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Achievable rates for the Gaussian quantum channel
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We study the properties of quantum stabilizer codes that embed a finite-dimensional protected code space in
an infinite-dimensional Hilbert space. The stabilizer group of such a code is associated with a symplectically
integral lattice in the phase space dfl Zanonical variables. From the existence of symplectically integral
lattices with suitable properties, we infer a lower bound on the quantum capacity of the Gaussian quantum
channel that matches the one-shot coherent information optimized over Gaussian input states.
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[. INTRODUCTION This result lends nontrivial support to the coherent informa-
tion conjecture.

A central problem in quantum information theory is to ~ We define the Gaussian quantum channel and review the
determine the quantum capacity of a noisy quanturﬂ’GSUHS of Holevo and Wern¢i 3] in Sec. Il. In Sec. lll, we
channel—the maximum rate at which coherent quantum indescribe the stabilizer codes for continuous quantum vari-
formation may be transmitted through the channel and recovables introduced ifil4], which are based on the concept of a
ered with arbitrarily good fidelity1,2]. A general solution to  Symplectically integral lattice embedded in phase space. In
the corresponding problem for classical noisy channels wa§ecs. IV and V, we apply these codes to the Gaussian quan-
found by Shannon in the pioneering paper that launched clagum channel, and calculate an achievable rate arising from
sical information theoryf3,4]. With the development of the lattices that realize efficient packings of spheres in high di-
theory of quantum error correctiofi5,6], considerable Mmensions. This achievable rate matches the one-shot coher-
progress has been made toward characterizing the quantu@it informationl g of the channel in cases wheréeds an
channel capacit}7], but it remains less well understood than integer. Rates achieved with concatenated coding are calcu-
the classical capacity. lated in Sec. VI; these fall short of the coherent information

The asymptotic coherent information has been shown t®ut come close. In Sec. VII, we consider the Gaussian clas-
provide an upper bound on the capa¢By9] and a matching sical channel, and again find that concatenated codes achieve
lower bound has been conjectured, but not pro\d}. Un-  rates close to the capacity. Section VIII contains some con-
fortunately, the coherent information is not subaddifit#], ~ cluding comments about the quantum capacity of the Gauss-
so that its asymptotic value is not easily computed. Therelan quantum channel.
fore, it has been possible to verify the coherent information
conjecture in just a few simple casgl?]. Il. THE GAUSSIAN QUANTUM CHANNEL

One quantum channel of considerable intrinsic interest is . . L
the Gaussian quantum channel, which might also be simple The Gaus§|an quantum channel is a natural generahzauon
enough to be analytically tractable, thus providing a fertileOf th? Gaussian classical channe_l. In the classical case, we
testing ground for the general theory of quantum capacitiesf?onsIder a channel such that the_ mpuatn_d the outpuy are .
A simple analytic formula for the capacity of the Gaussianreal numbers. The channel applies a displacement to the in-
classical channel was found by Shanidm]. The Gaussian put by distance,
guantum channel was studied by Holevo and Wefiél, y=x+¢ (1)
who computed the one-shot coherent information for Gauss- ’

ian input states, and derived an upper bound on the quantugghere ¢ is a Gaussian random variable with mean zero and

capacity. varianceo?; the probability distribution governing is
Lower bounds on the quantum capacity of the Gaussian

quantum channel were established by Gottesman, Kitaev, 1 .

and Preskill[14]. They developed quantum error-correcting P(§)= mefg f20°, (2

codes that protect a finite-dimensional subspace of an
infinite-dimensional Hilbert space, and showed that these Similarly

AR _ acting on a quantum system described by ca-
codes may be used to transmit high-fidelity quantum infory,,nic| variables) and p that satisfy the commutation rela-
mation at a nonzero asymptotic rate. In this paper, we COMion [q.p]=i%, we may consider a quantum channel that
tinue the stugjy of the. Gaussian quantum.channell begun 'Qpplies a phase-space displacement described by the unitary
[14]. Our main result is that the coherent information Com'operator

puted by Holevo and Werner is in fact an achievable rate.

D(a)=expaa'+a*a), ©)
*Email address: jinh@theory.caltech.edu wherea is a complex numbef,a,a’]=1, andg, p may be
TEmail address: preskill@theory.caltech.edu expressed in terms af and a' as
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5 5 and the probability of a decoding error vanishes in the limit
q= \/;(a+ ah, p=-i \[E(a—aT). (4)  B—o. The capacity of the channel with power constrdint
is the supremum of all achievable rates.

The need for a constraint on the signal power to define the
capacity of the Gaussian classical channel may be under-
stood on dimensional grounds. The classical capa@ity
bits) is a dimensionless function of the variane®, but o
has dimensions. Another quantity with the dimensions-of
is needed to construct a dimensionless variable, and the
power P fills this role.

In contrast, no power constraint is needed to define the
quantum capacity of the quantum channel. Rather, Planck’s
constantz enables us to define a dimensionless variance

In other words, the positiog and momentunp are displaced 2= o?/%, and the capacity is a function of this quantity. In
independently, the quantum case, a code consists of an encoding superop-
erator that maps am-dimensional Hilbert spac#,, into the
q—q+éq, pP—p+tép, (6) infinite-dimensional Hilbert spack N of N canonical quan-
tum systems, and a decoding superoperator that &P
where §, and ¢, are real Gaussian random variables withback to,,. We say that the ratR (in qubitg is achievable

This quantum channel is Gaussiamifis a complex Gauss-
ian random variable with mean zero and varianéeln that
case, the channel is the superoperét@rce-preserving com-
pletely positive map & that acts on the density operater
according to

1 2,72
,Hg(p)=72f d2ae” 17 D(a)pD(a)T. (5
e

mean zero and varianeg?=# 2. if there is a sequence of codes such that
To define the capacity, we consider a channeifls exten- 1
sion. In the classical case, a message is transmitted consist- R=lim — log, mg, (12)
ing of then real variables g Np
X=(Xq,Xg, «  + Xp) ) where arbitrary states iH,,, may be recovered with a fidelity
that appr_oacht_as 1 g@— . The quantum capacith of the
and the channel applies the displacement channel is defined as the supremum of all achievable rates.

Holevo and Wernef13] studied a more general Gaussian
channel that includes damping or amplification as well as
displacement. However, we will confine our attention in this
paper to channels that apply only displacements. Holevo and

SWerner derived a general upper bound on the quantum ca-
pacity by exploiting the properties of the “diamond norm”
(norm of complete boundednegsx a superoperator. The dia-

- mond norm is defined as follows: First, we define the trace

x®, a=12,...m (9 norm of an operatoX as

)z_))z+§1 52(511521 e ign)v (8)

where the¢;’s are independent Gaussian random variable
each with mean zero and variangd. A code consists of a
finite numberm of n-component input signals

and a decoding function that maps output vectors to the in- [ X[|g=tryX"X, (13
dex sef{1,2, ... m}. We refer ton as thelengthof the code. _ o o

If the input vectors were unrestricted, then for fixetiwe ~ Which for a self-adjoint operator is just the sum of the abso-
could easily construct a code with an arbitrarily large numbefute values of the eigenvalues. Then a norm of a superopera-
of signalsm and a decoding function that correctly identifies tor £ may be defined as

the index(a) of the input with an arbitrarily small probability Il
tr

of error; even fom=1, we merely choose the distance be- €l so= SUP —ror—. (14)
tween signals to be large comparedstoTo obtain an inter- xz0 Xl
esting notion of capacity, we impose a constraint onahe
erage powerf the signal, The superoperator norm is not stable with respect to append-
ing an ancillary system on whicé acts trivially. Thus, we
1 define the diamond norm d&f as
- > (x®@)2<p, (10
I

€] o = suplé@ 1 llso, (15)
n

for eacha. We say that a rat® (in bits) is achievable with ) ) . ) .
power constrain® if there is a sequence of codes satisfyingWherel, denotes the-dimensional identity operatofThis
the constraint such that thgth code in the sequence contains SUPremum is always attained for somao larger than the

my signals with lengt 5, where dimension of the Hilbert space on whiﬂaqts) Holevo and
Werner showed that the quantum capacity obeys the upper
1 bound
R=lim — log, mg, (12)
g Ng Co(&)<logy|&T|ls , (16)
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where T is the transpose operation defined with respect to N
some basis. In the case of the Gaussian quantum channel, U(a,B)=ex i\/2w<2 aipi+Bigi | |- (24)
they evaluated this expression, obtaining =1
CQ(0'2)$|ng(h/o'2) (17) Two such operators obey the commutation relation
for ila?>1, andCq(0?) =0 for ilo?<1. U(a,B)U(a’,p)=e?meeba’ By e’ B")U(a, B),
Holevo and Wernef13] also computed theoherent in- (29

formation of the Gaussian quantum channel for a Gaussia
input state. To define the coherent information of the channel
& with input density operatop, one introduces a reference w(aB,a'B)=a-B —a'-B (26)
systemR and apurification of p, a pure stat¢®) such that

here

is the symplectic form. Thus, Weyl operators commute if and

trr(|P)(P[)=p. (18 only if their symplectic form is an integer.
] o The 2N generators of a stabilizer code are commuting
Then the coherent informatidr, is Weyl operators
1o(€,p)=S(E(p))— SESIR(|P)(D])), (19 U(a®, @) a=12 ... A. (27)
whereS denotes the Von Neumann entropy, Thus, the elements of the stabilizer group are in one-to-one
_ correspondence with the points of a lattifegenerated by
S(p)=—tr(plog; p). (20 the 2N vectorsy®=(a(®, 8@). These vectors may be as-

It is conjectured 10,8,9 that the quantum capacity is related sembled into the generator matfik of £ given by

to the coherent information by 1)

v
2)

I ! !
Co(&)=1lim =C,(&), 21
(&) nTln n(&E) (21 v=l - | 28)
where »(2N)
C.(&)=suplo(EEMp). 22 . .
(&) ;Jp ol P) 22 Then the requirement that the stabilizer generators commute,

through Eq.(25), becomes the condition that the antisym-
Unlike the mutual information that defines the classical ca-metric matrix
pacity, the coherent information is not subadditive in general, T
and therefore, the quantum capacity need not coincide with A=MoM (29
the “one-shot” capacityC,. Holevo and Werner showed that
for the Gaussian quantum channel, the supremuig, @ver
Gaussian input states is

(19) max=10gx(%1/€5?), (23 wz( ° IN) , (30)

- I N 0
(wheree=2.71828. . . ) for fi/led®>1, and (q)ma=0 for _ o .
filea?<1. According to the coherent-information conjec- andly is theNXN identity matrix. If the generator matriv

has integral entries, wheM " denotes the transpose Mf
is the 2N X 2N matrix

ture, Eq.(23) should be an achievable rate. of a lattice £ has the property thah is an integral matrix,
then we will say that the lattic€ is symplectically integral

lll. QUANTUM ERROR-CORRECTING CODES Encpded qperations that preserve the code subspace are
FOR CONTINUOUS QUANTUM VARIABLES associated with the codeisormalizer group, the group of

phase-space translations that commute with the code stabi-

The lattice codes developed ji4] are stabilizer codes lizer. The generator matrix of the normalizer is a matvix
[15,16 that embed a finite-dimensional code space in thehat may be chosen to be
infinite-dimensional Hilbert space ™ “oscillators,” a sys-
tem described by 1  canonical  variables Mt=A"'M, (32)
d1,d2, - - -Qn,P1,P2, - - - PN - Thatis, the code space is the
simultaneous eigenstate oN2Zcommuting unitary operators,
the generators of the code’s stabilizer group. Each stabilizer MioMT=1: (32)
generator is aWeyl operator a displacement in the '
2N-dimensional phase space. and

Such displacements may be parametrized By ial
numbersay,ay, . .. ,an,B1,82, - - . ,Bn, and expressed as (MHe(MHT=A"HT, (33

so that
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We will refer to the lattice generated By " as thesymplectic  spaced, may also be identified as the moduli space of prin-
dual £* of the latticeL. cipally polarized abelian varieties in complex dimenshdn
Another matrix that generates the same latticda@nd  [17].
therefore defines a different set of generators for the same The encoded operations that preserve the code space but
stabilizer groupis act trivially within the code space comprise the quotient
groupL*/L. The order of this group, the ratio of the volume
M'=RM, (34  of the unit cell of £ to that of £+, is m?, wherem is the
dimension of the code space. The volume of the unit cell of
whereR is an integral matrix with de®=+1. This replace- £ is |detM|=|detA|Y? and the volume of the unit cell & *
ment changes the matrix according to is |[detM*| = |detA| 2 therefore, the dimension of the code
space is
A—RAR'. (35)
m=|PfA|=|detM|=detD, (43

By Gaussian elimination, aR may be constructed such that where PAA denotes the Pfaffian o, the square root of its

0 D determinant. Thus, a symplectically self-dual lattice, for
A—( ) (36)  Which |detM|=|detM*|=1, corresponds to a code with a
one-dimensional code space. GivenNv22N generator ma-
trix M of a symplectically self-dual lattice, we can rescale it
and as

-D O

D1 M—AM, (44)

“I\T_
(A ) _D—l 0

, 37

where \ is an integer, to obtain the generator matrix of a
symplectically integral lattice corresponding to a code of di-
whereD is a positive diagonal integré X N matrix. In the  mension

important special case of symplectically self-dualattice,

—yN
both A and (A~Y)T are integral matrices; therefor® m=A". (45
=D " and the standard form & is The rate of this code, then, is
0 Iy R=log, \. (46)
A= =w. (38 ) _ _
—Iy O When an encoded state is subjected to the Gaussian quan-

) ) tum channel, a phase-space displacement
Hence, the generator matrix of a symplectically self-dual lat-

tice may be chosen to be a real symplectic matiboM T (0,p)—(a,p)+ (&4.,&p) (47)
=w. . . . . .

If the lattice is rotated, then the generator matrix is trans-> applled._'l_'o diagnose and correct this error, t_he elgenva_lues
formed as ’ of all stabilizer generators are measured, which determines

the value of €;,&,) modulo the normalizer lattic&*. To
M—MO, (39 recover, a displacement of minimal length is applied that
returns the stabilizer eigenvalues to their standard values,
whereO is an orthogonal matrix. Therefore, it is convenientand so restores the quantum state to the code space. We may

to characterize a lattice with its Gram matrix associate with the origin of the normalizer lattice i&onoi
. cell, the set of points iR?N that are closer to the origin than
G=MM', (400 to any other lattice site. Recovery is successful if the applied

o ) N ) ) _ displacement lies in this Voronoi cell. Thus, we may estimate
which is SymmetrIC, pOS|t|Ve, and I’Otatlonally invariant. In the likelihood of a decoding error by Ca'cu'ating the prob_

the case of a symplectically self-dual lattice, the Gram matrixpjlity that the displacement lies outside the Voronoi cell.
G may be chosen to be symplectic, and two symplectic Gram

matricesG and G’ describe the same lattice if IV. ACHIEVABLE RATES FROM EFFICIENT

SPHERE PACKINGS
'=RGR, (41 _ _ _
One way to establish an achievable rate for the Gaussian
whereR is symplectic and integral. Therefore, the moduli quantum channel is to choose a normalizer latticewhose

space of symplectically self-dual lattices ilN2Zimensions ~ shortest nonzero vector is sufficiently large. In this section,

may be represented as we calculate an achievable rate by demanding that the
Voronoi cell surrounding the origin contain all typical dis-
An=H(2N)/Sp(2N,7), (42 placements of the origin in the limit of large In Sec. V, we

will use a more clever argument to improve our estimate of
whereH(2N) denotes the space of real symplectic positivethe rate.
2N X 2N matrices of determinant 1 arslP(2N,Z) denotes The volume of a sphere with unit radius indimensions
the space of integral symplecticNX 2N matrices. The is
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7_[_n/2
iy A @
F§+1)

and from the Stirling approximation we find that

It was shown by Minkowskj18,19, that lattice sphere pack-
) . ) ) . ; 1) (b)
ings exist inn dimensions that fill a fraction at least {72

of space. Correspondingly, if the lattice is chosen to be uni- F|G. 1. Two ways to estimate the rate achieved by a lattice code.
modular, so that its unit cell has unit volume, then kissingeach site of the normalizer lattice has a Voronoi ¢edpresented
spheres centered at the lattice sites may be chosen to havéxée by a squajecontaining all points that are closer to that site
radiusr, such that than any other site. Displacements that move a site to a position
within its Voronoi cell may be corrected. The volume of the Voronoi
Vi(ry)'=2-0"1), (500 cell determines the rate of the code. (@, the ball containing
typical displacements lies within the cell, so that the error probabil-
or ity is small. In (b), the ball of typical displacements is not com-
pletely contained within the cell, but the region where neighboring
rﬁB E(ZNn)Z/”B L (51) balls oyt_arla_p(sh_own in black has a small volume, so that the error
4 8me probability is still small.

2me
Vs|—
n

This lower bound on the efficiency of sphere packings hass achievable, provided/4es?=1. However, as noted in
never been improved in the nearly 100 years since MinkowsSec. |lI, the rates that may be attained by this construction

ki's result. More recently, Buser and Sarr{dk] have shown  (rescaling of a symplectically self-dual lattjcare always of
that this same lower bound applies to lattices that are symte form log A, where\ is an integer.

plectically self dual.
Now consider the case oh=2N-dimensional phase
space. For sufficiently large, the channel will apply a

phase-space translation by a distance that with high probabil- The achievable rate found in E¢55) falls two qubits
ity will be less thanyn(a?+¢), for any positives. There-  short of the coherent information E¢23). We will now
fore, a code that may correct a shift this large will correct allshow that this gap may be closed by using tighter estimates
likely errors. What rate can such a code attain? If the code isf the error probability. We established E@5) by filling
a lattice stabilizer code, and the dimension of the code spagshase space with nonoverlapping spheres, which is overly
is m, then the unit cell of the code’s normalizer lattice hasconservative. It is acceptable for the spheres to overlap, as
volume long as the overlaps occupy an asymptotically negligible
fraction of the total volume, as suggested in Fig. 1.
A= ix(2wh)N (52) Our improved estimate applies another result obtained by
m ‘ Buser and Sarnakl7]. They note that the moduli space of
symplectically self-dual lattices is compact and equipped
Nonoverlapping spheres centered at the sites of the normalith a natural invariant measure. Therefore, it makes sense
izer lattice may be chosen to have radius yn(o?+¢),  to consider averaging over all lattices. Denote by the
where average over all symplectically self-dual lattices with speci-
fied dimensionn=2N, and letf(x) denote an integrable

V. IMPROVING THE RATE

2me nlz[n(gz+g)]”’2>£><2*”><(27-rh)“’2 53 rotationally invariant function of the vector(that is a func-
n “m ’ tion of the length|x| of x). Then, Buser and Sarndk7]
show that
or
_ h N - < > f(x)> :J f(x)d"x. (56)
m= 46(0'2+8) . (549 xe L\{0}

The error probability becomes arbitrarily small for lafgef (Note that the sum is over aflonzerovectors in the lattice

Eq. (54) is satisfied, for any positive. We conclude that the <) It follows that there must exist particular symplecti-
rate cally self-dual latticeZ such that

), (55) > f(x)sf f(x)d"x. (57)

1
N log, M= Iogz( xe L3O}

4eg?
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The statement that animodularlattice exists that satisfies whereR is the rate, and we may estimate the volume of the
Eq. (57) is the well-known Minkowski-Hlawka theorem sphere as
[19]. Buser and Sarnak established the stronger result that
the lattice may be chosen to be symplectically self dual.

We may use this result to bound the probability of a de-
coding error, and establish that a specified rate is achievable.
Our argument will closely follow de Budg20], who per- wheren=2N. Thus, we conclude that
formed a similar analysis of lattice codes for the Gaussian ) N
classical channel. However, the quantum case is considerably p g(e(‘f te) > 2R> (64)
easier to analyze, because we can avoid complications aris- error f '
ing from the power constraif21-23.

A decoding error occurs if the channel displaces the originl herefore, the error probability becomes small for laige
to a point outside the Voronoi cell centered at the origin. Thefor any rateR such that
Voronoi cell has a complicated geometry, so that the error

n/2
Voa's T) [n(a?+e)]"?, (63

s . f
probability is not easy to analyze. But, we may simplify the R<lo ( 65
analysis with a trick[20]. Imagine drawing a sphere with % e(oc°+e))’ (63
radius

wheree may be arbitrarily small. We conclude that the rate

a=+/n(c?+e) (58

around each lattice site, whege>0; this value ofa is cho-
sen so that the typical displacement introduced by the chan-

nel has a length less than the probability of a shift larger 'S 2chievable in the limiN—co, provided thath/eo?>1.
o This rate matches the optimal value Eg3) of the one-shot
than a thus becomes negligible for large It may be that

coherent information for Gaussian inputs. We note, again,

these spheres overlap. However, a vector that is contained fat the rates that we obtain from rescaling a symplectically

the sphere centered at the origin, and is not contained in the . ! B X
sphere centered at any other lattice site, must be closer to tt?’eelf'duaI lattice are res_t.ncted ﬁ_IOg?A’ where\ is an
! integer. Thus, for specified?, the achievable rate that we

origin than any other lattice site. Therefore, the vector ishave established is really the maximal value of
contained in the origin’s Voronoi cell, and is a shift that may y

be corrected successfulliSee Fig. 1). R=log,\, \eZ, (67)
Hence(ignoring the possibility of an atypical shift by

>a) we can upper bound the probability of error by estimat-such that the positive integar satisfies

ing the probability that the shift moves any other lattice site

h
R= Iogz( Q) (66)

into the sphere of radiua around the origin. We then find h
AN<—. (68)
eo
PerrorS 2 j P(X_ r)d”r, (59)
xe£t\o} Jlrl<a VI. ACHIEVABLE RATES FROM CONCATENATED

CODES
whereP(¢) denotes the probability of a displacement §y o )
The Buser-Sarnak theorefi7] tells us that there exists a _ Another method for establishing achievable rates over the
lattice whose unit cell has volumk, and which is related by Gaussian quantum channel was describefll#], based on

rescaling to a symplectically self-dual lattice, such that ~ concatenated codingn each ofN “oscillators™ described by
canonical variablep; andq; , ad-dimensional systerffqu-

1 dit”) is encoded that is protected against sufficiently small
Perror= Kf d”xf P(x—r)d"r; (60 shifts in p; andq;. The encoded qudit is associated with a
Irl<a square lattice in two-dimensional phase space. Then, a stabi-
lizer code is constructed that embedk-qudit code space in

by interchanging the order of integration, we find that the Hilbert space oN qudits; thesek encoded qudits are
protected if a sufficiently small fraction of tHé qudits are
P < i v.an 61) damaged. Let us compare the rates achieved by concatenated
ermorT A T codes to the rates achieved with codes derived from efficient

sphere packings.

the ratio of the volume of the-dimensional sphere of radius ~ We analyze the effectiveness of concatenated codes in two

a to the volume of the unit cell. stages. First, we consider how likely each of theudits is
Now the volumeA of the unit cell of the normalizer lat- to sustain damage if the underlying oscillator is subjected to
tice £+, and the dimensiom of the code space, are related the Gaussian quantum channel. The area of the unit cell of
by the two-dimensional square normalizer lattice that represents

the encoded operations acting on the qudit4s:2d, and the

A=27h)N\m™ =27k x2 RN, (620  minimum distance between lattice sites ds2n7/d. A
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displacement of) by as, wherea is an integer, is the opera- for largeN, the typical number of damaged qudits is close to
tion X2 acting on the code space, and a displacemeptlyf  pxN. A damaged qudit may be damaged in anydof 1

bé is the operatiorz®, whereX andZ are the Pauli operators different wayq X#, wherea=1,2, . .. ,d—1)]. We will sup-
acting on the qudit; these act on a bas{$j),j pose, pessimistically, that al—1 shifts of the qudit are
=0,1,2...,d—1} for the qudit according to equally likely. The actual situation that arises in our concat-
) ) enated coding scheme is more favorable—small valugs of
X:[i)=li+1 (modd)), are more likely—but our argument will not exploit this fea-
‘ ture.
Z:[j)—o'lj), (69) Thus, with high probability, the error that afflicts the

block will belong to a typical set of errors that contains a

where w = exp(2ri/d). number of elements close to

Shifts in p or g may be corrected successfully provided
that they satisfy

N
wh wh Ntypw(pr
|Aq|<5/2= 29 |Ap|<5/2: 2d (70

where

(d— 1)NPx~ gNIHa(Px) P logg(d =D (73)

If the shifts ing andp are Gaussian random variables with B
varianceo?, then the probability that a shift causes an un- Ha(p)=—plogsp—(1-p)logs(1-p). (74)
correctable error is no larger than the probability that theI

shift exceeds/mh/2d. or f a particular typical error occurs, then recovery will suc-

ceed as long as there is no other typical error that generates
the same error syndrome. It will be highly unlikely that an-

$2; T gy e other typical error has the same syndrome as the actual error,
Px.Pz > € . )
V2o J ahl2d provided that the number of possible error syndromes
dN~W”2 is Jarge compared to the number of typical errors.
=erfo(mh/4do”), (71 Therefore, theX errors may be corrected with high probabil-

where erfc denotes the complementary error function. Here",[y for

px is the probability of an X error” acting on the qudit, of K\ 1

fche formX?® for a#0 (modd), abndpz denotes the probabil- E( 1— N) >N|Ogd Nyp~Ha(Px) + px logg(d—1),

ity of a “Z error” of the form Z® for b0 (modd). The X

andZ errors are uncorrelated, and errors wathh= =1 are (79

much more likely than errors witha|,|b|>1. By choosing

d~#/o?, we may achieve a small error probability for each

oscillator. K
The second stage of the argument is to deterr_nme the rate Ry= N<1_2|-|d(px) —2py logg(d—1). (76)

that may be achieved by a qudit codepif,p, satisfy Eq.

(71). We will consider codes of the Calderbank-Shor-Steane S N

(CSS type, for which the correction of errors andZ errors Similarly, theZ errors may be corrected_ W.I'[h high probability

may be considered separatéBs,25. A CSS code is a sta- PY @ random CSS code if the rate satisfies

bilizer code, in which each stabilizer generator is either a

or for a rateRy in qudits satisfying

tensor product of's and powers of (measuring these gen- Ry<1—2Hy(pz) —2pzlogy(d—1). (77
erators diagnoses th€errorg or a tensor product df's and .
powers ofX (for diagnosing theZ errors. Converted to qubits, the rate becomes

We can establish an achievable rate by averaging the error
probability over CSS codes; we give only an informal sketch
of the argument. Suppose that we fix the block $izend the
number of encoded qudiks Now select the generators of the
code’s stabilizer group at random. About half of tNe-k

R=(log, d)Ry. (78

Under these conditions, the probability of error averaged
over CSS codes becomes arbitrarily small férlarge. It

generators are of the type and about half are of thétype. follows that there is a particular sequence of CSS codes with

Thus, the number of possible values for the eigenvalues dfit€ approaching Eqe76)—(78), and error probability going

; to zero in the limitN— ce.
the generators of each e is about . ' .
g P For giveng?, the optimal rate that may be attained by

d (N-k2, (72) concatenating a code that encodes a qudit in a single oscil-
lator with a random CSS code, is found by estimafggand
Now, we can analyze the probability that an uncorrectdble p, using Eq.(71) and then choosing to maximize the rate
error afflicts the encoded quantum stétee probability of an R given by Eqs(76)—(78). The results are shown in Fig. 2.
uncorrectableZ error is analyzed in exactly the same way This rate(in qubity may be expressed as
Suppose thaX errors act independently on tié qudits in
the block, with a probability of error per qudit gk . Thus, R=log,(C?h/d?), (79
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Rate /?=2xhid, (80)
7,
and the rat&is close to logd. The efficient sphere packings
61 have radiug =//2 close to\no*, or
57 Coherent
i 8N7
o] Information /2= «2 R (81)
e
3,
Hence, if we compare sphere-packing codes and concat-
21 Concatenated enated codes with comparable rates, the sphere-packing
1] Codes codes have minimum distance that is larger by a factor of
about4N/e. The concatenated codes achieve a high rate
0% o1 02 03 o4 o5 o6 ° not because the minimum distance of the lattice is large, but

rather because the decoding procedure exploits the hierarchi-
FIG. 2. Rates achieved by concatenated codes, compared to tlval structure of the code.
one-shot coherent information optimized over Gaussian input states.

Here, o is the standard deviation of the magnitude of the phase- VII. THE CLASSICAL GAUSSIAN CHANNEL
space displacement introduced by the channel, in units &t '
The rate is in units of qubits per oscillator. We have found that quantum stabilizer codes based on

efficient sphere packings can achieve rates for the Gaussian

whereC? is a slowly varying function ob-?/% plotted in Fig.  quantum channel that match the one-shot coherent informa-
3. It turns out that this rate is actually fairly close to Jay  tion, and that concatenated codes achieve rates that are be-
that is, the optimal dimensioth of the qudit encoded in each |ow, but close to, the coherent information. Now, as an aside,
oscillator is approximatelC?%/o?. With this choice ford,  we will discuss the corresponding statements for the classical
the error rate for each oscillator is reasonably small, and th&aussian channel. We will see, in particular, that concat-
random CSS code reduces the error probability for the enenated codes achieve rates that are close to the classical
coded state to a value exponentially smalNrat a modest  channel capacity.
cost in rate. The rate achieved by concatenating coding lies Shannon’s expression for the capacity of the classical
strictly below the coherent informatidig, , but comes within ~ Gaussian channel may be understood heuristically as follows
one qubit ofl 5 for 02>1.88<10 4. [3,4]. If the input signals have average power which is

Both the concatenated codes and the codes derived froinflated by the Gaussian noise Bot+ o2, then if n real vari-
efficient sphere packings are stabilizer codes, and thereforaples are transmitted, the total volume occupied by the space
both are associated with lattices irNzlimensional phase of output signals is the volume of a sphere of radius
space. But while the sphere-packing codes have been chosgh(P+ ¢?), or
so that the shortest nonzero vector on the lattice is large
relative to the size of the unit cell, the concatenated codes Viot= Vol N(P+c?)]"2 (82
correspond to sphere packings of poor quality. For the con- ] ] ) ]
catenated codes, the shortest vector of the normalizer lattic¥e Will decode a received message as the signal state that is

has length/’, where the minimal distance away. Consider averaging over all
codes that satisfy the power constraint and hawsignals.
c2 When a message is received, the signal that was sent will

typically occupy a decoding sphere of radiys(o?+¢)

e centered at the received message, which has volume
0.3 Vdecoding sphere Vn[n(0'2+ 8)]n/2- (83
A decoding error may arise if another one of thesignals,
0.2 aside from the one that was sent, is also contained in the
decoding sphere. The probability that a randomly selected
- signal inside the sphere of radiys (P + o) is contained in
‘ a particular decoding sphere of radifis(a?+ &) is the ratio
of the volume of the spheres, so the probability of a decoding
0 o = - c error may be upper bounded loytimes that ratio, or
2 n/2 2 n/2
FIG. 3. The slowly varying functionC?, defined by R o"te)\ " [ I TE
2 : ; : Perror<M| — 7 ) (84)
=log,(C%d?), whereR is the rate achievable with concatenated o°+P g+ P

codes. Units have been chosen such #vatl. The horizontal lines

are atC2=1/e, corresponding to a rate equal to the coherent infor-whereR is the rate of the code. If the probability of error
mation, and atC?=1/2e, corresponding to one qubit below the averaged over codes and signals satisfies this bound, there is
coherent information. a particular code that satisfies the bound when we average
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only over signals. 1P¢,< § when we average over signals, Rate
then we can discard at most half of all the signaéducing 79
the rate by at most @/ bits) to obtain a new code with
Peror<26 for all signals. Sincee may be chosen arbitrarily
small for sufficiently largen, we conclude that there exist 5
codes with arbitrarily small probability of error and rake
arbitrarily close to

Shannon
Capacity

3_
1 P
C= §|092 1+ 2 (85 2]
4] Congcatenated
which is the Shannon capacity. Conversely, for any rate ex- Codes
ceedingC, the decoding spheres inevitably have nonnegli- 05 o1 o2 03 o4 o5 o6 ?°

gible overlaps, and the error rate cannot be arbitrarily small.

Suppose that, instead of Shannon's random coding, we FIG. 4. Rates for the Gaussian classical channel achievable with
use a lattice code based on an efficient packing of spheres. foncatenated codes, compared to the Shannon capacity. dere,
this case, the power constraint may be imposed by includinghe standard deviation of the displacement, in units with the power
as signals all lattice sites that are contained in arP=1.The rateis in units of bits per signal.
n-dimensional ball of radius/nP, and the typical shifts by
distance\na? must be correctable. Thus, decoding sphereIng 2Ax between the signals, then a shift by may be

of radius\/no? are to be packed into a sphere of total radius . :
vn(P+ 0'2). Suppose that the lattice is chosen so that nongor_rected. By r_ep'?‘?'”g the sum owbyalues by an integral,
overlapping spheres centered at the lattice sites fill a fractio}ﬂvhICh may be justified for largd, we find an average power

gach real variable takes one @possible values, with spac-

at least 2 ("~ 1) of the total volume; the existence of such a per signal

lattice is established by Minkowski's estimdtE8,19. Then 1 dAx 1

the numbem of signals satisfies P~ J x2dx= = (dAx)?; (90)
2dAX J —gax 3

MVy(no?)"?=2" "DV [n(P+0?)]", (86) : .
thus, the largest correctable shift may be expressed in terms

or of the average power as

n/2 _
| @ Ax=/3P/d. (92)

P
m>2‘“(1+—2
g

For the Gaussian channel with mean zero and variarfge
corresponding to the rate the probabilityp of an error in each real variable transmitted
is no larger than the probability of a shift by a distance ex-
ceedingAx, or

P
1+;2 -1, (88

1 1
= ﬁlogzm= Elogz

p<erfa \3P/2d%c?), (92

which is one bit less than the Shannon capacity. .
; : . . . where erfc denotes the complementary error function.
Much as in the discussion of quantum lattice codes in Sec. - .
We reduce the error probability further by encodikg

V, an improved estimate of the achievable rate is obtained if o ; : .
we allow the decoding spheres to over[@®-23. In fact, <hn dits m(;he blo%k offn d('F' Arg#mg as in Sec. Vi, we see
there are classical lattice codes with rate arbitrarily close t 1at a random code for dits achieves an asymptotic rate in
the capacity, such that the probability of erraveragecover its given by

signals, is arbitrarily small23]. Unfortunately, though, be- R=(log, d)[1—H4(p)— plogy(d—1)]. (93
cause of the power constraint, the error probability depends

on which signal is sent, and the trick of deleting the worstGiven o, using the expression E(p2) for p, and choosing
half of the signals would destroy the structure of the latticed to optimize the rate in Eq93), we obtain a rate close to

Alternatively, it may be shown that for any rate the Shannon capacity, as shown in Fig. 4. As for the concat-
enated quantum code, the rate of the concatenated classical
R<E|092(P/a'2) (89)  code is close to log, whered~C(o?)\P/a?, andC(c?)
2 ' is a slowly varying function.

there are lattice codes with maximal probability of error that
is arbitrarily small[20]. This achievable rate approaches the
capacity for largeP/ o2 We have described quantum stabilizer codes, based on

Now consider the rates that may be achieved for thesymplectically integral lattices in phase space, that protect
Gaussian classical channel with concatenated coding. 4uantum information carried by systems described by con-
d-state systen(dit) is encoded in each aof real variables. If tinuous quantum variables. With these codes, we may estab-

VIIl. CONCLUSIONS
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lish lower bounds on the capacities of continuous-variablecode with a small block sizgl1]. The analogous procedure
guantum channels. for the Gaussian channel would be to concatenate an outer

For the Gaussian quantum channel, the best rate we knoeode based on a symplectically integral lattice with an inner
how to achieve with stabilizer coding matches the one-shotode that encodes one logical oscillator in a block of several
coherent information optimized over Gaussian inputs, abscillators. This inner code, then, embeds an infinite-
least when the value of the coherent information isloigan ~ dimensional code space in a larger infinite-dimensional
integer. That our achievable rate matches the coherent infospace, as do codes constructed by Brauns&8hand Lloyd
mation only for isolated values of the noise variangé and Slotine[27]. However, we have not been able to find
seems to be an artifact of our method of analysis, rather thaconcatenated codes of this type that achieve rates exceeding
indicative of any intrinsic property of the channel. Hence, itthe one-shot coherent information of the Gaussian channel.
is tempting to speculate that this optimal one-shot coherent
information actually is the quantum capacity of the channel.
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