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Universal simulation of Markovian quantum dynamics
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Although the conditions for performing arbitrary unitary operations to simulate the dynamics of a closed
quantum system are well understood, the same is not true of the more general class of quantum operations~also
known as superoperators! corresponding to the dynamics of open quantum systems. We propose a framework
for the generation of Markovian quantum dynamics and study the resources needed for universality. For the
case of a single qubit, we show that a single nonunitary process is necessary and sufficient to generate all unital
Markovian quantum dynamics, whereas a set of processes parametrized by one continuous parameter is needed
in general. We also obtain preliminary results for the unital case in higher dimensions.
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I. INTRODUCTION

The idea of simulating one quantum system with anot
was first suggested in the early 1980s by Manin@1# and
Feynman@2#. A universal quantum computer can perfor
such simulation because of its ability to apply arbitrary u
tary transformations to arbitrary quantum states. The o
necessary resources are single-qubit gates and the contro
NOT ~CNOT! two-qubit gate@3#. In fact, theCNOT may be
replaced by nearly any two-qubit interaction@4#, and the
single-qubit gates can be reduced to a finite set@5#. Finite-
ness of the gate set is desirable because it reduces the
essary computational resources and simplifies the cons
tion of fault tolerant gates.

Using a universal gate set, a quantum computer m
simulate the time sequence of operations correspondin
any unitary dynamics. Such simulation is provably efficie
@6# and has been implemented in the context of nuclear m
netic resonance quantum computation@7#.

However, quantum systems may undergo interesting p
cesses that are not unitary due to interactions with their
vironments. The evolution of suchopen quantum systemsis
described byquantum operations~or superoperators!. Under-
standing such dynamics is important for studying quant
noise processes@8#, designing quantum error correctin
codes@9#, and performing simulations of open quantum sy
tems, such as of thermal equilibration@10#.

Clearly, creation of arbitrary quantum operations a
simulation of arbitrary quantum dynamics using a simple
of primitives are desirable goals. However, it is more dif
cult to describe a notion of universality for general quant
operations than for unitary operations alone. Unlike unit
operations, which form a Lie group, quantum operatio
comprise a semigroup due to their irreversibility. The lack
inverse operations for semigroups is troublesome, and
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less obvious how best to combine quantum operations
form new ones.

A simple recipe for implementing a general quantum o
eration follows from its unitary representation: any quantu
operation may be written as a unitary operation on an
tended system with a trace over the extra degrees of freed
As is well known, this procedure only requires an ancilla
system of dimension equal to the square of the dimensio
the system of interest to produce arbitrary quantum ope
tions. However, our goal is to consider as a resource a s
subset of nonunitary quantum dynamics applied to the s
tem only, without the need to control the extra degrees
freedom. Such restrictions are important in many appli
tions, including the experimental simulation of quantum s
tems. For this reason, we exclude the technique arising f
the unitary representation when building arbitrary nonunit
quantum dynamics.

In this paper, we begin to study possible methods
simulating the dynamics of open quantum systems by so
time sequence of operations. We take the approach of c
sidering only processes that result from interaction with
Markovian environment in the Born approximation. We ref
to this class of dynamics asMarkovian quantum dynamic
and refer to the semigroup they comprise as aMarkovian
semigroup. Such processes have a convenient descriptio
terms of theirgenerators, a concept analogous to the Ham
tonian of unitary dynamics. Therefore, simulation of Ma
kovian quantum dynamics is reduced to building genera
for Markovian semigroups.

We define two allowed procedures for transforming sem
group generators,linear combinationand unitary conjuga-
tion. Using these procedures, we show how to build m
complicated generators from simple ones, and we explor
detail the required resources for the case of a single quan
bit.
©2001 The American Physical Society02-1
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The structure of the paper is as follows. In Sec. II w
present representations of quantum operations and the
scription of Markovian quantum dynamics in terms of sem
groups. Then, in Sec. III, we describe the procedures of
ear combination and unitary conjugation. Using the
procedures, we present universal sets of generators for u
Markovian quantum dynamics on a qubit in Sec. IV and
general Markovian quantum dynamics on a qubit in Sec
Finally, we conclude with some open questions and dir
tions for further investigation.

II. QUANTUM OPERATIONS AND MARKOVIAN
SEMIGROUPS

A quantum state is described by a density matrixr, which
is positive semidefinite and has trr51. The most genera
state change of a quantum system, a quantum operation
linear mapE that is trace preserving and completely positiv
E acts onr to produce a stateE(r). There are many repre
sentations for such a map. The operator sum representa

E~r!5AkrAk
† ~1!

~note that we use Einstein summation where appropriate!—
and its corresponding fixed-basis form@11#—is convenient
because the constraints of trace preservation and com
positivity may be simply expressed. For example, comp
positivity is inherent in Eq.~1! and trace preservation i
equivalent toAk

†Ak5I , whereI is the identity matrix. How-
ever, the composition of two operator sum representation
complicated, usually resulting in a rapidly increasing num
of terms. On the other hand, a manifestly linear represe
tion

„E~r!…ab5M (ab)(cd)rcd ~2!

~where M is a matrix with composite indices! makes the
composition of operations trivial, yet obfuscates the co
straints@12#.

Instead of considering all possible dynamics, we will si
plify the problem by focusing on Markovian quantum d
namics. We describe these processes informally here, sa
a more complete presentation based on@14–16# for Appen-
dix A. Every such process corresponds to some interact
which, if applied for a durationt, induces a quantum opera
tion Et . The class of quantum operationsEt forms a Markov-
ian semigroup. The timet may vary continuously. The op
erations must be stationary and Markovian, such that

EsEt5Es1t . ~3!

Here EsEt denotes composition of the operations, i.
Es+Et . Each Markovian semigroup describes the dynam
resulting from some interaction with a Markovian enviro
ment in the Born approximation.

Note that this terminology differs slightly from that use
elsewhere. For example, Davies does not include the c
straint of trace preservation when defining a Markov se
group in @14# and, curiously, uses ‘‘Markov’’ to mean ‘‘uni-
06230
e-
-
-

e
ital
r
.
-

s a
.

n

ete
e

is
r
a-

-

-

ing

n,

,
s

n-
i-

tal’’ in @15#. For a precise definition of Markovian
semigroups as used in this paper, see Appendix A.

The advantage of considering only Markovian semigrou
is that they are uniquely determined by their generators.
generatorZ of Et is defined by its action on an arbitrary inpu
r,

Z~r!5 lim
t↓0

Et~r!2r

t
. ~4!

In a sense,Z can be thought of as the ‘‘Hamiltonian’’ corre
sponding toEt . Exponentiation gives

Et5eZt[ lim
n→`

S I2
t

n
ZD 2n

, ~5!

where I is the identity quantum operation. The genera
also satisfies the differential equation

]r~ t !

]t
5Z„r~ t !…, ~6!

which is known as amaster equation. Through this analysis
simulatingEt ;t>0 is reduced to simulating its generato

Gorini, Kossakowski, and Sudarshan have shown thaZ
is the generator of a Markovian semigroup on
N-dimensional Hilbert space if and only if it can be writte
in the form @17#

Z~r!52 i @H,r#1aab~@Far,Fb
† #1@Fa ,rFb

† # !, ~7!

where aab is an (N221)3(N221) positive matrix~with
a,bP@1,N221#) and $Fa% is a linear basis of traceless op
erators on the density matrices. We refer to the matrixaab as
the ‘‘GKS matrix.’’ For related formulations, such as the ‘‘d
agonal’’ form introduced by Lindblad~which also applies to
countably infinite-dimensional systems!, see@16,18#. Physi-
cally, H corresponds to unitary dynamics that can be p
duced by a system Hamiltonian, as well as unitary dynam
induced by a coupling between the system and the bath—
so-called Lamb shift.

It will greatly simplify the discussion to choose a Herm
ian basis that is orthonormal under the trace norm. Suc
basis is assumed for the rest of the paper. Therefore,

tr~FaFb
† !5dab , ~8!

and tr(Fa)50. Note that we can always reduce a GKS m
trix, which is expressed in an overcomplete or nonorthon
mal traceless basis, to a representation involving a line
independent orthonormal traceless basis.

There are other ways to describe the generator of a M
kovian semigroup. For example,Z(r) may always be writ-
ten as an affine transformation ofr, just as any quantum
operation can be written as a linear transformation as in
~2!. In this paper, we find it simplest to represent generat
by the GKS matrix, and we describe the relationship betw
the GKS matrix and the affine representation in Appendix

To make our description of Markovian quantum dynam
concrete, we present some important examples of qubit n
2-2
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UNIVERSAL SIMULATION OF MARKOVIAN QUANTUM . . . PHYSICAL REVIEW A 64 062302
processes@19#. We choose the basis$Fa% to be the normal-
ized Pauli operators (1/A2)$sx ,sy ,sz%, and we write the
density matrix of a qubit as

r5S r00 r01

r10 r11
D . ~9!

The first process,phase damping, acts on a qubit as

E t
PD~r!5S r00 e2gtr01

e2gtr10 r11
D , ~10!

where g is a decay constant andt is the duration of the
process. The generator has a GKS matrix witha33

PD5g/2 and
all other aab

PD50. The second example is thedepolarizing
channel, which acts on a qubit as

E t
DEP~r!5S 11e2g̃t~r002r11!

2
e2g̃tr01

e2g̃tr10
11e2g̃t~r112r00!

2

D .

~11!

Its GKS matrix has the nonzero elementsa11
DEP5a22

DEP

5a33
DEP5g̃/4. Our final example isamplitude damping,

which acts on a qubit as

E t
AD~r!5S r001~12e2Gt!r11 e2Gt/2r01

e2Gt/2r10 e2Gtr11
D . ~12!

The GKS matrixaab
AD is given by

G

4 S 1 2 i 0

i 1 0

0 0 0
D . ~13!

Note that the GKS matrix is real and diagonal for pha
damping and the depolarizing channel and has rank 1
phase damping and amplitude damping.

III. COMPOSITION FRAMEWORK: LINEAR
COMBINATION AND UNITARY CONJUGATION

Recall that our goal is to find a simple way of combinin
as few primitiveE i as possible to produce all possibleE via
some time sequence of operations. To make this prob
well posed, we must choose reasonable methods for com
ing quantum operations to make new ones. We have
found a simple way to express the composition of two se
group processes of finite duration, and such composi
need not preserve Markovity. However, a natural way
combine semigroup processes is by a procedure we calllin-
ear combination: the processes act one after another
small amounts of time. In the limit of infinitesimal tim
steps, two processesE t

a andE t
b can be combined to produc

E t
a1b[ lim

n→`

~E t/n
a E t/n

b !n, ~14!
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whereE t
a1b forms a Markovian semigroup ifE t

a andE t
b do.

Moreover, if E t
a andE t

b have generatorsA andB, then ap-
plying the Lie product formula to the generators,

lim
n→`

~eAt/neBt/n!n5e(A1B)t. ~15!

In other words, the generator of a process formed by lin
combination is the sum of the constituent generators. T
generalization to produce a positive sum of any finite num
of generators is straightforward. When all generators are
pressed in the form of Eq.~7! using the same basis$Fa% ~as
we assume for the rest of the paper!, linear combination cor-
responds to a positive sum of the GKS matrices of the c
stituent generators.

We also assume the capability to apply arbitrary unita
operations to the system, since these tasks are feasible
well understood. Using linear combination, we may produ
the two terms in Eq.~7! separately. Assuming the ability t
create any unitary dynamics, it remains to generate the
ond term under the assumptionH50.

We now turn to the second procedure to transform
GKS matrix, calledunitary conjugation. This procedure
transformsE according to

U †E U, ~16!

whereU(r)5UrU† for some unitary operatorU. Note that
unitary conjugation preserves all the Markovian semigro
properties. We will see that the effect of unitary conjugati
is to applyE in a different basis, producing a new operatio
that may be used on its own or in linear combination.
understand how the GKS matrix transforms, we prove
following theorem.

Theorem 1.For anN-dimensional system, unitary conju
gation byUPSU(N) results in conjugation of the GKS ma
trix by a corresponding element in the adjoint representa
of SU(N).

Proof.Suppose the Markovian semigroup has generatoA
and a GKS matrixaab . Conjugation byU results in the
evolution

U †eAtU5 lim
n→`

U †S I2
t

n
AD 2n

U ~17!

5 lim
n→`

S I2
t

n
U †A UD 2n

. ~18!

In other words, the new generator isA85U †A U. Expressed
in the form of Eq.~7! ~with H50), we find

A8~r!5aab~@U†FaUr,U†Fb
†U#1@U†FaU,rU†Fb

†U# !.
~19!

Evidently this unitary conjugation induces a change of ba
Fa→U†FaU, which is still Hermitian, orthonormal, and
traceless. We can expand the new basis in terms of the
one,

U†FaU5cagFg . ~20!
2-3
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This implies

U†FaFb
†U5cagcbn* FgFn

† . ~21!

Taking the trace of Eq.~21!, and using the orthonormality o
the Fa @Eq. ~8!#,

cagcbg* 5dab . ~22!

In other words,cag is a unitary matrix. Further, by substitu
ing Eq. ~20! into Eq. ~19!, we obtain the transformed GKS
matrix

agn8 5cagaabcbn* . ~23!

Denoting the matricesaab and cab by A and C, A8
5CTAC* . The effect of unitary conjugation is to conjuga
the original GKS matrix byCT.

Note thatC is not arbitrary, but is determined byU in the
following manner. Suppose we choose$Fa% to be the gen-
erators of SU(N). Then we have

@Fa ,Fb#5 i f abgFg , ~24!

where f abg are the real structure constants for the Lie alg
bra generated by$Fa%. SettingU5eir gFg, we find to first
order in an infinitesimalr g that

U†FaU5~ I 2 ir gFg!Fa~ I 1 ir gFg!

5Fa2 ir g@Fg ,Fa#

5Fa2 ir g~ i f gabFb!. ~25!

Thus

~CT!ab5dab1 ir g~ i f gab! ~26!

is in a Lie group generated by the matrices (Gg)ab
5 i f gab .

It is an elementary fact of group theory that theseGg are
the generators of the adjoint representation of theFa algebra.
Therefore,U5eir gFgPSU(N) induces conjugation of the
GKS matrix byCT5eir gGg in the adjoint representation o
SU(N). j

As an example of an application of these two methods,
can perform linear combination of amplitude damping,E AD

@Eq. ~12!#, and damping in the opposite direction,X †E ADX,
where X(r)5sxrsx , to simulate generalized amplitud
damping with an arbitrary mixture of the ground and excit
states as the fixed point.

IV. UNITAL MARKOVIAN QUANTUM DYNAMICS

We now use the resources we have defined to simu
Markovian quantum dynamics. We first considerunital pro-
cesses, those that fix the identity. Well-known unital p
cesses on a qubit include phase damping and the depo
ing channel.

We first characterize unitality for GKS matrices.Z is the
generator of a unital Markovian semigroup iffZ(I )50. Us-
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f abg , we find

Z~ I !52aab@Fa ,Fb
† #52aab@Fa ,Fb#

52iaab f abgFg52i (
a,b

~aab2aba! f abgFg

524 (
a,b

Im~aab! f abgFg . ~27!

By orthonormality of theFa , Z(I )50 iff

(
a,b

Im~aab! f abg50 ; g. ~28!

In general, reality of the GKS matrix is a sufficient conditio
for unitality. WhenN52, the sum has only one term, so th
this condition is also necessary. Thus the unital Markov
semigroups on a qubit are exactly those generated by
GKS matrices.

For N.2, reality of the GKS matrix is not necessary fo
the corresponding process to be unital. In Appendix C,
give an example of a unital operation of dimensionN53 for
which the GKS matrix is not real. Since SU(N) for N>3
contains an isomorphic copy of SU(3), it follows that there
are unital Markovian semigroups generated by complex G
matrices for allN>3. The set of Markovian semigroups ge
erated by real GKS matrices is aproper subset of the set o
all unital Markovian semigroups.

We now focus on Markovian quantum dynamics on a q
bit and consider the effects of unitary conjugation. We ta
F1,2,35sx,y,z as before. The generators are represented
real positive semidefinite GKS matricesA. The transforma-
tions induced by unitary conjugation are simply

A85eir gGg A e2 ir gGg, ~29!

where

G15 iS 0 0 0

0 0 1

0 21 0
D ,

G25 iS 0 0 21

0 0 0

1 0 0
D ,

G35 iS 0 1 0

21 0 0

0 0 0
D ~30!

can be found usingf abg5eabg for the Pauli matrices. Note
that theGg’s are simply the generators of SO(3)—as iswell
known, SO(3) is the adjoint representation of SU(2).

Having characterized unital Markovian quantum dyna
ics on a qubit, we are ready to state the following.
2-4
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Theorem 2.All unital Markovian quantum dynamics on
single qubit can be simulated with linear combination a
unitary conjugation given phase damping as a primitive
eration.

Proof. When A is positive semidefinite and real,A
5ODOT for someOPSO(3) andD diagonal with diagonal
entries di>0. Let APD denote the GKS matrix for phas
damping. Then

A5
2

g
~d1Oei (p/2)G2APDe2 i (p/2)G2OT

1d2Oei (p/2)G1APDe2 i (p/2)G1OT1d3OAPDOT!.

~31!

Thus the GKS matrix for any unital Markovian semigrou
can be simulated using linear combination of the unitary c
jugates of phase damping. j

Note that any unital Markovian semigroup with rank
GKS matrix can be used in place of phase damping.

V. GENERAL MARKOVIAN QUANTUM DYNAMICS
ON A QUBIT

We now consider general Markovian quantum dynam
on a single qubit. We prove the following.

Theorem 3.To simulate arbitrary Markovian quantum dy
namics on a qubit with linear combination and conjugat
by unitaries, it is necessary and sufficient to be able to p
form all operations with GKS matrixA(u)5aW (u)aW (u)†,
whereaW (u)[(cosu,i sinu,0)T anduP@0,p/4#.

Sufficiency.Let A be the GKS matrix to be simulated
Since A is positive semidefinite, we apply the spectral d
composition to expressA as a positive sum of outer product

A5(
k

lkaW kaW k
† , ~32!

wherelk>0 andaW ’s are normalized to unit length. By linea
combination, it suffices to simulate allaW aW †. Separating into
real and imaginary parts, we may write any such vector

aW 5aW R1 iaW I . ~33!

BecauseaW only appears in outer products, the over
phase ofaW is irrelevant. In other words, we haveaW 8aW 8†

5aW aW †, where

aW 85eicaW 5~aW Rcosc2aW Isinc!1 i ~aW Rsinc1aW Icosc!.
~34!

This transformation maps the two parameters

k1[uaW Ru22uaW I u2, ~35!

k2[2aW R†aW I ~36!

according to
06230
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S k18

k28
D 5S cos 2c 2sin 2c

sin 2c cos 2c D S k1

k2
D . ~37!

Because we may choosec arbitrarily, we make the choice

tan 2c52k2 /k1 , ~38!

such thatk2850, in which caseaW 8R andaW 8I are orthogonal.
Moreover, we can choosek185k1 /cos 2c>0 such thatuaW 8Ru
>uaW 8I u. Thus, without loss of generality, we may assume t
aW has a real part no shorter than its imaginary part, and
the two parts are orthogonal.

Performing a unitary transformation on the operation
fects conjugation byGPSO(3),

aW aW †→GaW aW †GT5~GaW !~GaW !†. ~39!

BecauseG is real, it does not mix the real and imagina
parts ofaW in GaW . In other words,G simultaneously rotates
the two vectorsaW R andaW I . Therefore,G can always be cho-
sen to alignaW R with the1x axis andaW I with the1y axis, so
that we can write

GaW 5aW ~u!5~cosu,i sinu,0!T, ~40!

whereuP@0,p/4#.
Necessity.The A(u), being rank 1, are extreme in th

convex cone of all the positive matrices. Thus linear com
nation cannot be used to compose a newA(u8).

Because scalar multiplication ofaW by a phase commute
with an SO(3) transformation, it suffices to show that giv
a phasec and rotationG such thatGeicaW (u)5aW (u8) with
u,u8P@0,p/4#, thenu5u8. To see this, note that givenk2

5k2850 andk1 ,k18>0 in Eq. ~37!, the phase transformatio
must be trivial. Thus the real and imaginary parts are
changed byeic, and have to be unchanged byG to remain
aligned with the1x and1y axes. Therefore,u85u. j

Note that the set of required operations includes am
tude damping, withaW AD5aW (p/4)5(1,i ,0)T/A2, and phase
damping about thex axis, withaW PD85aW (0)5(1,0,0)T.

We have seen that a one parameter set of generato
necessary and sufficient to simulate all Markovian quant
dynamics on a qubit. With this result in mind, we can es
mate the number of parameters in the universal set of g
erators needed for anN-dimensional quantum system. Ge
erating the (N221)3(N221) GKS matrix can be reduce
to generating all those with rank 1 by linear combinatio
Thus we have to obtain all~normalized! complex
(N221)-dimensional vectorsaW up to a phase, with 2(N2

21)22 free parameters. As there areN221 degrees of free-
dom in SU(N), unitary conjugation will eliminate at mos
N221 parameters, leavingN223 parameters to be obtained
perhaps by a continuous set of primitives. In the case o
qubit (N52), we have seen that this bound is tight.
2-5
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VI. CONCLUSIONS AND OPEN QUESTIONS

In the search for a way to simulate the dynamics of op
quantum systems using a simple set of primitives, we h
set up a framework to study the notion of universality f
Markovian quantum dynamics. We have shown how the g
erators of Markovian semigroups transform under the co
position procedures of linear combination@Eq. ~15!# and uni-
tary conjugation~Theorem 1!. For the case of a single qubi
we have shown that one primitive unital operation suffices
simulate all other unital operations~Theorem 2!, and we
have exhibited a necessary and sufficient single-param
universal set for general qubit Markovian quantum dynam
~Theorem 3!.

The most immediate open questions are related to the
responding results for higher dimensions. We have seen
for N>3, unital operations no longer correspond to re
GKS matrices. An interesting open question is whether th
is still a finite generating set for unital Markovian quantu
dynamics. It would also be interesting to see how the res
for general processes scale toN>3 dimensions and how
many parameters are needed to describe the extreme p
of the basis set. This will require an investigation of t
specific adjoint representation of SU(N) that acts on (N2

21)3(N221) GKS matrices.
Further open questions arise from other possible com

sition rules for quantum operations. If we lift the restrictio
to Markovian quantum dynamics, it is reasonable to inclu
composition procedures other than linear combination
unitary conjugation. For instance, we might allow dire
composition of operations. Or we might consider impleme
ing adaptive methods of quantum control, as suggested
Lloyd and Viola @20#. We might also combine processe
probabilistically ~either by tossing coins or by performin
different operations on different parts of the sample in a b
quantum computer!, giving a convex combinationpiE i of
quantum operations. Such combination does not pres
Markovity in general, but it has other attractive propertie
for example, any unital operation on a qubit can be written
a convex sum ofunitary operations~although this does no
hold for higher-dimensional systems@21#!. The characteriza-
tion of the extremal operations on a qubit presented in@13#
can be used to extend this to nonunital operations.

Finally, we might consider a formulation of the proble
that requires only that we be able to come arbitrarily close
a given quantum operation@22#. This would be more in line
with the usual notion of universality for unitary operation
and might prove fruitful as a way of finding smaller bas
sets for general quantum operations.
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APPENDIX A: FORMAL PROPERTIES
OF MARKOVIAN SEMIGROUPS

A strongly continuous one-parameter semigroup on
complex Banach spaceB is defined as a familyEt of bounded
linear operatorsEt :B→B parametrized by realt>0, which
satisfy ~a! E05I; ~b! EsEt5Es1t ; and ~c! the fact that the
map (t,r)→Et(r) from @0,̀ )3B to B is jointly continuous.

The generatorZ of a strongly continuous one-paramet
semigroup is determined by

Z~r!5 lim
t↓0

Et~r!2r

t
. ~A1!

The domain ofZ, Dom(Z), is defined to be the space fo
which the above limit exists. Dom(Z) is a dense linear sub
space ofB. If rPDom(Z),

]r~ t !

]t
5Z„r~ t !… ; t>0, ~A2!

and the semigroup is defined by its generator according

Et5eZt[ lim
n→`

S I2
t

n
ZD 2n

, ~A3!

the inverse being a bounded operator for sufficiently largen.
A one-parameter semigroup is norm continuous if a

only if the generator is bounded, in which case

Et5 lim
n→`

(
n50

` Z ntn

n!
. ~A4!

Continuous one-parameter semigroups capture the Mar
ian and stationarity features of the Markovian quantum
namics of interest. The remaining features to be incorpora
are complete positivity and trace preservation. This lead
our definition:A Markovian semigroup is a norm continuou
one-parameter semigroup of completely positive, tra
preserving linear maps.

APPENDIX B: THE AFFINE REPRESENTATION
AND THE GKS MATRIX

Following the discussion in Sec. II, consider a basis
traceless operators$Fa% that is Hermitian and trace orthono
mal. Then we can express a density matrix asr5r0 I
1(araFa , where r0 ,ra are real numbers. Due to trac
preservation, the linear representation of the generatorZ of a
Markovian semigroup can be reduced to an affine map on
traceless components only,

ṙa5Labrb1pa . ~B1!

In Eq. ~B1!, Lab are entries of an (N221)3(N221) matrix
L, andpa are entries of an (N221)-dimensional vector.
2-6
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In the qubit case, let$Fa%5(1/A2)$sx ,sy ,sz%. Using
Eq. ~7!, we obtain a one-to-one correspondence between
GKS matrix A ~with entriesaab) and $L,p% in the affine
representation,

L5S 22~a221a33! a121a21 a131a31

a121a21 22~a111a33! a231a32

a131a31 a231a32 22 ~a111a22!
D

5A1AT2~2 trA!I , ~B2!

p54„Im~a32!,Im~a13!,Im~a21!…
T. ~B3!

As positivity of the GKS matrix is equivalent to the comple
positivity of Eq. ~7!, the correspondence betweenA and
$L,p% allows complete positivity of the affine representati
to be easily characterized.

For higher dimensions, the affine representation$L,p%
and the GKS matrix for a generatorZ are still in one-to-one
correspondence. In particular, let@Fa ,Fb#5 i f abgFg and
$Fa ,Fb%5habgFg , where f abg are the real structure con
stants andhabg are real. Then the entries ofL and p are
given by

Lhg52hagl f lbh Im~aab!2 f agl f lbh Re~aab!,
~B4!

pg524 (
a,b

f abgIm~aab!. ~B5!

Conversely, given$L,p%, Z is uniquely determined. For a
fixed basis$Fa%, a unique decomposition in the form of E
~7! exists, so that the GKS matrix is uniquely determined.
other words, the linear system of equations~B4! and ~B5!
can be inverted. Thus the$L,p% that represent Markovian
semigroups are those for which a solution to Eqs.~B4! and
~B5! exists and corresponds to a positive semidefinite G
matrix.

APPENDIX C: A UNITAL PROCESS
WITH COMPLEX GKS MATRIX

A convenient set of generators for SU(3), known as the
Gell-Mann matrices, are defined as
on

un
s,

.G

06230
he

S

A2l15S 0 1 0

1 0 0

0 0 0
D , A2l25S 0 2 i 0

i 0 0

0 0 0
D ,

A2l35S 1 0 0

0 21 0

0 0 0
D , A2l45S 0 0 1

0 0 0

1 0 0
D ,

A2l55S 0 0 2 i

0 0 0

i 0 0
D , A2l65S 0 0 0

0 0 1

0 1 0
D ,

~C1!

A2l75S 0 0 0

0 0 2 i

0 i 0
D , A6l85S 1 0 0

0 1 0

0 0 22
D .

The only nonvanishing structure constants aref 32152A2,
f 65151/A2, f 6425 f 7415 f 752521/A2, f 8545 f 8765
2A3/A2 together with cyclic permutations of the indices.

The following process defined over the Gell-Mann mat
ces is unital, althoughA is complex:

A5
1

2 1
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 i 0

0 0 0 0 1 i 0 0

0 0 0 0 2 i 1 0 0

0 0 0 2 i 0 0 1 0

0 0 0 0 0 0 0 0

2 . ~C2!

The eigenvalues are 2 and 0 with degeneracies 2 and 6
the process is well defined. To show that it is unital, we ne
to show (a,baab f abg50 ;g. First, aab50 for all a,b
except fora475a565 i . The criterion reduces tof 47g1 f 56g
50 ;g. But f 47g5 f 56g50 ;gÞ1, and f 47151/2, f 5615
21/2. Therefore, the process is unital.
.
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