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In a previous paper we have studied dressed excited states in the Friedrichs model, which describes a
two-level atom interacting with radiation. In our approach, excited states are distribtiorgeneralized
functiong in the Liouville space. These states decay in a strictly exponential way. In contrast, the states one
may construct in the Hilbert space of wave functions always present deviations from exponential decay. We
have considered the momentum representation, which is applicable to global quénsitiesenergy transfer
Here we study the space-time description of local quantities associated with dressed unstable states, such as,
the intensity of the photon field. In this situation the excited states become factorized in Gamow states. To go
from local quantities to global quantities, we have to proceed to an integration over space, which is far from
trivial. There are various elements that appear in the space-time evolution of the system: the unstable cloud that
surrounds the bare atom, the emitted real photons and the “Zeno photons,” which are associated with devia-
tions from exponential decay. We consider a Hilbert space approximation to our dressed excited state. This
approximation leads already to decay close to exponential in the field surrounding the atom, and to a line shape
different from the Lorentzian line shape. Our results are compared with numerical simulations. We show that
the time evolution of an unstable state satisfies a BoltzmanrHikeeorem. This is applied to emission and
absorption as well as scattering. The existence of a microsd@piteorem is not astonishing. The excited
states are “nonequilibrium” states and their time evolution leads to the emission of photons, which distributes
the energy of the unstable state among the field modes.
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[. INTRODUCTION be discussed in Sec. lll, the transition from the momentum
representation to the space representation is far from trivial
As is well known the decay of excited states or unstablébecause of the singularities associated with states outside the
particles leads in the framework of quantum mechanics tddilbert space.
deviations from exponential decdyt]. This effect, while In Sec. Il we briefly summarize our previous paper. For
small, leads to some puzzles. Schwinger has written.©  simplicity we consider the Friedrichs model in the rotating
with the failure of the simple exponential decay law we havewave approximation and in one-dimensional space. We con-
reached, not merely the point at which some approximatiorsider in succession stable and unstable excited states. We
ceases to be valid, but rather the limit of physical meaningdescribe the Gamow vectors, which correspond to the com-
fulness of the very concept of unstable partic]g]. Wigner  plex spectral representation of the Hamiltonian. We describe
has gone so far as to limit the idea of elementary particles tas well the complex spectral representatiorigfin the ex-
stable particle$3]. tended Liouville space that includes distributions. Starting
We have presented a solution to this problem in a recerfrom this representation, we formulate the dressed unstable
paper[4], in the framework of our extension of quantum state|p9)) as well as the dressed photon states and correla-
mechanics to density matrices outside the Hilbert space. Itions.
this extension we have complex spectral representations of In Sec. Ill we consider the space-time representation of
the Liouville—von Neumann operatgor Liouvillian) Ly  the decay, starting from the bare excited state. We obtain a
=[H, ] that allow us to rigorously disentangle the exponen-closed form for the field intensit(x,t) at timet.
tial and nonexponential components of the evolution of a In our previous paper we have shown that the time evo-
given initial condition. The exponential component corre-lution, starting from the bare excited state, may be split into
sponds to the dressed excited state or unstable particle, ando parts: a slow onéMarkovian, corresponding to the ex-
dressed photons. The nonexponential component corrgronential decay and emission of the dressed excited|[sffate
sponds to dressed correlations. The dressed states and coriger. (40)], and a rapid onénon-Markovian associated with
lations are given by nonfactorizable density matrices outsidéhe dressing of the bare state, leading to nonexponential ef-
the Liouville-Hilbert space. They are related to the bare denfects. In the local field intensity(x,t) we may also distin-
sity matrices through a transformatioh. This transforma- guish these two parts. Note that to obtain causdthg van-
tion is star unitary[4,5], which corresponds to a generaliza- ishing of the emitted field outside the light conge have to
tion of unitary transformations to unstable systems. combine both the Markovian and non-Markovian compo-
In our recent paper we considered global quantities, suchents of the field. We may not isolate either component as
as, the trace and total energy. To obtain these global quantihis would lead to noncausal behavior.
ties we used the momentum representation. Now we consider The evolution law of the non-Markovian component de-
local quantities using the space-time representation. As wilpends on the initial conditions. In contrast, the decay law of
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the dressed excited state is “universal.” In this way we retainlarge. Conversely, if the wave packet moves away from the
the indiscernibility of excited states or unstable particles. Inparticle,H is small. The initial precollisional correlations are
addition, our decomposition in subdynamics permits us t@f long range and are dominated by resonance effects. In
identify in 1(x,t) various contributions corresponding to the contrast, postcollisional correlations are of short range and
dressing cloud, the decay products, and the Zeno photons. dre due only to off-resonance effects. We define space-time-
is remarkable that in the calculation of the photon intensitydependent Lyapounov functiorts™(x,t) that measure the
only the factorizable part ofp?)) plays a role. To obtain postcollisional and precollisional correlations between the
global quantities such as the transfer of energy from mattefield and the particle at each location in space, respectively.
to photons we have to integrate over the whole space. As we shall show, the distinction between the functions

In Sec. IV we give an example of a state in the Hilberth™(x,t) andh™(x,t) is related to the positivity of energy,
space that comes closer to an exponential decay of the fielathich is associated with nonlocal effects in the scattering of
(inside the light cong as compared with the bare state. Thephotons[10].
essential feature of this state is that it already has a cloud at In the appendices we discuss a few miscellaneous topics
t=0 (as is the case for ground state$his leads to a line that include a simplified derivation of the form of our
shape closer to the line shape|pf)) than to the Lorentzian dressed particle state, some properties of the Hilbert-
line shape. Hence this state offers an approximate scheme §ipace state presented in Sec. IV and a study of resonance
the Hilbert space of our non-Hilbertian unstable state. scattering.

In Sec. V we come to an important point: the description Processes involving matter-radiation interactions remain
of emission and absorption in terms of &hfunction, which  interesting as ever. They have been the starting point of
is a microscopic analog of Boltzmanr?s function in statis-  duantum theory and now they provide tests for our proposed
tical mechanics. In our earlier woifld,6,7] we have shown extension of the framework of quantum mechanics. Hamil-
that if there exists a microscopic entropy it must be an opionian physics leads to a description of independent nonin-
erator. In the Friedrichs model and in the simplest case deaferacting entities. For unstable particles or excited states we
ing with nonsingular states, we can constructtadunction ~ need a different description. The units should be interacting

in terms of the operatdt6,8] as energy is transferred between matter and field.
H=|d1)(¢1l, (1) Il. DECAYING QUANTUM STATES
where|¢,) is a Gamow vector. The{ function is, therefore, First we summarize our previous results. For more details

outside the Hilbert space. We do not give here to a detailedee Ref.[4]. We consider the Friedrichs model in one-
discussion on entropy. Let us only notice that there havelimensional space. The Hamiltonian of this model is given
always been two points of view: the point of view of Planck, by*
relating entropy to dynamics and the point of view of Bolt-
zmann, relating entropy to probabiliti€gnorance [9]. We
understand now that Planck could not realize his program as H=Ho+AV=0,|1)(1] +§k: wy|K)(K|
he worked in the usual representation of dynamics, equiva-
lent to a Hilbert-space representation.
The Heisenberg evolution of EL) is given by H\Ek Vi([k) (L[ +[1)(K]). ()

_ aiHtg a—iHt _ =29t
H(t)=e"He e @ The statg1) represents a bare particle or atom in its excited

level and no field present, while the stdte represents a
(ij)are—field mode of momentuitogether with the particle in

its ground state. Hereafter we shall refer to these states as
m“particle" and “photon” states, respectively. Fow,3=1k

we have

The physical meaning of{ is very simple. It decreases as
the energy of the excited state is transferred to the fiel
modes.

In Ref. [8] we have discussed the effect of momentu
inversion on. Momentum inversion leads to a jump Bf
corresponding to an “injection” of negative “entropy.” Here
appears the basic distinction between precollisional and post- (a|B)=35, 5 2 la)(a|=1. (4)
collisional correlations. The emission of photons corresponds ' a=1k
to a postcollisional correlation decreasing the function
(the photons escape from the partjcl@he momentum in- The energy of the ground state is chosen to be zeyas the
version leads to a precollisional correlation increasing?he bare energy of the excited level, aag=|Kk| is the photon
function. This observation was made many years ago in thenergy with a unic=1. The coupling constant is dimen-
framework of statistical mechani¢s]. sionless. As usual, we assume periodic boundary conditions.

In Sec. V we show that this idea also applies to excited/Ve put the system in a “box” of siz& and eventually take
states. We consider the scattering of a wave packet by the
particle (or atonm in terms of . We show thatH{ changes
drastically depending on the direction of the initial wave !Here we neglect virtual transitions. In a recent publicafibh]
packet. If the wave packet moves towards the partileés  we solved the Friedrichs model including virtual processes.
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the limit L—oo. For L finite, the moment are discrete. In From the eigenstates &f one can construct the density
the limit L— o they become continuous, i.e., operatorgsee Ref[4])
L [P =ldaida)), a=1k (12
— f dk. (5

PP =|da:bp)), aB,
The summation sign is written with the understanding that
the limit Eq. (5) is taken at the end. The potentid is of ~ Which are eigenstates of the Liouvillian as
orderL 2 To indicate this we write — _ _
Lulpa))=0, Lulp®))=(w,~wp)lp®)), (13
V= (2m/L) Y2, (6) _
where wy= wy .
The density operator$p?)) and [pP)) correspond to
dressed particle and photon states, respectively, and are in-

wherev, is of order one in the continuous spectrum limit
L—oo. As a specific example we shall assume thais of

the form . . —

variants of motion. The statdp®?)) represent dressed cor-
vi=v(wp) = (2w) YU wy), relations, which oscillate in time. The dressed states are re-
lated to the bare states through a unitary transformation
= 1 —
u(wy) T+ (o) 7T @) P2 =U"Ya;a)), a=1k (14)

with n a positive integer. This form appears, for example, in |;“'8>>=U_l|a§,3>>. a# .

a two-level model of the hydrogen atgib2]. The constant

le determines the range of the interaction. We shall assume B. Unstable case

that the interaction is of short range, i.&y>w;.

The state|1) is either unstable or stable depending on
whether its energw, is above or below a threshold, respec-
tively [see Eq.(2.6) of Ref. [4]].

In the unstable case, one can also construct eigenstates of
H that are in one-to-one correspondence with the unper-
turbed state$8,13—19. This requires, however, to go out-
side the Hilbert space, as the discrete state has a complex

eigenvalue
A. Stable case
For the stable case, one can construct dressed $tates Hi¢)=2lds),  Hidg=wdy. (15
that are eigenstates &f. In the limit L—o we have Here
H|$1>:;1|$1>' H|$k>:wk|$k>i ® Zi=w,—iy (16)

wherew, is the(rea) shifted energy of the discrete state. We js the pole of Green’s function that is given as a solution of
use the bars to refer to the stable case. Note that there is 2" (z,)=0. The negative imaginary part ef describes de-
one-to-one correspondence between the dressed and bakg, fort>0. Note that for Im¢) <0 the functiony ™ (w) in

states as liq_ | ¢a>—|a> and Imﬁo wi=w;. The explicit  Eq.(11) is evaluated witlz= w on the second Riemann sheet
forms of the dressed states are [4,8].

The state|¢,) is called Gamow vector. The left eigen-

—1/2) states ofH that belong to the same eigenvalues are different
|¢1> N1 |1>+2 |k> w— wk ©) from the right eigenstates
7= |k)+ |1> E | S (pr|H=(b1lz1, (PulH=(di|wy. 17)
K= p
The right and left eigenstates bf are given by{4,8]
HereN; is a normalization constant and L
- |60 =N [1)+ 2 s (18
L A2V k)
7 (0)=0—w,— > o T 11
T (z2—w),
1/2]
The + (or —) superscript indicates analytic continuatiorzof |¢1> [Ni°] |1>+z |k>( 7w ) ]
from the upper(or lower half plane toz= w (this continua- ke
tion will play a role in the unstable case belpwhe shifted
energy of the discrete state is given by the solution of the AVp
— =k + 1)+ _
equationni(wl):(). |¢k> | > | > 2 |p>(1) —(1) Tiel’
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~ AV AV, wherez,=w, and
[B0=10+ o5 D+ 2 P o= | B
[F) =ldw; dur)), (25

Here

1 1 z,-w [FE) = [(FH) )y =1 iy — 2 [1.1))
T =7 . (19 !
74 (@) 7 (@0 (z—w);;

X[{(LH1: i) —F(k,D],
Note that the difference between unstable and the stable dis-,

crete states lies in the need for analytic continuation for théVith

unstable state.

The eigenstates d¢fl form a bicomplete biorthonormal set AV 7\2V|2

— 1/2
in the wave-function space as FlkD==N; 74 (@) 21— oy
Bt =0us. 2 16@J=1 (@) | R —
a=1k (1)|_(1)k+|6 (z_w|)+

2

A first possibility to define a dressed particle state in the
unstable case is through factorized density operators corNote that eigenstates, such |[&))=|)(¢,| are still fac-
structed with Gamow vectors. As we shall see, for certairtorizable, while other states such [&'¥)) are not factoriz-
types of observables these operators give a correct descripble. The explicit forms of the left eigenstates are given in
tion of the unstable particle. However, as we have shown irAppendix B of Ref.[4].
Ref.[4], if we want to describe fundamental properties, such The eigenstates df,, form a bicomplete and biorthonor-
as, the transfer of energy from the partiéte excited state  mal set in the Liouville space. The statds)) span the
to the field, then the factorized Gamow density operators argo-called “vacuum of correlations” subspace that is defined
not adequate. For example, the density operiater ¢,)) is by the projection operator
traceless and has no energy, WHi&l;ZSl)) cannot decay
since this is an invariant of motion. Still, dyads of Gamow . O\ =0
vectors play an essential role in our formulation. H(O)=a:21'k [Fan){(Fal- (27)

C. Complex spectral representation ofl The other states define the particle-field and field-field

In the Liouville space one can construct complex spectrafiréssed correlation subspaces
representations of the Liouvillian that are not reducible to a
product of representations of the Hamiltoniffh7,16. In o= EIV (B 4 (B (B 28
these representations the right eigenstEljé) for a given ZI [IFDXFEHFEXCER, 8
eigenvaluez!”’ is different from the Hermitian conjugate of

the left eigenstaté(rzﬂ, as is the case for Gamow vectors N O (el
[see Eq(17)], n@=2" [F")((F"],

I’

"y =Z(M|gr EYILy=(E"|Z" _ L o
LulFiY=2"1F))),  (F{lLu=(F{lz”, (21 respectively, where the prime in the summation sign denotes

, , , . the restriction #1’. The indexd in the projectord1(® indi-
wherej together withv specify the eigenstates. In R¢#l] . o
we have solved the eigenvalue problem of the Liouville Op_cates the “degree of correlation] of each subspace. Due

erator for the Friedrichs model and shown that the set OLO the completeness and orthogonality of the eigenstates of
eigenstates consists of a purely decaying state and invariant' the projectors are also complete

stategsee Eq.(4.27 in Ref.[4]]

2
LulFD)=—2i9IFD),  LulFd)=0(1L)~0, (22) &0 0
where and orthogonal
FD)=]d1:61)), IO = 5y 1O, (30)
|FE>>E|‘7"<;Z{"‘>>’ @3 The projectors commute with,, . We note that the projec-
as well as dressed correlation states tors are not Hermitian in the Liouville space, i.e.,
LlFP)=(2,~2)IF),  axp, (24 (O 1. @Y
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D. Dressed density operators (2_#) 1 ()\2},2)3 b

In the unstable case we express the dressed density opera- by~ L
tors as linear combinations of the eigenstateg of To ob-

tain their specific forms we construct a transformatiothat  \vhere N2y, is the lowest-order approximation of. This
maps dressed states to bare stage[4,5] for a detailed (differs drastically from the Lorentzian line shape, as it leads
discussion om). The A transformation is obtained by ana- to no divergence for the fluctuation of energy. For the left
lytic continuation of the corresponding unitary transforma-states we have analogous expressions to E43—(36) [see
tion U in the stable case\ is no longer unitary, but it has a Egs.(B23)—(B26) of Ref. [4]].

new symmetry property called star unitarity, which is an ex- The state] p(1J>> may be also expressed in terms of dyads

tension of Un|tar|t){5] In terms of the eigenstat¢@;ﬁ>> of of Gamow vectors ag] as (See Appendix A
Lo, the dressed states and their duals are defined as

lpa))=A" a;),  ((pal=((a;alA, (32

T [(wr— @) 2+ N4 y3?

1pD))=QO ;1)) + PO by ha)) +r| by ¢1>>(]42)

and where P(® and Q(® are projectors to the diagonal and off-
L _ diagonal components of density matrices, respectively,
PP )=A"Ya:B)),  (p*P|=({a:BlA, (33

for a# B. The state$p?)) and|p?)) are the dressed excited P(O):l_Q(O):a;k |l a)){(a;al, (43
state and dressed photon states, respectively] @#ftl) are '

dressed correlation states. In the limit-0 the A transfor- andr is a numerical coefficient. This means that we have
mation reduces to the unit operator, and the dressed states

reduce to the bare states. Moreover, in the stable case the ((k:k|p))=roc((kik|dy:d1))+r((kiK|Dy: b))
dressed states reduce to the states in(Ez).

In terms of the eigenstates &f, the dressed states are Kk 10O = (kK| b - K+K' a4
giVen by[4] << ’ |pl>> << ’ |¢1’¢1>>’ . ( )
The stategp?)) and their duals generate tH&® sub-
pD)=1F)+3 blFD), (34  space
o= NPl 45
1oD)=IF2) ~bllF). @) 2 lee) (el @9
[pPy)=|Fah)), (36)  while the stategp®?))) and their duals generate the corre-
lation subspacesee Eqs(36) and(28)]. Hence, the dressed
where states form a complete set in the Liouville space
\? 2 c.c 0 ~0 ap ~ap
b= =<l (rci+c.c)—cey™ (37) 2 [P+ 2 1By ((p*F|=1. (46)
|1+ 3¢y a azp
with Note that the replacement of the unitary transformatioim
the stable case by in the unstable case implies radical
Vi changesU is distributive adJ(AB)=(UA)(UB) while A is
P — (39 not. Therefore, irreversibility implies a deep change in the
(z “’k)zl mathematics of quantum mechanics.

andr given in Eq.(A9). The distributionb, satisfies E. Diagonal singularities and observables
We come now to an important point. We have to classify
Ek: b=1. (39 observables according to whether they have or they do not
have a diagonal singularity in momentum representasee
The dressed excited state evolves as also[17,18)). To each observable corresponds an operator,
sayA. By definition an operatoA has a diagonal singularity
_ if the diagonal elementk|A|k) is at least as importariin
et p)=e M pd)+(1-e 2D blp)). orders of magnitude of the volumie) as the sum of the
: (40) off-diagonal elementgk|A|k’) with k#k’, i.e.,

This shows thab, is the line shape of emitted photons. For <k|A|k>~E' (K|AJK"). 47
small coupling constant<1, b, is approximated by K’
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Examples are functions of the Hamiltoni&h such asH?, An example of nonsingular observable is the photon field

for which we have intensity we study in the following section. The dressed
states can then be reduced to a product of wave amplitudes

(kIH?|K)= w+O(1NL), (48) | p.){ ¢l inthe extended space of wave functions. The ques-

tion of going from local observables to global observables
, , involves an integration over spatsee Sec. I). This means
217\ — 2 2
%: (k[H7k >_§4 A Vka’:j dk\ v - that important features, such as, the transfer of energy from
matter to radiation between dressed states cannot be ob-

Both quantities are of the same orde? in volume. The Served by local measurementexcept, of course, to the
diagonal singularities play an important role in our formula-0west-order approximation when we deal with bare par-
tion as they are associated with the components of thécles. The 1L contributions in Eq(51) have to be kept to
dressed states that are nonfactorizable into a product of waRe able to make the transition to observables with diagonal
functions[see Eq.(42)]. These components are essential toSingularities.

obtain important physical features of the unstable particle

state|p?)). For example, thanks to the nonfactorizable com- lll. SPACE-TIME DESCRIPTION OF THE EMISSION

ponents of|p?)), the average energy(H|p?)) is real and PROCESS

e . 0 .
positive. In addition the statgpy)) has a unit trace as e ghall first calculate the intensity of the field emitted by
2 ,-1x{(@;elp1)) =1, and the time evolution is given by the the pare excited stafp(0)))=|1;1)). Our aim is to sepa-
Markovian equatior{40). rate the non-Markovian part of the field associated with the

In our classification, the second class of observables argreparation of the unstable particle from the Markovian part
the ones with no diagonal singularities. For these observablegming from the decay process.

the diagonal elements in momentum representation are The field intensity is defined by

O(2/L) smaller than the sum of the off-diagonal elements.

For example for the “field-intensity” operatdx)(x|, with L(x,t)=(({x;x|e""H'1;1))=[(x|e M| 1)|2. (52

the |x) kets defined b¥y
In our model the bare particle is “located” at=0 (this is
where the effective interaction between the particle or atom

_ —1/2,—ik
|X>=zk K} (2w L)~ e, (49 and the field occurs. For example, for a two-level model of
the hydrogen atom in the dipole approximatiors O is as-
we have sumed to be the average position of the dijpole
(k|x){x|k)~1/L, (50 A. Calculation of the amplitude
dK’ As the dressed states will take the factorized form in Eq.
> (Kx)(x|k"y= f 2_(4wkwk,)—1lzeix(k—k’)_ (51), we start by evaluating the amplitude in E§2)
K’ an

f(x,t)=(x|e""""1). (53
The first quantity iSO(1/L) smaller than the second.
For any operatoA with no diagonal singularity, the spec- For simplicity we shall consider the case of weak coupling
tral representation df , takes a factorized form and we have A<1. Hence we haveo,>y, where w;~O(\°) while y
~0(N?). Inserting the bicomplete set of eigenstates of the
(AlpD)=((AIFD)=((Al¢1;h1)) +O(1NL), Hamiltonian in Eq.(20) we have

O\ O\\ : ~
((Alp))~ ((AIFR)~O(11L), (51 f(x,t):azlk<X|e"Ht|¢a><¢all>- (54)

((Alp?)) = ((AIFF))=((Al o b))+ O(1LL), N
Defining[see Eq(15)]

where we have neglected the diagonal components, such as
((Alk;K))((k;k|p%)), which vanish asO(1/L) in the con- fo(x,t)=e "2 x| 1) (1| 1), (55)
tinuous limitL—oo. We have analogous expressions for the

left states, e.g((F “#|A))=((b,; BglA))+O(LL). LD =—3 e (x| ) (Bl 1),
k

2In the second quantization formalism we hakg=a/|0) where ~ we have
|0) is the vacuum anqak,al,]:ékk/ as usual. The Friedrichs
model is limited to the one-particle sector. In this sector we have f(x,t)="fo(x,t)—f1(X,1). (56)
(X|plx)=Tr[$*(x)p]  where  H(x)=Z (2w L) Hale ™
+a,e™*). Hence|x)(x| corresponds to the field intensity in the In the limit L—o the first term is given bycf. Eq. (6) and
one-particle sector. Eq. (18)]
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dk . Au
(X t) N e |zltf |k (wk)+ (57)
—oon 27T (Z—wk)Zl
while the second term is given by
© dk ) Iwkt
fl(x,t)z—f —e"\u(wy) dI
—on 2T 7 (wy) -
)\sz(an) e—iw|t
= - — — . (59
7g (@) 7 (@) o~ wtle
Using the relation
Nv%(w) -1[ 1 1
X, N =, o | T - = ) (59)
7 (0)n (@) 47mi[n (o) 7 (o)
we get
f1(x,1) fm I gon (| e [ 4
X, t)=— —eN\Uu(w)| ———— | =—
' —\2m L (0o Jo2m
1 1 e ™
X — — .
(ﬂgu) n (1)) 1—wtie (60

For <0, the integrand in the second term vanishes. Hence

we may extend theintegration from— oo to 0. Approximat-

ing 74 (I)=-1/(z—1), + O(M?) and taking the residue at

| = wy, we obtain

= dk
fl(x,t)~jx\/7e

Then, using the relations),=|k| and N;=1+O(\?) we
have(for a=0,1)

Au(wy)

(z— wk)z*l

i (kKx— wyt) (61)

fa(X,U*J:dkga(k,x,t), (62)
where
1 _oaauk) _
k = —izgt ikx | o—ikx
do(k,x,t) N (z—k)g'l[e +e 1,
. Mu(k)
gl(k,x,t)E \/ﬂe (Z k) [e'kx+e |kX] (63)

PHYSICAL REVIEW A64 062101

ca(x,t)E—J0 dk g.(k,x,t). (65)

The functionsgp, may be evaluated by closing the contour
in the upper or lower infinite semicircle of tHe complex
plane, depending on whetherx—at is positive or negative,
respectively. This leads to the pole contributionkatz, as

Pa(X,t)~— 2miAu(zy) ' "V20(|x| - at)

for t>0, whered is the step function. The poles ofk) also
contribute[see Eq.(7)], but for distances much larger than
1l/wy, the contributions are negligible. Henceforth we shall
restrictx to the regiongx|>1/w,, and neglect the poles of
u(k).

Note that the pole contributiong,(x,t) increase expo-
nentially with the distancex| as p,(x,t)~e'zX~er
However, in Eq.(56) these contributions cancel outside the
light cone|x|>t as we have

pl(X!t):0(|X|_t)p0(Xrt)- (67)

For the “cut” contributionsc, in Eq. (65 we changek to
—Kk to obtain

(66)

. dk o au(k)
CO(X,I)Z _eflzltJ’O \/?[elkx 7|kx:| k+21 ,
Au(k)

k+z,° (68)

= dk
cl(x,t):—f0 > [elk(x+t)+ ik(— x+t)]
V&

The cut contributions appear because of the positivity of en-
ergy, which leads to a branch-point singularity in the resol-
vent of the Hamiltonian in the complex energy planewat
=0.
Using Eq.(67) in Eq. (64) we get
f(X,0)=Co(X,t) = Ca(X,t) + O(t— [X])po(X,1).  (69)
The field intensity is

L(x,t)=]f(x,1)|% (70)

As we shall seecy(x,t) will be associated with the cloud
surrounding the particlgyy(x,t) with the decay products and
c1(x,t) with the “Zeno photons.”

B. Relation with the dressed states

Now we write the field intensityEq. (52)] in terms of the
dressed states in the Liouville space. As the dressed states

Now we extract the resonance pole and “cut” contributionsform a complete set in the Liouville space, we may express

by adding and subtracting integrations fronw to zero
fa(X,t)=~pa(x,t) +c,(x,t), (64)

where

PalX,t)= f " dk gk,

the bare particle state as

1= 3 DXL S o GHL).
(71)

Then we can decompose the field intendifx,t) into its
dressed particle and dressed photon components,

062101-7



T. PETROSKY, G. ORDONEZ, AND |. PRIGOGINE PHYSICAL REVIEW 84 062101

1Ox,t)y=((x;x|e L H | pOW(RY1; 1)), (72 10(x,t)=[fo(x,1)[?, (81)
for a=1k, respectively, and its dressed correlation compo- I D(x,t)=—[fo(x,1)f1(X,1)*C+c.c],
nents
12, 1) =f1(x,1)]2.
(1) = (1k) (k1)
0 Ek: (PO +IEHD], (73 For the dressed particle component we hfsee Eqs(64)
and (66)]
I(z)(x,t)EkEk/’I(""')(x,t), 1O(x,t)~|co(x,t) + V2miu(zy) e -V22 (82
where For largex this grows in space a2 However, adding the
i 1) (@) §
correlation component$®) and!(® in Eq. (81) the exponen-
1@B)(x,t)=((x;x|e H| p®BY)((p*B|1;1)).  (74) tial growth is canceled outside the light copg>t, as then
’ ’ ' we recover the square of the amplitude Ef), which leads
We have to Eq. (69).
2 .
I(x,1)= Z I(d)(x,t), (75) C. Separation of the cloud and decay products
d=0 Next we discuss the interpretation of our decomposition
where [Eq. (75)] of the field intensity. Using the expression for
fo(x,t) in Eq. (57) together with Eq(81), it follows that the
0 dressed particle componelrﬁ’) decays in a purely exponen-
1O(x,t)= ;k 19(x,t). (76)  tial way as

(0) =@ 21(0)
The superscriptd corresponds to the subdynamics projec- () =e"17(x,0). (83

tions This corresponds to a Markovian evolution. On the other

1@ (x,t)=((x;x|e LHTID[1;1)). (777 hand, the correlation component€ (x,t) (with d>0) have
a non-Markovian evolution associated with memory effects
Using the explicit forms of the dressed states in terms ofthe preparation Therefore, with our decomposition, we
the eigenstates df,, and neglecting terms @d(1/L) we get  separate the exponential and nonexponential elements of the
[see Eqs(34) and(35)] time evolution of the field. These elements, in turn, contain
both “cut” and pole contributions, which we describe now.

19(x,t)= 672“<<X:X|F(10)>>+2k bi( (X Fi) 1. The cloud

The function|cq(x,t)|? corresponds to the cut contribu-

=(0)[1 .
x((F1711:1)), (78) tion of the dressed particle component. It gives the cloud of
- _ photons surrounding the particle. Indeed, as seen ir{@8j.
KO0 = (X FON(F11:1) = b ((FV 1 1)1 Co is given by an oscillatory integrand ka In X spaceg, has

a maximum atx=0, where the particle is located, and de-
creaseszwith a power law ¢%| for large |x|.2 The function

0 _ ) ) ~ o~ Co(X,t)| is represented by the dotted line in Figvie shall
1200 =727 06x| 15 1) ){((B13 8] 1;2)) +O(ANL), l;,i?/fa nzl)re de‘t)ails on they numerical simulatic?r(1 below
cloud analogous tog(x,t) also exists in the stable caE9].
The difference is that in the stable case there is no decay, i.e.,
we havey=0, while in the unstable case we haye-0.
Thus for the unstable case the cloud decays exponentially as

|co(x,t)| 2= exp(—=2t)|cy(x,0)| 2.

Then, using Eq(51) we obtain the factorizable expressions

1O(x,t)=0(1/L), (79

as well as

1B(x,t)= ; exd —i(z3— o) tI((X;X|d1; i)

2. The Zeno photons

X({(1;d1;1)) +c.c., (80 The function|c,(x,t)|? [see Eq(68)] corresponds to the
cut contribution of the correlation components. This function
2) NV . ) ] represents two wave packets that move away from the par-
I (X’t)_g, exfl — i (= @ )G s ier)) ticle (see Fig. 1 They have peaks centered &t and

X((bii bir|1;2)).
3We are considering a massless scalar field. If the field were mas-
NeglectingO(1/L) this leads tdcf. Eq. (55)] sive, the cloud would decrease exponentially in space.
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00t T - - - — - which stay inside the light cone. The exponential growth of

0009 ’ N the decay products in space within the light cone is directly
4 related to a “history” of the exponential decay of the bare

particle. For early times the particle is more likely to emit

. / than for later times. Therefore the field further away from the

0008 | i particle (which was emitted earli¢iis stronger than the field

closer to the particle. Since the emission of photons started at
t=0, the wave fronts of the decay products enckat+t

0.008

0.007

-24)

0.005

I{x,t:

0004 - > 1 (see Fig. 1
0.003 | i Neglecting the cut contributions, one can write the emit-
ted field as
0.002 - 4
0.001 | J L 1 I(X,t)oc 0(t—|x|)e27(‘x"t), (85
" 0 20 o "o 10 20 w® which for givenx decays exponentially inside the light cone,

X

t>|x|. The deviations from exponential decay are due to the
FIG. 1. Cloud(dotted lin@, Zeno photonsgsolid line), and decay ~ Zeno photons as well as the interference effects involving the
products (dashed ling emitted by the bare-excited particle. The Zeno photons, the cloud and the decay products. The nonex-
cloud centered around the particlexat 0 decays while the Zeno ponential contributions are strongest within the early non-
photons and the decay products run away from the particle. In thigplarkovian time scale
and the subsequent figures we use units withl andc=1. Both
x andt are measured in units of the inverse frequengy*=1 of t,~|wq| 1<yl (86)
the unstable state. The field intensity is dimensionless.
which is proportional to the characteristic size of the cloud
x=—t, respectively. As explained below, the wave packet@and Zeno photong19].
play an important role in the deviations from exponential The deviations from exponential decay are manifest also
decay of the survival probability of the excited state. Thisin the survival probability of the bare state. The time s¢ale
includes the Zeno effe¢20] and thus we call the wave pack- gives an upper bound of the so-called Zeno t{i2e,22,23.
ets “Zeno photons.” Equation(86) agrees with an estimation of the time scale for
Similar to the cloud, the Zeno photons are nonlocalized irthe onset of exponential decay given by P¢@#H, based on
space and have long tails that decrease with an inverse pow#te rigorous solution of Schdinger’s wave equation for
law of =x—t for large|+x—t|. Although these tails are not general Hamiltonian systerfs.
confined to the light cone of the particle, as we have shown After the time scalet;, when the Zeno photons move
in Ref.[19], this does not violate causality because the Zen@way from the cloudas in Fig. 1, the survival probability of
photons move with the speed of light. the bare particle decays in an approximately exponential way
The cloud and the Zeno photons lead to a “curtain” effectin time with a small disturbance due to the long tails of the
that describes the dressing procEk,19. At early times the ~ Zeno photons in space. For much longer tirtesy™*, the
Zeno photons interfere destructively with the cldadt=0  cloud sticking around the particle disappears exponentially.
we havecy(x,0)=c(x,0)]. In other words the cloud is hid- On the other hand the effect of the long tails of the Zeno
den behind a curtain made by the Zeno photons. As the Zerphotons remains since the tails decay slowly in space, fol-

photons move away, the cloud emerges. lowing a power law. This corresponds to the well-known
power-law decay in time of the survival probability of the
3. The decay products bare particle for extremely long timé¢,24).

The pole contributiongg(x,t) and p;(x,t) associated

with the dressed particle and correlation components, respec- D. Numerical plots

tively, lead to the decay products The components involved in the dressing and decay pro-
cess can be visualized with the help of numerical simula-
|p0(X,t) - pl(xat)|2: e(t_ |X|)| po(X,t)|2 tions. )
) 2y(lx—1) In Fig. 1, we show the cloufty(x,t)|?, the Zeno photons
=2m|u(zy)|*6(t—|x|)e*” , lc1(x,t)|? and the decay product®(t—|x|)po(x,t)|%. We

(84)  have chosen the parameters@s=1, A=0.1, andt=24.
For the numerical plots, the discreteness of the space coor-
dinate introduces a natural cutddf,,, for the momenta. We
“If we include virtual processes in the Hamiltonian, then the fieldN@veKmax=7/Ax whereAx is the spacing between the dis-
intensity created by the bare particle is strictly confined inside thecrete coordinateg. The potential isVy= (20K /L) *20(Kmax
light cone[21] as the tails of the cloud and the Zeno photons then
cancel for|x|>t. On the other hand for partially dressed states the
long tails may lead to nonlocal effects that simulate superluminality °Equation(86) agrees with Eqg50) and(52) of Ref.[24] applied
[19]. to the Friedrichs model with the form factor in E@).
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FIG. 2. Field intensityl (x,t) for the unstable case: solution of  FIG. 3. Non-Markovian field (x,t) — 1{”)(x,t). It shows fluctua-
the Schrdinger equatior{solid line), and theoretical estimation us- tions due to the preparation inside the light cone, and counterfields
ing Eq. (70). Also plotted is the field intensity{”(x,t) of the  that cancel the exponential growth 6f)(x,t) outside the light
dressed unstable statgotted ling. cone.

—|K)) with L=1250 andk.=27. The plots were obtained The expectation value of this observable gives the total emis-
max .

through a direct numerical calculation of our theoretical for-Sion probability. The operatqp is a component of the trace.
mulas. We solved numerically the equatioft (z;)=0 to  Indeed, the trace is the expectation value of the unit operator,

obtainz,~0.95-i0.02. which may be written as
In Fig. 1 we haveyt~0.48. The cloud at the center is -
decaying. The decay products and the Zeno photons move 1=pe+((1;1]. (89

away from the particle at a speed-1. _ ) 0
The theoretical field intensity(x,t) obtained by combin- AS shown in Ref{4] we have Trexp(-iLt)p;]=1. Hence
ing the above contributions as well as their interference .~ . = il o o
terms is shown by the dashed line in Fig. 2. The solid line {((Pele”""H'[p1))=1—((1;1]e”"H|p7))=1—|Nsle"=",
shows the result obtained through the numerical solution of (90
Schralinger’s equation, obtained by the diagonalization of
the discretized Hamiltonian matrigsee Ref[19] for a de- i
scription of the numerical method; we have used a|¢’1’¢1>> we have{8]
2 2 Hamiltonian matrix Both numerical pl r - i
B o arcamon et Both numerical plots are (Pele gy d))=—INjJe > (91
For reference, we have also plotted the theoretical contriE
bution from the dressed particle alone givenl ﬁﬁ}(x,t) (the
dotted line in Fig. 2 This is the Markovian component of
the field. Note that outside the light coh®’(x,t) continues
to grow exponentially in space. This exponential growth is
canceled by the dressed correlatignen-Markovian com-
ponent of the field shown in Fig. 3.

where we have used Ed40). In contrast, for the dyad

quationg90) and(91) clearly show the distinction between
1p9)) and| ¢, ;¢,)) for observables with diagonal singulari-
ties in momentum. In general, the two states have different
expectation values for observables that include terms of the
form f=3,f((k;k|, wheref, is a function independent of
the volumeL. An example of such observable is the Hamil-
tonianH.

For |p(t)))=exp(=iLyt)|1;1)), the expectation value of

E. Global quantities ~ . . .
P Mmay be written as an Integration over space,

So far we have considered the local-field operator, x|

for which the dressed states could be factorized in terms of A *

Gamow states, e.g., ((Pelp()))= f_deP(X,t), (92
((xixlpD) =((x;X| b1 b)) 8D where

Now we consider an example where this equivalence no t)= i(k—K’ K-k [ o(t 93

longer holds. Our example is the global observable Py g exii( XKk lp(1)) %3

is the photon density emitted by the bare particle. Similar to
E’FEZ K)(K| => (KiK. (88) the field intensity in Eq(75), we can decompose the photon
K K ’ density into its dressed state components as
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2 where n; is the normalization constarisee Appendix B
p(x,t)= >, pD(x,t), (94  The state|¢,) consists of the bare staté) plus a cloud.
d=0 Note that this is not an eigenstatetdf To | ,) we associate
thg density operatdry, ; ¢,)), which we shall compare with
p1))-
For weak coupling the approximate time evolution of the
pD(x,t)=>, e KXk [ITD|p(t))). (95  amplitude(x|y,) is given by
K.k’

where

Then we have

(X| (1)) =nT? co(x, 1)+ B(t—|x]) po(X,1) — C1(X,1)

2
0 = (d)
((Pelp(D))) fﬁwdxzfo prAXD). (96) K N0 g
+ f_w\/? —ZC'C'—w e K, (99

Note that the summatiol;_, has to be taken before the T4 :
integration overx, in order to cancel the exponential growth
in space of the separate components. Under the integratioMhere
overx, the relation(87) no longer holds. We have to use the
complete expressiofef. Eq. (34)] [y (t)y=e"M ). (100

|p2>>=|¢1;¢1>>+2k byl bi; b)) (97)  The first line in Eq.(99) gives the evolution of the bare

particle[cf. Eq.(69)], and the second line gives the evolution

. der t ¢ istent d ition in ¢ of the cloud of| ) in the lowest-order approximation. The
In order o get a consistent decomposition In 1erms Of OUk part of this cloud coincides with the cut part éf (x,t)

sybdynamics. The second term in BQ7 is essential 0y gq (g1), ie., with the Zeno photons (x.t). Hence, the
P v withi Vi P ' Zeno photons are canceled in this approximation. The re-

maining field amplitude is given by
IV. HILBERT-SPACE APPROXIMATION
TO THE DRESSED UNSTABLE STATE

(X ga(t)=nT co(x,t) + 6t =[x po(x,t)
As mentioned in the preceding section, the evolution of e
the unperturbed excited stdtk; 1)) deviates from the expo- —6(|x|—t) V2minu(wy)eZ (X707,
nential law in a short-time scalghe quantum Zeno effect (101)
and in a long-time scal&he long-time tail. This is a direct
consequence of the well-known fact that any state in the
Hilbert space cannot decay in a strictly exponential way. InThe fie'g intensity [(x|1(t))|? includes the usual cloud
contrast the dressed excited statd)) can decay in a strictly |Co(X,1)|*, the decay products and an additional cloud, which
exponential way because it does not belong to the Hilber?ggzsn ér‘?sms;‘]r;e gocl)‘; ?ﬁgtggggr?g I(')r]:eth;f E?];%Olr)]d#\nee;g Eq.
: .ol -O\\ _ 1 (0) ~0|1 . . I W i . -
space. However, _smo(e(x,x|p1))—ll (X’O)/<<.p1|1.’ L) di- ditional cloud decreases as €x2y(|x|—t)] for |x|>t. This
verges exponentially fox—co, the non-Hilbertian state . .
0 . additional cloud already exists &&0. Therefore, the pres-
|[p7)) cannot be prepared as an isolated state.

We now show that one can construct a dressed excite nce of a field outside the light cone does not imply any
i . ; Y “=violation of causality. It simply means that the initial state
state in the Hilbert space whose emitted field inside the ligh y Py

. ) 0 . '9hinciudes an extended field.
cone|x|<t is close to the field ofp7)). In this sense this Comparing Eq(101) with Eq. (82) we see thatup to the

new Hilbert-space stoate is a better approximation t0 OURgrmgajization factorsinside the light cone the field intensi-

dressed excited stafg;)) than the unperturbed excited state tjog of 1p%)) and |4 ;4)) coincide in the lowest-order ap-
|1;1)). Since this new state is localized in space, we Mayhoximation.

prepare it in isolation, which is in contrast fa?)). In Fig. 4 we show a comparison of the field intensities
|(x| (t))|? for |)=|1) (dashed lingand|y)=]|1) (solid
A. Approximation of the emitted field line) for fixed x. For easier comparison we have adjusted the

normalization constant dfi;) to n;=1. We have obtained

We i h . ! . .
e introduce the state this graph through numerical calculations based on a diago-

AV nalization of the Hamiltonian for the same parameters de-
) =n7"? 1)+ 2 k) — X 1 (98)  scribed in Sec. lIl. The graph shows that inside the light
K Zy wy cone, fort>|x|, the state/¢,) has smaller deviations from
exponential than the bare statete that the statp?)) has
an exactly exponential evolution for d)l. In Fig. 4 one can
®A state close td¢,) has been proposed by Passdi]. also see the additional cloud pp;) for t<|x|.
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0.012

2

Sy(t)= Zk hi()e (108

0.01 |-

As seen in Eq(105) the energy fluctuation is associated with
1 the early stage of the evolution &f,(t). This early stage for
states in the Hilbert space typically corresponds to a dressing
. process, rather than a decay process. For example, for the
bare state the fluctuatioAE, is associated with the initial
dressing time scalgy.ss- 1/AE4, during which the Zeno ef-
fect[20] may take place.
.| In general, the energy fluctuation consists of two compo-
nents, one due to the resonance pole and the other due to
J branch-point(or othe) singularities of the line shape. Since
%s 100 125 50 175 =0 the branch point is related to the dressing of the particle, this
! component gives the dressing time scale. On the other hand
FIG. 4. Field intensityl =|(x|#(t))|2 for |¢)=|1) (solid line  the fluctuation associated with the resonance gives the relax-
and|y)=|y) (dashed ling for x=100. The dressed stdg,) has ~ ation time. Pereg24] has shown that in order to have a
smaller deviations from exponential decay than the bare state. Fo¥ell-defined exponential regime in tiirvival probability

0.008

0.006

1{x=100,t)

0004 |

easier comparison we have normalized the gt@te with n;=1. of Hilbert-space statels/), one should hav&E > y. This
means that the branch-point contribution of the energy fluc-
B. Line shape and survival probability tuation should dominate. This is indeed the casd or for

té(vhich the energy fluctuation is entirely due to the branch-
Ipoint contribution. We have a clear separation of time scales
for dressing and decayxE > vy.

Now we consider the line shape of emission of the sta
|41) and the survival probability. We start with a few genera

remavks. We now turn to the line shape and survival probability of
The li h f taje; is gi T
e line shape of any stafes;y))) is given by the statg ). The overlap of this state with the Mer states
hi(g) = lim (k| () 2= [(byc [)]%, (102 ~ 9ves(see Appendix B
t—e
Gorlin)= s 2o ot
where| ¢, ) is the “out” Mdller scattering state k1Y1)= 7" (00 25— 0, v
b )=di)e (103 1 1
X ——— (109
The survival probability of /) is given by (2= o) e 277 o)
Su=(g;yle” "y ¢>>=|<l//|EXp(_th)|¢>|2(-lo4) In the lowest-order approximation we have
For short times we have he( )~<2_7T) E ' ~b,, (110
1)~ ~ ~ l
L7 [(@—w1)?+ 5]

Sy(t)=1—(tAE,)?+0O(t3), (105
where we have replacedv?(w,) by Av?(w,)~y/(27), as
the resonance ab,=z; gives the dominant contribution.

(AE)*=(ylH?y)—(yIH|y)? Therefore, the line shape pf, ;1)) coincides with the line
14 O\ : . .
shape of p7)) in the lowest-order approximation. As shown

where

2 . . .

_ 2 in Ref. [4], the line shape in Eq110 leads to the energy

=2 h(of=| 2 o 108 g G
is the energy fluctuation. For example for the bare dtéje (AE,)?~7 (111
=[1) we have

The resonance pole gives the dominant contribution to the
s [ 2 2 energy fluctuation, while the branch-poifressing contri-
(AEy)"= f_mdk)‘ v@). 1079 pution is negligible in this approximation. This is due to the

fact that the stat¢y) has already a dressing-0.
The fluctuationAE; is large, of the order of the ultraviolet In Appendix B we show that the average energies of
cutoff wy, of the interaction. |15 41)) and|p?)) coincide up to thed(\?) correction.
For states belonging to the Hilbert space the line shape Our results, up to now, demonstrate that the suppression
and the survival probability are closely connected. Indeedof dressing effects, the energy fluctuation and exponential
using the completeness relation of the IMpstates we have decay of the field are linked together for states in the Hilbert
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space, such agy,;y1)). As compared with the bare state, cussed above, comes close to the dressed unsigbje The
the dressing effects in this state are significantly reduced dugppearance ofi;;,)) (or a state close to)itin an experi-
to the approximate elimination of the Zeno photons. Themental situation can be checked through the line shape. The
emitted field is closer to exponential decay and the energjine shape of this dressed state must be narrower than the
fluctuation is much smalled E, <AE,;. Lorentzian and decay as; ¢ for large w, [see Eq(110].8
So far we have pointed out the similarities between the One possibility to observe line shapes narrower than the
states| 1 ;¢,)) and |p2>>_ Now we comment on the differ- Lorentzian is to discard the measured field corresponding to
ences. For the survival probability, using Efj08 we obtain  the early stages of evolution of the initial state, after which
the atom may be found in a dressed or partially dressed state.
|| 1 (1)) 2~ 27 (1+ yt)2. (112 In order to study the physical effects of the unstable
) ) ) clouds, one may consider the force between two excited at-
The polynomial factors irt are due to the existence of a gms. This force depends on the overlapping of the fields
double pole in the line shapg(y).” On the other hand for  syrrounding each atoffi21]. This involves not only the off-
|p9)) we have to define the survival probability in a gener-resonance cloud, but also the field due to resonance effects.
alized way, sincep?)) is outside the Hilbert space. We de- To study this force one can consider the emission spectrum

fine a generalized survival probability as and the line shape of the two-atom system as a function of
_ _ . the distance between the atoms. This can then be compared
S(ty=((pJle "1 pd)) =exp(—2y1). (113 with a theoretical estimation based on the dressed state out-

side the Hilbert space or its Hilbert-space approximation. A

In contrast to the survival probability diy;;¢1)), this is  theoretical analysis on the forces between excited atoms will
strictly exponential, regardless of the line shape. Furtherhe presented elsewhere.

more, in the local-field description the st&td)) also decays

exponentially regardless of the line shape. Therefore, the re- V. H FUNCTION

lation between time evolution and line shapd @})) is dif- _ B o

ferent than for Hilbert-space states. Fpf)) the line shape ~_Because of the instability, which is due to the resonance

only appears in the global time evolution, where it deter-eﬁeCt; one can introduce a microscopic analog of Boltz-

mines the distribution of emitted field modgsf. Eq. (40)]. ~ Mann's 7 theorem by constructing a Lyapounov operator
Our discussion above states in a more precise way thiat decays monotonically for all timé¢see Eqs(1) and(2)].

relation between dressing and exponential decay for unstabfeS noticed in Sec. | this quantity is defined outside the Hil-

states we have mentioned in our previous pdgér bert space. The expectation value of this operator is a
Let us finally note that a state close @) has been Lyapounov function that depends on the initial stpgg of

proposed in 1956 by Glaser andIm [26]. They consid- the system

ered the Lee model. Translated into our present model their

state corresponds to (H)=(&/H(D)|E)=e 2"(H(0)) =" 2"(&[d1)( 1| £).
(11
AV
_a12 K
|6k ="Nak |1>+; |k>2{,1—i}— o’ (19 As discussed in Ref8], the H function gives an indication

of how far the system is from its final asymptotic state, when
wherengy is the normalization constant andis a charac- the dressed particle disappears. THefunction decreases

teristic parameter, which should satisfy the conditipn y untildi_t_reachesl itg_ asymptotic valyé{(-))=0. Most iniEE‘l .
for their case. Foly# y the double pole in the line shape is conditions, including ones giving rise to a temporary “back-

avoided. and one obtains a SUperposition of Wo exponeni ards” evolution(e.g., after a momentum inversipaventu-
volded, : uperpositi xp : lly end up with the particle relaxing to the ground state and

decays, one with a ratg and the other with aratg. Onthe 5| the field moving away from the particle to infinityThis

other hand, if we choosg= vy, one can show that this state behavior justifies the interpretation of th¢ function as a

has exactly the same line shape|#s) (note that fory=y  measure of the distance to the asymptotic state: the larger the

we have|yg)=|1¥1)%%). ‘H function, the more one has to wait to reach the asymptotic
state.

C. Possible experiments

Our study ,Of the MarkOVian and non'MarKOVian compo- gy contrast, if the initial state is close to a bare state, then a line
nents of the field emitted by the bare-excited state has led Ug,ape close to the Lorentzian should be observed. The infinite en-

to the Hilbert-space statgjy; 1)) that, in the sense dis-  ergy fluctuation of the Lorentzian shaghich approximated E,)
is connected to the rapid dressing process that occurs during the
Zeno period. Conversely, a suppression of the Zeno effect should
"For |)=|4), Peres’s conditior E,> v [24] is not met, which  lead to a narrower line shape.
is consistent with the nonexponential behavior in El2). Note %An exception is given by initial conditions that are the
that the deviations from exponential in EL12) are due to the asymptotic states of a backwards time evolution. Such states take an
resonance-pole contribution, and not to branch-point contributionsinfinite amount of time to reach the forward asymptotic state.
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A microscopicH operator in the Liouville space was al- 20 ko sin b(k—kg)/2]
2 We 0 0 (121

ready introduced many years ago by one of the present au- &=— T
thors(1.P) asM=ATA (see Ref[5]). To connect this opera- (2mb)~(k—kop)

tor with our presentH function, we note that for systems ) o
with many particles or field modes we may introduce a re-whereW is a normalization factor. We decompose the wave

duced Lyapounov operator packet into two components,
M= AT RN (NG| A, (116 &= 0K &t O(— K E=& +E (122

wheren,, is a one-particle observable corresponding to par_'I'hls decomposition appears naturally due to the positivity of

ticle «. This is similar to a Gibbs entropy with the replace- the energyuk=|K| [10]. U.nder freg mo_tlon,.the two compo-
i ) . nents move undistorted in opposite directions,

ment of unitary transformations by A (for unitary trans-

formations the Gibbs entropy is an invariant of motion, while “iHot| £5\ — /(y = -

with A the entropy evolves monotonicallyThe Lyapounov (xle €7 =((xF0]€7). (123

function ~is = the ~ expectation value ((M(t))) Both components are nonlocal, i.e., they have long tails in

({p(DIM|p(1))), where |p(t)))=exp(iLy)lp)). For space. At=0 the long tails cancel to obtain the rectangular
states with no diagonal singularity in momentum representa-
. : ) . shape of|¢). Fort>0, as the two components move away
tion, which were discussed at the end of Sec. Il, there is

) : . . from each other, the long tails no more longer canee
simple relation between this Lyapounov functieh, and the have called this the “curtagin" effedi10]). Thus ?n prin::(iple
‘H operator in Eq(115. For example, ifp is a pure state ' ' '

) - the particle may be excited immediately afterO. This non-
=[£)(¢é| normalized as Tig)=1, we have for|ni)) |ocal effect does not violate causality, because the compo-

=[1;1)), [cf. Eq.(51)] nents move with the finite speed=1 (|¢”) to the left and
o ~0 |£€7) to the righ). We note that nonlocal tail effects appear
(M1 (ON)={p(D]p)){(pilp(1))). (117 even if the initial wave packet is not strictly localized. For

example, if it is a Gaussian wave packet, there will appear
Here the state(p(t)| plays the role of a test function with no  tails that extend over a much larger range than the Gaussian
diagonal singularity. This allows us to writ§p(t)[p))  tails. Our main focus here is, however, not the study of non-
={(p(t)|$1; 1)) and the corresponding relation for the local effects. We shall neglect the interaction with the tails as
dual states. Thus we obtain we have assumed that the interaction between the particle

and the photons is of short range. Hence we approximate

_ ~ ~ H~H, for t<t; wheret;=—(Xy,+b/2). Aroundt=t, the
M(t)))= t ; ; t 118 . 0 1 L 0 T
(MO =UpOld1:6)((S1:dalp(®)) - (118 interaction between the wave packét ) and the particle is

or no more negligible as the body of the wave packet comes in
contact with the particle. Around=t,=—(xq—b/2), the

(M1 (D) =[{H(1)) ]2, (119  body of the wave packet finishes passing through the par-

ticle, and only the tail effects remain. Therefore, neglecting

where(H(t)) = (& H(t)|£). the tail effects we may separate the evolution in three peri-

For states with diagonal singularities tMe, operator is  0ds: t<t; (before the collision of &, ) with the bare par-
no longer factorizable in terms of Gamow states. States witficle), t1<<t<t, (during the collision and t>t, (after the
diagonal singularities occur naturally in systems in the thercollision).
modynamic limit, e.g., for a particle coupled to a heat bath. The relative sizes of the two componehgg ) in x repre-

This will be studied in a separate publication. sentation depend on the sign of the initial momentymFor
ko>0 the componenit, ) is large while|&, ) is small, and
A. Scattering of a wave packet the opposite is true fdky<<0. The intensity of the scattering

. . . depends on how far the ener is from the energy of the
To illustrate the connection between théfunction and P %, 9y

dynamics, we consider the scattering of a wave pagketa  Particle. Foro, ~w, the intensity is largest and we have a
state with no diagonal singularities strong resonance scattering.

At the initial state the particle is in its ground state. We In Figs. 5—7 we show numerical plots of the field inten-
consider a rectangular wave packet of wibtm x represen-  sity. The numerical plots are obtained by solving the Schro
tation, dinger equation through diagonalization of the Hamiltonian

_ matrix, with the same parameters described in Sec. Ill. The
ek wave packeté,) att=0 is shown in Fig. 5. We have chosen
{x|&)= pl/2 [0 %o=bI2) = H(X=Xo+b/2)]. ko=w;. For these parameters the compont) is very
(120 small. This component has two peaks at the eddés In
Fig. 6 these two peaks correspond to the two small peaks on
The packet is centered at=x,<0, with |Xo|>b. The mo- the left hand side. The central part of the wave pat&g} is
mentum representation is given bl &)= (27/L)Y2%, with  too small to be seen in this figure.
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FIG. 5. Field intensityl (x,t) for a rectangular wave packet at FIG. 7. Field intensity after the collision with the particle at
t=0. The wave packet is approaching the particle located=dd t=160. The field emitted after the excitation of the particle appears

from the left-hand side. Parameters &re 100, Xo= — 70, andk, in the region|x| <Q=t—t,. The transmitted wave packet is in the
=Z;1=0.95. region x>Q and the reflected wave packet is in the region
x<—-Q.

Wal\?e Flgékfsedogrli (;?]rc]j ?:]ZO bsaerz thaertilgteer;fg?]nir:)t:meeed?a:z%ecay products that we have identified in Sec. Ill, when we
P K P studied the evolution of the bare-excited state. This was a

time t,<t<t, when the wave packet is passing through thedn‘ferent initial condition than the one we are considering

part:jcle C[;u”rég tthl's dperlr)dltTehpgrrﬁlcle tIS fexcnésbe 'i‘tp here. The fact that the same components appear for two dif-
pendix & for detailed caiculationsine interierence pattern oot jnjtia) conditions underlines the “universal” character

e e e e o e eerence begine essed paricle component
P P We shall consider separately tﬂé functions associated

the right of the particle we have the part of the incident wave +
packet that has been transmitted. It presents a dip towards the yith the two componenti™) and|¢™). They are given by

origin, as part of it has been absorbed by the particle.tFor NN et B\ am 29t T [ £E |2
>t, (Fig. 7) the particle decays, emitting the decay products. (HEO)=(ETHOIE) =e" (Al €)% (124
The transmitted wave packet is seen to the right of the paryhere
ticle (it is no more a rectangular wave packet, as it has been
partially “eaten” by the particle The distant profile to the v(wy)
left of the particle(in the regionx<—Q, whereQ=t—t,) (§1|&5)= 2 (P1|k)(K| &)= f dk &
represents the photons that were emitted as soon as they were k)z
absorbedi.e., the reflected photopsAround the particle at
x=0 we see the cloud and the decay products emitted after _ jwdk Ao (k) ¢ (125
t=t, in the region|x|<Q. These are the same cloud and o (z—k) =k
1
002 ' ' ' ' ' As before we add and subtract an integral friom—oc to O,

corresponding to the cut contribution

(de|E)= f dk )) Eort (D] Do (126

0.015

-56)

001 | 1 After changingk= —k we have

1{x,t:

(1| ) eu=— f dk————— lz)(;k)§+k (127

0.005

This cut contribution is due to the overlap between the cloud
1 ) . . . of the dressed particle and the wave packet. One can show
200 -100 0 100 200 that it decreases with an inverse power law of the initial
distancex,. On the other hand, the first term in E{.26)

FIG. 6. Wave packet during the collision with the particle at will give a much larger contribution at the poke=z, if we
t=56. can close the contour in the upper infinite semicircle of com-
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plex k [as in Sec. Ill we neglect the pole contributions of to infinity. Using the analogy of statistical mechanics, we
v(k)]. Considering the explicit form of, in Eqg. (121) we  may say that as a whole we go from a nonequilibrium to an

see that closing the contour is possible only if equilibrium staté?®
For the componenté ™) moving away from the particle
Xo+b/2<0 for (q|€"), the situation is different. The initial correlation components
simply express the overlap of the tail of the wave packet with
Xo+b/2>0 for (dq|&7). (129  the the particle cloudan off-resonance effectThese are

“postcollisional” correlations. As the wave packet moves
As the wave packets are to the left of the particle at the initiafurther away, the correlations become weaker. There is also a
time, we havex,=b/2<0 and, therefore, only th&™) com-  small effect due to the excitation and subsequent relaxation
ponent moving towards the particle gives a pole contributionof the particle caused by the tail o). As a consequence

Thus, taking the residue at the pole in Efj26) we get of these two effects, th& function decreases. The final state
B N is again the particle in its ground state and the field moving
(h1lET)=2miNv(20) &5, +(DalE ) ewns away to infinity.

Of course the distinction between “towards” and “away”
~ e\ e from the particle requires knowledge of the position of the
(el €7)=(dal¢ Daur (129 particle. In order to aim the wave packet towards the particle,
we have to see the particle. This means that photons emitted
from the particle must have reached us first. “Aiming” im-
plies that the particle is in the future light cone of the wave

The pole contribution dominates as we hef\g?xexp(y|xo|).
Therefore[see Eq.(124)]

(H*(t))ocez“/(%'*t) (130 packet. Therefore, thé{ function can be constructed only
within timelike separations of the points it relates. Namely,
and( ~(t)) is negligible as compared wit{# * (t)), the H function gives a global information that depends on
the nonlocal correlation components of the dressed particle
(H~())<(H T (1)). (131 and the field. At any given time these components depend on

the states of both the particle and the field at different loca-
In short, the value o changes drastically depending on the tions [21], which have to be communicated in accordance
direction of the wave packet. It is large for the componentwith causality.
moving towards the particle, and small for the component
moving away from the particle. B. Momentum inversion

To interpret this result we write . . .
P It is interesting to consider what happens when we per-

FN 0T Th (e ilpt] gE . gt form momentum inversiof3,8]. This is achieved by the an-
(HEO)=( P aleH]€767)) tilinear time-inversion operatdr, . Suppose that at timewe
=((pSle HY| £ £5)) + O(1L) perform a momentum inversion. Then the state changes as

~ e €5 ())y=e"M|E")=Tie Mg )= 7) =7 (~1)).
=a2ﬁ<<p1|a:ﬁ>><<a:ﬁle L £5; 7)), (133

(132 As a consequence of the momentum inversion the expecta-
tion value of H “jumps” to a higher or lower value. This

The H function is expressed as the overlap between th&orresponds to a flow of “entropy” from the outside. As we
dressed particle and the evolving wave packets. This overlaghall see the direction of the jump depends on the time when
in turn, is a superposition of the bare correlation component§ne performs the momentum inversion. The ratio of He
{{a; Blexp(—iL4t)|£7;£5)). For the wave packet moving to- function after the inversion to the one before the inversion is
wards the particle the initial correlation components evalugiven by
ated at the resonanaeg,=z; give a large contribution that _ _ L
grows with the distance between the particle and the wave ()= (EF(—DIHIET(—1)  exp2yt)[(da]€7)?
packet{cf. Eq.(130)]. The correlations ?re of Io_n_g ran"ge due 'r (E(D|HIE (1) exp(— 2yt)|<7¢51|§i>|2'
to the resonance. We may call them “precollisional” corre- (134)
lations, as they are associated with the wave packet moving
towards the particle. The wave pacKgt') is “far from Suppose that dt=0 we start with the componehg™) alone.
equilibrium.” As it approaches the particle, the correlationsThe wave packet moves to the right. We perform momentum
decay and thé{ function decreases. Eventually the particle inversion at a time when the wave packet has excited the
is excited as it absorbs the wave packet and subsequentlyparticle and the particle is emitting the decay products, as in
decays emitting photonsee Figs. 5-J7 which leads to the Fig. 7. The momentum inversiofpoint A in Fig. 8) causes
continued decrease dfl. Note that the emitted photons
move away from the particle and hence they give a negli-
gible contribution to theH function. In the final state, the  %Here “equilibrium” means the particle in the ground state plus
particle is in its ground state and all the field is emitted awaythe end decay products.

062101-16



SPACE-TIME FORMULATION OF QUANTUM TRANSITIONS PHYSICAL REVIEW 464 062101

1

07 T T T

09 |
08 |
07
06|
&
05
0.4
03 |

02 r

01

0 T biniete [-oo-o- 1 1 1
0 50 100 150 200 250 0 50 100 150 200 250

B A t A

t

FIG. 8. Schematic plot of the Lyapounov functiés ™. The FIG. 9. Schematic plot of the Lyapounov functiGd . The
time inversion atA (before the wave packet collides with the par- time inversion atA creates correlations and caugés to jump up.
ticle) creates correlations; & (after the wave packet collides with
the particle it destroys correlations. In this figure and in Fig. 9 time
t is measured in units of the inverse frequengy’=1 of the un- C. Space dependence dH

stable state and the Lyapounov function is dimensionless. Our considerations above may also be applied to the state
|€)=|x). Then we can define space- and time-dependent

Lyapounov functions as
the H function to jump up, as the decay products start to . _ulx .
move towards the particleve have an increase of “order” h™(xO=(xI"H()[x"). (139
or a flow of negative “entropy” due to the correlations com- \ne havel[cf. Eq. (129)]
ing from outsid€[8]). After the inversion, we have a “back-
wards” evolution and we follow the inverse sequence, from h*(x,t)oce??(X =Y (136
Fig. 7 to 5. The decay products move towards the particle
that subsequently absorbs them. Eventually the field collec&"d
itself back into the initial wave packet, which then moves _ ST e\ |2
away from the particle. We interpret the continued decrease h™(x,1))ce™ " [(ba] X" )oul*. (137

of 1 (solid line in Fig. 8 as due to the disappearance of theThe functionh™ (x,t) decays in time at each point in space,
“anomalous” correlations that were fed to the system atand at a given instant it increases exponentially with the
point A. The  function continues to decrease as the systengistance from the particle. This may be interpreted as a mea-
approaches its final relaxed state. sure of the space-time dependence of the precollisional cor-
A different situation occurs if we perform the momentum relations of the field. Locations more distant from the par-
inversion earlier, at a time<y~! when the wave packet is ticle are further away from their final asymptotic state, as
still far from the particle. The wave packet then changes tahey have to wait for more time to interact with the particle.
|€7) and moves to the left. At the moment of inversion The functionh™(x,t) gives the space-time dependence of the
(point B in Fig. 8 we have [cf. Eq. (130] j.(t) postcollisional correlations. It decays exponentially in time,
cexp(—291x%g|). The H function jumps down, due to the and it decreases withx|, as a power law.
change of the direction of motiafotted line in Fig. 8 The

momentum reversal turns the precollisional correlations into VI. CONCLUDING REMARKS
postcollisional correlations, which corresponds to a flow of . _ .
positive entropy into the system. Using our states outside the Hilbert space we have sepa-

If we start att=0 with the componenté¢~) alone and rated _preparation effects from decay effects in space repre-
perform a momentum inversion some time later, thenfhe Sentation. The two types of effects correspond to branch-
function jumps up, because the wave packet, which wagoint singularities and pole singularities of Green’s function,
moving away from the particle, now moves towards the parfespectively. Our unstable stdje)) is not a solution of the
ticle. After the inversion thé{ function decreases in time as Schralinger or Heisenberg equations. It is a combination of
described previouslysee Fig. 9. eigenfunctions of the Liouville operator, which may also be

The examples discussed above illustrate the followingnritten as a mixture involving dyads of Gamow vectors.
point: if we perform momentum inversion when the entropy ~As commented at the beginning of Sec. 1V, the stafe)
of the system is high, then the entropy will jump down. may not be prepared in isolation. However, we can identify it
Conversely, if we perform the inversion when the entropy iswithin the components of any given evolving state. The
low, the entropy will jump up. space-time structure of the field associated vxﬁbl‘j}) is
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“universal” as it appears for different initial conditions we present an alternative derivation, where we invert the
(compare Figs. 2 and 7 arounxd=0). Furthermore we ex- logic: we start by postulating the forrfA1l) and then we
pect that the unstable cloud f?)) will play a role, e.g., in  obtain the coefficient using normalization conditions. This
the interatomic forces between unstable atoms. leads to the same results obtained in Réf, including the
We are aware of the limitations of our model, and weenergy fluctuation.

hope to consider more realistic situations in the future. Our As explained below, to postulate the forfAl) we use
formulation is closely connected to the thermodynamic astwo arguments(1) that the statép?)) reduces to the stable
pects of absorption and emission as well as the theory oftate| ¢;; 1)) when there are no resonances &2dthat the

“quasiparticles” in nonequilibrium field theorj27,28|. state |p})) is Hermitian, has a unit trace, and is analytic
The H function we have studied is in a sense a micro-when the coupling constant vanishes\at 0.
scopic realization of Boltzmann’g{ function. TheH func- A simple form of unstable state one may postulate is the

tion distinguishes precollisional and postcollisional correla-dyad of Gamow vector$pf>>z|¢l;¢l>>. However, this

tions, i.e., whether the particle is on target or off target. It isdyad is both traceless and nonanalytiaatO (see also Ref.
interesting to study the situation in two- or three-dimensionaf30]). The problem occurs in thB(® component as

spaces. Here the precollisional and postcollisional fields cor-

respond, respectively, to incoming and outgoing fields. In a Tr(p$)=Tr(P@p$)=0. (A2)

later paper we shall study as well the distinction between real

and virtual processes from the point of view of thefunc-  The P component is nonanalytic i\ as we have

tion [29]. lim,_o P©@p®+|1)(1|. In contrast, theQ® component is
We note that as our model is time reversal invarigme¢  analytic at\ =0. This suggests that we retain 1) com-

have[H,T,]=0), all our discussions are applicable if we ponent of|p$)) while modifying theP(®) component. The

exchange the roles of past and future. The main point is thaequirement1) and the condition of Hermiticity then lead to

there is a wide class of initial conditions that lead tothe form in Eq.(Al). The coefficientr is chosen so that

asymptotic states, either on the distant future or the distant r®°=1 in the stable case. This ensures that in the stable

past, where the particle has decayed and the field is emittethse we recover the stable particle state as

away. This is reflected in the existence complex spectral rep- o o

resentations oH or L. The components of these represen- |p2)>=>Q(°)|¢1;¢1)>+(r°-°-+r)P(°)|¢1;¢1>>

tations break time symmetry. Of course, if the system is .0 oM T . T\ .

coupled to the outside world, then for consistency we have to =(Q®+PO)[$1:61))=[41:¢1)). (A3)

choose the representation that describes decay in the fUturB’Ioreover, from the condition Tr€)=1 and the relations

Tr| 1 b1))=Tr|db1; 1)) =1 we obtain
r+ret=1 (A4)
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APPENDIX A: SIMPLE DERIVATION OF THE UNSTABLE duces to
STATE
[Ng|=r®Ny+rNT® (AT)

In Ref.[4] we have obtained the dressed unstable state
|p9)) and shown that it may be written in terms of Gamow- ©f
vector dyads as

réce iaprela=1, (A8)
1pD)=Q b1: 1))+ PO[re b1 h1)) +1[da; b)) where we have used polar coordinatés=|N,|exp(-ia).
(Al)  This equation together with EgA4) lead to the solution
To obtain this result we postulated that the energy fluctuation o exp(—ia/? (A9)
of |p9)) should be of the order of the inverse lifetime. Here - 2coga/?2 ’
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which coincides with the result given {6.18 of Ref[4]. As 3. Average energy

shown in Ref[4], this solution gives an energy fluctuation of Up to second order ik, the average energy of the dressed

|p9)) of the order ofy and also gives a small deviation of the tate| p%)) is ’

average energy from Green’s-function energy. It leads as !

well to the line shapé, of our unstable statesee Eq(41)]. o~ D ) Z(wk)/ 1
(HIpD ==t [ a5

+0O(\%), (B5)

APPENDIX B: PROPERTIES OF |,)

We consider here some properties of the sfate de-
fined in Eq.(98). We note that in contrast to the Gamow which coincides with the real part of Green’s-function pole
vector[see Eq(18)], | 1) has no analytic continuation from in this approximation{4]. On the other hand, the average
the upper to the lower half plane and consequently it is noenergy of the statgy;) is given by
an eigenstate of the Hamiltonian. In the stable, case it

- 2
becomes real and the stdtg ) reduces to the stable particle z

e A Uy
= —+ B —— ]
State. (Ya[H[1)=[n1]| @1 fwdk|zl—wk|2 wy
1. Normalization constant _ jw dk)\%ﬁ( _1 +c.c. (B6)
From Eq.(98) we obtain o @k
)\zvi -1 With the approximation EqB2) we may write the second
=1+, — Bl term as
nil=|14 2 o= (BD)
o )\Zvﬁ
In the limit L—o the second term is the integral [N 7wdk|zl_wk|2“’k
2
Avw o vk wy 1= N
f dk——2 k) —2] k2200 ~7+§f dke—— (0~ @)
+ 52 0 (k—wp)?+v? — |23~ wy
)\2 2((1)1) wq 1 *® )\ZUE
~47TIT 1, (B2) —7+§ _f—xdkzg'c'—wk+zl_wl
where we have taken the dominant contribution at the reso- _ ﬂJr} " Nui Y
nance. This leads tm,|=1/2+ O(\?). 2 2 e o tie—w M2
2. Proof of Eg. (109 = % +0O(\%), (B7)

Using the explicit forms of ¢, | and|;) we get
where we have subtracted and addgdon the third line.

(557| )—nl’z ANV AV This leads to
<l¥1=m 2=, 1 (0
1 k (HIg 02 +f°° dk)\zvz(wk)( 1 N
) =w - C.C.
REENTEE SN AV, A 2 lor—wctie
7 (w) T - tie 5%~ o ' +0O(\Y), (B8)

(B3) which coincides with the energy of the dressed unstable state

up to O(\?) [we note that similar tdp?)), the energy of the

state |4;;4,)) deviates from Green's-function energy;
starting from terms oD(\%)].

Then, using the relations

22
2V X
o Tl YxT@1m 7 (wy),
! k l APPENDIX C: EXCITATION PROBABILITY
IN RESONANCE SCATTERING

1 1 _ 1 _ 1 1 Here we consider the resonance scattering of the photon

o= o tie 50—\ o otie 8o [780— wave packet considered in Sec.[see Eq.(120)]. The en-
(B4) ergy of the wave packet is chosen so that it resonates with
the energyw,, i.e., wo=w;. In the following we estimate
as well asy~(z7%) =0, we obtain Eq(109. the excitation probability of the bare particle.
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The excitation probability that the particle will be found The termsé, and &_ correspond, respectively, to the com-
in the bare-excited state after it absorbs the photon is giveponents £) and|&~) we have introduced in Sec. V.

by For the pole contributions we have
=((1.he g 6)=K1le MEE (CD Jop~igler'z—e],
g1p()=ig{f(t,—)[e D —1]—a(t;—t)
:Ss in Sec. lll we splitE(t) into its dressed state components K[e Mt 1)), (c9)
wheret;, =|Xo=b/2| andg=2w,y (27/bW).
E(t)=>, EQt)+ED(t) +E@(1), (C2) For w,>y the cut contributionsg, ((t) are relatively
“ small and, henceforth, we shall neglect them. Let us simply
where note that the cut contributions gf (t) contain small peaks

aroundt=t; and long tails proportional to inverse powers of
EO(t)=((1, e~ o)) (P2 £:€)), [ti—t] for large values oft;—at| (with i=1,2). This leads,
respectively, to deviations from the exponential functions Eq.
. _ (C10 around the points=t; andt=t,, as well as the long-
EQ0)=2 ((1,he "t p)((p™&é)) +e.c., time tails fort—t,>y~! (see Refs[10,19 for more on the
k tail effects. Another remark is that, due to the cut contribu-
tions, E(t) is nonzero even beforte=t; (i.e., before the mo-
E@(t)= D <<1,]Je*iLHt|pkk’>><<;kk’|g;g»_ (C3) ment when one may expect the rectangular wave packet will
k#k’ “touch” the bare particl¢. As mentioned in Sec. V, this non-
local effect is associated with the taiis space of the com-

R . _ é)onents of the rectangular wave packet.
As |&;€)) is a nonsingular operator we can use the factorize Neglecting the cut contributions we get

form of the dressed stat¢sf. Eq. (51)]. Defining

i J dk A (wy) —jawyt c4 0 for t<ty,
9a0= fk -2];, ° (€ E()~{ g71-e""W]2  for ty<t<ty,
g’e 2M[eM2—e™1]? for t>t,.
andgo=gy(t), we obtain forn<1, (C10

E(1)~[gol e .y |
We note that each of the functions in HE9) contains ex-

EM(t)~—e 2 gg,(t)°S+c.c], ponentially decaying terms, and hence each dressed state
component evolves irreversibly, even during the absorption
EG(t)~|g1(t)|% (C5  period. The dressed particle componEff(t) decays expo-

nentially even before the wave packet reaches the atdm at
=t,. However, fort<t; this component is canceled by the

The contribution from the dressed photdBg’(t) is negli-  gther components and we obtain the causal behavig(of
i i -1
E(t)~ |e"zltgo—gl(t)|2. (C6) If we consider a large wave packet witk> v~ ~, then the

bare particle will reach a stationatynonequilibrium”) ex-
cited state. This state is maintained from the continued exci-
tation due to the incoming field. In terms of our subdynam-
ics, the stationary state is obtained through a balance
between the decay process of the dressed pattoletained

Neglecting the singularities af(k) we may split Eq(C4)
into a pole and cut contributiong,(t) ~ga p(t) +ac(t),

where ; 0 .
in the I1(® componentand the creation of dressed correla-
- Ao (K) tions in thell® components, witid+#0. Note that due to
ga,p(t):f dk(éc+ €y — e @kt (C7)  the normalization conditions of the wave packet,bas «,

w7 [k_‘“1+'7’]+ the excitation intensityE(t) goes to zero. Therefore, to
o (—K) achieve the stationary state we have to give up the normal-
Gac(t)= f dk(é+€_)) glakt (cg  ization condition. This corresponds to the existence of a

k+2z, background fieldheat bathin the thermodynamic limit.
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