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Family of modified-contracted Schrödinger equations
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A family of equations that combines contracted Schro¨dinger equations of different orders is reported here.
Attention is focussed on the resulting second order, third order, and fourth order of these modified-contracted
Schrödinger equations. Some of these equations are self-contained and have as fixed points those correspond-
ing to the full-configuration interaction eigenstates. The indeterminacy, which hindered initially the use of the
contracted Schro¨dinger equations, does not formally exist in these equations. Relations linking the lower-order
reduced density matrices with the higher-order matrices are exactly incorporated into the modified-contracted
Schrödinger-equations structure. The cancellation of high-order correlation terms, which is hidden in the
contracted Schro¨dinger equations, now takes an explicit form.
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I. INTRODUCTION

Since the pioneering papers of Dirac@1#, Husimi @2#, and
Löwdin @3# an extense literature appeared on the redu
density-matrices~RDM! theory. There is a large literature o
this subject that the interested reader may find in@5–7#. In
particular, a detailed account of the RDMs theory can
found in Ref.@8#. In recent years a new line of research h
been developed around a hierarchy of RDM equati
@4,6,9–11#. In their matrix form, these equations can be o
tained by applying a contracting mapping into thep-electron
space to theN-electron matrix representation of the Schr¨-
dinger equation@6#. The resultingp-order contracted Schro¨-
dinger equation~p-CSE! @6# is equivalent to the integrodif
ferential equation that had previously been obtained by C
@4#, Cohen and Frishberg@9#, and Nakatsuji@10#. These
equations are indeterminate@12# that hindered their use unt
Colmenero and Valdemoro@13# proposed to approximate th
high-order RDMs in terms of the lower-order RDMs@14,15#
and then solve the equation iteratively. A rather intense
velopment of the theory and applications of these equat
has lately taken place@16–27#.

The aim of this paper is to report a family of fou
modified-contracted Schro¨dinger equations~MCSE! that
broadens our understanding of the many-body problem. H
we address the many-fermion problem but the generaliza
for treating boson systems is straightforward. These MC
are particular combinations of several low-order CSEs. T
main property of two of these MCSEs is that they do n
depend on any RDM of higher order than that of the MC
itself; in the two other cases, the initial indeterminacy is on
partly removed. In a similar way as the CSE, the MCS
can, in principle, be solved iteratively. This question, ho
ever, still remains open since the different procedures te
have not yet achieved satisfactory convergence.

The first four sections summarize the background kno
edge that is needed for developing the arguments leadin
the MCSEs that are reported in Sec. V. Section VI is de
cated to discuss the MCSEs practical possibilities and
questions that still need to be investigated.
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II. BASIC DEFINITIONS

Since the fermion RDM properties follow easily from
those of the creator and annihilator operators appearin
the second-quantization definition of these matrices@25#, all
the developments carried out here will be expressed in
formalism. The fermion operators,bi

† andbi , will be repre-
sented in a finite basis of 2K orthonormal spin orbitals and
the system will have a fixed number of electrons,N.

A. The many-body Hamiltonian

The usual many-body Hamiltonian is

Ĥ5(
i ,p

« ipbi
†bp1

1

2 (
i ,k,p,q

^ ikupq&bi
†bk

†bqbp . ~1!

This Hamiltonian may be exactly rewritten as

Ĥ5 (
i ,k,p,q

0Hik;pqbi
†bk

†bqbp ~2!

where 0H has the form

0Hik,pq5
1

2 S « ipdkq1«kqd ip

N21
1^ ikupq& D , ~3!

where « and ^ ikupq& are the usual one- and two-electro
integrals, respectively~this latter in the Condon and Shortle
notation!.

B. The p-order RDM

The generalp-RDM second-quantization definition tha
will be used here is

pDi 1i 2¯ i p ; j 1 j 2¯ j p

FF8 5
1

p!
^Fubi 1

† bi 2
†
¯bi p

† bj p
¯bj 2

bj 1
uF8&.

~4!

Relation~4! is the definition of thep-order transition reduced
density matrix~p-TRDM! when FÞF8. In what follows,
unless they are needed, theF superscripts will be omitted.
©2001 The American Physical Society05-1
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The lower-order RDMs are related to the higher-ord
RDMs through the action of a contracting mapping@6#.

III. THE CONTRACTED SCHRO¨ DINGER EQUATIONS

When contracting the matrix form of the Schro¨dinger
equation into the one-electron space, one obtains@6,17#

^FuĤbp
†br uF&5E^Fubp

†br uF&[E 1Dp;r , ~5!

whereĤ is theN-body Hamiltonian operator just describe
E is the energy, andF its corresponding eigenstate. Whe
replacing theĤ by its explicit formula~2! and transforming
the left-hand side~lhs! into its normal form, one obtains th
1-CSE

E 1Dp;q522!(
j

~0H2D !p j ;q j13! (
i , j ,k,l

0Hi j ;kl
sDpi j ;qkl

[1Mp;q . ~6!

In what follows pM will denote the p-order matrix
formed by the right-hand side~rhs! of the p-CSE.

The 2-CSE is obtained in a similar way by contracting t
matrix form of the Schro¨dinger equation from anN-electron
representation to a two-electron representation. This ma
has the form

2!E 2Dpq;rs52!2~0H2D !pq;rs13!2(
i ,k,l

~0Hql;kl
3Drsi;pkl

10Hip;kl
3Drsi; lqk!

14! (
i , j ,k,l

0Hi j ;kl
4Drsi j ;pqkl[

2Mpq;rs . ~7!

As can be seen the 1-CSE depends not only on
1-RDM but also on the 2-and the 3-RDM. Similarly, th
2-CSE depends not only on the 2-RDM but also on the
and 4-RDMs. This fact lies at the root of the indetermina
of these equations. As already mentioned, in the method
posed by Colmenero and Valdemoro@13# a set of algorithms
for approximating the higher-order RDMs in terms of t
lower-order RDMs @14,15# allows these equations to b
solved iteratively.

Although the 1-CSE is the most attractive one, its use
ness is limited by the fact that it can be exactly satisfied
only by the eigenstate RDMs but also by those RDMs c
responding to the Hartree-Fock solution. In fact, in all o
attempts to solve this equation the convergence has alw
tended towards the Hartree-Fock solution.

IV. THE CORRELATION MATRICES

A p-RDM element~for p.1! may be decomposed int
different terms involving elements of lower-order RDMs a
elements of a different kind of matrices that describe co
lation effects. Thus, with the use of straightforward seco
quantization algebra@18,26# one finds
06210
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2! 2Di j ;ml5
1Di ;m

1D j ; l2
1Di ; ld j ;m12Ci j ;ml , ~8!

3! 3Dikm; j ln522! 2Dik; jndml12! 2Dik; lnd jm

12! 2Dik; j l
1Dm;n13;2,1Cikm; j ln , ~9!

and

4! 4Di jkl ;pgrs52! 2Di j ;rs~dqkdpl2dpkdql!13! 3Di jl ;qrsdkp

13! 3Di jk ;prsd lq23! 3Di jl ;prsdk;q

23! 3Di jk ;qrsd l ;p12! 2Di j ;pq2! 2Dkl;rs

14;2,2Ci jkl ;pqra , ~10!

where the matricespC are p-order correlation matrices
@19,25,26# that involve products of TRDM elements. Callin
F the eigenstate that is being considered andF8 all the other
eigenstates of the system’s spectrum the correlation matr
appearing in relations~8!, ~9!, and ~10! have the following
structures

2Ci j ;pq5 (
f8Þf

^Fubi
†bpuF8&^F8ubj

†bquF&

[ (
F8ÞF

1Di ;p
FF8 1D j ;q

F8F ~11!

that describes the pure two-body correlation effects,

~3;2,1!Ci jk ;pqr52! (
F8ÞF

2Di j ;pq
FF8 1Dk;r

F8F , ~12!

which describes a combination of pure two- and three-bo
correlation effects. Thus(3;2,1)C may be decomposed int
three terms involving two2C elements and a(3;1,1,1)C ele-
ment,

~4;2,2!Ci jkl ;pqrs52!2! (
F8ÞF

2Di j ;pq
FF8 2Dkl;rs

F8F , ~13!

which describes a combination of pure two-, three-, and fo
body correlation effects since the(4;2,2)C element may be
decomposed into a combination of2C, (3;1,1,1)C, and
(4;1,1,1,1)C elements.

In general, the symbol(p;2,x,y)C denotes that theC is a
p-order correlation matrix involving~from left to right! a
product of elements of a 2-TRDM, andx-TRDM, and a
y-TRDM.

All these matrices can be understood as describing glo
correlation effects due to virtual excitations and deexc
tions of two, three, . . . , p-electrons. It should be noted tha
they cannot be decomposed into terms that depend only
RDM elements.

V. THE MODIFIED-CONTRACTED SCHRO¨ DINGER
EQUATIONS

A set of relations linkingC matrices of different orders~C
relations! have recently been reported@27#. TheseC relations
5-2
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establish the set of necessary conditions that the correla
matrices must fulfill when they correspond to eigenstates
the Hamiltonian. These conditions imply that the action
matrix 0H on the 2-C matrices cancels out the action of th
same0H matrix on the 3- and 4-C matrices. The reason tha
leads to theC relations given in@27# can also lead to the
general result

(
i jkl

0Hi j ;kl
~p,2,x,y,...!Ci j v1¯vxt1¯ty¯ ;klv1¯vxz1¯zy¯

50,

~14!

where p521x1y1¯ . That is, irrespective of the exac
structure of thep-C matrices, a sum of products of this typ
will vanish. As will be shown, these vanishing terms app
in the deduction of the MCSEs. It is easy to show that wh
the C matrices involved are of the type(p;2,x)C with x.1
these relations are also sufficient conditions to guarantee
these matrices correspond to eigenstates of the Hamilton

A. The second-order modified-contracted Schro¨dinger
equation

Let us consider again the 2-CSE

2Mpq;rs5^FuĤbp
†bq

†bsbr uF&5E 2! 2Dpq;rs , ~15!

and let us rearrange the operators of the lhs as

^FuĤbp
†bq

†bsbr uF&52d rq^FuḢbp
†bsuF&

1^FuĤbp
†brbq

†bsuF&. ~16!

Inserting twice the unit operator

Î 5uF&^Fu1 (
F8ÞF

uF8&^F8u[uF&^Fu1Q̂ ~17!

in the last term of Eq.~16!

^FuĤ Î bp
†br Î bq

†bsuF&, ~18!

Eq. ~16! becomes

2Mpq;rs5^FuĤbp
†bq

†bsbr uF&52d rq
1Mp;s1

1Mp;r
1Dq;s

1E 2Cpq;rs1 ~4;2,1,1!0pq;rs ~19!

where

~4;2,1,1!0pq;rs5(
i jkl

0Hi j ;kl
~4;2,1,1!Ci jpq;klrs . ~20!

Because of relation~14!, this term vanishes when th
equation is satisfied. The labels of the zero symbol appea
in the lhs of Eq.~20! coincide with those of theC matrix
involved in the relation after omitting the indices over whi
the sum is carried out.

Equation~16! may therefore be written as
06210
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E 2! 2Dpq;rs52d rq
1Mp;s1

1Mp;r
1Dq;s1E 2Cpq;rs .

~21!

This result gives a second-order MCSE formally equiv
lent to the 2-CSE but which does not depend explicitly
the 4-RDM.

Already at this stage two-important questions arise.
what extent the vanishing terms can be ignored? and how
impose the constraints on the correlation matrices implied
them? At present these questions remain open. In orde
take into account the vanishing terms it is useful to comb
the previous development with another alternative trans
mation of Eq.~15!. It consists in inserting the developme
of the unity after the Hamiltonian operator that gives

2!E 2Dpq;rs1 ~4;2,2!0pq;rs52Mpq;rs . ~22!

Note, that the condition(4;2,2)050 is therefore equivalen
to the 2-CSE. Combining now Eq.~22! with Eq. ~19! one has

E2Dpq;rs52d rq
1Mp;s1

1Mp;r
1Dq;s1E2Cpq;rs

1d rq
~3;2,1!0p;s2

1Dq;s
~3;2,1!0p;r , ~23!

where the relation

4;2,20pq;rs52d rq
~3;2,1!0p;s1

~3;2,1!Op;r
1Dq;s

~4;2,1,1!0pq;rs .
~24!

has been used. Equations~21! and~23! show that the original
indeterminacy of the 1-CSE has been partially removed.

B. The third-order modified-contracted Schrödinger
equation

Proceeding as in the previous paragraph, the starting r
tion is

3Mikm; j ln5^FuĤbi
†bk

†bm
† bnblbj uF&5E 3! 3Dikm; j ln .

~25!

Rearranging the order of the operators and using the
operator~17!

E 3! 3Dikm; j ln5dm j
2Mik; ln2dml

2Mik; jn

1^FuĤbi
†bk

†blbjbm
† bnuF&. ~26!

Let us now transform the last term of this equation by inse
ing repeatedly the unit operator

^FuĤbi
†bk

†blbj Î bm
† bnuF&51Dm;n

2Mik; j l

1^FuĤbi
†bk

†blbjQ̂bm
† bnuF&

51Dm;n
2Mik; j l

1^FuĤ Î bi
†bk

†blbjQ̂bm
† bnuF&

51Dm;n
2Mik; j l 1E ~3;2,1!Cikm; j ln

1 ~5;2,2,1!0ikm; j ln ~27!

the equation thus becomes
5-3
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E 3! 3Dikm; j ln5dm j
2Mik; ln2dml

2Mik; jn12Mik; j l
1Dm;n

1E ~3;2,1!Cikm; j ln1 ~5;2,2,1!0ikm; j ln ~28!

and, since the(5;2,2,1)0ikm; j ln term disappears when the equ
tion is satisfied it may formally be omitted. Thus,

E 3! 3Dikm; j ln5dm j
2Mik; ln2dml

2 Mik; jn12Mik; j l
1Dm;n

1E ~3;2,1!Cikm; j ln . ~29!

Similarly to Eq.~21!, this equation shows that the origin
indeterminacy of the 2-CSE has been partially removed.
the other hand, this 3-MCSE takes a self-contained fo
when the matrix2M is replaced according to Eq.~19! and
the vanishing terms are neglected.

E 3! 3Dikm; j ln5~dmldk j2dm jdkl!
1Mi ;n

1~1Dm;n
1Dk; l2dml

1Dk;n!1Mi ; j

1~dm j
1Dk;n2dk j

1Dm;n!1Mi ; l

1Edm j
2Cik; ln2Edml

2Cik; jn

1E 1Dm;n
2Cik; j l 1E ~3;2,1!Cikm; j ln .

~30!

As in the 2-MCSE case, an alternative expression fr
which the higher-order vanishing terms have been canc
out, can be obtained. Thus, when the unit operator is inse
in relation ~25! after the Hamiltonian operator, one has

E 3! 3Dikm; j ln1 ~5;2,3!0ikm; j ln5^FuĤbi
†bk

†bm
† bnblbj uF&

53Mikm; j ln . ~31!

This relation can be combined with Eq.~28! giving
06210
n

ed
ed

E 3! 3Dikm; j ln5dm j~
2Mik; ln2 ~4;2,2!0ik; ln!

2dml~
2Mik; jn2 ~4;2,2!0i j ; jn!

11Dm;n~2Mik; j l 2
~4;2,2!0ik; j l !

1E ~3;2,1!Cikm; j ln . ~32!

That is, after decomposing to the outmost the fifth-order v
ishing terms, only the(4;2,2)0 terms remain. Again, when
using Eqs.~19! and ~24! a self-contained equation is ob
tained

E 3! 3Dikm; j ln5~dmldk j2dm jdkl!~
1Mi ;n2 ~3;2,1!0i ;n!

1~1Dm;n
1Dk; l2dml

1Dk;n!

3~1Mi ; j2
~3;2,1!0i ; j !

1~dm j
1Dk;n2dk j

1Dm;n!

3~1Mi ; l2
~3;2,1!0i ; l !1Edm j

2Cik; ln

2Edml
2Cik; jn1E 1Dm;n

2Cik; j l

1E ~3;2,1!Cikm; j ln . ~33!

Note that this last equation is not only self-contained b
cause the highest RDM’s order is three on both sides of
equation but also because the higher-order vanishing te
have been canceled out. Although this is a very appea
equation, it should be recalled that the1M ~1-CSE! is not
only satisfied by the full-configuration interaction set
RDMs but also by the Hartree-Fock RDMs, which limits i
usefulness.

C. The fourth-order modified-contracted Schrödinger equation

Since the arguments needed for obtaining the 4-MCSE
similar to those used in the two previous paragraphs only
final results are included here. Thus, the 4-MCSE equatio
E 4! 4Di jkl ;pqrs5~dkqd lp2d lqdkp!
2Mi j ;rs1d lq

3Mi jk ;prs1dkp
3Mi j l ;qrs2d lp

3Mi jk ;qrs2dkq
3Mi j l ;prs

12Mi j ;pq2! 2Dkl;rs1E ~4;2,2!Ci jkl ;pqrs

[~d lqdkp2dkqd lp!2Mi j ;rs1~dkqd lr 2d lqdkr!
2Mi j ;ps1~d lpdkr2dkpd lr !

2Mi j ;qs

1~d lq
1Ds;k2dkq

1Ds; l !
2Mi j ;pr1~dkp

1Dl ;s2d lp
1Dks!

2Mi j ;qr12! 2Dkl;rs
2Mi j ;pq

1d lqE ~3;2,1!Ci jk ;prs1dkpE
3;2,1Ci jl ;qrs2dkqE

~3;2,1!Ci jl ;prs2d lpE ~3;2,1!Ci jk ;qrs1E ~4;2,2!Ci jkl ;pqrs .

~34!

and the alternative equation where the vanishing terms appear explicitly and where only the2M ~the 2-CSE! appears is

E 4! 4Di jkl ;pqrs5~d lqdkp2dkqd lp!~2Mi j ;rs2 ~4;2,2!0i j ;rs!1~dkqd lr 2d lqdkr!~
2Mi j ;ps2

~4;2,2!0i j ;ps!1~d lpdkr2dkpd lr !

3~2Mi j ;qs2
~4;2,2!0i j ;qs!1~d lq

1Ds;k2dkq
1Ds; l !~

2Mi j ;pr2
~4;2,2!0i j ;pr!1~dkp

1Dl ;s2d lp
1Dk;s!

3~2Mi j ;qr2
~4;2,2!0i j ;qr!12! 2Dkl;rs~

2Mi j ;pq2 ~4;2,2!0i j ;pq!1d lqE ~3:3,1!Ci jk ;prs1dkpE
~3;2,1!Ci jl ;qrs

2dkqE
~3;2,1!Ci jl ;prs2d lpE ~3;2,1!Ci jk ;qrs1E ~4;2,2!Ci jkl ;pqrs . ~35!
5-4
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This last equation is not only self-contained because
highest RDM’s order is four on both sides of the equation
also because the higher-order vanishing terms have been
celed out.

Although these relations are exact it should be noted
they do not have the RDM’s antisymmetry property built
This point will be discussed in some detail in the last secti

D. Relation between the modified-contracted Schro¨dinger
equations’s structure and the reduced

density-matrices decomposition formulas

It is interesting to note that there is a short-cut method
deducing the MCSEs. Thus, let us, for instance, consider
2-RDM decomposition formula~8! and let us multiply it by
the energyE

E 2! 2Di j ;ml5E 1Di ;m
1D j ; l2E 1Di ; ld j ;m1E 2Ci j ;ml ,

~36!

then replacingE 1D by 1M one has

E 2! 2Di j ;ml5
1Mi ;m

1D j ; l2
1Mi ; ld j ;m1E 2Ci j ;ml ,

~37!

that is, the 2-MCSE is reobtained. Similar short-cut ded
tions can be written for the 3- and 4-MCSEs. By deduc
the MCSEs in this way, thep0 vanishing correlation term
do not appear. As will be discussed in the last section, a
from their theoretical interest, thesep0 terms may be rel-
evant in the application method.

VI. DISCUSSION

A. Special features of the modified-contracted Schro¨dinger
equations

As has already been stressed, relations~30!, ~33!, ~34!,
and ~35! are self-contained equations. This means that
kind of indeterminacy, which hindered initially the use of th
CSE and which in recent years has been approximately
moved through the use of construction algorithms for
high-order RDMs, does not formally exist in the MCSE
However, since the(4;2,2)C and (3;2,1)C matrix elements ap-
pearing in the last terms of the MCSEs relations~30! and
~34! are not directly modified by the action of the Ham
tonian at each iteration, the question that could be raised
what kind of information, not contained in the2M ~the
2-CSE!, is carried out by the MCSEs? The answer to t
question is that the relations linking the lower-order RDM
with the higher-order RDMs are exactly incorporated into
MCSEs structure. In consequence, no extra approximate
struction algorithms for the high-order RDMs are needed
in the 2-CSE case, in order to solve these equations it
tively.

Another special feature of these equations is that the c
cellation of high-order correlation terms, which is hidden
the 2-CSE, appears explicitly in the MCSEs.

It should also be noted that the third- and fourth-ord
correlation matrices are directly related to the third- a
fourth-orderG matrices@25,26#, respectively. Therefore th
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inequalities imposing that these matrices be positi
semidefinite are auxiliary conditions on the correlation m
trices to be considered jointly with the MCSEs.

In our opinion, these features indicate that the informat
carried by the 4-MCSEs is more complete than that carr
by the 2-CSE in spite of the very close relationship betwe
these two families of equations.

B. The iterative procedure

The general lines of the MCSEs iterative procedure
very similar to the 2 CSE one. Thus, one starts with an ini
set of (p-1)-,(p-2)-, . . . ,RDMs, a pC, and the energyE.
These initial data should correspond to a realistic zero-or
wave function of the eigenstate that is being investigat
This set of zero-order matrices is replaced in the expres
of the corresponding MCSE. After symmetrizing the mat
thus obtained, which will be hereafter calledpM̃, its trace is
divided by the trace of the correspondingp-RDM, (p

N),
which yields a newE. Then the newpD is obtained by
dividing pM̃ by E. All the lower-order RDMs and thepC
are obtained from the newpD and with this new set of data
a new iteration is initiated.

C. Some significant results

In order to test these equations the linear BeH2 molecule
was calculated using a basis set of 14 Hartree-Fock s
orbitals. The 3- and the 4-MCSE calculating codes have b
programed. The 3-MCSE and 4-MCSE codes evaluate r
tions ~30! and ~34!, respectively.

These codes were tested with the full-configuration int
action and with the Hartree-Fock sets of matrices as inp
These calculations showed that:

~1! The 3-MCSE is satisfied by the RDMs correspondi
both to the Hartree-Fock and to the full-configuration inte
action eigenstates. When initiating the calculation with the
matrices the corresponding result does not vary, irrespec
of the number of iterations performed, therefore these
fixed points of the iterative process.

~2! The 4-MCSE is satisfied by the RDMs correspondi
to the full-configuration-interaction eigenstates, wh
Hartree-Fock is no longer a fixed point of the equation.
should be stressed that this property is not common to
2-CSE one. Thus, while the 2-CSE is satisfied by the se
RDMs corresponding to a full-configuration interaction wa
function, when a second iteration is attempted—through
use of the approximating algorithms for the high-ord
RDMs—the equation is not any more satisfied, which is o
viously due to the fact that the algorithms are not exact.

~3! Although some encouraging results have been
tained, on the whole we cannot claim that the procedu
developed guaranty convergence. Therefore, this remain
open question.

D. Questions that must be investigated

The preliminary results just mentioned indicate that
though from a theoretical point of view the MCSEs sho
that the many-body problem can be exactly transformed
5-5
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a four-body problem, their usefulness cannot be conside
established until the convergence of these equations ca
achieved or, alternatively, other solution schemes have b
devised. The experience gathered after various different t
indicates that there are three main questions that shoul
further investigated.

1. N-representability constraints versus convergence

The main distinction among the different-codes tested
the way in which they incorporate theN-representability@28#
constraints. Many-different approaches have been teste
order to overcome the apparently restraining effect of th
constraints upon the iterative process. Thus, as the itera
proceed the matrices loose theirN representability if no con-
straints are imposed. On the other hand, when the constr
are included, the process advances and then returns to
initial situation. That is, it all happens as if, when force
towards N representability the matrices take the clos
N-representable form that happens to be their previous
The most-successful trial has been one that imposes
N-representability conditions to the 4-, 3-, 2-, and 1-RDM
an independent way without constraining these matrice
be consistent among themselves through contraction.

2. Should the antisymmetry property be explicitly implemented

This question is intimately related to the previous o
since the antisymmetry of the RDMs is itself a
N-representability condition. It is evident that each of t
p-MCSE forms reported here is just one among the seve
possible forms, since the fermion creator/annihilator ope
tors may be ordered in many-different ways. One can the
fore generate an antisymmetrizedp-MCSE by taking the
mean of all these possible forms. In this way one wo
handle antisymmetrized correlation matrices. Although t
feature is very appealing, it lengthens considerably the
culations, that is why we have been reluctant to conside
initially. On the other hand, if the antisymmetry is built in th
MCSE equations, theN-representability error at each itera
tion would decrease that could favor convergence. Conc
ing this issue, let us finally point out that the 4-RDM deco
position and explicit use of thepC can be replaced by th
use of our previousp-RDM construction algorithm that gen
erates antisymmetrical matrices. ThepD error, also called
p-order cumulant@20#, would then play the role of thepC.
This alternative may have been in the mind of Mazzio
m

n
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when in 1999 he mentioned to Valdemoro that a fourth-or
self-contained equation could be constructed. Probably
cause the talk took place during a walk, at the time, the i
seemed unfeasible and was discarded. We have not focu
our attention here on this possibility because it is less sa
fying from a theoretical point of view~the p0 do not arise!
and, as in the antisymmetrical MCSEs case, it might
rather expensive.

3. Role of the vanishing terms

As has been seen the relation(4;2,2)050 must be satisfied
at convergence, thus, in the trials carried out, the vanish
terms have been used as convergence tests. However,
during the iterative procedure, the termsp0 are not equal to
zero, they should perhaps be explicitly included. Thus, o
may ask whether a procedure based on Eq.~35! in preference
to Eq.~34! would prove more easy to control. This approac
which presents several difficulties from the computatio
point of view, is being investigated at present.

It must, however, be noted that Eq.~35! is not the only
relation that may be considered in order to include the v
ishing terms explicitly. Thus, another way in which the
terms may be taken into account consists, as in Eq.~28!, in
developing only the rhs of the equation; i.e., by imposi
that the equation corresponds exactly to the contraction
the Schro¨dinger equation and corresponds thus to an eig
state. This approach implies that the rhs. higher-order v
ishing terms are not any longer canceled out by the lhs o
and can therefore only be partly taken into account. T
alternative is also being considered.

Although the investigation of these three main questio
constitutes a large task it is, in our opinion, worthwhile sin
apart from the future practical applications it will deep
considerably our understanding of the many-body proble
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