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Family of modified-contracted Schralinger equations
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A family of equations that combines contracted Scimger equations of different orders is reported here.
Attention is focussed on the resulting second order, third order, and fourth order of these modified-contracted
Schralinger equations. Some of these equations are self-contained and have as fixed points those correspond-
ing to the full-configuration interaction eigenstates. The indeterminacy, which hindered initially the use of the
contracted Schitinger equations, does not formally exist in these equations. Relations linking the lower-order
reduced density matrices with the higher-order matrices are exactly incorporated into the modified-contracted
Schralinger-equations structure. The cancellation of high-order correlation terms, which is hidden in the
contracted Schidinger equations, now takes an explicit form.
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I. INTRODUCTION II. BASIC DEFINITIONS

Since the fermion RDM properties follow easily from

Since the pioneering papers of Dirfld, Husimi[2], and  those of the creator and annihilator operators appearing in
Lowdin [3] an extense literature appeared on the reducethe second-quantization definition of these matri@s, all
density_matrice$RD|\/|) theory_ There is a |arge literature on the developments carried out here will be expressed in this
this subject that the interested reader may findSa7). In  formalism. The fermion operatorb andb;, will be repre-
particular, a detailed account of the RDMs theory can besented in a finite basis ofk orthonormal spin orbitals and
found in Ref.[8]. In recent years a new line of research hasthe system will have a fixed number of electroNs,
been developed around a hierarchy of RDM equations
[4,6,9—11. In their matrix form, these equations can be ob- A. The many-body Hamiltonian

tained by applying a contracting mapping into ﬂnelectr_qn The usual many-body Hamiltonian is
space to theN-electron matrix representation of the Schro

dinger equatiori6]. The resultingp-order contracted Schro N + 1 , ot

dinger equatior(p-CSBE [6] is equivalent to the integrodif- H:Z &iphibp+ 5. > (ik[pg)bibybgby,. @
. . . . P i.k.p.g

ferential equation that had previously been obtained by Cho

[4], Cohen and Frishber§9], and Nakatsuji[10]. These This Hamiltonian may be exactly rewritten as

equations are indetermindt&2] that hindered their use until

Colmenero and Valdemoid 3] proposed to approximate the - 0 Ft

high-order RDMs in terms of the lower-order RDNIs4,15 H _i,%.q Hik;paDi bbby 2
and then solve the equation iteratively. A rather intense de-

velopment of the theory and applications of these equationghere °H has the form

has lately taken plackl6—27.

The aim of this paper is to report a family of four 0 1/ &ipdkqtekgdip .
modified-contracted Schdinger equations(MCSE) that Hikpa=75 TH'HPQ) : 3)
broadens our understanding of the many-body problem. Here
we address the many-fermion problem but the generalizatiowhere e and (ik|pqg) are the usual one- and two-electron
for treating boson systems is straightforward. These MCSHntegrals, respectivelithis latter in the Condon and Shortley
are particular combinations of several low-order CSEs. Thenotation.
main property of two of these MCSEs is that they do not
depend on any RDM of higher order than that of the MCSE B. The p-order RDM
itself; in the two other cases, the initial indeterminacy is only
partly removed. In a similar way as the CSE, the MCSEgNiI
can, in principle, be solved iteratively. This question, how-
ever, still remains open since the different procedures tested o0’ 1 - : )
have not yet achieved satisfactory convergence. Diiy iy gy iy~ a(q)“‘)ilbiz'"bipbjp"'bjzbjl|q) ).

The first four sections summarize the background knowl- (4)
edge that is needed for developing the arguments leading to
the MCSEs that are reported in Sec. V. Section VI is dediRelation(4) is the definition of thep-order transition reduced
cated to discuss the MCSEs practical possibilities and theensity matrix(p-TRDM) when ®#®’. In what follows,
guestions that still need to be investigated. unless they are needed, tthesuperscripts will be omitted.

The generalp-RDM second-quantization definition that
| be used here is
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The lower-order RDMs are related to the higher-order 21 2Dij'mI:lDi'm 1Dj'l_1Di'I5j'm+2Cij'mli 8
RDMs through the action of a contracting mapp(i6g. ' ' ’ t '
3! ®Dikmjin=—2! Dik:jnSmi+ 2! *Dik:inSjm

I1l. THE CONTRACTED SCHRO" DINGER EQUATIONS .
R +2! 2Dyt 'Dint ¥ Cikmyjin s (9)

When contracting the matrix form of the ScHinger

equation into the one-electron space, one obtgiris/) and
. 41 D pgrs= 2! *Dijrs( qkdpi— Spkdq1) + 3! *Dijiqrsd)
<¢|Hb;;b,|q)>:E<q)|b;r)br|q)>EE 1Dp;ra (5) ijkl;pgrs |J,rs( qk%pl ) ijl;qrs®kp
. +3! 3Dijk;pr55 —3! DIJ| pr55 kiq

whereH is theN-body Hamiltonian operator just described, —313p.. 5. 4212D... 212D
E is the energy, and its corresponding eigenstate. When ikiarsOpt 21 “Dijipg2! “Duayrs
replacing theH by its explicit formula(2) and transforming +%2%C;k1:para- (10)
the left-hand sidélhs) into its normal form, one obtains the ) . )
1-CSE where the matrices’C are p-order correlation matrices

[19,25,26 that involve products of TRDM elements. Calling
d the eigenstate that is being considered @idall the other

E 'Dpq=22'2 (°H?D)yjqi+3! 2 Hijoui *Dpijiau eigenstates of the system’s spectrum the correlation matrices
J Lkl appearing in relationg), (9), and(10) have the following
=M. (6)  structures

In what follows PM will denote the p-order matrix 2Cijpg= 2 (®|blb Y X |b byl ®)
formed by the right-hand sidghs) of the p-CSE.

The 2-CSE is obtained in a similar way by contracting the
matrix form of the Schrdinger equation from ah-electron = > 1Di<1_>g>’ 1D;I?(;‘I> (12
representation to a two-electron representation. This matrix O ED ’ ’

has the form . .
that describes the pure two-body correlation effects,

2!E 2qu;rs=2!2(OH2D)pq;rs+3!2iEkI (quI;kI 3Drsi;pkl

3;2,1) — 2P’ 1 <D<I)
P Cpar=2! 2 *Difpe D" (12

+%Hi .1 *Disiciqr) _ _ o
which describes a combélg'gltll)on of pure two- and three-body
0 4 5 correlation effects. Thus><~C may be decomposed into
+4!i,1%| Hijia Drsijipaie="Mpars- (D 1 ec terms involving tw@C elements and &%%1C ele-
ment,
As can be seen the 1-CSE depends not only on the
1-RDM but also on the 2-and the 3-RDM. Similarly, the (422 _ 2nPD’ 2
2-CSE depends not only on the 2-RDM but also on the 3- C.,k|;pqrs—2!2!¢§¢ Difpq “Didirs: (13
and 4-RDMs. This fact lies at the root of the indeterminacy
of these equations. As already mentioned, in the method pravhich describes a combination of pure two-, three-, and four-
posed by Colmenero and Valdemdt$] a set of algorithms body correlation effects since thé:22C element may be
for approximating the higher-order RDMs in terms of the decomposed into a combination dic, &11c, and
lower-order RDMs[14,15 allows these equations to be (+:1.1L1C elements.
solved iteratively. In general, the symbofP?*Y)C denotes that th€ is a
Although the 1-CSE is the most attractive one, its useful-p-order correlation matrix involvingfrom left to right a
ness is limited by the fact that it can be exactly satisfied noproduct of elements of a 2-TRDM, and TRDM, and a
only by the eigenstate RDMs but also by those RDMs cory-TRDM.
responding to the Hartree-Fock solution. In fact, in all our  AJl these matrices can be understood as describing global
attempts to solve this equation the convergence has alway®rrelation effects due to virtual excitations and deexcita-

tended towards the Hartree-Fock solution. tions of two, three. . ., p-electrons. It should be noted that
they cannot be decomposed into terms that depend only on
IV. THE CORRELATION MATRICES RDM elements.

A p-RDM element(for p>1) may be decomposed into
different terms involving elements of lower-order RDMs and
elements of a different kind of matrices that describe corre-
lation effects. Thus, with the use of straightforward second- A set of relations linkingC matrices of different orderC
quantization algebrfl8,26 one finds relationg have recently been reportg@7]. TheseC relations

V. THE MODIFIED-CONTRACTED SCHRO DINGER
EQUATIONS
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establish the set of necessary conditions that the correlation g 21 2qu;rsz ~ g lMp;s+ lMp;r qu;s+E2Cpq;rs-
matrices must fulfill when they correspond to eigenstates of (21)

the Hamiltonian. These conditions imply that the action of

matrix °H on the 2.C matrices cancels out the action of this ~ This result gives a second-order MCSE formally equiva-
same®H matrix on the 3- and 4G matrices. The reason that [ent to the 2-CSE but which does not depend explicitly on

leads to theC relations given in[27] can also lead to the the 4-RDM. _ . _
general result Already at this stage two-important questions arise. To

what extent the vanishing terms can be ignored? and how to
impose the constraints on the correlation matrices implied by
;k|wl---wxz1--<zy---:0, them? At present these questions remain open. In order to
take into account the vanishing terms it is useful to combine
(14 : . .
the previous development with another alternative transfor-
where p=2+x+y-+---. That is, irrespective of the exact mation of Eqg.(15). It consists in inserting the development

structure of they-C matrices, a sum of products of this type ©f the unity after the Hamiltonian operator that gives
will vanish. As will be shown, these vanishing terms appear
in the deduction of the MCSEs. It is easy to show that when
the C matrices involved are of the typ@¥C with x>1 Note, that the conditiof*>20=0 is therefore equivalent

these relations are also sufficient conditions to guarantee thg§ the 2-CSE. Combining now E¢R2) with Eqg. (19) one has
these matrices correspond to eigenstates of the Hamiltonian.

OH. . (P2XY,..)C..
% Hiji C””l”'”xtl“'ty

21E 2D pgrs+ 220,01 = 2 Mpqurs - (22)

2 — 1 1 1 2
E DPQ§VS__5TQ Mpis+ MDQ" Dq;s+E CDQ;I’S

A. The second-order modified-contracted Schrdinger ts. G2y _1p  (321g 23
equation rq pis a;s pirs
Let us consider again the 2-CSE where the relation

" 4;2, - _ (3;:2.1 (3;2,1 1 (4;2,1,)
ZMDQ;rs:<q)|Hbgbzlbsbr|q)>:E2! ZDPq;rs: (15) 2Opq;rs Orq Opis+ Opir Dass Opgyrs:

and let us rearrange the operators of the Ihs as has been used. Equatiof®l) and(23) show that the original
~ - indeterminacy of the 1-CSE has been partially removed.
(®|Hbgbgbsb, [®) = — &,o(P|Hbpby D)

N B. The third-order modified-contracted Schrodinger
+(®[FAblb,bib®).  (16) g

equation
Inserting twice the unit operator Proceeding as in the previous paragraph, the starting rela-
tion is
I=[@)@]+ > [@/)(@/|=[o)@[+Q  (17) 2 Miemijin = (®| AT bbbbyb; | @)= E 31 2D in -
O +P (25
in the last term of Eq(16) Rearranging the order of the operators and using the unit
. ~ operator(17)
(@|Hib/b,Tblb®), (18)

E 3! 3Dikm;j|n:5mi 2-/\/lik;ln_5m| 2~/\/lik;l'f"
Eq. (16) becomes .
g. (16) +(®|Ab/blbb;blb,|®).  (26)

2 — ST T — 1 1 1
Mpq:rs_<‘b|prbqbsbr|‘D>_ Srq “Mpst My "Dy Let us now transform the last term of this equation by insert-

+E2Cpqrst 420,01 (19) ing repeatedly the unit operator
where (@|Hb bbb bl b, ®)="D .0 ZMix
+(®|Hb/blbb;Qb/ b,|®)
Because of relatior(14), this term vanishes when the +(®|Hib]b{bb; Qb b,/ @)

equation is satisfied. The labels of the zero symbol appearing

=1 2. (3;:20¢., .
in the Ihs of Eq.(20) coincide with those of the matrix Dmin “Migji B 2 Cikmijin

involved in the relation after omitting the indices over which +(5;2,2,Doikm_“n (27)
the sum is carried out. '
Equation(16) may therefore be written as the equation thus becomes
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E 3! *Dikmijin = mj “Mik:in— Omi “Mik:jn+ *Mik:ji "Din E 3! *Dikmsjin = Smj*Mikin— “4%?0ic.1n)
+E C23Cimjin + 522 Oy jin (28) = i Mijn— 422055 jn)

. . . 1 20 g (4220
and, since thé>2210,, ..., term disappears when the equa- + " Dimn(“Mikji Oik;jr)
tion is satisfied it may formally be omitted. Thus, +E G23C; - (32)

E 3! 3Dikm;j,n: Omij 2 Mig:1n— Omi 2 Mik;jn+2Mik;j| D That is, after decomposing to the outmost the fifth-order van-
(320 ishing terms, only the(*220 terms remain. Again, when
+E 2 Cikmyjin - (29 using Egs.(19) and (24) a self-contained equation is ob-

. . . . tained
Similarly to Eq.(21), this equation shows that the original

indeterminacy of the 2-CSE has been partially removed. On  E 3! ®Diyiin= (mi8kj— OmiSk) (*Mi.n— 3220;.)
the other hand, this 3-MCSE takes a self-contained form 1 1 1
when the matrix> M is replaced according to E¢19) and +("Dmn "Dt = dmi “Dicn)

the vanishing terms are neglected. X (*M;— 3220,))
E 3! *Dikmsjin = (SmiSkj— SmjSk1) " Min +(Smj 'Dicn— Ok} Dmin)
+(*Dmn "Dkt = i "Dicn) ™ M X ("M, —3220,.) + E S *Cikiin
+(Smj Dicn— Sk 'Dimn) "My —E&mi %Cik;jn+ E "Diyn “Cikcji
+ESmj Cik:in— ESmi “Cikijn +E G25C i - (33
+E *Dyn “Ciejt +E F 2 Ciyiin - Note that this last equation is not only self-contained be-

cause the highest RDM'’s order is three on both sides of the
equation but also because the higher-order vanishing terms

As in the 2-MCSE case, an alternative expression fronj1avé been canceled out. Although this is a very appealing
which the higher-order vanishing terms have been cancelegduation, it should be recalled that the (1-CSB is not

out, can be obtained. Thus, when the unit operator is inserteg!ly satisfied by the full-configuration interaction set of
in relation (25) after the Hamiltonian operator, one has RDMs but also by the Hartree-Fock RDMs, which limits its

(30

usefulness.
E3! 3Dikm'Jln +(5;2'3)0ikm'Jln :<q)| ﬂbrblb:nbﬂblbi|¢> C. The fourth-order modified-contracted Schradin i
; ; ) ger equation
= 3Mikm;j|n . (31 Since the arguments needed for obtaining the 4-MCSE are
similar to those used in the two previous paragraphs only the
This relation can be combined with E@8) giving final results are included here. Thus, the 4-MCSE equation is

E 4! *Dijui;pqrs= (8kqdip — dig k) “Mijirs + Siq *Mijiprst Skp *Mijisars— dip *Mijicqrs™ kg *Mijiprs
+2Mij;pg2! *Diiirs+ E 42 2Cijpars
=(8140kp— SkqOip) *Mij:rs T (Skgdir = BigOkr) *Mij - pst (81p Okr = SkpOir ) *Mij s
+(81q "Dk Skq D) *Mijprt (8kp 'Dis— 8ip D)) *Mijiqrt 2! “Digirs “Mijpg
+81gE F P Cijiprst OB 2 Cijisqrs e PP Cijiprs— pE F P CjciarsT E 2 Cijugpars-
(34)

and the alternative equation where the vanishing terms appear explicitly and where oAltline 2-CSE appears is

E 4! 4|:)ijkl pars— ( 5Iq5kp_ 5kq5Ip)(2Mij s (4;2’2)0ij ;rs) +( 5kq5Ir - 5Iq5kr)(2Mij ps (4;2’2)0ij ;ps) +( 5Ip5kr_ 5kp5Ir)
><(2~/\/lij;qs_(4;2'2)0ij;qs)"'(5Iq le;k_ 5kq le;I)(ZMij;pr_(‘l;z'aoij;pr)+(5kp lDI;s_ 5Ip le;s)
><(2-/\/tij ;qr_(4:2'2)0ij;qr)+ 2! 2Dkl;rs(2~/\/lij;pq_(4;2'2)oij ;pq)+ 5IqE (3:3’1)Cijk;prs+ 5ka (3;2'1)Cijl ,qrs

- 5qu (3;2'1)Cijl prs— §IpE (S;Z’Dcijk;qrs_" E (4;2'2)Cijkl pars- (35)
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This last equation is not only self-contained because thénequalities imposing that these matrices be positive-
highest RDM’s order is four on both sides of the equation butemidefinite are auxiliary conditions on the correlation ma-
also because the higher-order vanishing terms have been catices to be considered jointly with the MCSEs.
celed out. In our opinion, these features indicate that the information

Although these relations are exact it should be noted thatarried by the 4-MCSEs is more complete than that carried
they do not have the RDM'’s antisymmetry property built in. by the 2-CSE in spite of the very close relationship between
This point will be discussed in some detail in the last sectionthese two families of equations.

D. Relation between the modified-contracted Schidinger B. The iterative procedure
equations’s structure and the reduced

. . o The general lines of the MCSEs iterative procedure are
density-matrices decomposition formulas

very similar to the 2 CSE one. Thus, one starts with an initial
It is interesting to note that there is a short-cut method forset of (p-1)-,(p-2)-,...,RDMs, aPC, and the energ.
deducing the MCSEs. Thus, let us, for instance, consider th€hese initial data should correspond to a realistic zero-order
2-RDM decomposition formul&8) and let us multiply it by ~ wave function of the eigenstate that is being investigated.
the energyE This set of zero-order matrices is replaced in the expression
of the corresponding MCSE. After symmetrizing the matrix

12p. —=Fp. Ip. —Ep.. s 20 . . . ~ . .
E 20 "Dij;m=E "Dism "Dj;i =B "Diyi 6j;m+ E “Cijimi, thus obtained, which will be hereafter calléd/, its trace is

(36) divided by the trace of the correspondinRDM, (”;‘),

then replacingg 'D by 1M one has which yielgs a newk. Then the newPD is obtained by
dividing PM by E. All the lower-order RDMs and théC

E 2! 2Djj.mi="Mim D}y = M1 8.+ E %Cijomi, are obtained from the neRD and with this new set of data

(37) a new iteration is initiated.

that is, the 2-MCSE is reobtained. Similar short-cut deduc-
tions can be written for the 3- and 4-MCSEs. By deducing _ _
the MCSEs in this way, th0 vanishing correlation terms ~ In order to test these equations the linear Betblecule

do not appear. As will be discussed in the last section, apa#as calculated using a basis set of 14 Hartree-Fock spin
from their theoretical interest, thes® terms may be rel- Orbitals. The 3- and the 4-MCSE calculating codes have been

evant in the application method. programed. The 3-MCSE and 4-MCSE codes evaluate rela-
tions (30) and (34), respectively.

These codes were tested with the full-configuration inter-
action and with the Hartree-Fock sets of matrices as input.
A. Special features of the modified-contracted Schidinger These calculations showed that:

equations (1) The 3-MCSE is satisfied by the RDMs corresponding

As has already been stressed, relatiéd®, (33), (34), both to the Hartree-Fock and to the full-configuration inter-

and (35) are self-contained equations. This means that theaCtIOI’l eigenstates. When initiating the calculation with these

kind of indeterminacy, which hindered initially the use of the T121rices the corresponding result does not vary, irrespective

o . of the number of iterations performed, therefore these are
CSE and which in recent years has been approximately res ed points of the iterative process

moved through the use of construction algorithms for the ) s .
high-order RDMs, does not formally exist in the MCSEs. (2) The 4'MCS.E IS s'atlsf|ed by Fhe RDMs correspondmg
to the full-configuration-interaction eigenstates, while

; 4:2,2) (3;2,1), ; _
However, since thé"*C and C matrix elements ap Hartree-Fock is no longer a fixed point of the equation. It

pearing in the last terms of the MCSEs relatig@§) and . :

. o . . should be stressed that this property is not common to the
(34? are not dl(ectly_ modified by Fhe action of the Hfim'l'.Z—CSE one. Thus, while the ZF?CSpE i>s/ satisfied by the set of
tonian at each iteration, the question that could be raised igyp) 1 corresponding to a full-configuration interaction wave

what kind of information, not contained in théM (the : . S
: . ’ . function, when a second iteration is attempted—through the
2-CSB, is carried out by the MCSEs? The answer to thISuse of the approximating algorithms for the high-order

question is that the relations linking the lower-order RDMS 55\ is—the equation is not any more satisfied, which is ob-

with the higher-order RDMs are exactly incorporated into theviously due to the fact that the algorithms are not exact.

MCSEs structure. In consequence, no extra approximate con- (3) Although some encouraging results have been ob-

struction algorithms for the high-order RDMs are needed, %ained, on the whole we cannot claim that the procedures
in the 2-CSE case, in order to solve these equations Iterad'eveloped guaranty convergence. Therefore, this remains an

tively. :
. . . tion.
Another special feature of these equations is that the Cano_pen question

cellation of high-order correlation terms, which is hidden in
the 2-CSE, appears explicitly in the MCSEs.

It should also be noted that the third- and fourth-order The preliminary results just mentioned indicate that al-
correlation matrices are directly related to the third- andthough from a theoretical point of view the MCSEs show
fourth-orderG matrices[25,26], respectively. Therefore the that the many-body problem can be exactly transformed into

C. Some significant results

VI. DISCUSSION

D. Questions that must be investigated
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a four-body problem, their usefulness cannot be considereethen in 1999 he mentioned to Valdemoro that a fourth-order
established until the convergence of these equations can Iself-contained equation could be constructed. Probably be-
achieved or, alternatively, other solution schemes have beetause the talk took place during a walk, at the time, the idea
devised. The experience gathered after various different trialseemed unfeasible and was discarded. We have not focussed
indicates that there are three main questions that should bmur attention here on this possibility because it is less satis-

further investigated. fying from a theoretical point of viewthe 0 do not arisg
and, as in the antisymmetrical MCSEs case, it might be
1. N-representability constraints versus convergence rather expensive.

The main distinction among the different-codes tested is
the way in which they incorporate tid:representability28]
constraints. Many-different approaches have been tested in As has been seen the relatif>20=0 must be satisfied
order to overcome the apparently restraining effect of thesat convergence, thus, in the trials carried out, the vanishing
constraints upon the iterative process. Thus, as the iteratiorisrms have been used as convergence tests. However, since
proceed the matrices loose thiirepresentability if no con- during the iterative procedure, the terf@ are not equal to
straints are imposed. On the other hand, when the constraintero, they should perhaps be explicitly included. Thus, one
are included, the process advances and then returns to theay ask whether a procedure based on(B§). in preference
initial situation. That is, it all happens as if, when forced to Eq.(34) would prove more easy to control. This approach,
towards N representability the matrices take the closerwhich presents several difficulties from the computational
N-representable form that happens to be their previous ongoint of view, is being investigated at present.

The most-successful trial has been one that imposes the It must, however, be noted that E5) is not the only
N-representability conditions to the 4-, 3-, 2-, and 1-RDM inrelation that may be considered in order to include the van-
an independent way without constraining these matrices teshing terms explicitly. Thus, another way in which these
be consistent among themselves through contraction. terms may be taken into account consists, as in(28), in
developing only the rhs of the equation; i.e., by imposing
2. Should the antisymmetry property be explicitly implemented? that the equation corresponds exactly to the contraction of

This question is intimately related to the previous onetn€ Schrdinger equation and corresponds thus to an eigen-
since the antisymmetry of the RDMs is itself an state. This approach implies that the rhs. higher-order van-
N-representability condition. It is evident that each of the/Shing terms are not any longer canceled out by the Ihs ones
p-MCSE forms reported here is just one among the severaframd can th_erefore °_”'Y be p_artly taken into account. This
possible forms, since the fermion creator/annihilator opera@!t€'native is also being considered. . .
tors may be ordered in many-different ways. One can there- Although the investigation of these three main questions
fore generate an antisymmetrizgdMCSE by taking the constitutes a large task it is, in our op_mpn,wc_:rthyvhﬂe since
mean of all these possible forms. In this way one woulgapart from the future practical applications it will deepen

handle antisymmetrized correlation matrices. Although thisconsiderably our understanding of the many-body problem.

feature is very appealing, it lengthens considerably the cal-
culations, that is why we have been reluctant to consider it
initially. On the other hand, if the antisymmetry is builtinthe  We gratefully thank Professor Luis M. Tel for his useful
MCSE equations, thé&l-representability error at each itera- comments and for suggesting an appropriate name for this
tion would decrease that could favor convergence. Concermew family of equations. We are also indepted to Professor
ing this issue, let us finally point out that the 4-RDM decom-Peter Surjan and Agnes Szabadoz for many useful discus-
position and explicit use of th8C can be replaced by the sions. C.V. acknowledges the financial support granted to
use of our previougp-RDM construction algorithm that gen- this work by the Ministerio de Ciencia y Tecnolagiunder
erates antisymmetrical matrices. TRA error, also called Project No. BQU2000-1158 and D.R.A. is grateful to finan-
p-order cumulan{20], would then play the role of théC. cial support from Agencia Espala de Cooperaciolnterna-
This alternative may have been in the mind of Mazziotticional (AECI)/Seccim Mutis.

3. Role of the vanishing terms
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