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Achievable rates for the Gaussian quantum channel
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We study the properties of quantum stabilizer codes that embed a finite-dimensional protected code space in
an infinite-dimensional Hilbert space. The stabilizer group of such a code is associated with a symplectically
integral lattice in the phase space of 2N canonical variables. From the existence of symplectically integral
lattices with suitable properties, we infer a lower bound on the quantum capacity of the Gaussian quantum
channel that matches the one-shot coherent information optimized over Gaussian input states.
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I. INTRODUCTION

A central problem in quantum information theory is
determine the quantum capacity of a noisy quant
channel—the maximum rate at which coherent quantum
formation may be transmitted through the channel and rec
ered with arbitrarily good fidelity@1,2#. A general solution to
the corresponding problem for classical noisy channels
found by Shannon in the pioneering paper that launched c
sical information theory@3,4#. With the development of the
theory of quantum error correction@5,6#, considerable
progress has been made toward characterizing the qua
channel capacity@7#, but it remains less well understood tha
the classical capacity.

The asymptotic coherent information has been shown
provide an upper bound on the capacity@8,9# and a matching
lower bound has been conjectured, but not proven@10#. Un-
fortunately, the coherent information is not subadditive@11#,
so that its asymptotic value is not easily computed. The
fore, it has been possible to verify the coherent informat
conjecture in just a few simple cases@12#.

One quantum channel of considerable intrinsic interes
the Gaussian quantum channel, which might also be sim
enough to be analytically tractable, thus providing a fer
testing ground for the general theory of quantum capacit
A simple analytic formula for the capacity of the Gaussi
classical channel was found by Shannon@3,4#. The Gaussian
quantum channel was studied by Holevo and Werner@13#,
who computed the one-shot coherent information for Gau
ian input states, and derived an upper bound on the quan
capacity.

Lower bounds on the quantum capacity of the Gauss
quantum channel were established by Gottesman, Kit
and Preskill@14#. They developed quantum error-correctin
codes that protect a finite-dimensional subspace of
infinite-dimensional Hilbert space, and showed that th
codes may be used to transmit high-fidelity quantum inf
mation at a nonzero asymptotic rate. In this paper, we c
tinue the study of the Gaussian quantum channel begu
@14#. Our main result is that the coherent information co
puted by Holevo and Werner is in fact an achievable ra
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This result lends nontrivial support to the coherent inform
tion conjecture.

We define the Gaussian quantum channel and review
results of Holevo and Werner@13# in Sec. II. In Sec. III, we
describe the stabilizer codes for continuous quantum v
ables introduced in@14#, which are based on the concept of
symplectically integral lattice embedded in phase space
Secs. IV and V, we apply these codes to the Gaussian q
tum channel, and calculate an achievable rate arising f
lattices that realize efficient packings of spheres in high
mensions. This achievable rate matches the one-shot co
ent informationI Q of the channel in cases where 2I Q is an
integer. Rates achieved with concatenated coding are ca
lated in Sec. VI; these fall short of the coherent informati
but come close. In Sec. VII, we consider the Gaussian c
sical channel, and again find that concatenated codes ach
rates close to the capacity. Section VIII contains some c
cluding comments about the quantum capacity of the Ga
ian quantum channel.

II. THE GAUSSIAN QUANTUM CHANNEL

The Gaussian quantum channel is a natural generaliza
of the Gaussian classical channel. In the classical case
consider a channel such that the inputx and the outputy are
real numbers. The channel applies a displacement to the
put by distancej,

y5x1j, ~1!

wherej is a Gaussian random variable with mean zero a
variances2; the probability distribution governingj is

P~j!5
1

A2ps2
e2j2/2s2

. ~2!

Similarly, acting on a quantum system described by
nonical variablesq andp that satisfy the commutation rela
tion @q,p#5 i\, we may consider a quantum channel th
applies a phase-space displacement described by the un
operator

D~a!5exp~aa†1a* a!, ~3!

wherea is a complex number,@a,a†#51, andq, p may be
expressed in terms ofa anda† as
©2001 The American Physical Society01-1
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q5A\

2
~a1a†!, p52 iA\

2
~a2a†!. ~4!

This quantum channel is Gaussian ifa is a complex Gauss
ian random variable with mean zero and variances̃2. In that
case, the channel is the superoperator~trace-preserving com
pletely positive map! E that acts on the density operatorr
according to

r→E~r!5
1

ps̃2E d2a e2uau2/s̃2
D~a!rD~a!†. ~5!

In other words, the positionq and momentump are displaced
independently,

q→q1jq , p→p1jp , ~6!

where jq and jp are real Gaussian random variables w
mean zero and variances25\s̃2.

To define the capacity, we consider a channel’snth exten-
sion. In the classical case, a message is transmitted con
ing of then real variables

xW5~x1 ,x2 , . . . ,xn!, ~7!

and the channel applies the displacement

xW→xW1jW , jW5~j1 ,j2 , . . . ,jn!, ~8!

where thej i ’s are independent Gaussian random variab
each with mean zero and variances2. A code consists of a
finite numberm of n-component input signals

xW (a), a51,2, . . . ,m ~9!

and a decoding function that maps output vectors to the
dex set$1,2, . . . ,m%. We refer ton as thelengthof the code.

If the input vectors were unrestricted, then for fixeds2 we
could easily construct a code with an arbitrarily large num
of signalsm and a decoding function that correctly identifi
the index~a! of the input with an arbitrarily small probability
of error; even forn51, we merely choose the distance b
tween signals to be large compared tos. To obtain an inter-
esting notion of capacity, we impose a constraint on theav-
erage powerof the signal,

1

n (
i

~xi
(a)!2<P, ~10!

for eacha. We say that a rateR ~in bits! is achievable with
power constraintP if there is a sequence of codes satisfyi
the constraint such that thebth code in the sequence contai
mb signals with lengthnb , where

R5 lim
b→`

1

nb
log2 mb , ~11!
06230
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and the probability of a decoding error vanishes in the lim
b→`. The capacity of the channel with power constraintP
is the supremum of all achievable rates.

The need for a constraint on the signal power to define
capacity of the Gaussian classical channel may be un
stood on dimensional grounds. The classical capacity~in
bits! is a dimensionless function of the variances2, but s2

has dimensions. Another quantity with the dimensions ofs2

is needed to construct a dimensionless variable, and
powerP fills this role.

In contrast, no power constraint is needed to define
quantum capacity of the quantum channel. Rather, Plan
constant\ enables us to define a dimensionless varia
s̃25s2/\, and the capacity is a function of this quantity.
the quantum case, a code consists of an encoding supe
erator that maps anm-dimensional Hilbert spaceHm into the
infinite-dimensional Hilbert spaceH ^ N of N canonical quan-
tum systems, and a decoding superoperator that mapsH ^ N

back toHm . We say that the rateR ~in qubits! is achievable
if there is a sequence of codes such that

R5 lim
b→`

1

Nb
log2 mb , ~12!

where arbitrary states inHm may be recovered with a fidelity
that approaches 1 asb→`. The quantum capacityCQ of the
channel is defined as the supremum of all achievable ra

Holevo and Werner@13# studied a more general Gaussia
channel that includes damping or amplification as well
displacement. However, we will confine our attention in th
paper to channels that apply only displacements. Holevo
Werner derived a general upper bound on the quantum
pacity by exploiting the properties of the ‘‘diamond norm
~norm of complete boundedness! of a superoperator. The dia
mond norm is defined as follows: First, we define the tra
norm of an operatorX as

iXi tr[trAX†X, ~13!

which for a self-adjoint operator is just the sum of the ab
lute values of the eigenvalues. Then a norm of a superop
tor E may be defined as

iEiso5 sup
XÞ0

iE~X!i tr

iXi tr
. ~14!

The superoperator norm is not stable with respect to appe
ing an ancillary system on whichE acts trivially. Thus, we
define the diamond norm ofE as

iEiL5sup
n

iE^ I niso, ~15!

where I n denotes then-dimensional identity operator.~This
supremum is always attained for somen no larger than the
dimension of the Hilbert space on whichE acts.! Holevo and
Werner showed that the quantum capacity obeys the up
bound

CQ~E!< log2iE+TiL , ~16!
1-2
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where T is the transpose operation defined with respec
some basis. In the case of the Gaussian quantum cha
they evaluated this expression, obtaining

CQ~s2!< log2~\/s2! ~17!

for \/s2.1, andCQ(s2)50 for \/s2<1.
Holevo and Werner@13# also computed thecoherent in-

formation of the Gaussian quantum channel for a Gauss
input state. To define the coherent information of the chan
E with input density operatorr, one introduces a referenc
systemR and apurification of r, a pure stateuF& such that

trR~ uF&^Fu!5r. ~18!

Then the coherent informationI Q is

I Q~E,r!5S„E~r!…2S„E^ I R~ uF&^Fu!…, ~19!

whereS denotes the Von Neumann entropy,

S~r!52tr~r log2 r!. ~20!

It is conjectured@10,8,9# that the quantum capacity is relate
to the coherent information by

CQ~E!5 lim
n→`

1

n
Cn~E!, ~21!

where

Cn~E!5sup
r

I Q~E ^ n,r!. ~22!

Unlike the mutual information that defines the classical
pacity, the coherent information is not subadditive in gene
and therefore, the quantum capacity need not coincide w
the ‘‘one-shot’’ capacityC1. Holevo and Werner showed tha
for the Gaussian quantum channel, the supremum ofI Q over
Gaussian input states is

~ I Q!max5 log2~\/es2!, ~23!

~wheree52.71828, . . . ,! for \/es2.1, and (I Q)max50 for
\/es2<1. According to the coherent-information conje
ture, Eq.~23! should be an achievable rate.

III. QUANTUM ERROR-CORRECTING CODES
FOR CONTINUOUS QUANTUM VARIABLES

The lattice codes developed in@14# are stabilizer codes
@15,16# that embed a finite-dimensional code space in
infinite-dimensional Hilbert space ofN ‘‘oscillators,’’ a sys-
tem described by 2N canonical variables
q1 ,q2 , . . .qN ,p1 ,p2 , . . . ,pN . That is, the code space is th
simultaneous eigenstate of 2N commuting unitary operators
the generators of the code’s stabilizer group. Each stabil
generator is aWeyl operator, a displacement in the
2N-dimensional phase space.

Such displacements may be parametrized by 2N real
numbersa1 ,a2 , . . . ,aN ,b1 ,b2 , . . . ,bN , and expressed a
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U~a,b!5expF iA2pS (
i 51

N

a i pi1b iqi D G . ~24!

Two such operators obey the commutation relation

U~a,b!U~a8,b8!5e2p iv(ab,a8b8)U~a8,b8!U~a,b!,
~25!

where

v~ab,a8b8![a•b82a8•b ~26!

is the symplectic form. Thus, Weyl operators commute if a
only if their symplectic form is an integer.

The 2N generators of a stabilizer code are commuti
Weyl operators

U~a (a),b (a)!, a51,2, . . . ,2N. ~27!

Thus, the elements of the stabilizer group are in one-to-
correspondence with the points of a latticeL generated by
the 2N vectorsv (a)5(a (a),b (a)). These vectors may be as
sembled into the generator matrixM of L given by

M5S v (1)

v (2)

•

•

v (2N)

D . ~28!

Then the requirement that the stabilizer generators comm
through Eq.~25!, becomes the condition that the antisym
metric matrix

A5MvMT ~29!

has integral entries, whereMT denotes the transpose ofM, v
is the 2N32N matrix

v5S 0 I N

2I N 0 D , ~30!

andI N is theN3N identity matrix. If the generator matrixM
of a latticeL has the property thatA is an integral matrix,
then we will say that the latticeL is symplectically integral.

Encoded operations that preserve the code subspace
associated with the code’snormalizer group, the group of
phase-space translations that commute with the code s
lizer. The generator matrix of the normalizer is a matrixM'

that may be chosen to be

M'5A21M , ~31!

so that

M'vMT5I ; ~32!

and

~M'!v~M'!T5~A21!T. ~33!
1-3
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We will refer to the lattice generated byM' as thesymplectic
dual L' of the latticeL.

Another matrix that generates the same lattice asM ~and
therefore defines a different set of generators for the s
stabilizer group! is

M 85RM, ~34!

whereR is an integral matrix with detR561. This replace-
ment changes the matrixA according to

A→RART. ~35!

By Gaussian elimination, anR may be constructed such th

A5S 0 D

2D 0 D , ~36!

and

~A21!T5S 0 D21

2D21 0 D , ~37!

whereD is a positive diagonal integralN3N matrix. In the
important special case of asymplectically self-duallattice,
both A and (A21)T are integral matrices; thereforeD
5D21 and the standard form ofA is

A5S 0 I N

2I N 0 D 5v. ~38!

Hence, the generator matrix of a symplectically self-dual
tice may be chosen to be a real symplectic matrix:MvMT

5v.
If the lattice is rotated, then the generator matrix is tra

formed as

M→MO, ~39!

whereO is an orthogonal matrix. Therefore, it is convenie
to characterize a lattice with its Gram matrix

G5MMT, ~40!

which is symmetric, positive, and rotationally invariant.
the case of a symplectically self-dual lattice, the Gram ma
G may be chosen to be symplectic, and two symplectic Gr
matricesG andG8 describe the same lattice if

G85RGRT, ~41!

where R is symplectic and integral. Therefore, the mod
space of symplectically self-dual lattices in 2N dimensions
may be represented as

AN5H~2N!/Sp~2N,Z!, ~42!

whereH(2N) denotes the space of real symplectic posit
2N32N matrices of determinant 1 andSP(2N,Z) denotes
the space of integral symplectic 2N32N matrices. The
06230
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spaceAN may also be identified as the moduli space of pr
cipally polarized abelian varieties in complex dimensionN
@17#.

The encoded operations that preserve the code space
act trivially within the code space comprise the quotie
groupL'/L. The order of this group, the ratio of the volum
of the unit cell ofL to that of L', is m2, wherem is the
dimension of the code space. The volume of the unit cel
L is udetM u5udetAu1/2 and the volume of the unit cell ofL'

is udetM'u5udetAu21/2; therefore, the dimension of the cod
space is

m5uPfAu5udetM u5detD, ~43!

where PfA denotes the Pfaffian ofA, the square root of its
determinant. Thus, a symplectically self-dual lattice, f
which udetM u5udetM'u51, corresponds to a code with
one-dimensional code space. Given a 2N32N generator ma-
trix M of a symplectically self-dual lattice, we can rescale
as

M→AlM , ~44!

where l is an integer, to obtain the generator matrix of
symplectically integral lattice corresponding to a code of
mension

m5lN. ~45!

The rate of this code, then, is

R5 log2 l. ~46!

When an encoded state is subjected to the Gaussian q
tum channel, a phase-space displacement

~qW ,pW !→~qW ,pW !1~jWq ,jW p! ~47!

is applied. To diagnose and correct this error, the eigenva
of all stabilizer generators are measured, which determ
the value of (jWq ,jW p) modulo the normalizer latticeL'. To
recover, a displacement of minimal length is applied th
returns the stabilizer eigenvalues to their standard valu
and so restores the quantum state to the code space. We
associate with the origin of the normalizer lattice itsVoronoi
cell, the set of points inR2N that are closer to the origin tha
to any other lattice site. Recovery is successful if the app
displacement lies in this Voronoi cell. Thus, we may estim
the likelihood of a decoding error by calculating the pro
ability that the displacement lies outside the Voronoi cell.

IV. ACHIEVABLE RATES FROM EFFICIENT
SPHERE PACKINGS

One way to establish an achievable rate for the Gaus
quantum channel is to choose a normalizer latticeL' whose
shortest nonzero vector is sufficiently large. In this secti
we calculate an achievable rate by demanding that
Voronoi cell surrounding the origin contain all typical dis
placements of the origin in the limit of largeN. In Sec. V, we
will use a more clever argument to improve our estimate
the rate.

The volume of a sphere with unit radius inn dimensions
is
1-4
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Vn5
pn/2

GS n

2
11D , ~48!

and from the Stirling approximation we find that

Vn<S 2pe

n D n/2

. ~49!

It was shown by Minkowski@18,19#, that lattice sphere pack
ings exist inn dimensions that fill a fraction at least 1/2(n21)

of space. Correspondingly, if the lattice is chosen to be u
modular, so that its unit cell has unit volume, then kiss
spheres centered at the lattice sites may be chosen to h
radiusr n such that

Vn~r n!n>22(n21), ~50!

or

r n
2>

1

4
~2/Vn!2/n>

n

8pe
. ~51!

This lower bound on the efficiency of sphere packings
never been improved in the nearly 100 years since Minko
ki’s result. More recently, Buser and Sarnak@17# have shown
that this same lower bound applies to lattices that are s
plectically self dual.

Now consider the case ofn52N-dimensional phase
space. For sufficiently largen, the channel will apply a
phase-space translation by a distance that with high prob
ity will be less thanAn(s21«), for any positive«. There-
fore, a code that may correct a shift this large will correct
likely errors. What rate can such a code attain? If the cod
a lattice stabilizer code, and the dimension of the code sp
is m, then the unit cell of the code’s normalizer lattice h
volume

D5
1

m
3~2p\!N. ~52!

Nonoverlapping spheres centered at the sites of the nor
izer lattice may be chosen to have radiusr 5An(s21«),
where

S 2pe

n D n/2

@n~s21«!#n/2>
1

m
322n3~2p\!n/2, ~53!

or

m>S \

4e~s21«! D
N

. ~54!

The error probability becomes arbitrarily small for largeN if
Eq. ~54! is satisfied, for any positive«. We conclude that the
rate

R[
1

N
log2 m5 log2S \

4es2D , ~55!
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is achievable, provided\/4es2>1. However, as noted in
Sec. III, the rates that may be attained by this construc
~rescaling of a symplectically self-dual lattice! are always of
the form log2 l, wherel is an integer.

V. IMPROVING THE RATE

The achievable rate found in Eq.~55! falls two qubits
short of the coherent information Eq.~23!. We will now
show that this gap may be closed by using tighter estima
of the error probability. We established Eq.~55! by filling
phase space with nonoverlapping spheres, which is ov
conservative. It is acceptable for the spheres to overlap
long as the overlaps occupy an asymptotically negligi
fraction of the total volume, as suggested in Fig. 1.

Our improved estimate applies another result obtained
Buser and Sarnak@17#. They note that the moduli space o
symplectically self-dual lattices is compact and equipp
with a natural invariant measure. Therefore, it makes se
to consider averaging over all lattices. Denote by^•& the
average over all symplectically self-dual lattices with spe
fied dimensionn52N, and let f (x) denote an integrable
rotationally invariant function of the vectorx ~that is a func-
tion of the lengthuxu of x). Then, Buser and Sarnak@17#
show that

K (
xPL\$0%

f ~x!L 5E f ~x!dnx. ~56!

~Note that the sum is over allnonzerovectors in the lattice
L.! It follows that there must exist aparticular symplecti-
cally self-dual latticeL such that

(
xPL\$0%

f ~x!<E f ~x!dnx. ~57!

FIG. 1. Two ways to estimate the rate achieved by a lattice co
Each site of the normalizer lattice has a Voronoi cell~represented
here by a square! containing all points that are closer to that si
than any other site. Displacements that move a site to a pos
within its Voronoi cell may be corrected. The volume of the Voron
cell determines the rate of the code. In~a!, the ball containing
typical displacements lies within the cell, so that the error proba
ity is small. In ~b!, the ball of typical displacements is not com
pletely contained within the cell, but the region where neighbor
balls overlap~shown in black! has a small volume, so that the erro
probability is still small.
1-5
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The statement that aunimodular lattice exists that satisfie
Eq. ~57! is the well-known Minkowski-Hlawka theorem
@19#. Buser and Sarnak established the stronger result
the lattice may be chosen to be symplectically self dual.

We may use this result to bound the probability of a d
coding error, and establish that a specified rate is achieva
Our argument will closely follow de Buda@20#, who per-
formed a similar analysis of lattice codes for the Gauss
classical channel. However, the quantum case is consider
easier to analyze, because we can avoid complications
ing from the power constraint@21–23#.

A decoding error occurs if the channel displaces the ori
to a point outside the Voronoi cell centered at the origin. T
Voronoi cell has a complicated geometry, so that the e
probability is not easy to analyze. But, we may simplify t
analysis with a trick@20#. Imagine drawing a sphere wit
radius

a5An~s21«! ~58!

around each lattice site, where«.0; this value ofa is cho-
sen so that the typical displacement introduced by the ch
nel has a length less thana; the probability of a shift larger
than a thus becomes negligible for largen. It may be that
these spheres overlap. However, a vector that is containe
the sphere centered at the origin, and is not contained in
sphere centered at any other lattice site, must be closer to
origin than any other lattice site. Therefore, the vector
contained in the origin’s Voronoi cell, and is a shift that m
be corrected successfully.~See Fig. 1.!

Hence~ignoring the possibility of an atypical shift byj
.a) we can upper bound the probability of error by estim
ing the probability that the shift moves any other lattice s
into the sphere of radiusa around the origin. We then find

Perror< (
xPL'\$0%

E
ur u<a

P~x2r !dnr , ~59!

whereP(j) denotes the probability of a displacement byj.
The Buser-Sarnak theorem@17# tells us that there exists

lattice whose unit cell has volumeD, and which is related by
rescaling to a symplectically self-dual lattice, such that

Perror<
1

DE dnxE
ur u<a

P~x2r !dnr ; ~60!

by interchanging the order of integration, we find that

Perror<
1

D
Vnan, ~61!

the ratio of the volume of then-dimensional sphere of radiu
a to the volume of the unit cell.

Now the volumeD of the unit cell of the normalizer lat
tice L', and the dimensionm of the code space, are relate
by

D5~2p\!Nm215~2p\322R!N, ~62!
06230
at

-
le.

n
bly
is-

n
e
r

n-

in
he
the
s

-

whereR is the rate, and we may estimate the volume of
sphere as

Vnan<S 2pe

n D n/2

@n~s21«!#n/2, ~63!

wheren52N. Thus, we conclude that

Perror<S e~s21«!

\
32RD N

. ~64!

Therefore, the error probability becomes small for largeN
for any rateR such that

R, log2S \

e~s21«! D , ~65!

where« may be arbitrarily small. We conclude that the ra

R5 log2S \

es2D ~66!

is achievable in the limitN→`, provided that\/es2.1.
This rate matches the optimal value Eq.~23! of the one-shot
coherent information for Gaussian inputs. We note, aga
that the rates that we obtain from rescaling a symplectic
self-dual lattice are restricted toR5 log2 l, wherel is an
integer. Thus, for specifieds2, the achievable rate that w
have established is really the maximal value of

R5 log2 l, lPZ, ~67!

such that the positive integerl satisfies

l,
\

es2 . ~68!

VI. ACHIEVABLE RATES FROM CONCATENATED
CODES

Another method for establishing achievable rates over
Gaussian quantum channel was described in@14#, based on
concatenated coding. In each ofN ‘‘oscillators’’ described by
canonical variablespi andqi , a d-dimensional system~‘‘qu-
dit’’ ! is encoded that is protected against sufficiently sm
shifts in pi and qi . The encoded qudit is associated with
square lattice in two-dimensional phase space. Then, a s
lizer code is constructed that embeds ak-qudit code space in
the Hilbert space ofN qudits; thesek encoded qudits are
protected if a sufficiently small fraction of theN qudits are
damaged. Let us compare the rates achieved by concaten
codes to the rates achieved with codes derived from effic
sphere packings.

We analyze the effectiveness of concatenated codes in
stages. First, we consider how likely each of theN qudits is
to sustain damage if the underlying oscillator is subjected
the Gaussian quantum channel. The area of the unit ce
the two-dimensional square normalizer lattice that repres
the encoded operations acting on the qudit is 2p\/d, and the
minimum distance between lattice sites isd5A2p\/d. A
1-6
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displacement ofq by ad, wherea is an integer, is the opera
tion Xa acting on the code space, and a displacement ofp by
bd is the operationZb, whereX andZ are the Pauli operator
acting on the qudit; these act on a basis$u j &, j
50,1,2, . . . ,d21% for the qudit according to

X:u j &→u j 11 ~modd!&,

Z:u j &→v j u j &, ~69!

wherev5exp(2pi/d).
Shifts in p or q may be corrected successfully provide

that they satisfy

uDqu,d/25Ap\

2d
, uDpu,d/25Ap\

2d
. ~70!

If the shifts inq andp are Gaussian random variables wi
variances2, then the probability that a shift causes an u
correctable error is no larger than the probability that
shift exceedsAp\/2d, or

pX ,pZ<2
1

A2ps2EAp\/2d

`

dx e2x2/2s2

5erfc~Ap\/4ds2!, ~71!

where erfc denotes the complementary error function. H
pX is the probability of an ‘‘X error’’ acting on the qudit, of
the formXa for a[” 0 (modd), andpZ denotes the probabil
ity of a ‘‘ Z error’’ of the form Zb for b[” 0 (modd). TheX
andZ errors are uncorrelated, and errors witha,b561 are
much more likely than errors withuau,ubu.1. By choosing
d;\/s2, we may achieve a small error probability for ea
oscillator.

The second stage of the argument is to determine the
that may be achieved by a qudit code ifpX ,pZ satisfy Eq.
~71!. We will consider codes of the Calderbank-Shor-Stea
~CSS! type, for which the correction ofX errors andZ errors
may be considered separately@24,25#. A CSS code is a sta
bilizer code, in which each stabilizer generator is eithe
tensor product ofI ’s and powers ofZ ~measuring these gen
erators diagnoses theX errors! or a tensor product ofI ’s and
powers ofX ~for diagnosing theZ errors!.

We can establish an achievable rate by averaging the e
probability over CSS codes; we give only an informal ske
of the argument. Suppose that we fix the block sizeN and the
number of encoded quditsk. Now select the generators of th
code’s stabilizer group at random. About half of theN2k
generators are of theZ type and about half are of theX type.
Thus, the number of possible values for the eigenvalue
the generators of each type is about

d ~N2k!/2. ~72!

Now, we can analyze the probability that an uncorrectablX
error afflicts the encoded quantum state~the probability of an
uncorrectableZ error is analyzed in exactly the same way!.
Suppose thatX errors act independently on theN qudits in
the block, with a probability of error per qudit ofpX . Thus,
06230
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for largeN, the typical number of damaged qudits is close
pXN. A damaged qudit may be damaged in any ofd21
different ways@Xa, wherea51,2, . . . ,(d21)#. We will sup-
pose, pessimistically, that alld21 shifts of the qudit are
equally likely. The actual situation that arises in our conc
enated coding scheme is more favorable—small values ouau
are more likely—but our argument will not exploit this fea
ture.

Thus, with high probability, the error that afflicts th
block will belong to a typical set of errors that contains
number of elements close to

Ntyp;S N
NpX

D ~d21!NpX;dN[Hd(pX)1pX logd(d21)], ~73!

where

Hd~p!52p logd p2~12p!logd~12p!. ~74!

If a particular typical error occurs, then recovery will su
ceed as long as there is no other typical error that gener
the same error syndrome. It will be highly unlikely that a
other typical error has the same syndrome as the actual e
provided that the number of possible error syndrom
d(N2k)/2 is large compared to the number of typical erro
Therefore, theX errors may be corrected with high probab
ity for

1

2 S 12
k

ND.
1

N
logd Ntyp;Hd~pX!1pX logd~d21!,

~75!

or for a rateRd in qudits satisfying

Rd[
k

N
,122Hd~pX!22pX logd~d21!. ~76!

Similarly, theZ errors may be corrected with high probabili
by a random CSS code if the rate satisfies

Rd,122Hd~pZ!22pZ logd~d21!. ~77!

Converted to qubits, the rate becomes

R5~ log2 d!Rd . ~78!

Under these conditions, the probability of error averag
over CSS codes becomes arbitrarily small forN large. It
follows that there is a particular sequence of CSS codes w
rate approaching Eqs.~76!–~78!, and error probability going
to zero in the limitN→`.

For given s2, the optimal rate that may be attained b
concatenating a code that encodes a qudit in a single o
lator with a random CSS code, is found by estimatingpX and
pZ using Eq.~71! and then choosingd to maximize the rate
R given by Eqs.~76!–~78!. The results are shown in Fig. 2
This rate~in qubits! may be expressed as

R5 log2~C2\/s2!, ~79!
1-7
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whereC2 is a slowly varying function ofs2/\ plotted in Fig.
3. It turns out that this rate is actually fairly close to log2 d;
that is, the optimal dimensiond of the qudit encoded in eac
oscillator is approximatelyC2\/s2. With this choice ford,
the error rate for each oscillator is reasonably small, and
random CSS code reduces the error probability for the
coded state to a value exponentially small inN at a modest
cost in rate. The rate achieved by concatenating coding
strictly below the coherent informationI Q , but comes within
one qubit ofI Q for s2.1.8831024.

Both the concatenated codes and the codes derived
efficient sphere packings are stabilizer codes, and there
both are associated with lattices in 2N-dimensional phase
space. But while the sphere-packing codes have been ch
so that the shortest nonzero vector on the lattice is la
relative to the size of the unit cell, the concatenated co
correspond to sphere packings of poor quality. For the c
catenated codes, the shortest vector of the normalizer la
has lengthl , where

FIG. 2. Rates achieved by concatenated codes, compared t
one-shot coherent information optimized over Gaussian input sta
Here, s is the standard deviation of the magnitude of the pha
space displacement introduced by the channel, in units with\51.
The rate is in units of qubits per oscillator.

FIG. 3. The slowly varying functionC2, defined by R
5 log2(C

2/s2), where R is the rate achievable with concatenat
codes. Units have been chosen such that\51. The horizontal lines
are atC251/e, corresponding to a rate equal to the coherent inf
mation, and atC251/2e, corresponding to one qubit below th
coherent information.
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l 252p\/d, ~80!

and the rateR is close to log2 d. The efficient sphere packing
have radiusr 5l /2 close toAns2, or

l 25
8N\

e
322R. ~81!

Hence, if we compare sphere-packing codes and con
enated codes with comparable rates, the sphere-pac
codes have minimum distance that is larger by a factor
aboutA4N/pe. The concatenated codes achieve a high r
not because the minimum distance of the lattice is large,
rather because the decoding procedure exploits the hiera
cal structure of the code.

VII. THE CLASSICAL GAUSSIAN CHANNEL

We have found that quantum stabilizer codes based
efficient sphere packings can achieve rates for the Gaus
quantum channel that match the one-shot coherent infor
tion, and that concatenated codes achieve rates that ar
low, but close to, the coherent information. Now, as an as
we will discuss the corresponding statements for the class
Gaussian channel. We will see, in particular, that conc
enated codes achieve rates that are close to the clas
channel capacity.

Shannon’s expression for the capacity of the class
Gaussian channel may be understood heuristically as foll
@3,4#. If the input signals have average powerP, which is
inflated by the Gaussian noise toP1s2, then if n real vari-
ables are transmitted, the total volume occupied by the sp
of output signals is the volume of a sphere of rad
An(P1s2), or

Vtot5Vn@n~P1s2!#n/2. ~82!

We will decode a received message as the signal state th
the minimal distance away. Consider averaging over
codes that satisfy the power constraint and havem signals.
When a message is received, the signal that was sent
typically occupy a decoding sphere of radiusAn(s21«)
centered at the received message, which has volume

Vdecoding sphere5Vn@n~s21«!#n/2. ~83!

A decoding error may arise if another one of them signals,
aside from the one that was sent, is also contained in
decoding sphere. The probability that a randomly selec
signal inside the sphere of radiusAn(P1s2) is contained in
a particular decoding sphere of radiusAn(s21«) is the ratio
of the volume of the spheres, so the probability of a decod
error may be upper bounded bym times that ratio, or

Perror,mS s21«

s21PD n/2

5S 22R
s21«

s21PD n/2

, ~84!

whereR is the rate of the code. If the probability of erro
averaged over codes and signals satisfies this bound, the
a particular code that satisfies the bound when we ave

the
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-

-
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only over signals. IfPerror,d when we average over signal
then we can discard at most half of all the signals~reducing
the rate by at most 1/n bits! to obtain a new code with
Perror,2d for all signals. Since« may be chosen arbitrarily
small for sufficiently largen, we conclude that there exis
codes with arbitrarily small probability of error and rateR
arbitrarily close to

C5
1

2
log2S 11

P

s2D , ~85!

which is the Shannon capacity. Conversely, for any rate
ceedingC, the decoding spheres inevitably have nonne
gible overlaps, and the error rate cannot be arbitrarily sm

Suppose that, instead of Shannon’s random coding,
use a lattice code based on an efficient packing of sphere
this case, the power constraint may be imposed by includ
as signals all lattice sites that are contained in
n-dimensional ball of radiusAnP, and the typical shifts by
distanceAns2 must be correctable. Thus, decoding sphe
of radiusAns2 are to be packed into a sphere of total rad
An(P1s2). Suppose that the lattice is chosen so that n
overlapping spheres centered at the lattice sites fill a frac
at least 22(n21) of the total volume; the existence of such
lattice is established by Minkowski’s estimate@18,19#. Then
the numberm of signals satisfies

mVn~ns2!n/2>22(n21)Vn@n~P1s2!#n/2, ~86!

or

m>22nS 11
P

s2D n/2

, ~87!

corresponding to the rate

R[
1

n
log2m5

1

2
log2S 11

P

s2D21, ~88!

which is one bit less than the Shannon capacity.
Much as in the discussion of quantum lattice codes in S

V, an improved estimate of the achievable rate is obtaine
we allow the decoding spheres to overlap@20–23#. In fact,
there are classical lattice codes with rate arbitrarily close
the capacity, such that the probability of error,averagedover
signals, is arbitrarily small@23#. Unfortunately, though, be
cause of the power constraint, the error probability depe
on which signal is sent, and the trick of deleting the wo
half of the signals would destroy the structure of the latti
Alternatively, it may be shown that for any rate

R,
1

2
log2~P/s2!, ~89!

there are lattice codes with maximal probability of error th
is arbitrarily small@20#. This achievable rate approaches t
capacity for largeP/s2.

Now consider the rates that may be achieved for
Gaussian classical channel with concatenated coding
d-state system~dit! is encoded in each ofn real variables. If
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each real variable takes one ofd possible values, with spac
ing 2Dx between the signals, then a shift byDx may be
corrected. By replacing the sum overd values by an integral,
which may be justified for larged, we find an average powe
per signal

P;
1

2dDxE2dDx

dDx

x2dx5
1

3
~dDx!2; ~90!

thus, the largest correctable shift may be expressed in te
of the average power as

Dx5A3P/d. ~91!

For the Gaussian channel with mean zero and variances2,
the probabilityp of an error in each real variable transmitte
is no larger than the probability of a shift by a distance e
ceedingDx, or

p<erfc~A3P/2d2s2!, ~92!

where erfc denotes the complementary error function.
We reduce the error probability further by encodingk

,n dits in the block ofn dits. Arguing as in Sec. VI, we se
that a random code for dits achieves an asymptotic rat
bits given by

R5~ log2 d!@12Hd~p!2p logd~d21!#. ~93!

Given s2, using the expression Eq.~92! for p, and choosing
d to optimize the rate in Eq.~93!, we obtain a rate close to
the Shannon capacity, as shown in Fig. 4. As for the con
enated quantum code, the rate of the concatenated clas
code is close to log2 d, whered;C(s2)AP/s2, andC(s2)
is a slowly varying function.

VIII. CONCLUSIONS

We have described quantum stabilizer codes, based
symplectically integral lattices in phase space, that pro
quantum information carried by systems described by c
tinuous quantum variables. With these codes, we may es

FIG. 4. Rates for the Gaussian classical channel achievable
concatenated codes, compared to the Shannon capacity. Heres is
the standard deviation of the displacement, in units with the po
P51. The rate is in units of bits per signal.
1-9
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lish lower bounds on the capacities of continuous-varia
quantum channels.

For the Gaussian quantum channel, the best rate we k
how to achieve with stabilizer coding matches the one-s
coherent information optimized over Gaussian inputs,
least when the value of the coherent information is log2 of an
integer. That our achievable rate matches the coherent in
mation only for isolated values of the noise variances2

seems to be an artifact of our method of analysis, rather t
indicative of any intrinsic property of the channel. Hence
is tempting to speculate that this optimal one-shot cohe
information actually is the quantum capacity of the chann

Conceivably, better rates may be achieved withnonaddi-
tive quantum codes that cannot be described in terms of s
plectically integral lattices. We do not know much about ho
to construct these codes, or about their properties.

In the case of the depolarizing channel acting on qub
Shor and Smolin discovered that rates exceeding the
shot coherent information could be achieved. Their constr
tion used concatenated codes, where the ‘‘outer code’’
random stabilizer code, and the ‘‘inner code’’ is a degener
-
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code with a small block size@11#. The analogous procedur
for the Gaussian channel would be to concatenate an o
code based on a symplectically integral lattice with an in
code that encodes one logical oscillator in a block of seve
oscillators. This inner code, then, embeds an infini
dimensional code space in a larger infinite-dimensio
space, as do codes constructed by Braunstein@26# and Lloyd
and Slotine@27#. However, we have not been able to fin
concatenated codes of this type that achieve rates excee
the one-shot coherent information of the Gaussian chann
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