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Using singletS states of the helium atom as an example, precise calculation of energy levels in few-electron
atoms is described. In particular, a complete set of effective operators is derived, which ge®¢ratey
relativistic and radiative corrections to the Satinger energy. Average values of these operators can be
calculated using a variational Schiinger wave function.
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[. INTRODUCTION part of the wave function is symmetric with respect to per-
mutation of the electrons positiong(r,,r,) = ¢(r,,rq).
Singlet states of the helium atom, especially its ground Relativistic and radiative effects shift the Sctimger
state, are best suited for precision studies of the electronsalue of the energy by corrections of higher ordersyinin
electron interaction at low energies. Recent measurements phirticular, the leading correction
11's—2'p [1] and 1'S—2'S [2] intervals in helium
reached the precision of about 10 ppb. Helium ground-state <

4
ionization potentialthe difference between ground-state en- s2)g — _E Pa + 7_rzc[5(r13)Jr S(ra3) + mad(r1,)

ergies of the singly charged ion and of the ajcemtracted a 8m: 2m? m?
from those measurements constitutes
a Z,Zp 1 o ) 1 ( )
- = —— | pa— Fap)—= (1 ,
VIS PP(11S)=5 945 204 23845 MHz, (1) 2 g% mymy | Par, P Palab)is HabPh
and 4
arises as the average value of the Breit perturbdtes, e.g.,
véfp_tzs(l 1S)=5 945 204 35648) MHz, (20  [3]) over the nonrelativistic wave function and is of the order
a2 relative to the Schdinger energy. It is taken into account
respectively. in Eq. (4) that the total spin of electrons and the spin of the
Theoretically, the ionization potential can be calculated aswcleus are both equal to zero.
a power series in the fine-structure constant Leading A particular class of corrections appears due to the
O(ma?) contribution to the ground-state enetdy the low-  nucleus structure. There, the most importéantd sufficient
est eigenvalu& of the nonrelativistic Hamiltonian to be included at the present level of accupaisythe effect
of the nucleus charge radit,,
2
p ZaZy
@ 2Ma  b>a lab SewE=—3—RA2 (A(ran)). ®

entering into the Schrdinger equatiorH y=E. Here and N .
below | use the following notations; andp, are the posi- Hereray denotes the position of theth electron with respect
tion and momentum operators for the partielavith mass  to the nucleus. . o
m, and electric charge, (in units of the proton chargeThe _ The most recent theoretical result for the helium ioniza-
relative position of two particles is,,=r,—r,; for any vec-  tion potential
tor v, v denotegv|. The helium atom consists of two elec-
trons with massesn;=m,=m and chargesz;=z,=—1, vin(1 1S)=5 945 204 22691) MHz, (6)
and the nucleus with mags;=M and charge;=2. A gen-
eral case ofz;=Z takes into consideration heliumlike ions obtained in Ref[4] includes along with Eqg4) and(5) the
with Z<1/a. In the center-of-mass frame, total momentumma® order, the leading part of thena® order, and some
of the atom vanishesy p,=0 so that only two of three estimates of higher-order contributions. Its uncertainty is
position vectors are independent,m,r,=0. In singlet twice as large as that of the experimental ddtarand (2).
states, spins of the electrons sum up to zero while the orbitalhe main source of the uncertainty in E@) is the yet
uncalculated part of th®©(ma®) correction.
The present work is the first of two devoted to the calcu-
*Email address: yelkhovsky@inp.nsk.su lation of the helium ionization potential witB(ma®) accu-
The unitsh =1, c=1 are used throughout this paper. racy. It contains the analytic part of the calculation and its
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main result is a set of effective operators that produce alky, the more severe are singularities of both contributions and
O(ma®) corrections to single§ levels of helium atom and the larger is a number of-dependent terms to be canceled in
low-Z heliumlike ions. To make the presentation self-order to get a final result. The problem seems even less trac-
contained, | also briefly outline how the lower-order correc-table when the wave function is known only numerically.
tion can be obtained by the same method. The second paper Precise calculations of the positronium specti@r12]
[5] contains numerical results for the average values of théave shown that contributions from various scales can be
derived effective operators as well as all other known contriseparated much more effectively by shifting the number of
butions to the helium ionization potential. spatial dimensiond from three,d— 3— 2¢. For consistency,
The rest of this paper is organized as follows. Section lithe number of space-time dimensions in hard-scale calcula-
describes general features of the approach. Qrieteffec-  tions should be shifted from four to-42e. This shift implies
tive operators are derived in Sec. lll. Sections IV and V areessentially that all objects defined originally fde=3 are
devoted to theD(ma®) effective operators appearing from analytically continued to the complex plane @fThe main
hard and soft scales, respectively. The final result of thisdvantage of the dimensional regularization over the tradi-

paper is presented in the Conclusion. tional scheme is that due to the analytic continuation all
power divergences automatically drop out of calculations
Il. FRAMEWORK OF THE CALCULATION and one only has to keep track of logarithmic divergences

that show up as inverse powers af
Since the early days of quantum electrodynant@&D), Recall that there are two kinds of effective operators in
the nonrelativistic expansion of an atom’s ground-state enNRQED. Operators coming from the hard scale are contact,
ergy is known to break down at thea® order[6]. In con- .., they are proportional to delta functions of distances be-

trast to theO(ma*) effective operators whose average val-tween particles. Infrared divergences typical in hard-scale
ues (4) are completely determined by the sofp~{1/r contributions manifest themselves as inverse powers iof
~ma) scale, the operators of the next order in momentumecoefficients of those delta functions. On the other hand, the
to-mass ratio are too singular to ensure finiteness of theigoft-scale effective operators have finite coefficientsdat
average values over the ground state described by the wave 3. Ultraviolet divergences inherent to soft-scale contribu-
function .2 It means that those operators become sensitivéions show up as inverse powers ©bnly when one evalu-
also to the hard{~m) scale, which is beyond the scope of ates average values of those operators over a solution of the
the nonrelativistic expansion. Another important feature ofSchralinger equation ird=3—2¢ dimensions. The crucial
the O(ma®) contribution to the energy is that the very pic- observation made in Ref§11,17 for the O(ma?®) correc-
ture of interaction between particles through a potential failstions to positronium levels is that even without knowing an
virtual transitions from the atom’s ground state to excitedexplicit form of this solution but using only the Scliiager
states and a photon become relevant. Thus, one more scalguation itself, one can extract all the divergent pieces in the
comes into play — this intermediate ultrasoft photon has arform of (5(r))/€, wherer is a distance between the electron
orderma? energy. The most natural way to calculate such aand the positron while the average value is calculated over
multiscale shift of the energy is to divide it into several the d-dimensional wave function. Since after such an extrac-
pieces each originating from its own scale and then use sintion the divergences contained in both hard and soft-scale
plifying approximations suitable to that scale. For example contributions have exactly the same form, it is easy to check
the nonrelativistic expansion is applicable at the soft scalethat they cancel each other so that a finite remainder can be
Alternatively, one can neglect bound-state effects at the hardafely calculated in three dimensions.
scale. If all relevant contributions are included, their sumis | employ the same idea for the helium atom, where an
independent of the details of the division. Applied to bound-analytic form of the wave function is not available even in
state problems in QED, this idea was first formulated in Refthree dimensions. Nevertheless, in perfect analogy to the
[7] as the nonrelativistic quantum electrodynamicspositronium case, the use of the Safinger equation alone
(NRQED). makes it possible to extract the divergent pieces of all soft-
Traditionally, in atomic calculations involving several scale contributions on theperatorlevel. Performing such an
scales, some auxiliary parameter is introduced to separateegxtraction | manage to demonstrate straightforwardly that the
contribution of the given scale from the othésse, e.g., Ref. divergences coming from both scales cancel each diber
[8] where such a scheme is applied to the helium problemfore any numerical calculation. As the result, the total
For example, to divide soft and hard-scale contributions on€®(ma®) correction to a singles level is represented as a
introduces \ satisfying ma<a<m and gets a final sum of apparently finite average values of the regularization-
A-independent energy shift as a result of cancellation beindependent operators. These average values can be calcu-
tween twol -dependent contributions. The soft scale one inHated using a wave function of the helium atom, built as a
cludesh as the ultraviolet cutoff that makes average valuesnumerical solution of the Schdinger equation5].
of singular operators finite. Simultaneouslygcuts off other- It is worth mentioning that the idea of the approach has a
wise infrared divergent on-shell scattering amplitudes thasimple physical reason. In fact, soft-scale divergences in
represent a hard-scale contribution. The higher is the order dfound-state energy are of the ultraviolet origin. Hence they
should be proportional to a value of the corresponding wave
function at zeroth separation between interacting particles. In
2See Sec. Il for details. terms of the effective theory it means that by virtue of the
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Schralinger equation one should be able to rewrite the sin- 802

gular soft-scale contributions in such a way that correspond- Vim(Tan) = = =5 %% O(ap), (8
ing divergences are moved to the Wilson coefficients of the 3m

contact operators. After the perturbation theory is reformu- ) . )

lated in such a manner, and if the underlying theory is renor??ere s, is the spin operator of thath particle. If the

malizable, all divergences that appear in any given Wnsorpucl_eus spin is zero, the corresponding eI_ect_ron—nucIeus po-
coefficient have to cancel each other. tential vanishes. The next effective potential is generated by

Validity of the results obtained below for the helium can the hard one-loop box diagrams. For two spin-1/2 particles
be checked in two limiting cases. The firat.>0 at finiteze ~ SUCh @ potential readd.3]
describes heliumlike ion with the electron-electron interac-
tion switched off. The secondZ—0 at z,—1 describes (@z,2,)% (1
parapositronium. Since in both cases three-dimensional wave Vbox(Tab) ==~ ——| Z ~In(mMamy) — =
functions of allS states are available in an analytic form, the ah

average values of effective operators can be calculated ex- My+mMpy—2uap(1+4s,s,) m,

plicity [modulo {(5(r))/e termd. Comparison with the + m,— my Inm—b S(Tap),
known results shows complete agreement for all contribu-

tions. ©

In order to make the formulas more transparent, | write, . fhap=Mamy/(M,+my) is the reduced mass of the

the nonsingular soft-scale operators with coefficients taken %air With the O(m/M) precision, the corresponding
d=3. electron-nucleus effective potential is

lll. ORDER ma® EFFECTIVE OPERATORS (Za)z(l

1
VoodTen) = | e —2Inm=3J8(rey). (10

This section illustrates the general scheme by the calcula-
tion of effective operators in the first nontrivial order. As

previously mentioned, a(ma®) the relevant contributions T .
Gppears due to vacuum polarization. In ordinary few-electron

to the energy come from three scales: ultrasoft, soft, an T
hard. Below we will calculate corresponding effective Oloera_atoms, an account of the electron vacuum polarization is suf-

tors ficient for the present-day accuracy,

The lastO(mea®) contribution coming from the hard scale

2
A. Hard-scale contribution Vyp(Fap) = 41% Za_zzb S(Fap). (11)
Hard-scale effects in the interaction between nonrelativis- m
tic particlesa and b give rise to the contact operators that
show up as,,d(r,p) in the spatial representation and, there-
fore, asc,y, in the momentum one. In the NRQED approach,
C.p IS extracted through the matching procedure, namely},)
equating theab—ab scattering amplitude calculated in the
full QED to that in the effective theory approach. Dimen-
sional regularization is best suited to this proceduwrg; According to the standard rules of the perturbation theory,
equals minus QED scattering amplitude for the partiées virtual transition of the atom into an excited state induced by
andb taken on their mass shells and at rest. In this mannethe emission and subsequent absorption of a photon is de-
the hard one-loop vertex correction to the single Coulomiscribed by the following effective operator:
exchange between the spin-1/2 point parteckend a particle
b induces the effective potential

The hard-scale contribution to the energy equals the average
value of Vi,c+Vpmt Vpoxt Vyp summed over all pairs of
articles.

B. Ultrasoft-scale contribution

f ddq 4#&2_ o(—i )
Sn 4 Jai®X—I1Q- T
d 2
Vit o) zazzizb(l " )5( : - (2m)® 44 "a
fap)=—5——>|——2Inm l'ab)-
hc\'ab 3 mg € a ab s _%
ij 2
X ———— jpiexpig-ry), 12
The electron’s anomalous magnetic moment taken in the E-H-q Eb Jojexpia- o) 12
leading one-loop approximation gives rise to the potential )
between electrona andb, whereH is thed-dimensional Schidinger HamiltonianE is

its lowest eigenvalueg is the photon momentung=|q|.
Assuming thatg~ma?, we can restrict our attention to the
3To simplify the presentation, | omit the factor £3<T"(1+ €) electric dipole transitions, i.e., replace the exponents exp
from the final expressions for all operators in Sec. lIl. This factor(*0-r,) by 1 and the current density operatggsby their
does not contribute to the finite tot@(ma®) energy correction. orbital counterparts taken in the leading nonrelativistic ap-
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proximation,j,—z;p,/M,, in EqQ. (12). Integration over di-
rections ofq then gives for the ultrasoft-scale effective op-
erator

an d_l

v = dgof?
us (27T)d_1 d

Jfo E-H-q

where the operatod is defined asX,z,p,/m; and Qg4
=2x9T(d/2) is the d-dimensional solid angle. Analytic
continuation of the integral oveq from the stripe 1
<Re(d)<2 reads

J, (13

w -2 _\d-2
f dqof > m(H-E) 14

oE-H—-q  sin(zd)

Expanding now the right-hand sidehs) of Eq. (13) in €
=(3—d)/2, we get with theD(€°) accuracy

V 2OZJHE:I- 5|2HEJ 15
us_)ﬁ(_)z+g_n(_)- (15)

As previously mentioned, the dterm is due to the diver-
gence ofV in three dimensions. Th®(ma®) ultrasoft-

scale contribution to the energy is the average value of the

operator(15) over thed-dimensional wave function,

—In(ma?) —[J'[I;’J]]

(16)

Here | used the Schdinger equation and also the standard

notation for the Rydberg constam,=ma?/2. Since the
Poisson equatiofp,,[Pa,Capl]1=47maz,z,5(r,— 1) for the
Coulomb potentialC,, between two particles holds in any
dimensions, we have

2
Z Zy
[3.[H.J]]=-47a> 2, zb(—a——) S(Fap).
a b>a my My
17
The ultrasoft correctioi16) in helium then reads
4Za% (1 Z\?* 1 k
()= it B T 2y _n_2
o, E 3 (m+M) 25+6 In(ma®) Ian)
X(8(rag)+ 8(rzy)), (18)
where the helium Bethe logarithid4] is defined as
H—E
K (p1+p2)(H—E)In = (Pt p2)
In—>= - (19)
R. ((p1+pP2)(H=E)(p1+p2)) '

and can be safely calculated in three dimensions.

PHYSICAL REVIEW A 64 062104

C. Soft-scale contribution

At the soft scale, momenta of all particléslectrons,
nucleus, and virtual photopare of the ordema. Therefore,
the O(ma®) soft-scale effective operators are generated by
transverse photon excharige since only such scattering
amplitudes can contain odd powers of photon momentum.

1. Retardation

Let us again start with the single transverse photon ex-
change described by the effective operdti®) but now as-
suming thatg~mea. SinceH—E<ma, we can expand the
integrand in H—E)/q. Zeroth order term of this expansion
describes the magnetic interaction in instantaneous approxi-
mation and is includedmodulo relativistic correctionsinto
the Breit perturbatiorisee Eq.(4)]. The first-order retarda-
tion effect is represented by the operator

ag
diq ' ? o . .
Vret:477af (27T)d 2—q3 ; JaieXp(—iqg-ra)

><<H—E>§ i eXp(ig-ry). (20)

Using again the Schdinger equation, we get

_ 49
3
3

q

ddq 1

(2m)¢

<[2 ja

xexq—iqwa),[H,% jbjexr(iq~rb)H>. (22

SrelE= Waf

The ordermea® correction arises due to the nonrelativistic
current densities.

p'+p+2[(p'—pP)Ss,Sil

2m (22)

ja(p"p)— 24

We then see that in Eq21) only the exchange between
different particles 4+ b) can give a nonzero contribution. In
fact, the integral oveq in the “diagonal” terms @=Db) is
scaleless and hence vanishes. The expresgibrsimplifies
to

SIE=—2may D 2

a b>a MyMpy

X [Pai [ Pbj:Can(ran) 11),

<Uij(rab)
23

and reproduces the result obtained in R&b] for positro-
nium. Here
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qiq; and its first derivatives are finftdor r,,— 0, the noncontact
i average values in E@28) are finite in three dimensions.

dd 2
Uij(r):f a ———expiq-r)

(2)¢ o} 2. Double seagull
d—3 One more soft-scale contribution of the orden® ap-
I‘(—)r3‘d pears due to the double transverse exchange between two
— 2 ( S+ _ n-n-) (24) particles when both photons are emitted and reabsorbed in
G2 |70 2 A the seagull vertices. The corresponding effective potential

derived in Ref[15] for the positronium can be easily gener-
Cap(r)=az,z,I'(d/2—1)r?~ 9792~ is the Coulomb po- alized to a more complex atom
tential ind dimensions aneh=r/r. Thus we get

,JL(1-e)? 17-81In2
d+ 1) (d) Vi— — 2« (477)1_25 - 3
2 Y Y 2.2
5(3)E:_4i#2 > ﬂ“sgm 2.2
ret — a :
3 i3 a b>a MyMy 2 a‘b , 3-2d
(25) HO()| 2 2 (™), @9

Here we cannot take the limit— 3 since the average value Exploiting the same trick as above to extract the divergences
of r 2 diverges logarithmically. However, we can extract thewe get the double seagull contribution to the energy
divergence in the following way. By definition, we have

= d 2z ! (1 11-21In2
<I‘gb 20y = ag;f dr’ j dnabfo pl—pzewz(aabpnabur’)- 5&2)E—> — a2§a: bza m:rr!:b (;-I—Z Ina,p,— —3
(26)
2r 45
Here ap=|z,zouapa| 1 is the Bohr radius for a given pair yHin E
of particles,r,,=a,,pN,, being their relative position. The X((rap)) =\ ——F5Nab'Van/ |- (30
remaining independent variables are denoted’byntegrat- ™ ab
ing by parts in the last integral, we get
D. Total ma® correction
= dp The e~ terms cancel out in the sum of &i(ma®) cor-
f ey V2 (8appNap,T') rections to the energy. Hence we can take the lonit3 in
op this sum. With theO(m?/M?) precision, the result for the

helium ground state reads

o)

1 256 2 ’
=7 2¢), G P 5 ¥ Bppnan. ). (27)

2€ 0
. 2Za? ko 19
. , I , SCE=— 4In(Za)+21In ——[(8(ry)
Here | took into account that lig,op~ being written as the 3m? Z°RrR, 15
integral over momentum has no scale and hence vanishes. ,
Substitutingp?¢— 1+ 2¢In p+0O(€?) into the rhs of Eq(27) 2a 82
gives for the retardation correctig@s) +0(rp)+ 3m? 7Ina+ =[(a(r)
7a% | y+In(mar) 2(Za)?
+ n-v)-—
@) 4a? s pives (1 4 ) 3mm? r? 3mM
S1lE—— — ——2In——=1|(58(r
et E— 3 =~ = m.m, P ap < ( ab)) ko 31
Xl In(Za)+4 In — —=[{(8(ry)+ 5(ry)
zrab ( ZZROC 3 < ( 1 ( 2 >
'y+|n 2
b 2
—\ ———n.p- Vap , (28) 1(Za)* | y+In(Zmar4)
e " 3amm 7w Vara-2))

whereV ,,=d/dr,, andy=0.5772 . . . is theEuler constant. (31
The gradient acts on the right wave function. Thus we have
managed to extract the divergences in the form of average
values of the contact operatof§r,;,) divided bye. Sinceys 41t follows from the Schrdinger equation ird dimensions.
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Here and below | use simplified notationg:=rin;=r,s, 97(3) 2179 3In2
r,=r,n,=rz;, FI=rn=rq,, the gradients are taken over the 5?;;’1\(‘125:( - > 5+

corresponding position vectorS,, = /dr, and so on. In the Am® 648w 2

limit of no recoil (m/M —0), the resul{31) agrees with the 2

results of Araki[16] and Suchef17] after integrating by _ 10y ma’(Za) (Za)<5(r )+ 8(1p)) (35)
parts in their average valu@, 27 m? ' 2

The net effect of two-loop contributions to the slope of the

. O(r—p) electron Dirac formfactof21], Pauli formfactor[22], and
Q= I|m0 Ry +[y+In(map)]8(r) vacuum polarizatiofi23] reads
p—
1 <y+|n(mar) V> (32 .
=——(———n-V). 15£(3) 631 29\ ma
2 2 e _ _ e el
r 5?acE—< o2 +54772 5In2+ 27) — (8(r)).

(36)
The first recoil(linear in m/M) correction was previously

discussed in Re{.18]. Finally, to get the pure recoil contribution to the electron-

electron hard-scale interactidthree-photon exchangeve
have to change the sign of the corresponding parapositro-
nium result [12],

Similar to what was done in the previous order, one has to
consider the hard scale part of a two-particle scattering am-

IV. ORDER ma® HARD-SCALE CONTRIBUTIONS

plitude but now in two loops. There is no need to consider 1 39(3)

threeparticle scattering amplitudes. In fact, the probability SreE=| — ;+4 Inm-— 2

density to find three particles forming the helium atom at the 7

same point is of the orden{e)®. On the other hand, these 32 rad

particles should exchange at least three photons to form a + —2—6 In2+ 5)—2<5(r)>. (37)
hard loop. Hence, hard scale effective operators proportional 7 4m

to &(r,p) 8(r,e) can produce a®(ma?®) correction only.
The radiative recoil potential appears when we accounhmong the hard-scale contributions only the last one con-
for the first radiative corrections to the hard one-loop boxiins the divergence.
diagrams(see, e.g., Ref.12]). The corresponding two-loop
diagrams involve only even powers of the electric chames
and z,. Hence the radiative recoil effective operator coin- V. ORDER ma?® SOFT-SCALE CONTRIBUTIONS

cides with that for parapositroniufi9,12, ) ) L .
The aim of this section is to demonstrate that in analogy

to the previous order the sum of all singular average values
reduces to the form
6£(3) 697 ol
5rad re€=| T 5 27772 —8In2+ W ?<5(r)>

w
(33

_ 1 ma®
OBE=_ (), (39

The corresponding electron-nucleus operator vanishes in the

nonrecoil limit m/M—0 considered from now onThen, so that the sum of soft and hard-scale contributions is finite

one-[20] and two-loop[21—-23 pure radiative corrections to in three dimensions.

electron-nucleus interaction give rise to the following energy  There are many soft-scale effective operators with singu-

shifts: lar average values. One can easily determine whether an av-
erage value of a given operator is singular or regular for
d— 3 using only the fact that the wave function and its first
derivatives are finite when positions of two particles

427 Za)? rnve
Sradt z(%_2|”2)u<5(f1)+5(r2)>, (34)  coincide.
m

®Recall that it is convenient to omit the overall factor
SOrderm?a®/M correction is much less than unknowm” cor-  (4m)2T%(1+¢€) from the final expressions for alD(ma®)
rections. operators.
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A. Irreducible corrections 2.2
3 P1P2
1. Dispersion correction 16m? 2 ¢
Let us consider details of the singularities extraction pro- s os s o
cedure using the dispersion correction as an example. Non- 3 PirP2|” (P1—P2 c
relativistic expansion of the electron’s dispersion law, 16m? 2m 2m )’
=m?+p?, reads

3 (P-p)*
= lon? < 2c(E-C)*~[c,[H,C]]- [ c,?} > :

(39 (44)

pz  p*  p°
=M o T am? | 1emp

where P=p;+p, and p=(p;—p,)/2. Double commutator
The last written term induces a correction of the appropriatg¢c,[H,C]] can be transformed similarly to E¢42), the last

order. Using the Schringer equation we get term from Eq.(44) is conveniently rewritten as
2

pi+p3\ 1 [(pitp3|® _pips pitp 3 BT 3 pppepl]
Saisp= = 5 |7 52 2 T2 16m? " m? 16m* ' '

16m 2m m 4m?  2m m

+2(P-p)c(P-p)). (45)
1 p1p2
~— |\ (E-C)(H-C)(E-C)-3
2 8m? Summing up all of the above contributions and using the

virial theorem in three dimension&C)=2E, we get for the

2.2
=%<(E—C)3+ C,[H'C]}_ plsz dispersion correction
m 2 4m?
3 pips 5E° 3E%c)  3E Cc pip
+= Ci ). 40 SgisgE= — + + C?— —-—
8{ m? 40 e 2m?  8m?  2m? 2 am?
3piCyp3 [P-p.[P- P-p)c(P-
Here the total Coulomb potentiaC is the sum of the +< P1 Ep2—3[ Pl Ap,c]]_g( p)c(4 P
electron-nucleus and electron-electron parts, 8m 16m 8m

9CZc 3CN02+5(£1—£2)e_ cdy c8

C=Cy+c=C+Cptc, (4D S sm? 4m? 16m*  2m? 8P
. o L £2+e2 @2
while a pairwise Coulomb potential is defined after (24). + _ (46)
Singular contributions to Eq40) are induced by the follow- 4m? 8m?®

ing operators(i) C3; (ii) the double commutator

1 [H,C] 1 2 E,.V, eV
2m2<[c’ 2 }>:2m2<{c’§1 2m m

One can easily check that only the opera®fs c*, and£2,

e? have divergent average values in three dimensions. The
> following analysis shows that in a similar manner singulari-

ties of all soft scale effective operators appear either as the

third power of the Coulomb potentials or as the electric

<(51—52)e £2+e2 ¢ > forces squared.
= + +
3 3 3
2m 4m 2m 2. Coulomb corrections
(42) The orderp*/m* correction to the Coulomb potential be-
tween electron and nucleus reads
where
_ VvaN= Ip?, o)+ (1—2
£,=—[Va.Cil; e=—[V,c], (43) c 128“4[P1 [pi,Cill- { pL.a(r)}+(1-2).
(47)

are electric forces exerted on electrons; &indthe anticom-
mutator | drop the spin-orbit term, which vanishes in a state with the
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total spin zero. The average value of the double commutator

can be conveniently rewritten as

([p7.[p:.Cil1+(152))
=2m([H-C,[pi,C,]+(1—2)])

AM(EI+ES+(E—Ey)e). (48)
For the anticommutator in Eq47), it should be taken into
account that the average value of the opera@(oy)C, is a
scaleless integral ovar, and hence vanishes in the dimen-

sional regularization

({pF.8(r)}+{p3,8(r2)})=(3(r)){4m(E—C,—c)—2p3}

+(12)). (49)
The energy shift induced by E¢7) is
3nZa p3 5E,(E;+6)
N _ < — - -
58 E—< e 8(ry) 2m~|—C2+c E) P
+(12). (50

Note thate changes its sign under the permutatior<2).

Similar analysis for the correction to the electron-electron

Coulomb interaction,

V= [2 [P2.CTI e (2, 8(1)} +(12)
C pogmdt PR gomd T
+(pl'p2)c(pl'p2)_plip2j C P1jP2i (51)
16m?* ’
gives

[P-p,[P-p,c]] mad(r) 3pP?

€ — 2 _ -

SE <\, 3ot + 3 E-Cy 3o
_(51_52)9_ e (52

16m3 sm3/

Virtual transitions of electrons to negative-energy states in
duced by the Coulomb exchanges generate the energy shi

E3+E3+2(E,— &) e+ 2€?
3

C

(53

| )

8m

The total irreducible Coulomb correction is the sum of Egs.

(50), (52), and(53),
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3mal
4m

3

ScE= %<45(r)—32[5(r1)+5(rz)]>+ [5(&)

2

&+C2+c

><2m

+(1-2)

Tad(r) (

3pP2 )
m3

3om TN

L GPRIPpCll (Ei-Ee £itE; €
32m? 32m?3 32m®  sm3/’

(54)

3. Magnetic corrections

These corrections originate from single magnetic ex-
changes between particles in instantaneous approximation.
There are two sources of such effects. Relativistic correc-
tions to the instantaneous interaction of the Pauli currents of
the electrons induce the following contribution to the energy:

o

PI+P3 pr-Cpot(d—2)(py-n)c(n-py)
’ 3

2m 4m
Tad(r) da-1 ., .
- - ) ,Cll+ , ,C ,
m3 ] 32m4([p1 [p1.cl]+[p3.[p3.c]D
(55
which can be transformed to
E -cpo+(py-n)c(n- 2mad(r
5&?:_<pl P2+ (Pyr-n)c( pz)_ Ta ()>
m 2m? m?
27wad(r)
+ 3 N
_ C pi-cpyt(d—2)(p;y-n)c(n-py)
am?’ m
[P-p,[P~p,c]]+ (Sl—ez)e+ d—1 €?
8m?* 8m3 8 md/’
(56)

]:[hen, virtual transitions to negative-energy states of one

electron induced by a single magnetic exchange with the
other and a single Coulomb exchange with both other par-
ticles, shift the energy by

5ME:< —

E—E)e d-1¢?
(&= Ege_ _3>_ -

2m 2 m
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4. Retardation corrections d—1
The effect of retardation on a single magnetic exchange diq 7a o P P2~ o’
. - |q<r
between the electrons is described in the appropriate order by o= f (2md mh P1.| P2, q“ € '

the following average value:

(60)
dig 2  pi+[s-q
5E— f q 2ma H’ef,q_,lpl [s1-0,51] | .
(2m)? q* m diq 2ma o
A= — [Cpdlp —eq +(1-2)
. (2m? m? gt .
X|H,e iq fzm +H.C.>, (58)
. . d ig-r
where q is the magnetic photon's momentum apf=p, _ f d'q 4ma &
—q(p,-9)/qg2. The correction(58) consists of zero-, single-, Az 2m)9 m? [C.pil q* [C.pa] ) (62

and double-Coulomb parts:

Integrating overq and using the Schdinger equation we
SRE=Ag+A;+A,, (59 transform these expressions to the following ones:

E%(c) E(Cc C2c Cyc? S(r -c P-p)c(P-
Age— () E(Co [ _Cne_Cne mad) , pcp, (P-pec(Pp
8m?  4m? 8m?  4m? 2m* 4m* 8m*
pic(n-p)®+ (P n?ep3—3(pr-n)’c(n-pp)’+(12) (E-EJe ¢ d-1¢€
- + - + : (63
16m* 8m?® 8m?> 8 md
E(c?) 2(n-po)(E1-pp) +(n- €)L(N-pp)*—p3] (py-m)%c2+c2(n-py)?
1= +{ —cr +H.c—3
4m? 16m? 16m?
Lo Cye? d—2c¢® d—-1¢€? 64
AT T T ) ©
36 E—(N-&E)(N-E)—2(E,—Eye  (d—1)(d—2)% ¢
po BB Em (ENN- &) 26~ Ege_(d-1d-2)* -
8m? 8(4—d) m2
|
) 2
Here zzind below | use shorthand no.tatlons-r.ia) and py-c2p+3(py-n)c2(n-py)
(pa-n)~ for the operaton;(n-p,) p,i and its hermitean con- seade = 3 +(1<2)
jugate, respectively. 8m
d e
5. Seagull correction +T—3 . (66)
m

Double magnetic exchange between the two electrons one
of which goes over into negative-energy intermediate state¥his correction completes the list of tima®) irreducible
gives rise to the energy shift contributions to the helium energy.
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B. Reducible corrections A(s—s) | Z

1
Up—ia————| 50— a1 +(1-2) |, (7D

1. Breit Hamiltonian 2m?2 rfr r3r,

Breit Hamiltonian for the helium singlet states )
whered,=dldr 5, d=aldr, while the vector

U=UstUe, (67 rXr, rXry rxr,
consists of two partsiJs and Up, with the selection rules 2 2 2
|AS|=0 and|AS|=1, respectively.Just like in the positro-
nium case(see Ref[12]), the second-order iteration of the is perpendicular to the triangle composed hyr,, andr,
Swave Breit perturbation diverges in three dimensions. Thawhile its norm equals this triangle’s area. TiRavave admix-
is why this perturbation should be considereddimimen-  ture to theSstate wave function
sions,

(72)

5p(ﬂ:GUpl/l, (73)
4, 4
pitp;, 7wZa (d=2)7a i
= 1 o+ . [8(r)+8(ry)]+ . S(r) has the same angular dependence as the perturbation
8m 2m m
. A(51—%) ¢p(ry,ry,r)
-Cpt+(d—2 -n)c(n- =
_Prcppt( )(2p1 )c( pz). 69) Sp=ia o’ o (74

2m

Functionegp(rq,r,,r) is introduced in such a way in order to

As for the P-wave part,_wh|ch MIXES smg_l@ an_d tr!pletP make it finite at coalescense pointsp(rq,r,,r)<e when
states, the corresponding second-order iteration is saturate oo .

; . F,—0 or r—0. Substituting the rhs of Eq.74) into the
by the soft scale and, therefore, we can take this perturbatiorf :
in the limit of d= 3 Inhomogeneous equation

(E—H)dpsp=Upy, (79
ST
4m?

Zl, Zl, rxP

33 3

3 3
ry ry r

Up: o (69)

we can cancel the spin- and angular-dependent factor using
the following relations:

Herel,=r,Xp,. Below | consider energy shifts arising in

second order inJp andUsg. [H,81—5,]=0;
2. Second iteration of the Breit Hamiltonian: P wave > p2
To find the singletS level shift induced by an admixture [H,ryXr,]= —1,r1 XTI+ X —2,r2
. 2m 2m
of triplet P states,
ryXro, 1a+1(9+2&)
5pE:<UpGUp>, (70) - m rl 1 r2 2 r '

whereG is the (reduced Green function of the Schdinger At the last step | took into account that the operator acts on
equation, consider first the action 0f, on the ground-state the function depending only on,,r,, andr. The resulting
wave function. As far as the latter depends on the absolutequation for¢p reads

values ofrq, r,, andr, ¢=(r,,r,,r), we can substitute

1 2
. -rerZ [H __<(91r1+(72r2+(9_ _E]d)p
I1=r1><plﬂ—|r1><(n1¢91+n¢9)=|T&,
rq Zrq
=1 502 —5 9+ (1=2) i (76)
| NERN P ' 2
_>_I 1 . . . .
2 Here H' is obtained fromH by the substitutions)— ¢
—1/I‘, (91—7[?1_1”1, c?z—)(?z_l/rz.
1 1 The final expression for the energy sHift0) then reads
rXP——ir Xry —&1+—¢92),
ry ry 5 5
b= gl Ty 2N oty
- IR S J . N )
PTamt\ T a2 27 2

'S=s5,+s,.
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3. Second iteration of the Breit Hamiltonian: S wave

In order to extract divergences from the second-order co
rection induced by th&wave part of the Breit Hamiltonian,
Eq. (68), it is convenient to rewrite the latter in the form

2

PHYSICAL REVIEW A 64 062104

and using the Schdinger equation for the reduced Green
function, H—-E)G(R,R") = ¢(R)#(R") — (R—R’), where
R denotes the vector (,r,,r), we get

8sE=2(Ug)(u) = (3[[H,u],ul+{Us,u})+(0sGOs).
(82

H
USZ—%'F{H,U}—ZEU‘FOd, (78)
Note that we can take the limit— 3 in the last term since in
where contrast taJ g the perturbatior©5 does not contain operators
more singular thai€2 andc?. In other words, all the diver-
- Cyt(d=1)c (79 9gences in Eq(82) are moved to the average values of local
B 4m ’ operators.
, , The first term from Eq(82) is most easy to calculate,
Cyt(d—1)c 1 {pl p3 } CnC
=E——F———+5-{—tc, —+ci—5— 2E+(c
d 2m 8m| m m 2m 2<US><U>=B 2n‘f > (83)
2d—3 , pr-[Cy—(d=2)c]p+(12)
“am & > HereB=(Ug) is the nonrecoil limit of the first-order Breit
4m .
correction(4). For the second term from E¢82) we have
-cpyt+(d—2 -n)c(n-
_Prcppt( )(Py-n)c( pz)- (80) 1 £24+62 (£-E)e (d—1)%?
2m? —(5[[H,ul,ul)= + +
2 32me 8m?® 16m®
Inserting Eq.(78) into equation (84)
SsE=(UsGUyg), (81)  Then, the third term from Eq82) can be rewritten as
|
E3  E(C) wa(Z-2) 3CcCy PiCnP;  [P-p[P-p.c]]+2(P-p)c(P-p)
—({Us,u})= - - O(ry)Cy+8(rp)Cy) + - +
({Us.up) o o a? (8(r1)Ca+8(r2)Cy) a? em o
3 7Ta5(r)c N Cnt(d—1)c pic-pp+(d—2)(p;-njc(n-p,) _(81_82)'e+ CY N d_lc3
omd " 8m? m 4amd 4am?  8m?

E3+&3 (d-1)e?
N 3 3

8m 8m

)

(85

Finally, the fourth term from Eq(82) can be calculated in a way similar to that used above forPiveave contribution.

Namely, we first find the solution for the inhomogeneous e

quation

(E—H)dsy=(03—(03)) ¢,

orthogonal to the ground statédsi| ) =0, and then evaluate the matrix element®f betweendsy and i,

(03G03z)=(8s|O3| ).

An alternative way to calculate E¢B6) is to include the operatdD; directly into the Hamiltonian,

(H+0O3)y’
Then, with theO(a?) precision,
(03G0z)=FE'

C. Total soft-scal

Summing up all soft-scale contributions, given by E@5),

(86)
=E'y'. (87)
—E—(Oy). (88)

e contribution
(54), (56), (57), (63-66, (77), and(83—86, we get
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AL S(ry)+ 6 £ BO s e 0,605+ | - E9E
4m2[ (r)+6(ra) ] ) + 5=+ (03GO3) +| — P

. ES +E2(C>+E 2C\C+c?  p?p3
T om2 T am?2  m 4m 8m?®

| G picpot(pme(n-py) | PICP;  PyC?pitpyC’pp  prCp: PP (P-p)C(P-p)
8m3’ m 4m* 8m?3 4m*

_ pie(n-pp)®+ (pr-n)*ep;—3(pr-n)*e(n-pp)?+(1-2)  cr

5[2(n-p2)(E1-p2) +(n- E)[(N-p2)* ]

16m* 16m
F 102 tHel+ S (38, £y (£ £y~ 2(Es— £y)- 6] — L PLP-PCl] ma(r)(13P2+ )
8m2 1°€2 1 2 17 €2 3om? om? | 16m N
TaZ 3p3 } (E,—E,)e C3 E2+E5 1-3¢ ., 3—6e
+——|8(r)| s=+2C,+c|+(1=2) |- + - c3+ e? 89
4m3 (1)<2m 2 ( ) 32m®* 4m? 8m? 2m? 4m3 (89
|
Ordere coefficients are kept in E¢89) only if they multiply
the operators whose average values contairsibigularities. 1 2
In Eq. (89), the following relations are taken into account: (C3)y=(2azp)® (——4 In¥+2 (m8(rap))
€ b
3-d 2r
[pi.[pj.c®nin;]]= ﬁez, y+In=—2
-2 Tb Nab* Vab . (93
-Ccpo+(pg-n)c(n- ab
(d—3)<[c,pl P2 (prln )e( pz)]>

Recall that g,=|z,z,mape| 1. Average value of the second

2

— _ 3
=(d=3)(c)+0O(e). (90 singular operator$;,,, can be found in the following way:

For the bulk of the operators in E@9), their average values

can be safely evaluated @t~ 3. Special care is needed when

one deals with the operatopc(n-p,)2+(1—2)+H.c., (E20)=([V4,Cap)?®

which is not well defined in three dimensions. We can take

the limit d—3 having previously determined what the mo- =([Va,CanlVa,Canll=CaplVa:[ Va,Canl)
menta operators are acting on =—2(Cap[V4,Cap]Va). (94)

lim (p2c(n-p,)?+(1<2)+H.c)

43 At the last step, | again have used the equation

(Capd(rap))=0 valid in the dimensional regularization. In
=(p2c(n-pp)2+ (152) + H.cH 4rm2a8(r))| 4.  OFder to express the average value

(91)
In order to be certain that this relation holds, it is sufficient to T 9_ 1) ?
consider the two-body problem, where both sides of (B 5 ) 2 3-2d
can be calculated analytically. (Ean=2(d=2)(zazpa) a1 (7 napVap),

In order to calculate singular average values entering into (95)
Eq. (89), consider the Coulomb potentiél,,, between two
particles with charges, andz,. The average value @rgb is

in terms of(C3,), the known derivative of the wave function

(d ) 3 atr,,—0 carf be added to and subtracted frang,- V4,
I'=-1
(C3)=(Zazp)® 2 (r8, % (92
2 2 rd/2-1 2 8Strictly speaking, with a coefficient-4O(€). Inspection of the
known two-body average values, however, shows that the coeffi-
Repeating the procedure used in Sec. Il we get cient is in fact equal to 1.
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1
(E30)=2uan(d—2)(Cop) +2(2ZaZp) < 3 (Nap- Vap

ab

- ,LLabZaZba)> . (96)

Since the last average value in the rhs of &) is finite, it

PHYSICAL REVIEW A 64 062104

can be considered in three dimensions. Now, extracting all
divergent pieces from Ed89) we get Eq.(39).

VI. CONCLUSION

The divergences contained in the h&Bd) and soft scale
(38) contributions cancel each other so that in the sum of all
contributions, Eqs(33)—(37), (89), we can pud= 3. Taking
into account Egs(91),(93),(96), the final expression for the
O(ma®) correction to a singleS-state energy of the helium
atom can be written as

E3  EXc) 2C\C+c® pip; maZ B(c)
V= — _ 28
8¢ o2 a2 T\ T am o 4z LT+ 8(12)] ) + 55+ GpE+(04GOg)
3C;C,Cy  CCyC  Cye[pipotn(npy)p,]+H.c. plché
32 _ _ _
+ma’m <keN[6<r1>+5(r2>]+kee6(r>>+< T pw o
L PUCTPL PP (PP CpyXPy)  PIC(N: P2)F (Pr- e~ 3(py- e po)*+ (12)
8md 4m?* 16m*
2(n~p2)(£1~p2)+(n~81)[(n-p2)2—p§]+(1<—>2)+H.C.+ r3£1'52‘(”'51)(”'82)—2(81_52)9
- o
16m?3 8m?
3a P?-3(n-P)? 8(r) [ 9P? z 3 2Z—-1 E,-&)-e
 3a (-P)? mad(r) (P2 | maZ[ o (305 (2Z-Da) . | (Ei-E)
32m* rd 2m® | 16m 4md 2m M 32m?®
(Za)? 1( V.t mZa)+(1e2) 3In(mar)+7 3a? 1( ma) @7
—(Nq- m — — n- n - — .
amd |30 7 “ “ T omer? 2m3 r3 2

Here all momentum operators standing to the rigétt) of

Equations(97)—(99) are the principal result of the present

position-dependent operators are assumed to act on the righork. Its application to the ground state of the helium atom

(left) wave function. Althoughd-dimensional notations for s considered elsewhef8].

the Coulomb potentials and electric forces are kept in Eq. The approach elaborated here can be applied to other few-

(97), the immediate three-dimensional counterparts are imelectron atoms as well as to higher-order corrections. The

plied for all operators, e.9gC;— —Za/r;, e~an/r?and so  only stumbling block to higher-order calculations is the yet

on. The contact terms enter into E?y)) with the coefficients  unknown three-loop hard-scale electron-electron potential.
Nevertheless, the ordeta’ corrections enhanced by powers
of In a can be determined by combination of methods used in

" :Z_3 4272* 102 9Z{(3) 217¥ Ref.[15] and in the present work.
N2 96 27 4n? 6482
32422
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