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Unambiguous discrimination between linearly dependent states with multiple copies
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~Received 31 May 2001; published 9 November 2001!

A set of quantum states can be unambiguously discriminated if and only if they are linearly independent.
However, for a linearly dependent set, ifC copies of the state are available, then the resultingC particle states
may form a linearly independent set, and be amenable to unambiguous discrimination. We obtain one neces-
sary and one sufficient condition for the possibility of unambiguous discrimination amongN states given that
C copies are available and that the single copies span aD-dimensional space. These conditions are found to be
identical for qubits. We then examine in detail the linearly dependent trine ensemble. The set ofC.1 copies
of each state is a set of linearly independent lifted trine states. The maximum unambiguous discrimination
probability is evaluated for allC.1 with equala priori probabilities.

DOI: 10.1103/PhysRevA.64.062305 PACS number~s!: 03.67.Hk
ic
he
co
iv
in
io
tiv
u
en
io
e
le
in

ea
a

r
n-

u
tiv

h
tiv
ig
al
m
d
an
ive

n

de
s-
p
th
et
ry

ent
is-
d

ite,

c
tes.
m-

en-
tes
hor
r

re-

ter-
to

dis-

d a
tab-
rob-

-

en-
ts

te,

g
e-
ill
tes
I. INTRODUCTION

Much of the fascination with the information-theoret
properties of quantum systems derives from collective p
nomena and processes. On one hand, the information
tained in entangled quantum systems is of a collective nat
sometimes nonlocal nature, and is central to many intrigu
applications of quantum information, such as teleportat
and quantum computing. On the other, there are collec
operations, such as collective measurements on several q
tum systems. Generally speaking, collective measurem
on a set of systems can yield more, or better, informat
than one can obtain by carrying out separate measurem
on the individual subsystems, even if these are not entang
The use of collective measurements is crucial for attain
the true classical capacity of a quantum channel@1#, since
capacities attained with receivers performing collective m
surements on increasingly large strings of signal states
superadditive.

A further illustration of the superiority of collective ove
individual measurements is the ‘‘non-locality without e
tanglement’’ discovered by Bennettet al. @2#. This refers to
the fact that one can construct a set of orthogonal prod
states that can be perfectly distinguished only by a collec
measurement.

In this paper, we provide a further demonstration of t
increased knowledge that can be attained using collec
rather than individual measurements, relating to unamb
ous state discrimination@3#. Such measurements can reve
with zero probability of error, the state of a quantum syste
even if the possible states are nonorthogonal. Perfect
crimination among nonorthogonal states is impossible,
the price we pay is the nonzero probability of inconclus
results.

It has been established that unambiguous discriminatio
possible only for linearly independent states@4#. However,
suppose that the possible states form a linearly depen
set, but we haveC.1 copies of the actual state at our di
posal. Unambiguous discrimination is impossible using se
rate measurements on the individual copies. If, however,
possibleC particle states form a linearly independent s
then unambiguous discrimination will be possible by car
1050-2947/2001/64~6!/062305~6!/$20.00 64 0623
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ing out a collective measurement on allC copies.
In Sec. II, we derive one necessary and one suffici

condition for N states to be amenable to unambiguous d
crimination, given thatC copies of the state are available an
that the possible single-copy states span a fin
D-dimensional space. For a qubit (D52), these conditions
are identical. In Sec. III, we work out in detail a specifi
example, that of multiple copies of the so-called trine sta
The trine set is linearly dependent, although the set co
prised of multiple copies of these states is linearly indep
dent forC>2. Indeed, these states are the lifted trine sta
recently discussed in a different but related context by S
@5#. We obtain the maximum discrimination probability fo
these multitrine states with equala priori probabilities, and
find that it has some curious, unexpected features.

II. BOUNDS ON THE MAXIMUM NUMBER
OF DISTINGUISHABLE STATES

Consider the following scenario: a quantum system is p
pared in one of theN pure statesuc j&, where j 51,...,N.
These states are nonorthogonal, and we would like to de
mine which state has been prepared. If we are unwilling
tolerate errors, then we should adopt an unambiguous
crimination strategy. Such a measurement will haveN11
outcomes:N of these correspond to the possible states an
further outcome gives inconclusive results. It has been es
lished that the zero-error constraint leads to a nonzero p
ability of inconclusive results for nonorthogonal states@4#.

Suppose that theuc j& span aD-dimensional Hilbert space
H. Clearly,D<N. If D5N, then the states are linearly in
dependent. If, on the other hand,D,N, then they are lin-
early dependent. Whether or not the set is linearly indep
dent is crucial, since it is only for linearly independent se
that unambiguous discrimination is possible@4#.

If, however, instead of having just one copy of the sta
we haveC.1 copies, that is, one of the statesuc j&

^ C, then
there is the possibility that, even if$uc j&% is a linearly de-
pendent set,$uc j&

^ C% may be linearly independent, makin
unambiguous discrimination possible. It is of interest to d
termine the conditions under which this is so. Here, we w
obtain two general results relating to the number of sta
©2001 The American Physical Society05-1
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that can be unambiguously discriminated, given that
single copies span aD-dimensional space and thatC copies
of the state are available. First, we will show that the num
of states that can be unambiguously discriminated satis
the inequality

N<S C1D21
C D . ~2.1!

To see why, let us denote byHsym the symmetric subspace o
H^ C. The statesuc j&

^ C are invariant under any permutatio
of the states of the single copies, and thus lie inHsym. De-
noting byDsym the dimension ofHsym, it can be shown tha
@6#

Dsym5S C1D21
C D . ~2.2!

The uc j&
^ C will be linearly dependent ifN is greater than the

dimension ofHsym. This, together with Eq.~2.2!, leads to
inequality ~2.1!, which is a necessary condition for unam
biguous discrimination amongN states spanning a
D-dimensional space givenC copies of the state.

This bound holds for all pure states. It is tight, in the sen
that for allC,D, there exists a set ofN pure states$uc j&% such
that the equality in~2.1! is satisfied and the set$uc j&

^ C% is
linearly independent. To prove this, we make use of the
that Hsym is the subspace ofH^ C spanned by the state
uc& ^ C, for all uc&PH. The set of states$uc& ^ C% is linearly
dependent. However, every linearly dependent set spann
vector spaceV contains a linearly independent subset tha
a basis forV @7#. Let $uc j&

^ C% be such a subset of$uc& ^ C%
for V5Hsym. These states are linearly independent and
isfy the equality in~2.1! sinceN5Dsym.

We now show that anyN distinct pure states can be un
ambiguously discriminated if

N<C1D21. ~2.3!

Here, the elements of the set$uc j&% are considered distinct i
and only if u^c j 8uc j&u,1; j Þ j 8. It will suffice to show that
if N5C1D21 then the statesuc j&

^ C are linearly indepen-
dent. To see why, we simply note that, if this can be sho
then our more general claim will be true as a consequenc
the fact that any subset of a linearly independent set is
linearly independent.

To prove the sufficiency of~2.3!, we assume thatN5C
1D21 and again make use of the fact that any linea
dependent set contains a linearly independent spanning
set. The set$uc j&% then has a subset ofD linearly indepen-
dent states, which we shall denote bySLI

1 . Without loss of
generality, we can relabel all states according to the indj
in such a way thatuc j&PSLI

1 for j 51,...,D.
Let us now consider the setsSLI

r 5$uc j&
^ r u j 51,...,D1r

21%, for r 51,...,C. Notice thatSLI
1 accords with our previ-

ous definition and thatSLI
C 5$uc j&

^ C%. We will use induction
to prove that$uc j&

^ C% is linearly independent. The setSLI
1 is

linearly independent by definition, and we will show that
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r 21 is linearly independent then so isSLI

r . To do this, we
shall require the following lemma.

Lemma. Let $uxk&%PH and $ufk&%PH8 be sets of dis-
tinct, normalized state vectors which have equal cardina
Consider any normalized statesux&PH and uf&PH8 such
that ux& is distinct from all elements of$uxk&%. If the set
$ufk&% is linearly independent, then so is the set$ufk&
^ uxk&%ø(uf& ^ ux&).

A proof of this is given in the Appendix. The linear inde
pendence ofSLI

r 21 implies that ofSLI
r if we make the identi-

fications

SLI
r 215$ufk&% ~2.4!

$uc j&u j 51,...,D1r 22%5$uxk&%, ~2.5!

ucD1r 21&
^ r 215uf&, ~2.6!

ucD1r 21&5ux& ~2.7!

for r 52,...,C. Thus, the setSLI
C 5$uc j&

^ C% is linearly inde-
pendent, and this completes the proof. We have shown
Eq. ~2.3! is a sufficient condition for unambiguous discrim
nation amongN states spanning aD-dimensional space given
C copies of the state.

Like the necessary condition in Eq.~2.1!, this bound is the
tightest we can obtain usingN, C, andD alone, in the sense
that for all values of these parameters that do not satisfy
~2.3! there exists a set of states$uc j&

^ C% that is linearly
dependent. To prove this, suppose that forj 51,...,D, the
uc j& are linearly independent and that forj 5D11,...,N,
uc j&5aj ucD21&1bj ucD&, for some complex coefficients
aj ,bj . If Eq. ~2.3! is not satisfied, thenN>C1D and the
subspace spanned byucD21& and ucD& contains at leastC
12 states. We will now see that the set of states$uc j&

^ Cu j
5D21,D,...,N% is linearly dependent. Forj 5D21,...,N,
the uc j& all lie in the same two-dimensional subspace, so t
the correspondingC-fold copiesuc j&

^ C lie in the symmetric
subspace ofC qubits, which, from Eq.~2.2!, is C11 dimen-
sional. It follows that, if there are at leastC12 of these
states, they must be linearly dependent. This implies that
entire set ofC-fold copies$uc j&

^ Cu j 51,...,N% is linearly de-
pendent.

The necessary and sufficient conditions~2.1! and~2.3! for
the linear independence ofC copies ofN states with single-
copy Hilbert space dimensionD are thus the most complet
statements that can be made about the possibility of un
biguous discrimination given only these three paramet
These two bounds are also, in general, different from e
other, which implies that for a particular set of states ad
tional, more detailed information about the set may be u
ful.

However, this is not the case forD52. For the case of
qubits, these bounds are identical, and equal toC11. Thus,
the necessary and sufficient condition for the possibility
unambiguous discrimination amongN pure, distinct states o
a qubit, givenC copies of the state, is that

N<C11. ~2.8!
5-2
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UNAMBIGUOUS DISCRIMINATION BETWEEN LINEARLY . . . PHYSICAL REVIEW A 64 062305
The generality of this result is quite remarkable, since it
completely independent of the actual states involved. Th
will, however, have a strong bearing on the maximum pr
ability of success.

III. DISCRIMINATION AMONG MULTITRINE STATES

A. Trine and lifted trine states

Having discussed in the preceding section the conditi
under which unambiguous discrimination among multip
copies of linearly dependent states is possible, let us exam
in detail one particular example, that of the so-called tr
ensemble. Consider a qubit whose two-dimensional Hilb
space is denoted byH2 . Let $ux&,uy&% be an orthonorma
basis forH2 . Then the following states, if they have equaa
priori probabilities equal to1

3, form the trine ensemble:

ut1&5uy&, ~3.1!

ut2&5
1

2
~2uy&1)ux&), ~3.2!

ut3&5
21

2
~ uy&1)ux&. ~3.3!

These states are clearly linearly dependent, and so cann
unambiguously discriminated at the level of one copy. Giv
only a single copy, we must tolerate a nonzero error pr
ability in any attempt to distinguish among these states.
minimum error probability is equal to13 @8#. The optimum
such measurement has recently been carried out in the l
ratory, where the trine ensemble was implemented as a s
nonorthogonal optical polarization states@9#. Applications of
the trine ensemble and optimal measurements to quan
key distribution are discussed in@10#.

The trine ensemble may be regarded as a special case
more general ensemble of states having the same thre
rotational symmetry, but also having a component in a th
direction, which exists in a larger, three-dimensional Hilb
spaceH3.H2 . Let this third dimension be spanned by th
vector uz& orthogonal to bothux& and uy&. This generalized
trine ensemble may be written as

uTj~l!&5luz&1A12l2ut j&, ~3.4!

for some real parameterlP@0,1# known as thelift param-
eter. Whenl50, the uTj (l)& are just the coplanar trine
states. If, however, 0,l,1, then the states are lifted out o
the plane and, forl,1, are linearly independent. These a
known aslifted trine states@5#. As the lift parameter is in-
creased, the states become increasingly distinct until
51/), at which point they are orthogonal. Increasingl fur-
ther serves to draw the three states closer to theuz& axis until
l51, at which pointuTj (l)&5uz&.

In this section, we show that the set ofC-fold copies of
the trine ensemble, which we refer to as a multitrine e
semble, may be represented as a lifted trine ensemble
will use this, together with the fact that the maximum d
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crimination probability for lifted trine states can be derive
exactly, to determine the maximum discrimination probab
ity for multiple copies of the trine states.

To show that the statesut j&
^ C are lifted trine states, we

will make use of the fact that the statesut j (l)&5uTj (l)&
^ ut j&, for lP@0,1), are also lifted trine states, with a diffe
ent, nonzero lift parameter. To see this, let us define the th
orthogonal states

uX&5A2/~11l2!~luz& ^ ux&2
A12l2

2
~ ux& ^ uy&1uy&

^ ux&), ~3.5!

uY&5A2/~11l2!~luz& ^ uy&2
A12l2

2
~ ux& ^ ux&1uy&

^ uy&), ~3.6!

uZ&5
1

&
~ ux& ^ ux&1uy& ^ uy&). ~3.7!

Then theut j (l)& may be written as

ut1~l!&5LuZ&1A12L2uY&, ~3.8!

ut2~l!&5LuZ&1
A12L2

2
~2uY&1)uX&), ~3.9!

ut3~l!&5LuZ&2
A12L2

2
~ uY&1)uX&), ~3.10!

where the parameterL is

L5A~12l2!/2. ~3.11!

Comparison of theut j (l)& with the uTj (l)& shows that they
are indeed lifted trine states, with lift parameterL, given by
Eq. ~3.11!. Also, for anylP@0,1), L.0 and theut j (l)& are
linearly independent.

We can now use simple induction to show that the sta
ut j&

^ C are lifted trine states. In the above argument, if we
uTj (l)&5ut j&, i.e., take l50, then we find thatut j (l)&
5ut j&

^ 2, and that these are lifted trine states with lift para
eter 1/&. For the inductive step, we can say that, ifut j&

^ C21

is a set of lifted trine states with lift parameterLC21 , then so
is the setut j&

^ C, with some lift parameterLC . It follows
from Eq. ~3.11! that these lift parameters for successive v
ues ofC obey the recurrence relation

LC5A~12LC21
2 !/2, ~3.12!

with the boundary conditionL150. The solution is

LC5H 1

3 F12S 21

2 D C21G J 1/2

. ~3.13!
5-3
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ANTHONY CHEFLES PHYSICAL REVIEW A 64 062305
Thus, the statesut j&
^ C are lifted trine states with lift param

eter given by Eq.~3.13!.

B. Discrimination among lifted trine states

To determine the maximum discrimination probability f
the lifted trine ensemble, we make use of the theorem in@11#
which gives the maximum discrimination probability fo
equally probable, linearly independent symmetrical state

A set of N linearly independent symmetric states can
expressed as

uc j&5 (
k50

N21

cke
2p i jk /Nuuk&, ~3.14!

whereSk50
N21ucku251, ckÞ0, and^uk8uuk&5dk8k . The maxi-

mum discrimination probability is

Pmax5N min
k

ucku2. ~3.15!

For the lifted trine states, we define the following orthogon
states:

uu0&5uz&, ~3.16!

uu1&5
e5p i /6

&
~ ux&1 i uy&), ~3.17!

uu2&5
e25p i /6

&
~ ux&2 i uy&). ~3.18!

In terms of these states, one can easily verify that the lif
trine states have the form

uT1~l!&5luu0&1A~12l2!/2~e2p i /3uu1&1e4p i /3uu2&),
~3.19!

uT2~l!&5luu0&1A~12l2!/2~e4p i /3uu1&1e8p i /3uu2&),
~3.20!

uT3~l!&5luu0&1A~12l2!/2~ uu1&1uu2&). ~3.21!

We can verify that these expressions are of the form~3.14! if
we take the coefficientsck to be

c05l, ~3.22!

c15c25A~12l2!/2. ~3.23!

Making use of these expressions and employing Eq.~3.15!,
we find that the maximum discrimination probability for th
lifted trine states is

Pmax53 minS l2,
12l2

2 D . ~3.24!

The behavior ofPmax as a function ofl is illustrated in Fig.
1. For 0<l<1/), Pmax52l2, which increases monotoni
cally to 1 until the orthogonality pointl51/). For 1/)
06230
e

l

d

<l<1, Pmax5(3/2)(12l2), which decreases monoton
cally, reaching zero whenl51, at which point all three
states are identical.

We have shown how to calculate the maximum discrim
nation probability for lifted trine states. We will now see ho
these results can be used to obtain the maximum discrim
tion probability for multiple copies of the trine states.

C. Discrimination among multitrine states

We are now in a position to calculate the maximum d
crimination probability for the statesut j&

^ C. It follows from
Eq. ~2.8! that the necessary and sufficient condition for u
ambiguous discrimination is thatC>2. Making use of Eqs.
~3.13! and ~3.24!, we see that this is given by

Pmax~ ut j&
^ C)53 minS LC

2 ,
12LC

2

2 D 53 min~LC
2 ,LC11

2 !

5minX12S 21

2 D C21

,12S 21

2 D CC. ~3.25!

It is quite straightforward to show that the smaller of the
two terms is determined solely by whetherC is even or odd,
and we find

Pmax~ ut j&
^ C)5H 1222C, even C

1222~C21!, odd C
. ~3.26!

Some interesting observations can be made about this re
First, the minimum probability of inconclusive results, give
by 12Pmax(utj&

^C), decreases exponentially with increasin
C, with even and odd cases considered separately. Howe
Eq. ~3.26! has one peculiar, unexpected feature, which is t
Pmax(utj&

^C)5Pmax(utj&
^C11) for evenC. That is, adding an-

other copy to an even number of copies does not increase
maximum discrimination probability. This behavior provide

FIG. 1. Maximum probabilityPmax of unambiguous discrimina-
tion among lifted trine states as a function of the lift parameterl.
For l50,1, the states are linearly dependent and so unambigu
discrimination is impossible. However, atl51/)'0.557, the
states are orthogonal and can be discriminated with unit probab
5-4
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UNAMBIGUOUS DISCRIMINATION BETWEEN LINEARLY . . . PHYSICAL REVIEW A 64 062305
an interesting exception to the trend observed in s
estimation/discrimination that the more copies we have
the state, the better we can determine it@3#.

One further curious feature of the maximum discrimin
tion probability in Eq.~3.26! is that it can be attained b
carrying out collective measurements only on pairs of cop
of the state. Suppose thatC is even: if it is not, we simply
discard one of the copies, in view of the above results.
divide the set of copies intoC/2 pairs, and carry out an
optimal discrimination measurement on each pair. The pr
ability of success for one pair isPmax(utj&

^2). The success
probability for all C copies by this method is simply th
probability that not all of theC/2 pairwise measurement
give inconclusive results, which is 12@12Pmax(utj&

^2)]C/2.
Into this we insertPmax(utj&

^2)53/4, which is the special cas
of Eq. ~3.26! for C52, and obtain the general maximu
discrimination probability for allC. The ability to do opti-
mum discrimination for this ensemble with only pairwis
measurements is clearly convenient from a practical pers
tive.

IV. DISCUSSION

It is impossible to discriminate unambiguously among
set of linearly dependent states. If, however, we have ac
to more than one copy belonging to such a set, then
compound states may be linearly independent, and thus a
nable to unambiguous discrimination. This is the issue
addressed in this paper.

It is natural to search for any general limitations on t
extent to which this is achievable. The most natural para
eters to consider areD, the dimension of the Hilbert space o
a single copy,C, the number of copies, andN, the number of
states. We derived one necessary and one sufficient co
tion, respectively Eqs.~2.1! and ~2.3!, for N states to be
amenable to unambiguous discrimination for fixedC andD.
These conditions were shown to be tight and, forD52,
identical. Combining them solves the problem complet
for qubits.

We then worked out in detail the specific example of u
ambiguous discrimination amongC>2 copies of the trine
states. We showed how such multitrine states can be in
preted as lifted trine states, for which the maximum una
biguous discrimination probability can be calculated exac
We also found that ifC is even then adding a further cop
strangely, fails to increase the maximum discrimination pr
ability. Also, we described how the optimum discriminatio
measurement for arbitraryC>2 can be carried out by per
.
ys
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forming optimum discrimination measurements only on pa
of copies.

We conclude with an observation regarding the rela
subject of probabilistic cloning. It was established by Du
and Guo@12# that a set of quantum states can be probabi
tically copied exactly if and only if they are linearly inde
pendent. This result is rigorously correct for 1→M cloning.
If, however, 1,C,M copies of the state are initially avail
able, then sometimesC→M cloning will be possible for
linearly dependent sets. A sufficient condition is that t
uc j&

^ C are linearly independent. This may be accomplish
for example, by carrying out an unambiguous discriminat
measurement to determine the state and then manufactu
M copies of the state.
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APPENDIX: PROOF OF LEMMA

Proof. We prove this by contradiction. If the set$ufk&
^ uxk&%ø(uf& ^ ux&) is linearly dependent, then there exi
coefficientsb andbk such that

buf& ^ ux&1(
k

bkufk& ^ uxk&50, ~A1!

where not all of the coefficients in$b,bk% are zero. In fact,
we can show that at least two of thebk are nonzero. If only
one of thebk were nonzero, then, depending on whether
not b50, the correspondinguxk& will be equal to eitherux&
~up to a phase! or the zero vector. The latter possibility con
tradicts the premises of the lemma~normalization!. The
former does also, since it would imply that, for the nonze
bk ,uxk& is not distinct fromux&.

The set$ufk&% is linearly independent, so there exists a s
of reciprocal states $uf̃k&%PH8 such that ^f̃k8ufk&
5^f̃kufk&dkk8 and ^f̃kufk&Þ0;k. Acting on Eq. ~A1!

throughout with^f̃ku ^ 1 gives

b^f̃ku&ux&1bk^f̃kufk&uxk&50 ; k. ~A2!

The fact that at least two of thebk are nonzero implies tha
the correspondinguxk& will be indistinct, contradicting the
premise. This completes the proof.
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