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Universal simulation of Markovian quantum dynamics
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Although the conditions for performing arbitrary unitary operations to simulate the dynamics of a closed
guantum system are well understood, the same is not true of the more general class of quantum ofadsations
known as superoperatgrsorresponding to the dynamics of open quantum systems. We propose a framework
for the generation of Markovian quantum dynamics and study the resources needed for universality. For the
case of a single qubit, we show that a single nonunitary process is necessary and sufficient to generate all unital
Markovian quantum dynamics, whereas a set of processes parametrized by one continuous parameter is needed
in general. We also obtain preliminary results for the unital case in higher dimensions.
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I. INTRODUCTION less obvious how best to combine quantum operations to
form new ones.

The idea of simulating one quantum system with another A simple recipe for implementing a general quantum op-
was first suggested in the early 1980s by Mafin and eration follows from its unitary representation: any quantum
Feynman[2]. A universal quantum computer can perform operation may be written as a unitary operation on an ex-
such simulation because of its ability to apply arbitrary uni-tended system with a trace over the extra degrees of freedom.
tary transformations to arbitrary quantum states. The onhAs is well known, this procedure only requires an ancillary
necessary resources are single-qubit gates and the controllexystem of dimension equal to the square of the dimension of
NOT (CNOT) two-qubit gate[3]. In fact, thecNOT may be the system of interest to produce arbitrary quantum opera-
replaced by nearly any two-qubit interacti¢pa], and the tions. However, our goal is to consider as a resource a small
single-qubit gates can be reduced to a finite[S&t Finite-  subset of nonunitary quantum dynamics applied to the sys-
ness of the gate set is desirable because it reduces the néem only, without the need to control the extra degrees of
essary computational resources and simplifies the construéreedom. Such restrictions are important in many applica-
tion of fault tolerant gates. tions, including the experimental simulation of quantum sys-

Using a universal gate set, a quantum computer mayems. For this reason, we exclude the technique arising from
simulate the time sequence of operations corresponding tilie unitary representation when building arbitrary nonunitary
any unitary dynamics. Such simulation is provably efficientquantum dynamics.

[6] and has been implemented in the context of nuclear mag- In this paper, we begin to study possible methods for
netic resonance quantum computatj@n simulating the dynamics of open quantum systems by some

However, quantum systems may undergo interesting praime sequence of operations. We take the approach of con-
cesses that are not unitary due to interactions with their ersidering only processes that result from interaction with a
vironments. The evolution of suabpen quantum systens  Markovian environment in the Born approximation. We refer
described byyuantum operationéor superoperatoysUnder-  to this class of dynamics dglarkovian quantum dynamics
standing such dynamics is important for studying quantunand refer to the semigroup they comprise aMarkovian
noise processe$8], designing quantum error correcting semigroup Such processes have a convenient description in
codeg 9], and performing simulations of open quantum sys-terms of theirgenerators a concept analogous to the Hamil-
tems, such as of thermal equilibratiph0]. tonian of unitary dynamics. Therefore, simulation of Mar-

Clearly, creation of arbitrary quantum operations andkovian quantum dynamics is reduced to building generators
simulation of arbitrary quantum dynamics using a simple sefor Markovian semigroups.
of primitives are desirable goals. However, it is more diffi- ~ We define two allowed procedures for transforming semi-
cult to describe a notion of universality for general quantumgroup generatordjnear combinationand unitary conjuga-
operations than for unitary operations alone. Unlike unitarnjtion. Using these procedures, we show how to build more
operations, which form a Lie group, quantum operationscomplicated generators from simple ones, and we explore in
comprise a semigroup due to their irreversibility. The lack ofdetail the required resources for the case of a single quantum
inverse operations for semigroups is troublesome, and it ibit.
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The structure of the paper is as follows. In Sec. Il wetal” in [15]. For a precise definition of Markovian
present representations of quantum operations and the dsemigroups as used in this paper, see Appendix A.
scription of Markovian quantum dynamics in terms of semi- The advantage of considering only Markovian semigroups
groups. Then, in Sec. lll, we describe the procedures of linis that they are uniquely determined by their generators. The
ear combination and unitary conjugation. Using thesegeneratoiZ of &, is defined by its action on an arbitrary input
procedures, we present universal sets of generators for unital
Markovian quantum dynamics on a qubit in Sec. IV and for
general Markovian quantum dynamics on a qubit in Sec. V.
Finally, we conclude with some open questions and direc-
tions for further investigation.

&p)—p

t @

Z(p)=lim
t]0

In a senseZ can be thought of as the “Hamiltonian” corre-

Il. QUANTUM OPERATIONS AND MARKOVIAN sponding tof;. Exponentiation gives
SEMIGROUPS ¢ \-n
_ AZ2t— |
A quantum state is described by a density marixvhich &=e =r!'m (Z_ ﬁz) , )

is positive semidefinite and hasptr1. The most general

state change of a quantum system, a quantum operation, iSyphere 7 is the identity quantum operation. The generator
linear mape that is trace preserving and completely positive. 51so satisfies the differential equation
£ acts onp to produce a staté(p). There are many repre-

sentations for such a map. The operator sum representation dp(t)
—r = Z(), (6)
E(p)=AkpAl (1)
which is known as anaster equationThrough this analysis,
(note that we use Einstein summation where appropsiate simulating&; Vt=0 is reduced to simulating its generator.
and its corresponding fixed-basis fofrhl]—is convenient Gorini, Kossakowski, and Sudarshan have shown fhat
because the constraints of trace preservation and complei® the generator of a Markovian semigroup on an
positivity may be simply expressed. For example, completéN-dimensional Hilbert space if and only if it can be written
positivity is inherent in Eq.(1) and trace preservation is in the form[17]
equivalent toA;EAk= I, wherel is the identity matrix. How- , N N
ever, the composition of two operator sum representations is Z(p)=—i[H.p]+aup([Fup,Fpl+[FapFpl), (1)
complicated, usually resulting in a rapidly in(_:reasing numberWhere a,; is an (N2—1)x (N2~ 1) positive matrix(with
of terms. On the other hand, a manifestly linear representa- 2 . : :
tion a,Be[1N“—1]) an.d{Fa} is a linear basis of tracelgss op-
erators on the density matrices. We refer to the matgixas
(E(p))ap=M @) the “GKS mat.nx." For related_formulathns, such as t'he “di-
P)Jab= M (ab)(cd)Ped agonal” form introduced by Lindbladwhich also applies to
countably infinite-dimensional systejnsee[16,18. Physi-
cally, H corresponds to unitary dynamics that can be pro-
‘duced by a system Hamiltonian, as well as unitary dynamics
induced by a coupling between the system and the bath—the
so-called Lamb shift.
It will greatly simplify the discussion to choose a Hermit-
basis that is orthonormal under the trace norm. Such a
asis is assumed for the rest of the paper. Therefore,

(where M is a matrix with composite indicésmakes the
composition of operations trivial, yet obfuscates the con
straints[12].

Instead of considering all possible dynamics, we will sim-
plify the problem by focusing on Markovian quantum dy-
namics. We describe these processes informally here, savir?gn
a more complete presentation based bh—16 for Appen- b
dix A. Every such process corresponds to some interaction,
which, if applied for a duratiot, induces a quantum opera- tr(FaFL)I Sups (8)
tion & . The class of quantum operatiofisforms a Markov-
ian semigroup. The timé may vary continuously. The op- and tr(,)=0. Note that we can always reduce a GKS ma-

erations must be stationary and Markovian, such that trix, which is expressed in an overcomplete or nonorthonor-
mal traceless basis, to a representation involving a linearly
EL=Esit- (3)  independent orthonormal traceless basis.

There are other ways to describe the generator of a Mar-
Here &£ denotes composition of the operations, i.e.,kovian semigroup. For exampl&(p) may always be writ-
Ee& . Each Markovian semigroup describes the dynamicgen as an affine transformation pf just as any quantum
resulting from some interaction with a Markovian environ- operation can be written as a linear transformation as in Eq.
ment in the Born approximation. (2). In this paper, we find it simplest to represent generators
Note that this terminology differs slightly from that used by the GKS matrix, and we describe the relationship between
elsewhere. For example, Davies does not include the corthe GKS matrix and the affine representation in Appendix B.
straint of trace preservation when defining a Markov semi- To make our description of Markovian quantum dynamics
group in[14] and, curiously, uses “Markov” to mean “uni- concrete, we present some important examples of qubit noise
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processe$l19]. We choose the bas{$,} to be the normal-
ized Pauli operators (J/E){ax,ay,az}, and we write the
density matrix of a qubit as

Poo Po1

p= : )
P10 P11

The first procesgphase dampingacts on a qubit as

e "pos

P11

Poo
e "pio

sf’D(p):( : (10

where y is a decay constant andis the duration of the
process. The generator has a GKS matrix wa§= y/2 and
all otheraf;=0. The second example is tiepolarizing
channe] which acts on a qubit as

1+e M(poo—p11)

e "
EDEP(p): 2 ] Po1
t 5t 1+e " (p11—poo)
€ "pi1o
2
(11)
lts GKS matrix has the nonzero elemera§:"=ads"

=ags =%/4. Our final example isamplitude damping

which acts on a qubit as

£40( ) = poot(1—e py; e gy (12
t P e—rtlzplo efrtpll
The GKS matrixa/,3 is given by
- 1 —-i 0
— i 1
7 (13
0 O

Note that the GKS matrix is real and diagonal for phase
damping and the depolarizing channel and has rank 1 fof

phase damping and amplitude damping.

IIl. COMPOSITION FRAMEWORK: LINEAR
COMBINATION AND UNITARY CONJUGATION

Recall that our goal is to find a simple way of combining

as few primitive€' as possible to produce all possilflesia

some time sequence of operations. To make this problem
well posed, we must choose reasonable methods for compos-
ing quantum operations to make new ones. We have nT
found a simple way to express the composition of two semi

Q
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where£2*P forms a Markovian semigroup #2 and£?P do.
Moreover, if £2 and £ have generatorst and B, then ap-
plying the Lie product formula to the generators,

lim (eAt/neBt/n)nze(AJrB)t' (15)

n—o

In other words, the generator of a process formed by linear
combination is the sum of the constituent generators. The
generalization to produce a positive sum of any finite number
of generators is straightforward. When all generators are ex-
pressed in the form of Eq7) using the same bas{§,} (as

we assume for the rest of the papdinear combination cor-
responds to a positive sum of the GKS matrices of the con-
stituent generators.

We also assume the capability to apply arbitrary unitary
operations to the system, since these tasks are feasible and
well understood. Using linear combination, we may produce
the two terms in Eq(7) separately. Assuming the ability to
create any unitary dynamics, it remains to generate the sec-
ond term under the assumptiéh=0.

We now turn to the second procedure to transform the
GKS matrix, calledunitary conjugation This procedure
transformsE according to

u'ey, (16)
whereld(p)=UpUT for some unitary operatdd. Note that
unitary conjugation preserves all the Markovian semigroup
properties. We will see that the effect of unitary conjugation
is to apply€ in a different basis, producing a new operation
that may be used on its own or in linear combination. To
understand how the GKS matrix transforms, we prove the
following theorem.

Theorem 1For anN-dimensional system, unitary conju-
gation byU e SU(N) results in conjugation of the GKS ma-
trix by a corresponding element in the adjoint representation
of SU(N).

Proof. Suppose the Markovian semigroup has genetdtor
nd a GKS matrixa,;. Conjugation byU results in the
evolution

t -n
Utey=limut\z—-A| u 17
n

n—oe

t —n
:nm(z—ﬁubu4 . (18)

n—o

other words, the new generator.i€ =/14 /. Expressed
in the form of Eq.(7) (with H=0), we find

group processes of finite duration, and such composition A'(p)=a B([UTF Up UTF;UH[UTF U pUTFLU]).

need not preserve Markovity. However, a natural way to

combine semigroup processes is by a procedure wdicall

(19

ear combination the processes act one after another forEvidently this unitary conjugation induces a change of basis
small amounts of time. In the limit of infinitesimal time Fa—>UTFaU, which is still Hermitian, orthonormal, and
steps, two processex’ andé’{J can be combined to produce traceless. We can expand the new basis in terms of the old

3 P=im (£3.£5)",

n—o

(14

one,

U'FU=c,F

ay. y*

(20
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This implies ing Eq.(7) (with H=0), Eq.(24), and the antisymmetry of
fapy, We find
UTF FRU=c,,ch,F,Fl. (21)
Z(1)=28,4F, ,Fh1=2a,4F,.Fgl
Taking the trace of E¢21), and using the orthonormality of
theF, [EQ. (8)], . .
[ q ( )] :2|aaﬁfaﬁy':—y:2| E (aaﬁ_aﬁa)faﬁ’y':y

a<p
CayChy=Oap- (22)
In other wordscg,,, is a unitary matrix. Further, by substitut- = “‘;ﬁ Im(a,p)fapyFy- (27)
ing Eqg. (20) into Eq. (19), we obtain the transformed GKS
matrix By orthonormality of theF,,, Z(1)=0 iff
al =c,.,a,5Cs, . (23
yv— Yay%apvpy
L;B IM(8,5)fup,=0 ¥V 7. (28)

Denoting the matricesa,; and ¢,z by A and C, A’
=CTAC*. The effect of unitary conjugation is to conjugate
the original GKS matrix byC”.

Note thatC is not arbitrary, but is determined by in the
following manner. Suppose we choofe,} to be the gen-
erators of SUN). Then we have

In general, reality of the GKS matrix is a sufficient condition
for unitality. WhenN=2, the sum has only one term, so that
this condition is also necessary. Thus the unital Markovian
semigroups on a qubit are exactly those generated by real
GKS matrices.

i For N>2, reality of the GKS matrix is not necessary for
[Fa Fpl=itap,Fy, @ e corresponding process to be unital. In Appendix C, we

wheref ., are the real structure constants for the Lie alge-d'V€ an example of a unital operation of dimenshbs 3 for
bra generated byF,}. SettingU=e"+F», we find to first which the GKS matrix is not real. Since SNJ for N=3
order in an infinitesimat . that contains an isomorphic copy of $8)), it follows that there
7 are unital Markovian semigroups generated by complex GKS
UTF U=(—ir JFOF(1+ir Fo) matrices for aN=3. The set of Markovian semigroups gen-
erated by real GKS matrices ispgoper subset of the set of
=F,—ir [F,,F.] all unital Markovian semigroups.
—F—ir (if F ) 25) We now focus on Markovian quantum dynamics on a qu-
a oyl yeBt B bit and consider the effects of unitary conjugation. We take
Thus F123=0xy, as before. The generators are represented by
real positive semidefinite GKS matricés The transforma-
(CT)aB: Sap it (i up) (26) tions induced by unitary conjugation are simply
is in a Lie group generated by the matriceS,j.z A'=eCrae Sy, (29
=if 5.
Ityisﬁan elementary fact of group theory that thésgare where
the generators of the adjoint representation offhelgebra. 0 0 0
Therefore,U=¢'"Fve SU(N) induces conjugation of the
GKS matrix byCT=e"+ in the adjoint representation of Gy=il 0 0 1/,
SU(N). | 0 -1
As an example of an application of these two methods, we
can perform linear combination of amplitude dampi&g® 00 -1
[Eq. (12)], and damping in the opposite directioki!£AP X, _
where X(p)=oypoy, to simulate generalized amplitude G,=i| 0 0 01,
damping with an arbitrary mixture of the ground and excited 1 0 O
states as the fixed point.
0 1
IV. UNITAL MARKOVIAN QUANTUM DYNAMICS Gy=i| — 1 0 O (30
We now use the resources we have defined to simulate 0

Markovian quantum dynamics. We first considanital pro-
cesses, those that fix the identity. Well-known unital pro-can be found usind,z,= €.z, for the Pauli matrices. Note
cesses on a qubit include phase damping and the depolarithat theG,’s are simply the generators of $&)—as iswell
ing channel. known, SO(3) is the adjoint representation of ().

We first characterize unitality for GKS matrices.is the Having characterized unital Markovian quantum dynam-
generator of a unital Markovian semigroup #{l1)=0. Us- ics on a qubit, we are ready to state the following.
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Theorem 2All unital Markovian quantum dynamics on a kj cos2y —sin2y) (kg
single qubit can be simulated with linear combination and ( ,) :( , K ) (37
unitary conjugation given phase damping as a primitive op- ko) \sin2y cos2y ik,

eration.

Proof. When A is positive semidefinite and reak\  Because we may choosgearbitrarily, we make the choice
=0DO' for someO e SO(3) andD diagonal with diagonal

entriesd;=0. Let APP denote the GKS matrix for phase

damping. Then tan 2= —ka /Ky, (39
A= E(d 0@ (712G, APDg—i(12)G, T such thatk,=0, in which cased’'? andd’' are orthogonal.
y Moreover, we can choose =k, /cos 2=0 such tha{a’R|

=1a’"|. Thus, without loss of generality, we may assume that
a has a real part no shorter than its imaginary part, and that
(3)  the two parts are orthogonal.
Performing a unitary transformation on the operation ef-
Thus the GKS matrix for any unital Markovian semigroup fects conjugation bys e SO(3),
can be simulated using linear combination of the unitary con-
jugates of phase damping. [ |
Note that any unital Markovian semigroup with rank 1
GKS matrix can be used in place of phase damping.

+ dzoei(w/Z)GlAPDe—i(ﬂ/Z)GloT+ dsOAPDOT) .

aa'—-Gai'c'=(Ga)(Ga'. (39

BecauseG is real, it does not mix the real and imaginary
V. GENERAL MARKOVIAN QUANTUM DYNAMICS parts ofd in Ga. In other words,G simultaneously rotates
ON A QUBIT the two vectorsi® and&'. Therefore G can always be cho-

_ _ _sen to aligna® with the + x axis andad' with the +y axis, so
We now consider general Markovian quantum dynamic§pat we can write

on a single qubit. We prove the following.

Theorem 3To simulate arbitrary Markovian quantum dy-
namics on a qubit with linear combination and conjugation Ga=4a(0)=(cos,i sin6,0), (40)
by unitaries, it is necessary and sufficient to be able tTo per-
form all operations with GKS matrixA(8)=a(e)a(o)',
whered()=(cosb,i sin6,0)" and < [0,m/4]. where 6 [0,m/].

Sufficiency.Let A be the GKS matrix to be simulated.
Since A is positive semidefinite, we apply the spectral de-
composition to expresA as a positive sum of outer products,

Necessity.The A(6), being rank 1, are extreme in the
convex cone of all the positive matrices. Thus linear combi-
nation cannot be used to compose a r&{9’).

Because scalar multiplication @f by a phase commutes
with an SO(3) transformation, it suffices to show that given

A= )\kgkgl, (320  a phasey and rotationG such thatG ef Ya(e)=a(e’) .with
k 0,0' €[0,7/4], then = 6'. To see this, note that given,
=k5,=0 andk,,k;=0 in Eq.(37), the phase transformation
where\ =0 anda’s are normalized to unit length. By linear must be trivial. Thus the real and imaginary parts are un-
combination, it suffices to simulate ai". Separating into changed bye'”, and have to be unchanged Byto remain
real and imaginary parts, we may write any such vector asaligned with the+x and +y axes. Therefore§’ = 6. =
. Note that the set of required operations includes ampli-
a=at+ia. (33 tude damping, withd"°=a&(m/4)=(1,,0)7/y2, and phase
) , damping about the axis, with a”® =&(0)=(1,0,0)'.

Becaused only appears in outer products, the gvTeraII We have seen that a one parameter set of generators is

phase ofd is irrelevant. In other words, we haw'a’ necessary and sufficient to simulate all Markovian quantum

— a3t . . . . . - .

=aa’, where dynamics on a qubit. With this result in mind, we can esti-
o ivs_ (AR iy R " mate the number of parameters in the universal set of gen-
a'=e’d=(a"cosy—a'sinyg)+i(a siny+acosy). erators needed for aN-dimensional quantum system. Gen-

(34 erating the N2—1)x (N2—1) GKS matrix can be reduced
) i to generating all those with rank 1 by linear combination.
This transformation maps the two parameters Thus we have to obtain all(normalized complex
Rz <lia (N?—1)-dimensional vectorsi up to a phase, with 2°
ky=|a"*—|a|, (85 —1)—2 free parameters. As there &8— 1 degrees of free-
dom in SUWN), unitary conjugation will eliminate at most
kp,=2a""'a' (36)  N2—1 parameters, leaving?— 3 parameters to be obtained,
perhaps by a continuous set of primitives. In the case of a
according to qubit (N=2), we have seen that this bound is tight.
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VI. CONCLUSIONS AND OPEN QUESTIONS APPENDIX A: FORMAL PROPERTIES

. . OF MARKOVIAN SEMIGROUPS
In the search for a way to simulate the dynamics of open

guantum systems using a simple set of primitives, we have A strongly continuous one-parameter semigroup on a
set up a framework to study the notion of universality forcomplex Banach spad®is defined as a family; of bounded
Markovian quantum dynamics. We have shown how the genlinear operators; :B— B parametrized by redl=0, which
erators of Markovian semigroups transform under the comsatisfy (a) £,=7Z; (b) £&=Es+¢; and (c) the fact that the
position procedures of linear combinatiag. (15)] and uni-  map ¢,p) — &(p) from[0,) X B to B is jointly continuous.
tary conjugation(Theorem 1. For the case of a single qubit,  The generatoZ of a strongly continuous one-parameter
we have shown that one primitive unital operation suffices tasemigroup is determined by

simulate all other unital operationdheorem 2, and we

have exhibited a necessary and sufficient single-parameter E&(p)-p
universal set for general qubit Markovian quantum dynamics Z(p)=lim r— (A1)
(Theorem 3. o

The most immediate open questions are related to the cor-
responding results for higher dimensions. We have seen thdhe domain ofZ, Dom(2), is defined to be the space for
for N=3, unital operations no longer correspond to realwhich the above limit exists. DonX) is a dense linear sub-
GKS matrices. An interesting open question is whether therépace ofB. If p e Dom(2),
is still a finite generating set for unital Markovian quantum
dynamics. It would also be interesting to see how the results ap(t)
for general processes scale k=3 dimensions and how ot =Z(p(1)) V¥ t=0, (A2)
many parameters are needed to describe the extreme points
of the basis set. This will require an investigation 0‘; the and the semigroup is defined by its generator according to
specific adjoint representation of SN that acts on N
—1)X(N2—1) GKS matrices. f \-n

Further open questions arise from other possible compo- E=e"'=Ilim (I— _z) , (A3)
sition rules for quantum operations. If we lift the restriction n—o n
to Markovian quantum dynamics, it is reasonable to include
composition procedures other than linear combination anthe inverse being a bounded operator for sufficiently large
unitary conjugation. For instance, we might allow direct A one-parameter semigroup is norm continuous if and
composition of operations. Or we might consider implement-only if the generator is bounded, in which case
ing adaptive methods of quantum control, as suggested by
Lloyd and Viola [20]. We might also combine processes %
probabilistically (either by tossing coins or by performing &= lim 2
different operations on different parts of the sample in a bulk n—n=0
qguantum computgy giving a convex combinatiop'€' of
guantum operations. Such combination does not preserv@ontinuous one-parameter semigroups capture the Markov-
Markovity in general, but it has other attractive properties;ian and stationarity features of the Markovian quantum dy-
for example, any unital operation on a qubit can be written asiamics of interest. The remaining features to be incorporated
a convex sum otinitary operations(although this does not are complete positivity and trace preservation. This leads to
hold for higher-dimensional systerfi2l]). The characteriza- our definition:A Markovian semigroup is a norm continuous
tion of the extremal operations on a qubit presentefllB]  one-parameter semigroup of completely positive, trace-
can be used to extend this to nonunital operations. preserving linear maps.

Finally, we might consider a formulation of the problem
that requires only that we be able to come arbitrarily close to
a given quantum operatidr22]. This would be more in line
with the usual notion of universality for unitary operations,

and might prove fruitful as a way of finding smaller basis  Following the discussion in Sec. Il, consider a basis for

zZhn
n! -’

(Ad)

APPENDIX B: THE AFFINE REPRESENTATION
AND THE GKS MATRIX

sets for general quantum operations. traceless operatof§ ,} that is Hermitian and trace orthonor-
mal. Then we can express a density matrix @&s pg |
ACKNOWLEDGMENTS +2,0p.F o, Wherepg,p, are real numbers. Due to trace

preservation, the linear representation of the geneZifra

Ni VIVe tr;ank D]?rl't dAharor_mv, DDaréleI L(;d?rk and Mlchaetl (ll}rllarkovian semigroup can be reduced to an affine map on the
ielsen for useful discussions. D.B. and J.K. are supporteg .o ass components only,

by the U.S. Army Research Office under Grant No.
DAAG55-98-1-0371. D.L. and X.Z. are partially supported .
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DAAG55-97-1-0341, and D.L. also by the NSA and ARDA

under ARO Contract No. DAAG55-98-C-0041. D.L. ac- In Eq.(B1), L,z are entries of anN?—1)x (N?—1) matrix
knowledges partial support from IBM and NTT. L, andp, are entries of anN?— 1)-dimensional vector.
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In the qubit case, letF,}=(1/V2){oy,0y,0,}. Using 010 0 —i
Eq. (7), we obtain a one-to-one correspondence between the . R
GKS matrix A (with entriesa,z) and{L,p} in the affine Van=| 10 0f, y2h,=| O,
representation, 0O 0 O 0 0
- 2(322+ a33) a12+ a21 a13+ a31 1 0 0 O 0
L= apptay —2(ay;+agy) aygtag, V2hs=| 0 =1 0, 2x,= 0 0],
ajgtag ayztag —2(aptay) 0 0 O 1 00
=A+AT—(2trA)l, (B2) 0 0 —i 0 00O
p=4(Im(azy),Im(as),Im(az))". (B3) V2hs=| 0 0 0|, 2re= ( 0 0 1/,
L o . i 0 O 0 1 0
As positivity of the GKS matrix is equivalent to the complete (C1)
positivity of Eq. (7), the correspondence betweénand
{L,p} allows complete positivity of the affine representation 0 0 O 1 0
to be easily characterized. .
For higher dimensions, the affine representatjbnp} \/57‘7: 00 —iJ, ‘/E)‘SZ 010
and the GKS matrix for a generatérare still in one-to-one 0O i O 0 0 -2

correspondence. In particular, IeE, ,Fz]=if,z,F, and

{F..Fg=h,s,F,, wheref,gz are the real structure con- The only nonvanishing structure constants be=—12,

stants anch,, are real. Then the entries af andp are  fes1=11/2, foar=f7a1= fo50= — 112, fgs54= fa76=
given by —\/3//2 together with cyclic permutations of the indices.
The following process defined over the Gell-Mann matri-
Lyy=—hanfrgy IM(@ep) —fanfis, RE@.p), © ces is unital, although is complex:
0 00 0O O 00O
P,=—42 faIM(a.). (B5) 000 0O O O0O0O
“F 000 0 0 00O
Conversely, giver{L,p}, Z is uniquely determined. For a 110 00 1 0 O0i O
fixed basis{F .}, a unique decomposition in the form of Eq. A= 3 . (C2
(7) exists, so that the GKS matrix is uniquely determined. In 0600 0 1100
other words, the linear system of equatidi@s}) and (B5) 0 00 O —-i 100
can be inverted. Thus thf,p} that represent Markovian 000 - 0 0 1 0
semigroups are those for which a solution to E@!) and
000 O O 00O

(B5) exists and corresponds to a positive semidefinite GKS

matrix. . . .
The eigenvalues are 2 and 0 with degeneracies 2 and 6, so

the process is well defined. To show that it is unital, we need
to show2 ,_sa,sf.s,=0 Vy. First,a,z=0 for all a<p
except fora,;=ase=i. The criterion reduces t6,7,+ fs,
A convenient set of generators for &), known as the =0 Vy. But f7,=f5,=0 Vy#1, andf,;,=1/2, fg6,=

APPENDIX C: A UNITAL PROCESS
WITH COMPLEX GKS MATRIX

Gell-Mann matrices, are defined as —1/2. Therefore, the process is unital.

[1] Y. Manin, Computable and Uncomputabl€ovetskoye Radio, Cory, Phys. Rev. Let82, 5381(1999; C.H. Tseng, S. Soma-
Moscow, 1980. roo, Y. Sharf, E. Knill, R. Laflamme, T.F. Havel, and D.G.

[2] R. Feynman, Int. J. Theor. Phy&1, 467 (1982. Cory, e-print quant-ph/9908012.

[3] D. DiVincenzo, Phys. Rev. A1, 1015(1995. [8] C.W. Gardiner, Quantum Noise (Springer-Verlag, Berlin,

[4] D. Deutsch, A. Barenco, and A. Ekert, Proc. R. Soc. London, 1991).
Ser. A449 669 (1995; S. Lloyd, Phys. Rev. Lett75, 346 [9] P. Shor, Phys. Rev. B2, 2493(1995; A.M. Steane, Phys. Rev.
(1995. Lett. 77, 793(1996; J. Preskill, Proc. R. Soc. London, Ser. A
[5] P. Shor,Proceedings of the 37th Annual Symposium on Foun- 454, 385(1998.
dations of Computer SciendédEEE Computer Society Press, [10] B. Terhal and D. DiVincenzo, Phys. Rev.&4, 2301(2000.
Los Alamitos, CA 199§ p. 56. [11] I.L. Chuang and M.A. Nielsen, J. Mod. Opt4, 2455(1999.
[6] S. Lloyd, Science273 1073(1996. [12] The constraints of complete positivity and trace preservation
[7] S.S. Somaroo, C.H. Tseng, T.F. Havel, R. Laflamme, and D.G. have been studied ifl3] and in A. Fujiwara and P. Algoet,

062302-7



BACON, CHILDS, CHUANG, KEMPE, LEUNG, AND ZHOU PHYSICAL REVIEW /64 062302

Phys. Rev. A59, 3290(1999. Unfortunately, these character- [18] G. Lindblad, Commun. Math. Phyd8, 119 (1976.

izations are not simple. [19] For a review of these processes and their relevance to quantum
[13] M.B. Ruskai, S. Szarek, and E. Werner, e-print information theory, see M.A. Nielsen and I.L. Chuaqgjan-
quant-ph/0005004. tum Information and Quantum Computati@ambridge Uni-
[14] E.B. Davies,Quantum Theory of Open Systertfscademic versity Press, Cambridge, 2000. Preskill,Lecture Notes on
Press, London, 1976 Quantum Computatignhttp://www.theory.caltech.edu/people/
[15] E.B. Davies, One-Parameter Semigroup@cademic Press, preskill/ph229.
London, 1980. _ _ _ [20] S. Lloyd and L. Viola, e-print quant-ph/0008101.
[16] R. Alicki and K. Lendi,Quantum Dynamical Semigroups and [51]| 3. | andau and R.F. Streater, Linear Algebr. Ag3 107
Applications(Springer-Verlag, Berlin, 1947 (1993; D. Leung, Ph.D. thesis, Stanford University, 2000.

[17] V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J. Math.

22] This was suggested to us by Dorit Aharonov.
Phys.17, 821 (1976. [22] This was sugg us by Dori v

062302-8



