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QED corrections to singlet levels of the helium atom: A complete set of effective operators
to ma6
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Using singletSstates of the helium atom as an example, precise calculation of energy levels in few-electron
atoms is described. In particular, a complete set of effective operators is derived, which generatesO(ma6)
relativistic and radiative corrections to the Schro¨dinger energy. Average values of these operators can be
calculated using a variational Schro¨dinger wave function.

DOI: 10.1103/PhysRevA.64.062104 PACS number~s!: 12.20.Ds, 31.30.Jv, 32.10.Fn
n
ro
ts

ta
n

a

-

s
m

it

er-

er
t

he

the

t

a-

is

u-

its
I. INTRODUCTION

Singlet states of the helium atom, especially its grou
state, are best suited for precision studies of the elect
electron interaction at low energies. Recent measuremen
1 1S221P @1# and 11S22 1S @2# intervals in helium
reached the precision of about 10 ppb. Helium ground-s
ionization potential~the difference between ground-state e
ergies of the singly charged ion and of the atom! extracted
from those measurements constitutes

nexpt
1S22P~1 1S!55 945 204 238~45! MHz, ~1!

and

nexpt
1S22S~1 1S!55 945 204 356~48! MHz, ~2!

respectively.
Theoretically, the ionization potential can be calculated

a power series in the fine-structure constanta. Leading
O(ma2) contribution to the ground-state energy1 is the low-
est eigenvalueE of the nonrelativistic Hamiltonian

H5(
a

pa
2

2ma
1a (

b.a

zazb

r ab
, ~3!

entering into the Schro¨dinger equationHc5Ec. Here and
below I use the following notations:ra andpa are the posi-
tion and momentum operators for the particlea with mass
ma and electric chargeza ~in units of the proton charge!. The
relative position of two particles israb5ra2rb ; for any vec-
tor v, v denotesuvu. The helium atom consists of two elec
trons with massesm15m25m and chargesz15z2521,
and the nucleus with massm35M and chargez352. A gen-
eral case ofz35Z takes into consideration heliumlike ion
with Z!1/a. In the center-of-mass frame, total momentu
of the atom vanishes,(apa50 so that only two of three
position vectors are independent:(amara50. In singlet
states, spins of the electrons sum up to zero while the orb

*Email address: yelkhovsky@inp.nsk.su
1The units\51, c51 are used throughout this paper.
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part of the wave function is symmetric with respect to p
mutation of the electrons positions,c(r1 ,r2)5c(r2 ,r1).

Relativistic and radiative effects shift the Schro¨dinger
value of the energy by corrections of higher orders ina. In
particular, the leading correction

d (2)E5K 2(
a

pa
4

8ma
3

1pZa
d~r13!1d~r23!

2m2
1

pad~r12!

m2

2
a

2 (
b.a

zazb

mamb
Fpa

1

r ab
pb1~parab!

1

r ab
3 ~rabpb!G L ,

~4!

arises as the average value of the Breit perturbation~see, e.g.,
@3#! over the nonrelativistic wave function and is of the ord
a2 relative to the Schro¨dinger energy. It is taken into accoun
in Eq. ~4! that the total spin of electrons and the spin of t
nucleus are both equal to zero.

A particular class of corrections appears due to
nucleus structure. There, the most important~and sufficient
to be included at the present level of accuracy! is the effect
of the nucleus charge radiusRN ,

dchrE5
2pZa

3
RN

2(
a

^d~raN!&. ~5!

HereraN denotes the position of theath electron with respec
to the nucleus.

The most recent theoretical result for the helium ioniz
tion potential

n th~1 1S!55 945 204 226~91! MHz, ~6!

obtained in Ref.@4# includes along with Eqs.~4! and~5! the
ma5 order, the leading part of thema6 order, and some
estimates of higher-order contributions. Its uncertainty
twice as large as that of the experimental data~1! and ~2!.
The main source of the uncertainty in Eq.~6! is the yet
uncalculated part of theO(ma6) correction.

The present work is the first of two devoted to the calc
lation of the helium ionization potential withO(ma6) accu-
racy. It contains the analytic part of the calculation and
©2001 The American Physical Society04-1
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ALEXANDER YELKHOVSKY PHYSICAL REVIEW A 64 062104
main result is a set of effective operators that produce
O(ma6) corrections to singletS levels of helium atom and
low-Z heliumlike ions. To make the presentation se
contained, I also briefly outline how the lower-order corre
tion can be obtained by the same method. The second p
@5# contains numerical results for the average values of
derived effective operators as well as all other known con
butions to the helium ionization potential.

The rest of this paper is organized as follows. Section
describes general features of the approach. Orderma5 effec-
tive operators are derived in Sec. III. Sections IV and V
devoted to theO(ma6) effective operators appearing from
hard and soft scales, respectively. The final result of
paper is presented in the Conclusion.

II. FRAMEWORK OF THE CALCULATION

Since the early days of quantum electrodynamics~QED!,
the nonrelativistic expansion of an atom’s ground-state
ergy is known to break down at thema5 order @6#. In con-
trast to theO(ma4) effective operators whose average v
ues ~4! are completely determined by the soft (p;1/r
;ma) scale, the operators of the next order in momentu
to-mass ratio are too singular to ensure finiteness of t
average values over the ground state described by the w
function c.2 It means that those operators become sensi
also to the hard (p;m) scale, which is beyond the scope
the nonrelativistic expansion. Another important feature
the O(ma5) contribution to the energy is that the very pi
ture of interaction between particles through a potential fa
virtual transitions from the atom’s ground state to excit
states and a photon become relevant. Thus, one more
comes into play — this intermediate ultrasoft photon has
orderma2 energy. The most natural way to calculate suc
multiscale shift of the energy is to divide it into sever
pieces each originating from its own scale and then use s
plifying approximations suitable to that scale. For examp
the nonrelativistic expansion is applicable at the soft sc
Alternatively, one can neglect bound-state effects at the h
scale. If all relevant contributions are included, their sum
independent of the details of the division. Applied to boun
state problems in QED, this idea was first formulated in R
@7# as the nonrelativistic quantum electrodynam
~NRQED!.

Traditionally, in atomic calculations involving sever
scales, some auxiliary parameter is introduced to separa
contribution of the given scale from the others~see, e.g., Ref.
@8# where such a scheme is applied to the helium proble!.
For example, to divide soft and hard-scale contributions
introduces l satisfying ma!l!m and gets a final
l-independent energy shift as a result of cancellation
tween twol-dependent contributions. The soft scale one
cludesl as the ultraviolet cutoff that makes average valu
of singular operators finite. Simultaneously,l cuts off other-
wise infrared divergent on-shell scattering amplitudes t
represent a hard-scale contribution. The higher is the orde

2See Sec. III for details.
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a, the more severe are singularities of both contributions
the larger is a number ofl-dependent terms to be canceled
order to get a final result. The problem seems even less t
table when the wave function is known only numerically.

Precise calculations of the positronium spectrum@9–12#
have shown that contributions from various scales can
separated much more effectively by shifting the number
spatial dimensionsd from three,d→322e. For consistency,
the number of space-time dimensions in hard-scale calc
tions should be shifted from four to 422e. This shift implies
essentially that all objects defined originally ford53 are
analytically continued to the complex plane ofd. The main
advantage of the dimensional regularization over the tra
tional scheme is that due to the analytic continuation
power divergences automatically drop out of calculatio
and one only has to keep track of logarithmic divergen
that show up as inverse powers ofe.

Recall that there are two kinds of effective operators
NRQED. Operators coming from the hard scale are cont
i.e., they are proportional to delta functions of distances
tween particles. Infrared divergences typical in hard-sc
contributions manifest themselves as inverse powers ofe in
coefficients of those delta functions. On the other hand,
soft-scale effective operators have finite coefficients ad
→3. Ultraviolet divergences inherent to soft-scale contrib
tions show up as inverse powers ofe only when one evalu-
ates average values of those operators over a solution o
Schrödinger equation ind5322e dimensions. The crucia
observation made in Refs.@11,12# for the O(ma6) correc-
tions to positronium levels is that even without knowing
explicit form of this solution but using only the Schro¨dinger
equation itself, one can extract all the divergent pieces in
form of ^d(r)&/e, wherer is a distance between the electro
and the positron while the average value is calculated o
thed-dimensional wave function. Since after such an extr
tion the divergences contained in both hard and soft-sc
contributions have exactly the same form, it is easy to ch
that they cancel each other so that a finite remainder ca
safely calculated in three dimensions.

I employ the same idea for the helium atom, where
analytic form of the wave function is not available even
three dimensions. Nevertheless, in perfect analogy to
positronium case, the use of the Schro¨dinger equation alone
makes it possible to extract the divergent pieces of all s
scale contributions on theoperatorlevel. Performing such an
extraction I manage to demonstrate straightforwardly that
divergences coming from both scales cancel each otherbe-
fore any numerical calculation. As the result, the to
O(ma6) correction to a singletS level is represented as
sum of apparently finite average values of the regularizati
independent operators. These average values can be c
lated using a wave function of the helium atom, built as
numerical solution of the Schro¨dinger equation@5#.

It is worth mentioning that the idea of the approach ha
simple physical reason. In fact, soft-scale divergences
bound-state energy are of the ultraviolet origin. Hence th
should be proportional to a value of the corresponding w
function at zeroth separation between interacting particles
terms of the effective theory it means that by virtue of t
4-2
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Schrödinger equation one should be able to rewrite the s
gular soft-scale contributions in such a way that correspo
ing divergences are moved to the Wilson coefficients of
contact operators. After the perturbation theory is reform
lated in such a manner, and if the underlying theory is ren
malizable, all divergences that appear in any given Wils
coefficient have to cancel each other.

Validity of the results obtained below for the helium ca
be checked in two limiting cases. The first,a→0 at finiteZa
describes heliumlike ion with the electron-electron inter
tion switched off. The second,Z→0 at z2→1 describes
parapositronium. Since in both cases three-dimensional w
functions of allSstates are available in an analytic form, t
average values of effective operators can be calculated
plicitly @modulo ^d(r)&/e terms#. Comparison with the
known results shows complete agreement for all contri
tions.

In order to make the formulas more transparent, I wr
the nonsingular soft-scale operators with coefficients take
d53.

III. ORDER ma5 EFFECTIVE OPERATORS

This section illustrates the general scheme by the calc
tion of effective operators in the first nontrivial order. A
previously mentioned, atO(ma5) the relevant contributions
to the energy come from three scales: ultrasoft, soft,
hard. Below we will calculate corresponding effective ope
tors.

A. Hard-scale contribution

Hard-scale effects in the interaction between nonrelati
tic particlesa and b give rise to the contact operators th
show up ascabd(rab) in the spatial representation and, ther
fore, ascab in the momentum one. In the NRQED approac
cab is extracted through the matching procedure, nam
equating theab→ab scattering amplitude calculated in th
full QED to that in the effective theory approach. Dime
sional regularization is best suited to this procedure:cab
equals minus QED scattering amplitude for the particlea
andb taken on their mass shells and at rest. In this man
the hard one-loop vertex correction to the single Coulo
exchange between the spin-1/2 point particlea and a particle
b induces the effective potential3

VhC~rab!5
2a2

3

za
3zb

ma
2 S 1

e
22 lnmaD d~rab!. ~7!

The electron’s anomalous magnetic moment taken in
leading one-loop approximation gives rise to the poten
between electronsa andb,

3To simplify the presentation, I omit the factor (4p)eG(11e)
from the final expressions for all operators in Sec. III. This fac
does not contribute to the finite totalO(ma5) energy correction.
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Vhm~rab!52
8a2

3m2
sasb d~rab!, ~8!

where sa is the spin operator of theath particle. If the
nucleus spin is zero, the corresponding electron-nucleus
tential vanishes. The next effective potential is generated
the hard one-loop box diagrams. For two spin-1/2 partic
such a potential reads@13#

Vbox~rab!5
~azazb!2

mamb
S 1

e
2 ln~mamb!2

1

3

1
ma1mb22mab~114sasb!

ma2mb
ln

ma

mb
D d~rab!,

~9!

where mab5mamb /(ma1mb) is the reduced mass of th
pair. With the O(m/M ) precision, the correspondin
electron-nucleus effective potential is

Vbox~reN!5
~Za!2

mM S 1

e
22 lnm2

1

3D d~reN!. ~10!

The lastO(ma5) contribution coming from the hard scal
appears due to vacuum polarization. In ordinary few-elect
atoms, an account of the electron vacuum polarization is
ficient for the present-day accuracy,

Vvp~rab!5
4a2

15

zazb

m2
d~rab!. ~11!

The hard-scale contribution to the energy equals the ave
value of VhC1Vhm1Vbox1Vvp summed over all pairs o
particles.

B. Ultrasoft-scale contribution

According to the standard rules of the perturbation theo
virtual transition of the atom into an excited state induced
the emission and subsequent absorption of a photon is
scribed by the following effective operator:

E ddq

~2p!d

4pa

2q (
a

j aiexp~2 iq•ra!

3

d i j 2
qiqj

q2

E2H2q (
b

j b jexp~ iq•rb!, ~12!

whereH is thed-dimensional Schro¨dinger Hamiltonian,E is
its lowest eigenvalue,q is the photon momentum,q5uqu.
Assuming thatq;ma2, we can restrict our attention to th
electric dipole transitions, i.e., replace the exponents
(6q•ra) by 1 and the current density operatorsja by their
orbital counterparts taken in the leading nonrelativistic a

r

4-3



p-

th

rd

y

by

.

ex-

n
oxi-

ic

n
n

ALEXANDER YELKHOVSKY PHYSICAL REVIEW A 64 062104
proximation,ja→zapa /ma , in Eq. ~12!. Integration over di-
rections ofq then gives for the ultrasoft-scale effective o
erator

Vus5
aVd

~2p!d21

d21

d
JE

0

` dq qd22

E2H2q
J, ~13!

where the operatorJ is defined as(azapa /ma and Vd
52pd/2/G(d/2) is the d-dimensional solid angle. Analytic
continuation of the integral overq from the stripe 1
,Re(d),2 reads

E
0

` dq qd22

E2H2q
5

p~H2E!d22

sin~pd !
. ~14!

Expanding now the right-hand side~rhs! of Eq. ~13! in e
5(32d)/2, we get with theO(e0) accuracy

Vus→
2a

3p
J~H2E!S 1

2e
1

5

6
2 ln 2~H2E! D J. ~15!

As previously mentioned, the 1/e term is due to the diver-
gence ofVus in three dimensions. TheO(ma5) ultrasoft-
scale contribution to the energy is the average value of
operator~15! over thed-dimensional wave function,

d us
(3)E5

2a

3p K S 1

2e
1

5

6
2 ln~ma2! D †J,@H,J#‡

2

2J~H2E!ln
H2E

R`
JL . ~16!

Here I used the Schro¨dinger equation and also the standa
notation for the Rydberg constantR`5ma2/2. Since the
Poisson equation†pa ,@pa ,Cab#‡54pazazbd(ra2rb) for the
Coulomb potentialCab between two particles holds in an
dimensions, we have

†J,@H,J#‡524pa(
a

za(
b.a

zbS za

ma
2

zb

mb
D 2

d~rab!.

~17!

The ultrasoft correction~16! in helium then reads

d us
(3)E5

4Za2

3 S 1

m
1

Z

M D 2S 1

2e
1

5

6
2 ln~ma2!2 ln

k0

R`
D

3^d~r23!1d~r31!&, ~18!

where the helium Bethe logarithm@14# is defined as

ln
k0

R`
5

K ~p11p2!~H2E!ln
H2E

R`
~p11p2!L

^~p11p2!~H2E!~p11p2!&
, ~19!

and can be safely calculated in three dimensions.
06210
e

C. Soft-scale contribution

At the soft scale, momenta of all particles~electrons,
nucleus, and virtual photons! are of the orderma. Therefore,
the O(ma5) soft-scale effective operators are generated
transverse photon exchange~s!, since only such scattering
amplitudes can contain odd powers of photon momentum

1. Retardation

Let us again start with the single transverse photon
change described by the effective operator~12! but now as-
suming thatq;ma. SinceH2E!ma, we can expand the
integrand in (H2E)/q. Zeroth order term of this expansio
describes the magnetic interaction in instantaneous appr
mation and is included~modulo relativistic corrections! into
the Breit perturbation@see Eq.~4!#. The first-order retarda-
tion effect is represented by the operator

Vret54paE ddq

~2p!d

d i j 2
qiqj

q2

2q3 (
a

j aiexp~2 iq•ra!

3~H2E!(
b

j b jexp~ iq•rb!. ~20!

Using again the Schro¨dinger equation, we get

d retE5paE ddq

~2p!d

d i j 2
qiqj

q2

q3 K F(
a

j ai

3exp~2 iq•ra!,FH,(
b

j b jexp~ iq•rb!G GL . ~21!

The orderma5 correction arises due to the nonrelativist
current densities.

ja~p8,p!→za

p81p12@~p82p!sa ,sa#

2m
. ~22!

We then see that in Eq.~21! only the exchange betwee
different particles (aÞb) can give a nonzero contribution. I
fact, the integral overq in the ‘‘diagonal’’ terms (a5b) is
scaleless and hence vanishes. The expression~21! simplifies
to

d ret
(3)E522pa(

a
(
b.a

zazb

mamb
^Ui j ~rab!

3†pai ,@pb j ,Cab~rab!#‡&, ~23!

and reproduces the result obtained in Ref.@15# for positro-
nium. Here
4-4
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Ui j ~r!5E ddq

~2p!d

d i j 2
qiqj

q2

q3
exp~ iq•r!

5

GS d23

2 D r 32d

6p (d11)/2 S d i j 1
d23

2
ninj D , ~24!

Cab(r)5azazbG(d/221)r 22d/pd/221 is the Coulomb po-
tential in d dimensions andn5r/r . Thus we get

d ret
(3)E52

4a2

3

GS d11

2 DGS d

2D
pd23/2 (

a
(
b.a

za
2zb

2

mamb
^r ab

322d&.

~25!

Here we cannot take the limitd→3 since the average valu
of r 23 diverges logarithmically. However, we can extract t
divergence in the following way. By definition, we have

^r ab
322d&5aab

4eE dr8E dnabE
0

` dr

r122e
c2~aabrnab ,r8!.

~26!

Here aab5uzazbmabau21 is the Bohr radius for a given pai
of particles,rab5aabrnab being their relative position. The
remaining independent variables are denoted byr8. Integrat-
ing by parts in the last integral, we get

E
0

` dr

r122e
c2~aabrnab ,r8!

52
1

2eE0

`

dr r2e
]

]r
c2~aabrnab ,r8!. ~27!

Here I took into account that limr→0r2e being written as the
integral over momentum has no scale and hence vanis
Substitutingr2e→112e ln r1O(e2) into the rhs of Eq.~27!
gives for the retardation correction~25!

d ret
(3)E→2

4a2

3 (
a

(
b.a

za
2zb

2

mamb

H S 1

e
22 ln

4

aab
21D ^d~rab!&

2K g1 ln
2r ab

aab

pr ab
2

nab•“abL J , ~28!

where“ab5]/]rab andg50.5772 . . . is theEuler constant.
The gradient acts on the right wave function. Thus we h
managed to extract the divergences in the form of aver
values of the contact operatorsd(rab) divided bye. Sincec
06210
es.

e
e

and its first derivatives are finite4 for rab→0, the noncontact
average values in Eq.~28! are finite in three dimensions.

2. Double seagull

One more soft-scale contribution of the orderma5 ap-
pears due to the double transverse exchange between
particles when both photons are emitted and reabsorbe
the seagull vertices. The corresponding effective poten
derived in Ref.@15# for the positronium can be easily gene
alized to a more complex atom

Vds522a2
G~12e!2

~4p!122e F12e
1728 ln 2

3

1O~e2!G(
a

(
b.a

za
2zb

2

mamb
^r ab

322d&. ~29!

Exploiting the same trick as above to extract the divergen
we get the double seagull contribution to the energy

d ds
(3)E→2a2(

a
(
b.a

za
2zb

2

mamb

H S 1

e
12 ln aab2

1122 ln 2

3 D

3^d~rab!&2K g1 ln
2r ab

aab

pr ab
2

nab•“abL J . ~30!

D. Total ma5 correction

The e21 terms cancel out in the sum of allO(ma5) cor-
rections to the energy. Hence we can take the limitd→3 in
this sum. With theO(m2/M2) precision, the result for the
helium ground state reads

d (3)E52
2Za2

3m2 S 4 ln~Za!12 ln
k0

Z2R`

2
19

15D ^d~r1!

1d~r2!&1
2a2

3m2 S 7 lna1
82

5 D ^d~r!&

1
7a2

3pm2 K g1 ln~mar !

r 2
n•“L 2

2~Za!2

3mM

3S ln~Za!14 ln
k0

Z2R`

2
31

3 D ^d~r1!1d~r2!&

1
7~Za!2

3pmM K g1 ln~Zmar 1!

r 1
2

n1•“11~1→2!L .

~31!

4It follows from the Schro¨dinger equation ind dimensions.
4-5
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ALEXANDER YELKHOVSKY PHYSICAL REVIEW A 64 062104
Here and below I use simplified notations:r15r 1n15r23,
r25r 2n25r31, r5rn5r12, the gradients are taken over th
corresponding position vectors,“15]/]r1 and so on. In the
limit of no recoil (m/M→0), the result~31! agrees with the
results of Araki @16# and Sucher@17# after integrating by
parts in their average valueQ,

Q5 lim
r→0

K Q~r 2r!

4pr 3
1@g1 ln~mar!#d~r!L

52
1

2p K g1 ln~mar !

r 2
n•“L . ~32!

The first recoil~linear in m/M ) correction was previously
discussed in Ref.@18#.

IV. ORDER ma6 HARD-SCALE CONTRIBUTIONS

Similar to what was done in the previous order, one ha
consider the hard scale part of a two-particle scattering
plitude but now in two loops. There is no need to consid
three-particle scattering amplitudes. In fact, the probabil
density to find three particles forming the helium atom at
same point is of the order (ma)6. On the other hand, thes
particles should exchange at least three photons to for
hard loop. Hence, hard scale effective operators proportio
to d(rab)d(rbc) can produce anO(ma9) correction only.

The radiative recoil potential appears when we acco
for the first radiative corrections to the hard one-loop b
diagrams~see, e.g., Ref.@12#!. The corresponding two-loop
diagrams involve only even powers of the electric chargesz1
and z2. Hence the radiative recoil effective operator co
cides with that for parapositronium@19,12#,

d rad recE5S 6z~3!

p2
2

697

27p2
28 ln 21

1099

72 D pa3

m2
^d~r!&.

~33!

The corresponding electron-nucleus operator vanishes in
nonrecoil limit m/M→0 considered from now on.5 Then,
one-@20# and two-loop@21–23# pure radiative corrections to
electron-nucleus interaction give rise to the following ene
shifts:

d rad1l
eN E5S 427

96
22 ln 2Dpa~Za!2

m2
^d~r1!1d~r2!&, ~34!

5Orderm2a6/M correction is much less than unknownma7 cor-
rections.
06210
to
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r
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d rad2l
eN E5S 2

9z~3!

4p2
2

2179

648p2
1

3 ln 2

2

2
10

27D pa2~Za!

m2
^d~r1!1d~r2!&. ~35!

The net effect of two-loop contributions to the slope of t
electron Dirac formfactor@21#, Pauli formfactor@22#, and
vacuum polarization@23# reads

d rad
eeE5S 15z~3!

2p2
1

631

54p2
25 ln 21

29

27D pa3

m2
^d~r!&.

~36!

Finally, to get the pure recoil contribution to the electro
electron hard-scale interaction~three-photon exchange! we
have to change the sign of the corresponding parapos
nium result6 @12#,

d recE5S 2
1

e
14 lnm2

39z~3!

p2

1
32

p2
26 ln 21

7

3D pa3

4m2
^d~r!&. ~37!

Among the hard-scale contributions only the last one c
tains the divergence.

V. ORDER ma6 SOFT-SCALE CONTRIBUTIONS

The aim of this section is to demonstrate that in analo
to the previous order the sum of all singular average val
reduces to the form

dsoft
singE5

1

e

pa3

4m2
^d~r!&, ~38!

so that the sum of soft and hard-scale contributions is fin
in three dimensions.

There are many soft-scale effective operators with sin
lar average values. One can easily determine whether an
erage value of a given operator is singular or regular
d→3 using only the fact that the wave function and its fi
derivatives are finite when positions of two particl
coincide.

6Recall that it is convenient to omit the overall facto
(4p)2eG2(11e) from the final expressions for allO(ma6)
operators.
4-6
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A. Irreducible corrections

1. Dispersion correction

Let us consider details of the singularities extraction p
cedure using the dispersion correction as an example. N
relativistic expansion of the electron’s dispersion law,vp

5Am21p2, reads

vp5m1
p2

2m
2

p4

8m3
1

p6

16m5
1•••. ~39!

The last written term induces a correction of the appropr
order. Using the Schro¨dinger equation we get

ddispE5K p1
61p2

6

16m5 L 5
1

2m2 K S p1
21p2

2

2m D 3

23
p1

2p2
2

4m2

p1
21p2

2

2m L
5

1

2m2 K ~E2C!~H2C!~E2C!23H p1
2p2

2

8m2
,E2CJ L

5
1

2m2 K ~E2C!31FC,
@H,C#

2 G23
p1

2p2
2

4m2
E

1
3

8 H p1
2p2

2

m2
,CJ L . ~40!

Here the total Coulomb potentialC is the sum of the
electron-nucleus and electron-electron parts,

C5CN1c5C11C21c, ~41!

while a pairwise Coulomb potential is defined after Eq.~24!.
Singular contributions to Eq.~40! are induced by the follow-
ing operators:~i! C3; ~ii ! the double commutator

1

2m2 K FC,
@H,C#

2 G L 5
1

2m2 K FC,(
a51

2 Ea•“a

2m
1

e•“

m G L
5K ~E12E2!e

2m3
1

E 1
21E 2

2

4m3
1

e2

2m3L ,

~42!

where

Ea52@“a ,Ca#; e52@“,c#, ~43!

are electric forces exerted on electrons; and~iii ! the anticom-
mutator
06210
-
n-

e

3

16m2 K H p1
2p2

2

m2
,cJ L

5
3

16m2 K H S p1
21p2

2

2m D 2

2S p1
22p2

2

2m D 2

,cJ L
5

3

16m2 K 2c~E2C!22†c,@H,C#‡2H c,
~P•p!2

m2 J L ,

~44!

where P5p11p2 and p5(p12p2)/2. Double commutator
†c,@H,C#‡ can be transformed similarly to Eq.~42!, the last
term from Eq.~44! is conveniently rewritten as

2
3

16m2 K H c,
~P•p!2

m2 J L 52
3

16m4
^†P•p,@P•p,c#‡

12~P•p!c~P•p!&. ~45!

Summing up all of the above contributions and using
virial theorem in three dimensions,^C&52E, we get for the
dispersion correction

ddispE52
5E3

2m2
1

3E2^c&

8m2
1

3E

2m2 K C22
Cc

2
2

p1
2p2

2

4m2 L
1K 3p1

2CNp2
2

8m4
23

@P•p,@P•p,c##

16m4
23

~P•p!c~P•p!

8m4

2
9CN

2 c

8m2
2

3CNc2

4m2
1

5~E12E2!e

16m3
2

CN
3

2m2
2

c3

8m2

1
E 1

21E 2
2

4m3
1

e2

8m3L . ~46!

One can easily check that only the operatorsCa
3 , c3, andE a

2 ,
e2 have divergent average values in three dimensions.
following analysis shows that in a similar manner singula
ties of all soft scale effective operators appear either as
third power of the Coulomb potentials or as the elect
forces squared.

2. Coulomb corrections

The orderp4/m4 correction to the Coulomb potential be
tween electron and nucleus reads

VC
eN5

5

128m4
†p1

2 ,@p1
2 ,C1#‡2

3pZa

16m4
$ p1

2 ,d~r1!%1~1→2!.

~47!

I drop the spin-orbit term, which vanishes in a state with t
4-7
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total spin zero. The average value of the double commut
can be conveniently rewritten as

^†p1
2 ,@p1

2 ,C1#‡1~1↔2!&

52m^†H2C,@p1
2 ,C1#1~1→2!‡&

524m^E 1
21E 2

21~E12E2!e&. ~48!

For the anticommutator in Eq.~47!, it should be taken into
account that the average value of the operatord(ra)Ca is a
scaleless integral overra and hence vanishes in the dime
sional regularization

^$p1
2 ,d~r1!%1$p2

2 ,d~r2!%&5^d~r1!$4m~E2C22c!22p2
2%

1~1↔2!&. ~49!

The energy shift induced by Eq.~47! is

dC
eNE5K 3pZa

4m3
d~r1!S p2

2

2m
1C21c2ED 2

5E1~E11e!

32m3 L
1~1↔2!. ~50!

Note thate changes its sign under the permutation (1↔2).
Similar analysis for the correction to the electron-electr

Coulomb interaction,

VC
ee5

5

128m4
†p1

2 ,@p1
2 ,c#‡1

7pa

32m4
$p1

2 ,d~r!%1~1↔2!

1
~p1•p2!c~p1•p2!2p1i p2 j c p1 j p2i

16m4
, ~51!

gives

dC
eeE5K 3

†P•p,@P•p,c#‡

32m4
1

pad~r!

m3 S E2CN2
3P2

32mD
2

~E12E2!e

16m3
2

e2

8m3L . ~52!

Virtual transitions of electrons to negative-energy states
duced by the Coulomb exchanges generate the energy s

dC
2E5K E 1

21E 2
212~E12E2!e12e2

8m3 L . ~53!

The total irreducible Coulomb correction is the sum of E
~50!, ~52!, and~53!,
06210
or

n

-
ift

.

dCE5
Epa

4m3
^4d~r!23Z@d~r1!1d~r2!#&1K 3paZ

4m3 Fd~r1!

3S p2
2

2m
1C21cD 1~1↔2!G2

pad~r!

m3 S 3P2

32m
1CND

13
†P•p,@P•p,c#‡

32m4
1

~E12E2!e

32m3
2

E 1
21E 2

2

32m3
1

e2

8m3L .

~54!

3. Magnetic corrections

These corrections originate from single magnetic e
changes between particles in instantaneous approxima
There are two sources of such effects. Relativistic corr
tions to the instantaneous interaction of the Pauli current
the electrons induce the following contribution to the ener

dM
eeE5K H p1

21p2
2

2m
,
p1•cp21~d22!~p1•n!c~n•p2!

4m3

2
pad~r!

m3 J 2
d21

32m4
~†p1

2 ,@p1
2 ,c#‡1†p2

2 ,@p2
2 ,c#‡!L ,

~55!

which can be transformed to

dM
eeE5

E

m K p1•cp21~p1•n!c~n•p2!

2m2
2

2pad~r!

m2 L
1K 2pad~r!

m3
CN

2H C

4m2
,
p1•cp21~d22!~p1•n!c~n•p2!

m J
2

†P•p,@P•p,c#‡

8m4
1

~E12E2!e

8m3
1

d21

8

e2

m3L .

~56!

Then, virtual transitions to negative-energy states of o
electron induced by a single magnetic exchange with
other and a single Coulomb exchange with both other p
ticles, shift the energy by

dM
2E5K 2

~E12E2!e

2m3
2

d21

2

e2

m3L . ~57!
4-8
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4. Retardation corrections

The effect of retardation on a single magnetic excha
between the electrons is described in the appropriate orde
the following average value:

dRE5K E ddq

~2p!d

2pa

q4 FH,e2 iq•r1
p1

q1@s1•q,s1#

m G
3FH,eiq•r2

p2
q2@s2•q,s2#

m G1H.c.L , ~58!

where q is the magnetic photon’s momentum andpa
q5pa

2q(pa•q)/q2. The correction~58! consists of zero-, single-
and double-Coulomb parts:

dRE5D01D11D2 , ~59!
-

o
te

06210
e
byD05K E ddq

~2p!d

pa

m4

Fp1
2 ,F p2

2 ,

p1
q
•p22

d21

4
q2

q4
eiq•rG GL ,

~60!

D15K E ddq

~2p!d

2pa

m3
@C,p1#F p2

2 ,
p2

q

q4
eiq•rG1~1↔2!L ,

~61!

D25K E ddq

~2p!d

4pa

m2
@C,p1

q#
eiq•r

q4
@C,p2#L . ~62!

Integrating overq and using the Schro¨dinger equation we
transform these expressions to the following ones:
D052
E2^c&

8m2
1

E^Cc&

4m2
1K 2

CN
2 c

8m2
2

CNc2

4m2
1

pad~r!

2m4
P21

p•cp

4m4
P22

~P•p!c~P•p!

8m4

2
p1

2c~n•p2!21~p1•n!2cp2
223~p1•n!2c~n•p2!21~1↔2!

16m4
1

~E12E2!e

8m3
2

c3

8m2
1

d21

8

e2

m3L , ~63!

D15
E^c2&

4m2
1K 2cr

2~n•p2!~E1•p2!1~n•E1!@~n•p2!22p2
2#

16m3
1H.c.23

~p1•n!2c21c2~n•p1!2

16m3

1~1↔2!2
CNc2

4m2
2

d22

4

c3

m2
1

d21

4

e2

m3L , ~64!

D25K cr2
3E1•E22~n•E1!~n•E2!22~E12E2!e

8m2
2

~d21!~d22!2

8~42d!

c3

m2L . ~65!
Here and below I use shorthand notations (n•pa)2 and
(pa•n)2 for the operatorni(n•pa)pai and its hermitean con
jugate, respectively.

5. Seagull correction

Double magnetic exchange between the two electrons
of which goes over into negative-energy intermediate sta
gives rise to the energy shift
ne
s

dseagE5K p1•c2p113~p1•n!c2~n•p1!

8m3
1~1↔2!

1
d21

4

e2

m3L . ~66!

This correction completes the list of theO(ma6) irreducible
contributions to the helium energy.
4-9
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B. Reducible corrections

1. Breit Hamiltonian

Breit Hamiltonian for the helium singlet states

U5US1UP , ~67!

consists of two parts,US and UP , with the selection rules
uDSu50 anduDSu51, respectively.7 Just like in the positro-
nium case~see Ref.@12#!, the second-order iteration of th
S-wave Breit perturbation diverges in three dimensions. T
is why this perturbation should be considered ind dimen-
sions,

US52
p1

41p2
4

8m3
1

pZa

2m2
@d~r1!1d~r2!#1

~d22!pa

m2
d~r!

2
p1•cp21~d22!~p1•n!c~n•p2!

2m2
. ~68!

As for theP-wave part, which mixes singletS and tripletP
states, the corresponding second-order iteration is satur
by the soft scale and, therefore, we can take this perturba
in the limit of d53,

UP5a
s12s2

4m2 S Zl1

r 1
3

2
Zl2

r 2
3

1
r3P

r 3 D . ~69!

Here la5ra3pa . Below I consider energy shifts arising i
second order inUP andUS .

2. Second iteration of the Breit Hamiltonian: P wave

To find the singletS level shift induced by an admixtur
of triplet P states,

dPE5^UPGUP&, ~70!

whereG is the ~reduced! Green function of the Schro¨dinger
equation, consider first the action ofUP on the ground-state
wave function. As far as the latter depends on the abso
values ofr1 , r2, andr, c5c(r 1 ,r 2 ,r ), we can substitute

l15r13p1→2 i r13~n1]11n]!5 i
r13r2

r
],

l2→2 i
r13r2

r
],

r3P→2 i r13r2S 1

r 1
]11

1

r 2
]2D ,

7S5s11s2.
06210
t

ted
on

te

UP→ ia
A•~s12s2!

2m2 S Z

r 1
3r

]2
1

r 3r 1

]11~1→2!D , ~71!

where]a5]/]r a , ]5]/]r , while the vector

A5
r13r2

2
5

r3r1

2
5

r3r2

2
, ~72!

is perpendicular to the triangle composed byr1 ,r2, and r,
while its norm equals this triangle’s area. TheP-wave admix-
ture to theS-state wave function

dPc5GUPc, ~73!

has the same angular dependence as the perturbation

dPc5 ia
A•~s12s2!

2m2

fP~r 1 ,r 2 ,r !

r 1r 2r
. ~74!

FunctionfP(r 1 ,r 2 ,r ) is introduced in such a way in order t
make it finite at coalescense points:fP(r 1 ,r 2 ,r ),` when
r a→0 or r→0. Substituting the rhs of Eq.~74! into the
inhomogeneous equation

~E2H !dPc5UPc, ~75!

we can cancel the spin- and angular-dependent factor u
the following relations:

@H,s12s2#50;

@H,r13r2#5F p1
2

2m
,r1G3r21r13F p2

2

2m
,r2G

→2
r13r2

m S 1

r 1
]11

1

r 2
]21

2

r
] D .

At the last step I took into account that the operator acts
the function depending only onr 1 ,r 2, and r. The resulting
equation forfP reads

H H82
1

m S ]1

1

r 1
1]2

1

r 2
1]

2

r D2EJ fP

5H r 1

r 2
]22

Zr1

r 2
2

]1~1↔2!J c. ~76!

Here H8 is obtained fromH by the substitutions]→]
21/r , ]1→]121/r 1 , ]2→]221/r 2 .

The final expression for the energy shift~70! then reads

dPE5
a2

4m4 K fPU A2

r 2r 1
2r 2

2 H r 1

r 2
]22

Zr1

r 2
2

]1~1↔2!J UcL .

~77!
4-10
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3. Second iteration of the Breit Hamiltonian: S wave

In order to extract divergences from the second-order c
rection induced by theS-wave part of the Breit Hamiltonian
Eq. ~68!, it is convenient to rewrite the latter in the form

US52
H2

2m
1$H,u%22Eu1Od , ~78!

where

u5
CN1~d21!c

4m
, ~79!

Od5E
CN1~d21!c

2m
1

1

8m H p1
2

m
1c,

p2
2

m
1cJ 2

CNc

2m

2
2d23

4m
c21

p1•@CN2~d22!c#p11~1↔2!

4m2

2
p1•cp21~d22!~p1•n!c~n•p2!

2m2
. ~80!

Inserting Eq.~78! into equation

dSE5^USGUS&, ~81!
06210
r-

and using the Schro¨dinger equation for the reduced Gree
function, (H2E)G(R,R8)5c(R)c(R8)2d(R2R8), where
R denotes the vector (r 1 ,r 2 ,r ), we get

dSE52^US&^u&2^ 1
2 †@H,u#,u‡1$US ,u%&1^O3GO3&.

~82!

Note that we can take the limitd→3 in the last term since in
contrast toUS the perturbationO3 does not contain operator
more singular thanCa

2 andc2. In other words, all the diver-
gences in Eq.~82! are moved to the average values of loc
operators.

The first term from Eq.~82! is most easy to calculate,

2^US&^u&5B
2E1^c&

2m
. ~83!

Here B5^US& is the nonrecoil limit of the first-order Brei
correction~4!. For the second term from Eq.~82! we have

2 K 1

2
†@H,u#,u‡L 5K E 1

21E 2
2

32m3
1

~E12E2!e

8m3
1

~d21!2e2

16m3 L .

~84!

Then, the third term from Eq.~82! can be rewritten as
2^$US ,u%&5
E3

2m2
2

E^C2&

2m2
2

pa~Z22!

4m3
^d~r1!C21d~r2!C1&1K 3CcCN

4m2
2

p1
2CNp2

2

8m4
1
†P•p,@P•p,c#‡12~P•p!c~P•p!

8m4

2
pad~r!

2m3
CN1H CN1~d21!c

8m2
,
p1c•p21~d22!~p1•n!c~n•p2!

m J 2
~E12E2!•e

4m3
1

CN
3

4m2
1

d21

8m2
c3

2
E 1

21E 2
2

8m3
2

~d21!e2

8m3 L . ~85!

Finally, the fourth term from Eq.~82! can be calculated in a way similar to that used above for theP-wave contribution.
Namely, we first find the solution for the inhomogeneous equation

~E2H !dSc5~O32^O3&!c,

orthogonal to the ground state,^dScuc&50, and then evaluate the matrix element ofO3 betweendSc andc,

^O3GO3&5^dScuO3uc&. ~86!

An alternative way to calculate Eq.~86! is to include the operatorO3 directly into the Hamiltonian,

~H1O3!c85E8c8. ~87!

Then, with theO(a2) precision,

^O3GO3&5E82E2^O3&. ~88!

C. Total soft-scale contribution

Summing up all soft-scale contributions, given by Eqs.~46!, ~54!, ~56!, ~57!, ~63–66!, ~77!, and~83–86!, we get
4-11
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dsoftE52
E3

2m2
1

E2^c&

4m2
1

E

m K 2CNC1c2

4m
2

p1
2p2

2

8m3
2

paZ

4m2
@d~r1!1d~r2!#L 1

B^c&
2m

1dPE1^O3GO3&1K 2
cCNC

2m2

2H CN

8m3
,
p1•cp21~p1•n!c~n•p2!

m J 1
p1

2CNp2
2

4m4
1

p1•c2p11p2•c2p2

8m3
1

p•cp•P22~P•p!c~P•p!

4m4

2
p1

2c~n•p2!21~p1•n!2cp2
223~p1•n!2c~n•p2!21~1↔2!

16m4
2

cr

16m3
@2~n•p2!~E1•p2!1~n•E1!@~n•p2!22p2

2#

1~1↔2!1H.c.#1
cr2

8m2
@3E1•E22~n•E1!~n•E2!22~E12E2!•e#2

3†P•p,@P•p,c#‡

32m4
1

pad~r!

2m3 S 13P2

16m
1CND

1
paZ

4m3 Fd~r1!S 3p2
2

2m
12C21cD 1~1↔2!G2

~E12E2!e

32m3

CN
3

4m2
1

E 1
21E 2

2

8m3
2

123e

2m2
c31

326e

4m3
e2L . ~89!
:

n

k
o-

to

in

d

ion
n

n

effi-
Ordere coefficients are kept in Eq.~89! only if they multiply
the operators whose average values contain 1/e singularities.
In Eq. ~89!, the following relations are taken into account

†pi ,@pj ,c2ninj #‡5
32d

d22
e2,

~d23!K H c,
p1•cp21~p1•n!c~n•p2!

m J L
5~d23!^c3&1O~e!. ~90!

For the bulk of the operators in Eq.~89!, their average values
can be safely evaluated atd→3. Special care is needed whe
one deals with the operatorp1

2c(n•p2)21(1↔2)1H.c.,
which is not well defined in three dimensions. We can ta
the limit d→3 having previously determined what the m
menta operators are acting on

lim
d→3

^p1
2c~n•p2!21~1↔2!1H.c.&

5^p1
2Q c~n•p¢2!21~1↔2!1H.c.14pm2a3d~r!&ud53 .

~91!

In order to be certain that this relation holds, it is sufficient
consider the two-body problem, where both sides of Eq.~91!
can be calculated analytically.

In order to calculate singular average values entering
Eq. ~89!, consider the Coulomb potentialCab between two
particles with chargesza andzb . The average value ofCab

3 is

^Cab
3 &5~zazba!3S GS d

2
21D

pd/221
D 3

^r ab
623d&. ~92!

Repeating the procedure used in Sec. III we get
06210
e

to

^Cab
3 &5~zazba!3H S 1

e
24 ln

2

aab
12D ^pd~rab!&

22K g1 ln
2r ab

aab

r ab
2

nab•“abL J . ~93!

Recall that aab5uzazbmabau21. Average value of the secon
singular operator,E ab

2 , can be found in the following way:

^E ab
2 &5^@“a ,Cab#

2&

5^†“a ,Cab@“a ,Cab#‡2Cab†“a ,@“a ,Cab#‡&

522^Cab@“a ,Cab#“a&. ~94!

At the last step, I again have used the equat
^Cabd(rab)&50 valid in the dimensional regularization. I
order to express the average value

^E ab
2 &52~d22!~zazba!2S GS d

2
21D

pd/221
D 2

^r 322dnab“ab&,

~95!

in terms of^Cab
3 &, the known derivative of the wave functio

at rab→0 can8 be added to and subtracted fromnab•“ab ,

8Strictly speaking, with a coefficient 11O(e). Inspection of the
known two-body average values, however, shows that the co
cient is in fact equal to 1.
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^E ab
2 &52mab~d22!^Cab

3 &12~zazba!2K 1

r ab
3 ~nab•“ab

2mabzazba!L . ~96!

Since the last average value in the rhs of Eq.~96! is finite, it
ri
r
Eq
im

06210
can be considered in three dimensions. Now, extracting
divergent pieces from Eq.~89! we get Eq.~38!.

VI. CONCLUSION

The divergences contained in the hard~37! and soft scale
~38! contributions cancel each other so that in the sum of
contributions, Eqs.~33!–~37!, ~89!, we can putd53. Taking
into account Eqs.~91!,~93!,~96!, the final expression for the
O(ma6) correction to a singletS-state energy of the helium
atom can be written as
d (4)E52
E3

2m2
1

E2^c&

4m2
1

E

m K 2CNC1c2

4m
2

p1
2p2

2

8m3
2

paZ

4m2
@d~r1!1d~r2!#L 1

B^c&
2m

1dPE1^O3GO3&

1pa3m2^keN@d~r1!1d~r2!#1keed~r!&1K 2
3C1C2CN

4m2
2

cCNC

2m2
2

CNc@p1p21n~np1!p2#1H.c.

8m4
1

p1
2CNp2

2

4m4

1
p1•c2p11p2•c2p2

8m3
1

~p13p2!•c~p13p2!

4m4
2

p1
2c~n•p2!21~p1•n!2cp2

223~p1•n!2c~n•p2!21~1↔2!

16m4

2a
2~n•p2!~E1•p2!1~n•E1!@~n•p2!22p2

2#1~1↔2!1H.c.

16m3
1ar

3E1•E22~n•E1!~n•E2!22~E12E2!e

8m2

2
3a

32m4

P223~n•P!2

r 3
1

pad~r!

2m3 S 9P2

16m
1CND1

paZ

4m3 Fd~r1!S 3p2
2

2m
2

~2Z21!a

r 2
D 1~1↔2!G2

~E12E2!•e

32m3

1
~Za!2

4m3 F 1

r 1
3 ~n1•“11mZa!1~1↔2!G2a3

ln~mar !1g

2m2r 2
n•“1

3a2

2m3

1

r 3 S n•“2
ma

2 D L . ~97!
nt
m

few-
he
et
tial.
rs

in

-
l-
sian
ion
Here all momentum operators standing to the right~left! of
position-dependent operators are assumed to act on the
~left! wave function. Althoughd-dimensional notations fo
the Coulomb potentials and electric forces are kept in
~97!, the immediate three-dimensional counterparts are
plied for all operators, e.g.,C1→2Za/r 1 , e→an/r 2 and so
on. The contact terms enter into Eq.~97! with the coefficients

keN5
Z3

2
1

427Z2

96
2

10Z

27
2

9Zz~3!

4p2
2

2179Z

648p2

1
3Z24Z2

2
ln 2, ~98!

kee52 ln a1
3385

216
2

331

54p2
2

29 ln 2

2
1

15z~3!

4p2
. ~99!
ght

.
-

Equations~97!–~99! are the principal result of the prese
work. Its application to the ground state of the helium ato
is considered elsewhere@5#.

The approach elaborated here can be applied to other
electron atoms as well as to higher-order corrections. T
only stumbling block to higher-order calculations is the y
unknown three-loop hard-scale electron-electron poten
Nevertheless, the orderma7 corrections enhanced by powe
of ln a can be determined by combination of methods used
Ref. @15# and in the present work.

ACKNOWLEDGMENTS

Useful advice from V. L. Chernyak, A. Czarnecki, V. Ko
robov, and especially K. Melnikov is gratefully acknow
edged. This research was supported in part by the Rus
Ministry of Higher Education and by the Russian Foundat
for Basic Research under Grant No. 00-02-17646.
4-13



rs

.
L.
n

e

v.

A

3

k.

ALEXANDER YELKHOVSKY PHYSICAL REVIEW A 64 062104
@1# K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervo
Phys. Rev. A55, 1866~1997!.

@2# S. D. Bergeson, A. Balakrishnan, K. G. H. Baldwin, T. B
Lucatorto, J. P. Marangos, T. J. McIlrath, T. R. O’Brian, S.
Rolston, C. J. Sansonetti, J. Wen, N. Westbrook, C. H. Che
and E. E. Eyler, Phys. Rev. Lett.80, 3475~1998!.

@3# H. A. Bethe and E. E. Salpeter,Quantum Mechanics of On
and Two Electron Atoms~Springer-Verlag, New York, 1977!.

@4# G. W. F. Drake and P. C. Martin, Can. J. Phys.76, 679~1998!.
@5# V. Korobov and A. Yelkhovsky, e-print physics/0105108.
@6# H. A. Bethe, Phys. Rev.72, 339 ~1947!.
@7# W. E. Caswell and G. P. Lepage, Phys. Lett.167B, 437~1986!.
@8# K. Pachucki, J. Phys. B31, 3547~1998!.
@9# A. Pineda and J. Soto, Nucl. Phys.~Proc. Suppl.! 64, 428

~1998!.
@10# A. Pineda and J. Soto, Phys. Rev. B59, 016005~1999!.
@11# A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys. Re

Lett. 82, 311 ~1999!.
@12# A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys. Rev.

59, 4316~1999!.
@13# A. Pineda and J. Soto, Phys. Rev. D58, 114011~1998!.
@14# P. K. Kabir and E. E. Salpeter, Phys. Rev.108, 1256~1957!.
@15# K. Melnikov and A. Yelkhovsky, Phys. Rev. D62, 116003
06210
t,

g,

~2000!.
@16# H. Araki, Prog. Theor. Phys.17, 619 ~1957!.
@17# J. Sucher, Phys. Rev.109, 1010~1958!.
@18# K. Pachucki, J. Phys. B31, 5123~1998!.
@19# K. Pachucki and S. G. Karshenboim, Phys. Rev. Lett.80, 2101

~1998!.
@20# R. Karplus, A. Klein, and J. Schwinger, Phys. Rev.84, 597

~1951!; 86, 288 ~1952!; M. Baranger,ibid. 84, 866 ~1951!; M.
Baranger, H. A. Bethe, and R. P. Feynman,ibid. 92, 482
~1953!.

@21# T. Appelquist and S. J. Brodsky, Phys. Rev. Lett.24, 562
~1970!; Phys. Rev. A2, 2293 ~1970!; R. Barbieri, J. A. Mig-
naco, and E. Remiddi, Lett. Nuovo CimentoA6, 21 ~1971!; E.
A. Kuraev, L. N. Lipatov, and N. P. Merenkov, LNPI, 197
~unpublished!.

@22# A. Peterman, Helv. Phys. Acta30, 407 ~1957!; Nucl. Phys.3,
689 ~1957!; C. M. Sommerfield, Phys. Rev.107, 328 ~1957!;
Ann. Phys.~N.Y.! 5, 26 ~1958!.

@23# M. Baranger, F. J. Dyson, and E. E. Salpeter, Phys. Rev.88,
680 ~1952!; G. Kallen, and A. Sabry, K. Dan. Vidensk. Sels
Mat. Fys. Medd. 29, 17 ~1955!; J. Schwinger,Particles,
Sources and Fields, Vol. 2 ~Addison-Wesley, Reading, MA,
1973!.
4-14


