
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For analyzing the variational problem it is useful to co
sider the contributions of each pair of variablesF i j andF j i ,
and of each diagonal elementF i i separately. The weights o
these contributions are

l i j 5uF i j u21uF j i u2, for i , j ~46!

l i i 5uF i j u2. ~47!

The normalized contribution of one such pair or diago
element tof is

f i j 5l i j
212 Re~F i j F j i* !, for i , j ~48!

f i i 51, so that ~49!

f 5(
i< j

l i j f i j . ~50!

Similarly, we can write the probability distribution
r11, . . . ,rdd as a convex combination of probability distr
butions with respective entropies

si j 5H2~l i j
21uF i j u2!, for i , j ~51!

sii 50, ~52!

where we have used the abbreviationH2(p)5h(p)1h(1
2p) for the entropy of a two-point probability distributio
(p,12p). By concavity of the entropy we have

E~ uF&^Fu!>(
i< j

l i j si j . ~53!

To find the lower bound onsi j given f i j is just another in-
stance of the variational problem we are solving, albeit w
the considerable simplification that only one off-diagon
pair of components ofF is nonzero. This leaves the follow
ing problem:

Given two complex variablesx,y with the constraint
uxu21uyu251, with 2 Re(xy* )5 f , minimizes5H2(uxu2).

Sinces is monotonically increasing inuxu2 from 0 to 1/2,
this is equivalent to minimizinguxu2, given f. The pairs
(uxu2, f ) compatible with the constraints form the convex s

$~l, f !uu f u<2Al~12l!;0<l<1%.

From this we get the minimal admissibleuxu25(1
2A12 f 2)/2 in the above two-variable variational problem
Hence

si j >«2~ f i j !5H2@ 1
2 ~12A12 f i j

2 !#. ~54!

This function«2 can be shown to be convex by explicit
computing the second derivative and expanding logarith
in a power series. Combining the bounds~53!, ~52!, and~54!
with the convexity of«2, we get
06230
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E~ uF&^Fu!>(
i , j

l i j «2~ f i j !

>«2S (
i , j

l i j f i j D
5«2S f 2(

i
l i i D .

Now suppose thatf >0. Then we can choose just a sing
diagonal entryF i i to be nonzero, and findE(uF&^Fu)50,
which is clearly the minimum. However, iff ,0 them the
last equation shows that letting any diagonal entryF i i Þ0
decreases the argument of«2 further in a range where this
function is monotonically decreasing. Hence the optimum
choosing allF i i 50, and allowing only two nonzero compo
nentsF i j andF j i for someiÞ j . This concludes the compu
tation of EF for UU-invariant states~see summary below!.

However, as noted in Sec. IV B, knowledge of the min
mizers for« automatically leads to an extension of the co
putation to some noninvariant states. Letx,y be a solution of
the two-variable variational problem withf 5tr(rF). Then
the minimizing vector is of the form

xu12&1yu21&5~xI1yF!u12&. ~55!

All U ^ U translates of this vector will do just as well an
appear in the minimizing decomposition of the UU-invaria
state. Hence all convex combinations of the density opera

~xI1yF!~U ^ U !u12&^12u~U ^ U !†~xI1yF!†

with fixed x,y, and arbitraryU, have the sameEF . For de-
termining these convex combinations we can drop the o
factors, and afterwards shift the operators found withxI
1yF)PG8. Let

F5co$~U ^ U !u12&^12u~U ^ U !†uU unitary% . ~56!

Clearly, every operator inF is a separable density operat
with flip expectation zero. Conversely, any operatorr̃ with
these properties may be decomposed into pure product s
uf ^ c&^f ^ cu. These must also have flip expectation ze
which means thatf'c, so that there is a unitary operatorU

with f ^ c5(U ^ U)u12&. Consequently,r̃PF.
Hence in order to determine whether for a givenr we can

computeEF(r), we transform it tor̃ by the appropriate
(xI1yF)21, and then test the separability ofr̃ ~Fig. 5!.

Let us summarize:
• For the (U ^ U)-invariant stater with
tr(rF)5 f <0, we have

EF~r!5H2@ 1
2 ~12A12 f 2!#, ~57!

independently of the dimensiond of the underlying Hilbert
space. Whenf >0, the stater is separable, andEF(r)50.

• Let r be a ~not necessarily invariant! density operator
with tr(rF)5 f and 21, f ,0. Then with suitably chosen
a,bPR,
7-11
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r̃5~aI1bF!†r~aI1bF! ~58!

is a density operator with tr(r̃F)50. Suppose thatr̃ is sepa-
rable. Then formula~57! also holds forr.

D. Results for GÄUU*

The computation of the entanglement of formation
Example 2 is already known@12#. The minimizing pure
states are of the form

~xI1yF̂!u11&, ~59!

with real x,y.
The extension to noninvariant states works in princi

similarly to the UU case, but ford.2 it is getting a bit more
complicated, because the« function is not convex anymore
~Fig. 6!.

• For the (U ^ U* )-invariant stater with tr(rF̂)5 f >1/d,
we have

EF~r!5co@H2~g!1~12g!ln~d21!# , ~60!

with g5(1/d2)@Af 1A(d21)(d2 f )#2. For d.2 we need
also to compute the convex hull. Whenf ,1/d, the stater is
separable, andEF(r)50.

FIG. 5. « function for UU-invariant states.

FIG. 6. « function for UU* -invariant states ford52,3,4. The
functions are not convex near the right endpoint ford>3.
06230
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• Let r be a ~not necessarily invariant! density operator
with tr(rF̂)5 f , 1, f ,d and co@«( f )#5«( f ). Then with
suitably chosena,bPR

r̃5~aI1bF̂!†r~aI1bF̂! ~61!

is a density operator with tr(r̃F̂)51. Suppose thatr̃ is sepa-
rable. Then formula~60! also holds forr.

• If f satisfies co@«( f )#,«( f ), the convex hull has a fla
section betweenf 1, f , f 2 where f 1 , f 2 are the two end
points of the flat piece satisfying co@«( f 1/2)#5«( f 1/2). We
can always find a convex decomposition ofr in two states
with expectation valuesf 1 , f 2. If now the above procedure
works for these two states, then we have found an opti
decomposition forr and can easily compute the entang
ment of formation.

E. Results for OO-invariant states

Here the extension method of Sec. IV B turns out to
much of the work. The state space, plotted in Fig. 7, is se
rated in four regions: the separable square and the three
anglesA, B, andC.

In order to apply the extension method to th
UU-invariant states, we have to see which states can be w
ten asr5(xI1yF) r̃(xI1yF)†, with r̃ a separable state with
flip expectation zero. If we take forr̃ any state at the left
edge of the separable square, it is clear that we will get
OO-invariant state again. The explicit computation sho
that with this method we getEF(r) in the full triangleB.
Note that by this constructionEF(r) depends only on the

FIG. 7. The state space for OO-invariant states seems to
naturally in four regions. The separable squarePD and the three
trianglesA, B, andC.
7-12
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expectation̂ F&, and not on̂ F̂& or the dimensiond. Employ-
ing similarly the extension method for UU* we find EF(r)
in the triangleA, getting a function depending only on^F̂&
and the dimension, but not on^F&.

F. Results for Bell states

The Bell states were one of the first classes for wh
entanglement of formation could be calculated@9#. Of
course, our method reproduces this result, albeit with a m
economical decomposition. This is a feature shared with
Wootters formula@10#. It is a natural question whether th
extension method, applied in this basic example, reprodu
the Wootters formula. However, it turns out that one gets
result only on state manifolds of lower dimension. We a
did not succeed in finding another group of local symmetr
which would give Wootter’s formula in full generality.

V. RELATIVE ENTROPY OF ENTANGLEMENT

A. Simplified computation

Symmetry simplifies the computation of the relative e
tropy of entanglement dramatically: it reduces the variat
in Eq. ~34! from a variation over all separable statessPD to
those which are alsoG invariant. i.e., whenr5Pr, we have

ERE~r!5 inf$S~r,s!usPPD%. ~62!

The only ingredients of the proof are the convexity
s°S(r,s), the invariance of relative entropy under~local!
unitary transformations of both its arguments, and thatD is a
convex-set invariant under local unitary operators. Inde
the properties ofD imply that for anys in the full varia-
tional problem,PsPPD,D, is also a legitimate argumen
and the convexity properties of S show that this cannot
crease S(r,s). Hence the variation may be restricted as
Eq. ~62!. We have listed the ingredients of the proof so e
plicitly, because many variations ofERE may be of interest.
For example, the ‘‘distance’’ function relative entropy can
replaced by a host of other functions, like norm differenc
of any kind. The setD, too, may be replaced, for example b
the set of PPT states, as suggested by Rains@13#, who also
made similar use of symmetry.

A second simplification concerns the computation
S(r,s) itself, when both arguments areG invariant. We have
seen thatG-invariant states can be considered as states on
commutant algebraG8. Now the relative entropy is define
for pairs of states on arbitrary C* algebras@19#, and the form
~33! involving density matrices is only the special form val
for a full matrix algebra. SinceP is a conditional expectation
onto G8, the result does not depend@19# on whether we
compute the relative entropy via density matrices, or for
corresponding abstract linear functionals onG8. Without go-
ing into the details for general algebrasG8 here, let us see
how this helps in the case whenG8 is Abelian, as in most of
our examples.

Supposepa , a51, . . . ,N are the minimal projections o
G8, and denote byva5(tr pa)21pa the extremal density
matrices ofPS. Then everyrPPS has a unique representa
tion as a convex combination
06230
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where the second expression is at the same time the spe
resolution ofr. If we compute the von Neumann entrop
2tr(r ln r) from this, we find a dependence of the result n
only on the expectationsra5tr(rpa), but also on the mul-
tiplicities tr(pa), as is quite familiar from statistical mechan
ics. On the other hand, the fact that relative entropy can
defined for states on abstract algebras shows that no
dependence can occur for relative entropies. Indeed,
terms involving ln tr(pa) from r ands cancel, and we get

S~r,s!5(
a

ra@ ln~ra!2 ln~sa!#, ~64!

wherera andsa are the respective expectations ofpa .
A typical application is the observation that fo

UU-invariant states the expression for the relative entropy
entanglement can be written down in terms of the tr(rF),
independently of the dimensiond of the underlying Hilbert
spaces.

For UU- and UU* -invariant states the sets of separab
states are just intervals, and the definition of relative entro
of entanglement requires a minimization over this interv
However, due to a general property of the relative entro
the convexity in both arguments, it is clear that the minimu
is, in fact, always obtained at the endpoint: ifr is the state
whose entanglement we want to calculate, ands is the mini-
mizing separable state, convexity implies

S„r,ls1~12l!r…<lS~r,s!1~12l!S~r,r!

5lS~r,s!.

Hence if there were any separable state on the straight
segment connectingr ands, it would give a strictly lower
minimum, contradicting the minimality ofs.

For UU the boundary separable state has tr(sF)50, i.e.,
gives equal weight to the minimal projections. We have
compute the relative entropy with respect to a state w
probabilities (16 f )/2, i.e., the function

eRE~ f !5 ln 22SS 11 f

2
,
12 f

2 D , ~65!

where we denote byS(p1 , . . . ,pn)52(kpk ln pk the en-
tropy of a probability vector (p1 , . . . ,pn). This function is
plotted in Fig. 8, and determines the relative entropy of
tanglement of UU-symmetric statesr via

ERE~r!5eRE@ tr~rF!#. ~66!

Similarly, the boundary points of D for UU* invariant
states is given by tr(sF̂)51. For generalf̂ 5tr(rF̂) the mini-
mal projections have weightsf̂ /d and (12 f̂ /d). Hence for
UU* -symmetricr, we haveERE(r)50 for f̂ <1, and

ln d2S 12
f̂

d
D ln~d21!2SS f̂

d
,12

f̂

d
D ~67!
7-13
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otherwise. For comparison with the results of Ref.@12#, note
that f̂ /d is the so-calledmaximally entangled fractionof r.

Now we look at OO-invariant states. The state space
the separable states are drawn in Fig. 7. First we look at
state with the coordinates (1,3), which is a maximal e
tangled state. The separable states, that are minimizing
relative entropy for this state, are the states on the whole
connecting the points (0,1) and (1,1). But now we can fi
the minimizing separable for any state in the whole trian
A. We just have to draw the straight line connecting the
ordinates of given states with the point (1,3). The inters
tion with the border ofPD is then a minimizer for (1,3) and
by the properties of the relative entropy of entanglement a
the minimizer for all states on the connecting line. The sa
argumentation works for the edge point (21,0) and the sepa
rable border between (0,0) and (0,1) giving us all minim
ers for the triangleB. The whole triangleC has the same
minimizer, namely, (0,1).

B. Counterexample of additivity

To find a counterexample of the additivity of the relati
entropy of entanglement, we use the group introduced
Example 7 . We also know that additivity will hold for an
state where one of the two independently prepared state
separable. So, in our example, we can restrict to the a
where expectation values of bothF1 andF2 are negative.

For simplicity, we increase the group withFAlice^ FBob
leading us to a smaller commutant only spanned byI^ I,F
^ F,I^ F1F^ I. As coordinate system we use the expec
tion values of

F5 1
2 ~I^ F1F^ I! ~68!

F125F^ F. ~69!

The state space is drawn in Fig. 9.
It is just the intersection of the state space of the origi

group ~see Fig. 4! with the plane given bŷ F1&5^F2&
5^F&. The product states, in the sense of additivity, a
given by the line (̂F&,^F&2).

The counterexample we want to look at is the state re
ring to the coordinates (21,1), which is given byr2 ^ r2

FIG. 8. The relative entropy of entanglement for UU-invaria
states.
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wherer2 denotes the normalized projection on the antisy
metric subspace ofCd

^ Cd. From Eq.~66! we know the rela-
tive entropy of entanglement forr2 to be ln 2 independen
from the dimensiond. The minimizing state was the stat
with flip expectation value equal to zero now denoted asr0.
So the expected minimizer for the tensor product would
r0^ r0 located on the quadratic product line with the expe
tation values (0,0). This one gives us the expected valu
ln 4 for the relative entropy. Now we calculate the relati
entropy betweenr2

^ 25r2 ^ r2 andr# :

S~r2
^ 2,r#!5tr~r2

^ 2ln r2
^ 22r2

^ 2ln r#! ~70!

5trS r2
^ 2ln r2

^ 22r2
^ 2ln

d21

2d
r2

^ 2D ~71!

52 ln
d21

2d
5 ln 42 ln

2~d21!

d
. ~72!

Indeed, the minimum must be attained on the line connec
r0^ r0 and r# , and it can easily be verified that the min
mum always is attained onr# . Ford52 the whole line gives
the same value and although there exits a minimizer
does not belong to the product space, additivity holds.
d.2 the expectation values of stater# given by (1/d,1) shift
near to theF12 axis and from a geometrical point of view
closer tor2 ^ r2 . Although the relative entropy is not a rea
kind of geometrical measure this intuition did not fail. I
these cases the additivity is violated with an amount
ln$@2(d21)#/d%. For very high dimensiond we get the really
surprising resultERE(r2 ^ r2).ERE(r2).

VI. CONCLUDING REMARKS

We have concentrated on just two basic entanglem
measures. Clearly, there are many more, and for many

t

FIG. 9. State space for UUVV andF-invariant states ford53.
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them the computation can be simplified for symmetric sta
Among these measures of entanglement are the ‘‘best s
rable approximation’’ of a state@20#, the trace norm of the
partial transpose@21#, the base norm associated withD
~called cross norm in Ref.@22# and absolute robustness
Ref. @23#!. For distillable entanglement we refer to the rece
paper of Rains@6#. Similarly, there is a lot of work left to be
.
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done by carrying out the program outlined in this paper
all the groups of local symmetries listed in, Sec. II A.
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