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Unambiguous discrimination between linearly dependent states with multiple copies
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A set of quantum states can be unambiguously discriminated if and only if they are linearly independent.
However, for a linearly dependent setCfcopies of the state are available, then the resul@ingarticle states
may form a linearly independent set, and be amenable to unambiguous discrimination. We obtain one neces-
sary and one sufficient condition for the possibility of unambiguous discrimination aMa@tgtes given that
C copies are available and that the single copies sgasdanensional space. These conditions are found to be
identical for qubits. We then examine in detail the linearly dependent trine ensemble. TheCsetlatopies
of each state is a set of linearly independent lifted trine states. The maximum unambiguous discrimination
probability is evaluated for alC>1 with equala priori probabilities.
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[. INTRODUCTION ing out a collective measurement on &licopies.
In Sec. Il, we derive one necessary and one sufficient

Much of the fascination with the information-theoretic condition for N states to be amenable to unambiguous dis-
properties of quantum systems derives from collective phecrimination, given thaC copies of the state are available and
nomena and processes. On one hand, the information cofffat the possible single-copy states span a finite,
tained in entangled quantum systems is of a collective nativeD-dimensional space. For a qubD (2), these conditions
sometimes nonlocal nature, and is central to many intriguingre identical. In Sec. Ill, we work out in detail a specific
applications of quantum information, such as teleportatiorexample, that of multiple copies of the so-called trine states.
and quantum computing. On the other, there are collectivd he trine set is linearly dependent, although the set com-
operations, such as collective measurements on several quatised of multiple copies of these states is linearly indepen-
tum systems. Generally speaking, collective measuremengient forC=2. Indeed, these states are the lifted trine states
on a set of systems can yield more, or better, informatiorfecently discussed in a different but related context by Shor
than one can obtain by carrying out separate measuremerifg]. We obtain the maximum discrimination probability for
on the individual subsystems, even if these are not entanglethese multitrine states with equalpriori probabilities, and
The use of collective measurements is crucial for attainindind that it has some curious, unexpected features.
the true classical capacity of a quantum charjdgl since
capacities attai_ned Wit_h receivers pe_rforming _coIIective mea- Il. BOUNDS ON THE MAXIMUM NUMBER
surements on increasingly large strings of signal states are OF DISTINGUISHABLE STATES
superadditive.

A further illustration of the superiority of collective over ~ Consider the following scenario: a quantum system is pre-
individual measurements is the “non-locality without en- pared in one of theN pure stateg;), wherej=1,..N.
tanglement” discovered by Bennedt al. [2]. This refers to  These states are nonorthogonal, and we would like to deter-
the fact that one can construct a set of orthogonal produdgnine which state has been prepared. If we are unwilling to
states that can be perfectly distinguished only by a collectivéolerate errors, then we should adopt an unambiguous dis-
measurement. crimination strategy. Such a measurement will h&ve 1

In this paper, we provide a further demonstration of theoutcomesN of these correspond to the possible states and a
increased knowledge that can be attained using collectivéurther outcome gives inconclusive results. It has been estab-
rather than individual measurements, relating to unambigulished that the zero-error constraint leads to a nonzero prob-
ous state discriminatiof8]. Such measurements can reveal,ability of inconclusive results for nonorthogonal staé$
with zero probability of error, the state of a quantum system, Suppose that thiy;) span aD-dimensional Hilbert space
even if the possible states are nonorthogonal. Perfect dig<. Clearly, D<N. If D=N, then the states are linearly in-
crimination among nonorthogonal states is impossible, andependent. If, on the other hand,<N, then they are lin-
the price we pay is the nonzero probability of inconclusiveearly dependent. Whether or not the set is linearly indepen-

results. dent is crucial, since it is only for linearly independent sets
It has been established that unambiguous discrimination ithat unambiguous discrimination is possibfg.
possible only for linearly independent stafgd. However, If, however, instead of having just one copy of the state,

suppose that the possible states form a linearly dependemte haveC>1 copies, that is, one of the staﬂa‘q)®°, then

set, but we hav&€>1 copies of the actual state at our dis- there is the possibility that, even {fy;)} is a linearly de-
posal. Unambiguous discrimination is impossible using sepapendent set{|¢/j)®c} may be linearly independent, making
rate measurements on the individual copies. If, however, thanambiguous discrimination possible. It is of interest to de-
possibleC particle states form a linearly independent set,termine the conditions under which this is so. Here, we will
then unambiguous discrimination will be possible by carry-obtain two general results relating to the number of states
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that can be unambiguously discriminated, given that thesfu—l is |inear|y independent then so S_I' To do this, we
single copies span B-dimensional space and th@tcopies  shall require the following lemma.

of the state are available. First, we will show that the number | emma Let {|y,)} e H and {| )} e H' be sets of dis-

of states that can be unambiguously discriminated satisfignct, normalized state vectors which have equal cardinality.
the inequality Consider any normalized statgg) e H and|¢) e H’ such
that |y) is distinct from all elements of|x,)}. If the set
2.1) {|#)} is linearly independent, then so is the dgth,)
B xitU(|#)®[x)).
A proof of this is given in the Appendix. The linear inde-

To see why, let us denote ¥, the symmetric subspace of pendence o8], ! implies that ofS], if we make the identi-
HEC. The state$¢j)®° are invariant under any permutation fications

of the states of the single copies, and thus ligy,,. De-

C+D-1
c .

=

noting by Dy the dimension of, it can be shown that S =) (2.9
(6]
{lupli=1,..D+r =2} ={|x)}, (2.9
_[c+D-1
Dsym‘( c ) 23 o0 1=4), 2.6
The|y;)®C will be linearly dependent i is greater than the [or-1)=x) 2.7

dimension ofHs,. This, together with Eq(2.2), leads to c oCr .
inequality (2.1), which is a necessary condition for unam- for r=2....C. Thus, the seB;={|y;)*"} is linearly inde-
biguous discrimination amongN states spanning a Pendent, and this completes the proof. We have shown that
D-dimensional space give@ copies of the state. Eq. (2.3 is a sufficient condition for unambiguous discrimi-
This bound holds for all pure states. It is tight, in the sensé'@tion amond\ states spanning@-dimensional space given
that for allC,D, there exists a set of pure state§|y;)} such ~ C COpies of the state. - . .
that the equality in2.1) is satisfied and the séty;)*C} is . Like the necessary con_dmon in EQ.1, this pound is the
linearly independent. To prove this, we make use of the factightest we can obtain using, C, andD alone, in the sense
that He,rm is the subspace of{°C spanned by the states that for all vaIL_Jes of these parameters that do _not_satlsfy Eq.
|4)©C, for all |y4) e H. The set of state§ )“C} is linearly ~ (2.3 there exists a set of statdsy;)“C} that is linearly
dependent. However, every linearly dependent set spanningdgPendent. To prove this, suppose that ferl,..D, the
vector spac@’ contains a linearly independent subset that ig%;) are linearly independent and that fp=D+1,...N,
a basis forV [7]. Let {|1;)®C} be such a subset ¢fy)®C}  |¥j)=ajl¥p_1)+bj|¢p), for some complex coefficients
for V=", These states are linearly independent and sa@; :P; - If EQ. (2.3 is not satisfied, the=C+D and the

isfy the equality in(2.1) sinceN=Dgyp. subspace spanned Byp_1) and|yp) contains at Ieagc
We now show that an distinct pure states can be un- +2 states. We will now see that the set of staftef)““|j
the|zpj) all lie in the same two-dimensional subspace, so that
N<C+D-1. (2.3  the corresponding-fold copies| ;)€ lie in the symmetric

subspace o€ qubits, which, from Eq(2.2), is C+1 dimen-

Here, the elements of the $ét);)} are considered distinct if sional. It follows that_, if there are at Ieaﬁ_+_2 of_ these
and only if|<¢jr| ¢j>|<1\7’j #j'. It will suffice to show that sta’Fes, they must be Illnearly d®ecp§ndent. Thls !mplles that the
if N=C+D—1 then the statelyy;)*C are linearly indepen- entire set ofC-fold copies{|;)“*|j=1,...N} is linearly de-
dent. To see why, we simply note that, if this can be shownP&ndent. N .

then our more general claim will be true as a consequence of '€ necessary and sufficient conditid@sl) and(2.3) for

the fact that any subset of a linearly independent set is als§'€ linear independence @f copies ofN states with single-
linearly independent. copy Hilbert space dimensidn are thus the most complete

To prove the sufficiency of2.3), we assume thatl=C statements that can be made about the possibility of unam-
+D—1 and again make use of’the fact that any Iinearlybiguous discrimination given only these three parameters.

dependent set contains a linearly independent spanning subl€Se two bounds are also, in general, different from each

set. The sef|¢:)} then has a subset @ linearly indepen- other, which implies that for a particular set of states addi-
deﬁt states W]hich we shall denote 5&4 Without loss of tional, more detailed information about the set may be use-

i . o ful
generallty, we can relabell all sFa_tes according to the ifdex However, this is not the case f@=2. For the case of
in such a way thaty;) e S, for j=1,...D.

. . qubits, these bounds are identical, and equal tol. Thus,
Let us now conS|de_r the S€$_,={|%)®'|J_=1,_._D+r_ the necessary and sufficient condition for the possibility of
—1j, forr=1,.C. No'gce thatSLé accords with our previ- - namhiguous discrimination amoigpure, distinct states of
ous definition and thas;={|;)““}. We will use induction 5 qubit, givenC copies of the state, is that
to prove that| ;)®} is linearly independent. The s&f, is
linearly independent by definition, and we will show that if N<C+1. (2.8

062305-2



UNAMBIGUOUS DISCRIMINATION BETWEEN LINEARLY . .. PHYSICAL REVIEW A 64 062305

The generality of this result is quite remarkable, since it iscrimination probability for lifted trine states can be derived
completely independent of the actual states involved. Thesexactly, to determine the maximum discrimination probabil-
will, however, have a strong bearing on the maximum prob-ty for multiple copies of the trine states.

ability of success. To show that the statel$;)“C are lifted trine states, we
will make use of the fact that the stateg(\))=|T;(\))
lll. DISCRIMINATION AMONG MULTITRINE STATES ®|t;), for A [0,1), are also lifted trine states, with a differ-
ent, nonzero lift parameter. To see this, let us define the three
A. Trine and lifted trine states orthogonal states

Having discussed in the preceding section the conditions A
under which unambiguous discrimination among multiple  mao _ 1-\
copies of linearly dependent states is possible, let us examine X)=V2(1+ 1) (M [2)®[x) 2 (x@ly)+ly)
in detail one particular example, that of the so-called trine

ensemble. Consider a qubit whose two-dimensional Hilbert ®(x)), (3.9
space is denoted b¥f,. Let {|x),|y)} be an orthonormal
basis forH,. Then the following states, if they have eqaal N
priori probabilities equal tg, form the trine ensemble: [Y)=V2(1+ ) (\[Z)@y)— 2 ()@[x)+1y)
It =1y), 3.9 3|y)), (3.6)
2 V3 3.2 !
[t2)= 3 (= +V3X)), 3.2 2)= = ()& )+ly)ely)). (3.7
v2
Ity)= 7(|y>+‘/§|x>' 3.3  Then the[r;(\)) may be written as
71 (N))Y=L|Z)+1-L2]Y), (3.9
These states are clearly linearly dependent, and so cannot be Im())=LI2) v)
unambiguously discriminated at the level of one copy. Given JI-L2
on!y a_single copy, we must tol_erate a nonzero error prob- |7(\))=L|Z)+ 5 (—|Y)+v3|X)), (3.9
ability in any attempt to distinguish among these states. The
minimum error probability is equal tg [8]. The optimum
such measurement has recently been carried out in the labo- V1-L?
ratory, where the trine ensemble was implemented as a set of [73(M\)=L[Z) = ——5—(¥V)+v3]X)),  (3.10

nonorthogonal optical polarization sta{€g. Applications of
the trine ensemble and optimal measurements to quantunere the parametdr is
key distribution are discussed [@0].

The trine ensemble may be regarded as a special case of a _ —
more general ensemble of states having the same threefold L=V(1-r9)/2. (3.11
rotational symmetry, but also having a component in a third . .
direction, which exists in a larger, three-dimensional HiIbertgg?ﬁggzgTif?ééht?iﬁg\s)tgtvégh ﬁﬁlﬁﬁ(@r;ﬂz\g tik\‘/itntrllaey
spaceHz;DH,. Let this third dimension be spanned by the Eq. (3.11). Also, for an )\e[d 1) L>Opand ihe T%\)) arg
vector |2 orthogonal to bothx) and |y). This generalized S=9-'°-13- : y i J

; - linearly independent.
trine ensemble may be written as . . .
y We can now use simple induction to show that the states

_ > |t:)®C are lifted trine states. In the above argument, if we let
T =MZ)+V1=Mt), B4 17 (\))=t), ie. takex=0, then we find thair ()))

= tj>®2, and that these are lifted trine states with lift param-
eter 1#2. For the inductive step, we can say thaftjj““~*

is a set of lifted trine states with lift parameteg ,, then so

is the set|t;)®C, with some lift parametetc. It follows
from Eq. (3.1)) that these lift parameters for successive val-
ues ofC obey the recurrence relation

for some real parametere[0,1] known as thdift param-
eter. When\=0, the [T;(\)) are just the coplanar trine
states. If, however, €\ <1, then the states are lifted out of
the plane and, fok<1, are linearly independent. These are
known aslifted trine stateg5]. As the lift parameter is in-
creased, the states become increasingly distinct uatil
=13, at which point they are orthogonal. Increasiéur- Lo m 31
ther serves to draw the three states closer tdzhexis until c=V( c-1/2, (312
A=1, at which poiniT;(\))=|z).

In this section, we show that the set Gffold copies of
the trine ensemble, which we refer to as a multitrine en-
semble, may be represented as a lifted trine ensemble. We L :[E[l_(__l
will use this, together with the fact that the maximum dis- €713

with the boundary conditioh ;= 0. The solution is

c-1

12
> ] . (3.13
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Thus, the statelt;)““ are lifted trine states with lift param- 1
eter given by Eq(3.13.
B. Discrimination among lifted trine states 87
To determine the maximum discrimination probability for E
the lifted trine ensemble, we make use of the theorefd1h é
which gives the maximum discrimination probability for =
equally probable, linearly independent symmetrical states. & 0.4
A set of N linearly independent symmetric states can be
expressed as 02
N-1
)= 3, e Muy), (3.14 e e
k=0 0.2 0.4 0.6 0.8 1
A
where3 - d|c /=1, ¢, #0, and(u |u) = 8. The maxi-
mum discrimination probability is FIG. 1. Maximum probabilityP ,,, 0f unambiguous discrimina-
tion among lifted trine states as a function of the lift paramater
P max=N min|c,/2. (3.15 For A=0,1, the states are linearly dependent and so unambiguous
k discrimination is impossible. However, at=1#/3~0.557, the

. . ] ) states are orthogonal and can be discriminated with unit probability.
For the lifted trine states, we define the following orthogonal

states: <A=<1, P,»=(3/2)(1-\?), which decreases monotoni-

lugy=|2), (3.1 cally, reaching zero whei=1, at which point all three
states are identical.
@56 We have shown how to calculate the maximum discrimi-
(Ix)+ily)), (3.17  nation probability for lifted trine states. We will now see how
these results can be used to obtain the maximum discrimina-
tion probability for multiple copies of the trine states.

lug)=

—5i/6

lup)= ([x)=ily)). (3.18

C. Discrimination among multitrine states
We are now in a position to calculate the maximum dis-
crimination probability for the statels;)“C. It follows from
Eqg. (2.8) that the necessary and sufficient condition for un-
T, =M ug) + V(1= N2 72273 u,) + e 73| u,)), ambiguous discrimination is th&=2. Making use of Egs.
IT2(0) =Nt} V( i Ju) | 2>:)3_1 (3.13 and(3.24), we see that this is given by

In terms of these states, one can easily verify that the lifted
trine states have the form

_ 275 b i3 8il3 1-L2
[T2(A))=Aug)+ V(1 =15 /2™ Huy) + e |U22%’20) Pmad[1;)“€) =3 min(LZ,—Z C)zs min(L2,L2, ;)
-1 Cc-1 -1 C
[Ta(0))=Nug) + VT=N2)72(ug) +[ug).  (3.20 :mi”(l_(T) ,1_(7) ) 3.29
We can verify that these expressions are of the f@r4) if
we take the coefficients, to be It is quite straightforward to show that the smaller of these
- two terms is determined solely by wheth@iis even or odd,
Co=M, (322 and we find
C1=C=V(1-\%)/2. (3.23 1-2C  evenC

P t-®c=[ e . (32
Making use of these expressions and employing (Bd.5, mad [1)°5) 1-27¢"D  odd C (3.29

we find that the maximum discrimination probability for the
lifted trine states is Some interesting observations can be made about this result.
First, the minimum probability of inconclusive results, given

P _3 min()\z - 2) (3.24 by 1—Pma(t))“©), decreases exponentially with increasing
max 2 ' C, with even and odd cases considered separately. However,
Eq. (3.26 has one peculiar, unexpected feature, which is that
The behavior 0P ., as a function of is illustrated in Fig.  Pya,(|t;)®©)=Pralt)®c*") for evenC. That is, adding an-

1. For 0<\<1W3, P,,=2\? which increases monotoni- other copy to an even number of copies does not increase the
cally to 1 until the orthogonality poink=1#3. For 143 maximum discrimination probability. This behavior provides

062305-4



UNAMBIGUOUS DISCRIMINATION BETWEEN LINEARLY . .. PHYSICAL REVIEW A 64 062305

an interesting exception to the trend observed in statéorming optimum discrimination measurements only on pairs

estimation/discrimination that the more copies we have obf copies.

the state, the better we can determinfSit We conclude with an observation regarding the related
One further curious feature of the maximum discrimina-subject of probabilistic cloning. It was established by Duan

tion probability in Eq.(3.26 is that it can be attained by and Guo[12] that a set of quantum states can be probabilis-

carrying out collective measurements only on pairs of copiesically copied exactly if and only if they are linearly inde-

of the state. Suppose th@tis even: if it is not, we simply pendent. This result is rigorously correct fo~IM cloning.

discard one of the copies, in view of the above results. Wef, however, 1< C<M copies of the state are initially avail-

divide the set of copies int@€/2 pairs, and carry out an able, then sometime€—M cloning will be possible for

optimal discrimination measurement on each pair. The problinearly dependent sets. A sufficient condition is that the

ability of success for one pair i@ma)(|tj>®2). The success |y;)“C are linearly independent. This may be accomplished,

probability for all C copies by this method is simply the for example, by carrying out an unambiguous discrimination

probability that not all of theC/2 pairwise measurements measurement to determine the state and then manufacturing

give inconclusive results, which is-1[1—P([t)*3)]“% M copies of the state.

Into this we inserP ,,(|t;)?)=3/4, which is the special case

of Eg. (3.26 for C=2, and obtain the general maximum ACKNOWLEDGMENTS

discrimination probability for allC. The ability to do opti-
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IV. DISCUSSION APPENDIX: PROOF OF LEMMA

It is impossible to discriminate unambiguously among a proof. We prove this by contradiction. If the sélty)

set of linearly dependent states. If, however, we have access|,,\}U(|¢)®|x)) is linearly dependent, then there exist
to more than one copy belonging to such a set, then thggefficientsh andb, such that

compound states may be linearly independent, and thus ame-
nable to unambiguous discrimination. This is the issue we
addressed in thisgpaper. b|¢>®|x>+2k by iy ®x10 =0, (A1)
It is natural to search for any general limitations on the
extent to which this is achievable. The most natural paramwhere not all of the coefficients ifb,b,} are zero. In fact,
eters to consider am®, the dimension of the Hilbert space of we can show that at least two of thg are nonzero. If only
a single copyC, the number of copies, arid, the number of one of theb, were nonzero, then, depending on whether or
states. We derived one necessary and one sufficient condiotb=0, the correspondinfy,) will be equal to eithef x)
tion, respectively Eqs(2.1) and (2.3), for N states to be (up to a phaseor the zero vector. The latter possibility con-
amenable to unambiguous discrimination for fix@@ndD. tradicts the premises of the lemmaormalization. The
These conditions were shown to be tight and, =2,  former does also, since it would imply that, for the nonzero
identical. Combining them solves the problem completelyby,|xx) is not distinct from|y).
for qubits. The sef{|¢,)} is linearly independent, so there exists a set
We then worked out in detail the specific example of un-of reciprocal states{|¢y)} e’ such that (¢y|dy)

ambiguous discrimination among=2 copies of the trine _ ;7 So.r and (@ £0Vk. Actina on Ea. (A1
states. We showed how such multitrine states can be inte{- (94l D10 (9l b0 ' g a- (AD)

preted as lifted trine states, for which the maximum unam_hroughout with( @1 gives

biguous discrimination probability can be calculated exactly. b( % +bu(d -0 VY k A2
We also found that ifC is even then adding a further copy, (D +Bid bl i xw0 ' (A2
strangely, fails to increase the maximum discrimination prob-The fact that at least two of tHg are nonzero implies that
ability. Also, we described how the optimum discrimination the correspondingy,) will be indistinct, contradicting the
measurement for arbitrar@=2 can be carried out by per- premise. This completes the proof.
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