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Space-time formulation of quantum transitions
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In a previous paper we have studied dressed excited states in the Friedrichs model, which describes a
two-level atom interacting with radiation. In our approach, excited states are distributions~or generalized
functions! in the Liouville space. These states decay in a strictly exponential way. In contrast, the states one
may construct in the Hilbert space of wave functions always present deviations from exponential decay. We
have considered the momentum representation, which is applicable to global quantities~trace, energy transfer!.
Here we study the space-time description of local quantities associated with dressed unstable states, such as,
the intensity of the photon field. In this situation the excited states become factorized in Gamow states. To go
from local quantities to global quantities, we have to proceed to an integration over space, which is far from
trivial. There are various elements that appear in the space-time evolution of the system: the unstable cloud that
surrounds the bare atom, the emitted real photons and the ‘‘Zeno photons,’’ which are associated with devia-
tions from exponential decay. We consider a Hilbert space approximation to our dressed excited state. This
approximation leads already to decay close to exponential in the field surrounding the atom, and to a line shape
different from the Lorentzian line shape. Our results are compared with numerical simulations. We show that
the time evolution of an unstable state satisfies a Boltzmann-likeH theorem. This is applied to emission and
absorption as well as scattering. The existence of a microscopicH theorem is not astonishing. The excited
states are ‘‘nonequilibrium’’ states and their time evolution leads to the emission of photons, which distributes
the energy of the unstable state among the field modes.

DOI: 10.1103/PhysRevA.64.062101 PACS number~s!: 03.65.Ta, 32.70.Jz, 32.80.2t
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I. INTRODUCTION

As is well known the decay of excited states or unsta
particles leads in the framework of quantum mechanics
deviations from exponential decay@1#. This effect, while
small, leads to some puzzles. Schwinger has written ‘‘ . . .
with the failure of the simple exponential decay law we ha
reached, not merely the point at which some approxima
ceases to be valid, but rather the limit of physical meani
fulness of the very concept of unstable particle’’@2#. Wigner
has gone so far as to limit the idea of elementary particle
stable particles@3#.

We have presented a solution to this problem in a rec
paper @4#, in the framework of our extension of quantu
mechanics to density matrices outside the Hilbert space
this extension we have complex spectral representation
the Liouville–von Neumann operator~or Liouvillian! LH
5@H, # that allow us to rigorously disentangle the expone
tial and nonexponential components of the evolution o
given initial condition. The exponential component corr
sponds to the dressed excited state or unstable particle
dressed photons. The nonexponential component co
sponds to dressed correlations. The dressed states and
lations are given by nonfactorizable density matrices outs
the Liouville-Hilbert space. They are related to the bare d
sity matrices through a transformationL. This transforma-
tion is star unitary@4,5#, which corresponds to a generaliz
tion of unitary transformations to unstable systems.

In our recent paper we considered global quantities, s
as, the trace and total energy. To obtain these global qu
ties we used the momentum representation. Now we cons
local quantities using the space-time representation. As
1050-2947/2001/64~6!/062101~21!/$20.00 64 0621
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be discussed in Sec. III, the transition from the moment
representation to the space representation is far from tri
because of the singularities associated with states outsid
Hilbert space.

In Sec. II we briefly summarize our previous paper. F
simplicity we consider the Friedrichs model in the rotati
wave approximation and in one-dimensional space. We c
sider in succession stable and unstable excited states
describe the Gamow vectors, which correspond to the c
plex spectral representation of the Hamiltonian. We desc
as well the complex spectral representation ofLH in the ex-
tended Liouville space that includes distributions. Start
from this representation, we formulate the dressed unst
stateur1

0&& as well as the dressed photon states and corr
tions.

In Sec. III we consider the space-time representation
the decay, starting from the bare excited state. We obta
closed form for the field intensityI (x,t) at time t.

In our previous paper we have shown that the time e
lution, starting from the bare excited state, may be split i
two parts: a slow one~Markovian!, corresponding to the ex
ponential decay and emission of the dressed excited state@cf.
Eq. ~40!#, and a rapid one~non-Markovian! associated with
the dressing of the bare state, leading to nonexponentia
fects. In the local field intensityI (x,t) we may also distin-
guish these two parts. Note that to obtain causality~the van-
ishing of the emitted field outside the light cone! we have to
combine both the Markovian and non-Markovian comp
nents of the field. We may not isolate either component
this would lead to noncausal behavior.

The evolution law of the non-Markovian component d
pends on the initial conditions. In contrast, the decay law
©2001 The American Physical Society01-1



ai
I
t
e
s
it

tt

r
fie
he
d

e

on

op
ea

ile
av
k
lt-

iv

s
e

m

o
nd

th

te
t

ve

the
e
. In
and
me-

the
ely.
ns
,
of

pics
r

ert-
ance

ain
t of
sed
il-

nin-
we

ing

ails
e-
en

ed

s as

ons.

T. PETROSKY, G. ORDONEZ, AND I. PRIGOGINE PHYSICAL REVIEW A64 062101
the dressed excited state is ‘‘universal.’’ In this way we ret
the indiscernibility of excited states or unstable particles.
addition, our decomposition in subdynamics permits us
identify in I (x,t) various contributions corresponding to th
dressing cloud, the decay products, and the Zeno photon
is remarkable that in the calculation of the photon intens
only the factorizable part ofur1

0&& plays a role. To obtain
global quantities such as the transfer of energy from ma
to photons we have to integrate over the whole space.

In Sec. IV we give an example of a state in the Hilbe
space that comes closer to an exponential decay of the
~inside the light cone!, as compared with the bare state. T
essential feature of this state is that it already has a clou
t50 ~as is the case for ground states!. This leads to a line
shape closer to the line shape ofur1

0&& than to the Lorentzian
line shape. Hence this state offers an approximate schem
the Hilbert space of our non-Hilbertian unstable state.

In Sec. V we come to an important point: the descripti
of emission and absorption in terms of anH function, which
is a microscopic analog of Boltzmann’sH function in statis-
tical mechanics. In our earlier work@3,6,7# we have shown
that if there exists a microscopic entropy it must be an
erator. In the Friedrichs model and in the simplest case d
ing with nonsingular states, we can construct anH function
in terms of the operator@6,8#

H5uf̃1&^f̃1u, ~1!

whereuf̃1& is a Gamow vector. TheH function is, therefore,
outside the Hilbert space. We do not give here to a deta
discussion on entropy. Let us only notice that there h
always been two points of view: the point of view of Planc
relating entropy to dynamics and the point of view of Bo
zmann, relating entropy to probabilities~ignorance! @9#. We
understand now that Planck could not realize his program
he worked in the usual representation of dynamics, equ
lent to a Hilbert-space representation.

The Heisenberg evolution of Eq.~1! is given by

H~ t !5eiHtHe2 iHt5e22gtH. ~2!

The physical meaning ofH is very simple. It decreases a
the energy of the excited state is transferred to the fi
modes.

In Ref. @8# we have discussed the effect of momentu
inversion onH. Momentum inversion leads to a jump ofH
corresponding to an ‘‘injection’’ of negative ‘‘entropy.’’ Here
appears the basic distinction between precollisional and p
collisional correlations. The emission of photons correspo
to a postcollisional correlation decreasing theH function
~the photons escape from the particle!. The momentum in-
version leads to a precollisional correlation increasing theH
function. This observation was made many years ago in
framework of statistical mechanics@5#.

In Sec. V we show that this idea also applies to exci
states. We consider the scattering of a wave packet by
particle ~or atom! in terms ofH. We show thatH changes
drastically depending on the direction of the initial wa
packet. If the wave packet moves towards the particle,H is
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large. Conversely, if the wave packet moves away from
particle,H is small. The initial precollisional correlations ar
of long range and are dominated by resonance effects
contrast, postcollisional correlations are of short range
are due only to off-resonance effects. We define space-ti
dependent Lyapounov functionsh6(x,t) that measure the
postcollisional and precollisional correlations between
field and the particle at each location in space, respectiv
As we shall show, the distinction between the functio
h1(x,t) and h2(x,t) is related to the positivity of energy
which is associated with nonlocal effects in the scattering
photons@10#.

In the appendices we discuss a few miscellaneous to
that include a simplified derivation of the form of ou
dressed particle state, some properties of the Hilb
space state presented in Sec. IV and a study of reson
scattering.

Processes involving matter-radiation interactions rem
interesting as ever. They have been the starting poin
quantum theory and now they provide tests for our propo
extension of the framework of quantum mechanics. Ham
tonian physics leads to a description of independent no
teracting entities. For unstable particles or excited states
need a different description. The units should be interact
as energy is transferred between matter and field.

II. DECAYING QUANTUM STATES

First we summarize our previous results. For more det
see Ref. @4#. We consider the Friedrichs model in on
dimensional space. The Hamiltonian of this model is giv
by1

H5H01lV5v1u1&^1u1(
k

vkuk&^ku

1l(
k

Vk~ uk&^1u1u1&^ku!. ~3!

The stateu1& represents a bare particle or atom in its excit
level and no field present, while the stateuk& represents a
bare-field mode of momentumk together with the particle in
its ground state. Hereafter we shall refer to these state
‘‘particle’’ and ‘‘photon’’ states, respectively. Fora,b51,k
we have

^aub&5da,b , (
a51,k

ua&^au51. ~4!

The energy of the ground state is chosen to be zero;v1 is the
bare energy of the excited level, andvk[uku is the photon
energy with a unitc51. The coupling constantl is dimen-
sionless. As usual, we assume periodic boundary conditi
We put the system in a ‘‘box’’ of sizeL and eventually take

1Here we neglect virtual transitions. In a recent publication@11#
we solved the Friedrichs model including virtual processes.
1-2
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SPACE-TIME FORMULATION OF QUANTUM TRANSITIONS PHYSICAL REVIEW A64 062101
the limit L→`. For L finite, the momentak are discrete. In
the limit L→` they become continuous, i.e.,

(
k

→ L

2pE dk. ~5!

The summation sign is written with the understanding t
the limit Eq. ~5! is taken at the end. The potentialVk is of
orderL21/2. To indicate this we write

Vk5~2p/L !1/2vk , ~6!

where vk is of order one in the continuous spectrum lim
L→`. As a specific example we shall assume thatvk is of
the form

vk[v~vk!5~2vk!
1/2u~vk!,

u~vk![
1

@11~vk /vM !2#n ~7!

with n a positive integer. This form appears, for example,
a two-level model of the hydrogen atom@12#. The constant
vM

21 determines the range of the interaction. We shall assu
that the interaction is of short range, i.e.,vM@v1.

The stateu1& is either unstable or stable depending
whether its energyv1 is above or below a threshold, respe
tively @see Eq.~2.6! of Ref. @4##.

A. Stable case

For the stable case, one can construct dressed statesuf̄a&
that are eigenstates ofH. In the limit L→` we have

Huf̄1&5v̄1uf̄1&, Huf̄k&5vkuf̄k&, ~8!

wherev̄1 is the~real! shifted energy of the discrete state. W
use the bars to refer to the stable case. Note that there
one-to-one correspondence between the dressed and
states as liml→0uf̄a&5ua& and liml→0 v̄15v1. The explicit
forms of the dressed states are

uf̄1&5N̄1
1/2F u1&1(

k
uk&

lVk

v̄12vk
G , ~9!

uf̄k&5uk&1
lVk

h1~vk!
F u1&1(

p
up&

lVp

vk2vp1 i eG . ~10!

Here N̄1 is a normalization constant and

h1~v![v2v12(
l

l2Vl
2

~z2v l !v
1 . ~11!

The1 ~or 2) superscript indicates analytic continuation oz
from the upper~or lower! half plane toz5v ~this continua-
tion will play a role in the unstable case below!. The shifted
energy of the discrete state is given by the solution of
equationh6(v̄1)50.
06210
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From the eigenstates ofH one can construct the densit
operators~see Ref.@4#!

ur̄a
0&&[uf̄a ;f̄a&&, a51,k ~12!

ur̄ab&&[uf̄a ;f̄b&&, aÞb,

which are eigenstates of the Liouvillian as

LHur̄a
0&&50, LHur̄ab&&5~v̄a2v̄b!ur̄ab&&, ~13!

wherev̄k5vk .
The density operatorsur̄1

0&& and ur̄k
0&& correspond to

dressed particle and photon states, respectively, and ar
variants of motion. The statesur̄ab&& represent dressed co
relations, which oscillate in time. The dressed states are
lated to the bare states through a unitary transformation

ur̄a
0&&5U21ua;a&&, a51,k ~14!

ur̄ab&&5U21ua;b&&, aÞb.

B. Unstable case

In the unstable case, one can also construct eigenstat
H that are in one-to-one correspondence with the unp
turbed states@8,13–15#. This requires, however, to go ou
side the Hilbert space, as the discrete state has a com
eigenvalue

Huf1&5z1uf1&, Hufk&5vkufk&. ~15!

Here,

z1[ṽ12 ig ~16!

is the pole of Green’s function that is given as a solution
h1(z1)50. The negative imaginary part ofz1 describes de-
cay for t.0. Note that for Im(v),0 the functionh1(v) in
Eq. ~11! is evaluated withz5v on the second Riemann she
@4,8#.

The stateuf1& is called Gamow vector. The left eigen
states ofH that belong to the same eigenvalues are differ
from the right eigenstates

^f̃1uH5^f̃1uz1 , ^f̃kuH5^f̃kuvk . ~17!

The right and left eigenstates ofH are given by@4,8#

uf1&5N1
1/2F u1&1(

k
uk&

lVk

~z2vk!z1

1G , ~18!

uf̃1&5@N1
c.c#1/2F u1&1(

k
uk&

lVk

~z2vk!z
1
c.c.

2 G ,

ufk&5uk&1
lVk

hd
1~vk!

F u1&1(
p

up&
lVp

vk2vp1 i eG ,

1-3
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T. PETROSKY, G. ORDONEZ, AND I. PRIGOGINE PHYSICAL REVIEW A64 062101
uf̃k&5uk&1
lVk

h1~vk!
F u1&1(

p
up&

lVp

vk2vp1 i eG .
Here

1

hd
1~vk!

[
1

h1~vk!

z12vk

~z2vk!z1
1

. ~19!

Note that the difference between unstable and the stable
crete states lies in the need for analytic continuation for
unstable state.

The eigenstates ofH form a bicomplete biorthonormal se
in the wave-function space as

^f̃aufb&5da,b , (
a51,k

ufa&^f̃au51. ~20!

A first possibility to define a dressed particle state in
unstable case is through factorized density operators
structed with Gamow vectors. As we shall see, for cert
types of observables these operators give a correct des
tion of the unstable particle. However, as we have shown
Ref. @4#, if we want to describe fundamental properties, su
as, the transfer of energy from the particle~or excited state!
to the field, then the factorized Gamow density operators
not adequate. For example, the density operatoruf1 ;f1&& is
traceless and has no energy, whileuf1 ;f̃1&& cannot decay
since this is an invariant of motion. Still, dyads of Gamo
vectors play an essential role in our formulation.

C. Complex spectral representation ofL H

In the Liouville space one can construct complex spec
representations of the Liouvillian that are not reducible t
product of representations of the Hamiltonian@4,7,16#. In
these representations the right eigenstateuF j

n&& for a given
eigenvaluezj

(n) is different from the Hermitian conjugate o

the left eigenstatê^F̃ j
nu, as is the case for Gamow vecto

@see Eq.~17!#,

LHuF j
n&&5zj

(n)uF j
n&&, ^^F̃ j

nuLH5^^F̃ j
nuzj

(n) , ~21!

where j together withn specify the eigenstates. In Ref.@4#
we have solved the eigenvalue problem of the Liouville o
erator for the Friedrichs model and shown that the se
eigenstates consists of a purely decaying state and inva
states@see Eq.~4.27! in Ref. @4##

LHuF1
0&&522iguF1

0&&, LHuFk
0&&5O~1/L !→0, ~22!

where

uF1
0&&[uf1 ;f1&&,

uFk
0&&[uf̃k ;f̃k&&, ~23!

as well as dressed correlation states

LHuFab&&5~za2zb!uFab&&, aÞb, ~24!
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wherezk[vk and

uFkk8&&5ufk ;fk8&&, ~25!

uF1k&&5u~F1k!†&&5uf1 ;fk&&2(
l

u l ,l &&

3@^^ l ,l uf1 ;fk&&2F~k,l !#,

with

F~k,l ![2N1
1/2 lVk

hd
2~vk!

l2Vl
2

z12vk

3F 1

v l2vk1 i e
1

1

~z2v l !z1

1G . ~26!

Note that eigenstates, such asuF1
0&&5uf1&^f1u are still fac-

torizable, while other states such asuF1k&& are not factoriz-
able. The explicit forms of the left eigenstates are given
Appendix B of Ref.@4#.

The eigenstates ofLH form a bicomplete and biorthonor
mal set in the Liouville space. The statesuFa

0&& span the
so-called ‘‘vacuum of correlations’’ subspace that is defin
by the projection operator

P (0)[ (
a51,k

uFa
0&&^^F̃a

0 u. ~27!

The other states define the particle-field and field-fi
dressed correlation subspaces

P (1)[(
l

@ uF1l&&^^F̃1l u1uFl1&&^^F̃ l1u#, ~28!

P (2)[(
l ,l 8

8 uFll 8&&^^F̃ ll 8u,

respectively, where the prime in the summation sign deno
the restrictionlÞ l 8. The indexd in the projectorsP (d) indi-
cates the ‘‘degree of correlation’’@4# of each subspace. Du
to the completeness and orthogonality of the eigenstate
LH , the projectors are also complete

(
d50

2

P (d)51, ~29!

and orthogonal

P (d)P (d8)5dd,d8P
(d). ~30!

The projectors commute withLH . We note that the projec
tors are not Hermitian in the Liouville space, i.e.,

@P (d)#†ÞP (d). ~31!
1-4



pe

-
a

x

d

ta

re

or

ds
eft

ds

f-

e-
d

al

he

ify
not

tor,

SPACE-TIME FORMULATION OF QUANTUM TRANSITIONS PHYSICAL REVIEW A64 062101
D. Dressed density operators

In the unstable case we express the dressed density o
tors as linear combinations of the eigenstates ofLH . To ob-
tain their specific forms we construct a transformationL that
maps dressed states to bare states~see@4,5# for a detailed
discussion onL). TheL transformation is obtained by ana
lytic continuation of the corresponding unitary transform
tion U in the stable case.L is no longer unitary, but it has a
new symmetry property called star unitarity, which is an e
tension of unitarity@5#. In terms of the eigenstatesua;b&& of
L0, the dressed states and their duals are defined as

ura
0&&[L21ua;a&&, ^^r̃a

0 u[^^a;auL, ~32!

and

urab&&[L21ua;b&&, ^^r̃abu[^^a;buL, ~33!

for aÞb. The statesur1
0&& and urk

0&& are the dressed excite
state and dressed photon states, respectively, andurab&& are
dressed correlation states. In the limitl→0 theL transfor-
mation reduces to the unit operator, and the dressed s
reduce to the bare states. Moreover, in the stable case
dressed states reduce to the states in Eq.~12!.

In terms of the eigenstates ofLH the dressed states a
given by @4#

ur1
0&&5uF1

0&&1(
k

bkuFk
0&&, ~34!

urk
0&&5uFk

0&&2bkuF1
0&&, ~35!

urab&&5uFab&&, ~36!

where

bk[
l2

u11(kck
2u

@~rck
21c.c.!2ckck

c.c.# ~37!

with

ck[
Vk

~z2vk!z1

1
~38!

and r given in Eq.~A9!. The distributionbk satisfies

(
k

bk51. ~39!

The dressed excited state evolves as

e2 iL Htur1
0&&5e22gtur1

0&&1~12e22gt!(
k

bkurk
0&&.

~40!

This shows thatbk is the line shape of emitted photons. F
small coupling constantl!1, bk is approximated by
06210
ra-
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tes
the

bk'S 2p

L D 1

p

~l2g2!3

@~vk2ṽ1!21l4g2
2#2

, ~41!

where l2g2 is the lowest-order approximation ofg. This
differs drastically from the Lorentzian line shape, as it lea
to no divergence for the fluctuation of energy. For the l
states we have analogous expressions to Eqs.~34!–~36! @see
Eqs.~B23!–~B26! of Ref. @4##.

The stateur1
0&& may be also expressed in terms of dya

of Gamow vectors as@4# as ~see Appendix A!

ur1
0&&5Q(0)uf1 ;f1&&1P(0)@r c.c.uf1 ;f̃1&&1r uf̃1 ;f1&&],

~42!

whereP(0) and Q(0) are projectors to the diagonal and of
diagonal components of density matrices, respectively,

P(0)512Q(0)5 (
a51,k

ua;a&&^^a;au, ~43!

and r is a numerical coefficient. This means that we have

^^k;kur1
0&&5r c.c.^^k;kuf1 ;f̃1&&1r ^^k;kuf̃1 ;f1&&

^^k;k8ur1
0&&5^^k;k8uf1 ;f1&&, kÞk8. ~44!

The statesura
0&& and their duals generate theP (0) sub-

space

P (0)5(
a

ura
0&&^^r̃a

0 u, ~45!

while the statesur (ab)&& and their duals generate the corr
lation subspaces@see Eqs.~36! and~28!#. Hence, the dresse
states form a complete set in the Liouville space

(
a

ura
0&&^^r̃a

0 u1 (
aÞb

urab&&^^r̃abu51. ~46!

Note that the replacement of the unitary transformationU in
the stable case byL in the unstable case implies radic
changes.U is distributive asU(AB)5(UA)(UB) while L is
not. Therefore, irreversibility implies a deep change in t
mathematics of quantum mechanics.

E. Diagonal singularities and observables

We come now to an important point. We have to class
observables according to whether they have or they do
have a diagonal singularity in momentum representation~see
also @17,18#!. To each observable corresponds an opera
sayA. By definition an operatorA has a diagonal singularity
if the diagonal element̂kuAuk& is at least as important~in
orders of magnitude of the volumeL) as the sum of the
off-diagonal elementŝkuAuk8& with kÞk8, i.e.,

^kuAuk&;(
k8

8 ^kuAuk8&. ~47!
1-5
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Examples are functions of the HamiltonianH, such as,H2,
for which we have

^kuH2uk&5vk
21O~1/L !, ~48!

(
k8

8 ^kuH2uk8&5(
k8

8 l2VkVk8⇒E dkl2vkvk8 .

Both quantities are of the same orderL0 in volume. The
diagonal singularities play an important role in our formu
tion as they are associated with the components of
dressed states that are nonfactorizable into a product of w
functions@see Eq.~42!#. These components are essential
obtain important physical features of the unstable part
stateur1

0&&. For example, thanks to the nonfactorizable co
ponents ofur1

0&&, the average energŷ̂ Hur1
0&& is real and

positive. In addition the stateur1
0&& has a unit trace as

(a51,k^^a;aur1
0&&51, and the time evolution is given by th

Markovian equation~40!.
In our classification, the second class of observables

the ones with no diagonal singularities. For these observa
the diagonal elements in momentum representation
O(1/L) smaller than the sum of the off-diagonal elemen
For example for the ‘‘field-intensity’’ operatorux&^xu, with
the ux& kets defined by2

ux&[(
k

uk&~2vkL !21/2e2 ikx, ~49!

we have

^kux&^xuk&;1/L, ~50!

(
k8

8 ^kux&^xuk8&5E dk8

2p
~4vkvk8!

21/2eix(k2k8).

The first quantity isO(1/L) smaller than the second.
For any operatorA with no diagonal singularity, the spec

tral representation ofLH takes a factorized form and we hav

^^Aur1
0&&5^^AuF1

0&&5^^Auf1 ;f1&&1O~1/L !,

^^Aurk
0&&;^^AuFk

0&&;O~1/L !, ~51!

^^Aurab&&5^^AuFab&&5^^Aufa ;fb&&1O~1/L !,

where we have neglected the diagonal components, suc
^^Auk;k&&^^k;kur1

0&&, which vanish asO(1/L) in the con-
tinuous limit L→`. We have analogous expressions for t
left states, e.g.̂^F̃abuA&&5^^f̃a ;f̃buA&&1O(1/L).

2In the second quantization formalism we haveuk&5ak
†u0& where

u0& is the vacuum and@ak ,ak8
†

#5dkk8 as usual. The Friedrichs
model is limited to the one-particle sector. In this sector we h
^xurux&5Tr@f2(x)r# where f(x)[(k(2vkL)21/2(ak

†e2 ikx

1ake
ikx). Hence ux&^xu corresponds to the field intensity in th

one-particle sector.
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An example of nonsingular observable is the photon fi
intensity we study in the following section. The dress
states can then be reduced to a product of wave amplitu
ufa&^fau in the extended space of wave functions. The qu
tion of going from local observables to global observab
involves an integration over space~see Sec. III!. This means
that important features, such as, the transfer of energy f
matter to radiation between dressed states cannot be
served by local measurements~except, of course, to the
lowest-order approximation when we deal with bare p
ticles!. The 1/L contributions in Eq.~51! have to be kept to
be able to make the transition to observables with diago
singularities.

III. SPACE-TIME DESCRIPTION OF THE EMISSION
PROCESS

We shall first calculate the intensity of the field emitted
the bare excited stateur(0)&&5u1;1&&. Our aim is to sepa-
rate the non-Markovian part of the field associated with
preparation of the unstable particle from the Markovian p
coming from the decay process.

The field intensity is defined by

I ~x,t ![^^x;xue2 iL Htu1;1&&5u^xue2 iHt u1&u2. ~52!

In our model the bare particle is ‘‘located’’ atx50 ~this is
where the effective interaction between the particle or at
and the field occurs. For example, for a two-level model
the hydrogen atom in the dipole approximation,x50 is as-
sumed to be the average position of the dipole!.

A. Calculation of the amplitude

As the dressed states will take the factorized form in E
~51!, we start by evaluating the amplitude in Eq.~52!

f ~x,t ![^xue2 iHt u1&. ~53!

For simplicity we shall consider the case of weak coupli
l!1. Hence we haveṽ1@g, where ṽ1;O(l0) while g
;O(l2). Inserting the bicomplete set of eigenstates of
Hamiltonian in Eq.~20! we have

f ~x,t !5 (
a51,k

^xue2 iHt ufa&^f̃au1&. ~54!

Defining @see Eq.~15!#

f 0~x,t ![e2 iz1t^xuf1&^f̃1u1&, ~55!

f 1~x,t ![2(
k

e2 ivkt^xufk&^f̃ku1&,

we have

f ~x,t !5 f 0~x,t !2 f 1~x,t !. ~56!

In the limit L→` the first term is given by@cf. Eq. ~6! and
Eq. ~18!#

e

1-6
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f 0~x,t !5N1e2 iz1tE
2`

` dk

A2p
eikx

lu~vk!

~z2vk!z1

1
, ~57!

while the second term is given by

f 1~x,t !52E
2`

` dk

A2p
eikxlu~vk!F e2 ivkt

h2~vk!
1E

2`

`

dl

3
l2v2~v l !

hd
1~v l !h

2~v l !

e2 iv l t

v l2vk1 i eG . ~58!

Using the relation

l2v2~v l !

h1~v l !h
2~v l !

5
21

4p i F 1

h1~v l !
2

1

h2~v l !
G , ~59!

we get

f 1~x,t !52E
2`

` dk

A2p
eikxlu~vk!F e2 ivkt

h2~vk!
2E

0

` dl

2p i

3S 1

hd
1~ l !

2
1

h2~ l ! D e2 i l t

l 2vk1 i eG . ~60!

For l ,0, the integrand in the second term vanishes. He
we may extend thel integration from2` to `. Approximat-
ing hd

1( l )521/(z2 l )z1

11O(l2) and taking the residue a

l 5vk we obtain

f 1~x,t !'E
2`

` dk

A2p
ei (kx2vkt)

lu~vk!

~z2vk!z1

1
. ~61!

Then, using the relationsvk5uku and N1511O(l2) we
have~for a50,1)

f a~x,t !'E
0

`

dkga~k,x,t !, ~62!

where

g0~k,x,t ![
1

A2p
e2 iz1t

lu~k!

~z2k!z1

1
@eikx1e2 ikx#,

g1~k,x,t ![
1

A2p
e2 ikt

lu~k!

~z2k!z1

1
@eikx1e2 ikx#. ~63!

Now we extract the resonance pole and ‘‘cut’’ contributio
by adding and subtracting integrations from2` to zero

f a~x,t !'pa~x,t !1ca~x,t !, ~64!

where

pa~x,t ![E
2`

`

dk ga~k,x,t !,
06210
e

ca~x,t ![2E
2`

0

dk ga~k,x,t !. ~65!

The functionspa may be evaluated by closing the conto
in the upper or lower infinite semicircle of thek complex
plane, depending on whether6x2at is positive or negative,
respectively. This leads to the pole contributions atk5z1 as

pa~x,t !'2A2p ilu~z1!ei (uxu2t)z1u~ uxu2at! ~66!

for t.0, whereu is the step function. The poles ofu(k) also
contribute@see Eq.~7!#, but for distances much larger tha
1/vM the contributions are negligible. Henceforth we sh
restrict x to the regionsuxu@1/vM and neglect the poles o
u(k).

Note that the pole contributionspa(x,t) increase expo-
nentially with the distanceuxu as pa(x,t);eiz1uxu;eguxu.
However, in Eq.~56! these contributions cancel outside th
light coneuxu.t as we have

p1~x,t !5u~ uxu2t !p0~x,t !. ~67!

For the ‘‘cut’’ contributionsca in Eq. ~65! we changek to
2k to obtain

c0~x,t !52e2 iz1tE
0

` dk

A2p
@eikx1e2 ikx#

lu~k!

k1z1
,

c1~x,t !52E
0

` dk

A2p
@eik(x1t)1eik(2x1t)#

lu~k!

k1z1
. ~68!

The cut contributions appear because of the positivity of
ergy, which leads to a branch-point singularity in the res
vent of the Hamiltonian in the complex energy plane, atv
50.

Using Eq.~67! in Eq. ~64! we get

f ~x,t !'c0~x,t !2c1~x,t !1u~ t2uxu!p0~x,t !. ~69!

The field intensity is

I ~x,t !5u f ~x,t !u2. ~70!

As we shall see,c0(x,t) will be associated with the cloud
surrounding the particle,p0(x,t) with the decay products an
c1(x,t) with the ‘‘Zeno photons.’’

B. Relation with the dressed states

Now we write the field intensity@Eq. ~52!# in terms of the
dressed states in the Liouville space. As the dressed s
form a complete set in the Liouville space, we may expr
the bare particle state as

u1;1&&5 (
a51,k

ura
0&&^^r̃a

0 u1;1&&1(
a,b

8 urab&&^^r̃abu1;1&&.

~71!

Then we can decompose the field intensityI (x,t) into its
dressed particle and dressed photon components,
1-7
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I a
(0)~x,t ![^^x;xue2 iL Htura

0&&^^r̃a
0 u1;1&&, ~72!

for a51,k, respectively, and its dressed correlation com
nents

I (1)~x,t ![(
k

@ I (1k)~x,t !1I (k1)~x,t !#, ~73!

I (2)~x,t ![(
k,k8

8 I (kk8)~x,t !,

where

I (ab)~x,t ![^^x;xue2 iL Hturab&&^^r̃abu1;1&&. ~74!

We have

I ~x,t !5 (
d50

2

I (d)~x,t !, ~75!

where

I (0)~x,t ![ (
a51,k

I a
(0)~x,t !. ~76!

The superscriptd corresponds to the subdynamics proje
tions

I (d)~x,t !5^^x;xue2 iL HtP (d)u1;1&&. ~77!

Using the explicit forms of the dressed states in terms
the eigenstates ofLH and neglecting terms ofO(1/L) we get
@see Eqs.~34! and ~35!#

I 1
(0)~x,t !5Fe22gt^^x;xuF1

(0)&&1(
k

bk^^x;xuFk
(0)&&G

3^^F̃1
(0)u1;1&&, ~78!

I k
(0)~x,t !5^^x;xuFk

(0)&&@^^F̃k
(0)u1;1&&2bk^^F̃1

(0)u1;1&&#.

Then, using Eq.~51! we obtain the factorizable expression

I 1
(0)~x,t !5e22gt^^x;xuf1 ;f1&&^^f̃1 ;f̃1u1;1&&1O~1/L !,

I k
(0)~x,t !5O~1/L !, ~79!

as well as

I (1)~x,t !5(
k

exp@2 i ~z12vk!t#^^x;xuf1 ;fk&&

3^^f̃1 ;f̃ku1;1&&1c.c., ~80!

I (2)~x,t !5(
k,k8

8 exp@2 i ~vk2vk8!t#^^x;xufk ;fk8&&

3^^f̃k ;f̃k8u1;1&&.

NeglectingO(1/L) this leads to@cf. Eq. ~55!#
06210
-
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I 1
(0)~x,t !5u f 0~x,t !u2, ~81!

I (1)~x,t !52@ f 0~x,t ! f 1~x,t !c.c.1c.c.#,

I (2)~x,t !5u f 1~x,t !u2.

For the dressed particle component we have@see Eqs.~64!
and ~66!#

I 1
(0)~x,t !'uc0~x,t !1A2p iu~z1!ei (uxu2t)z1u2. ~82!

For largex this grows in space ase2guxu. However, adding the
correlation componentsI (1) andI (2) in Eq. ~81! the exponen-
tial growth is canceled outside the light coneuxu.t, as then
we recover the square of the amplitude Eq.~56!, which leads
to Eq. ~69!.

C. Separation of the cloud and decay products

Next we discuss the interpretation of our decomposit
@Eq. ~75!# of the field intensity. Using the expression fo
f 0(x,t) in Eq. ~57! together with Eq.~81!, it follows that the
dressed particle componentI 1

(0) decays in a purely exponen
tial way as

I 1
(0)~x,t !5e22gtI 1

(0)~x,0!. ~83!

This corresponds to a Markovian evolution. On the oth
hand, the correlation componentsI (d)(x,t) ~with d.0) have
a non-Markovian evolution associated with memory effe
~the preparation!. Therefore, with our decomposition, w
separate the exponential and nonexponential elements o
time evolution of the field. These elements, in turn, cont
both ‘‘cut’’ and pole contributions, which we describe now

1. The cloud

The functionuc0(x,t)u2 corresponds to the cut contribu
tion of the dressed particle component. It gives the cloud
photons surrounding the particle. Indeed, as seen in Eq.~68!,
c0 is given by an oscillatory integrand ink. In x space,c0 has
a maximum atx50, where the particle is located, and d
creases with a power law ofuxu for large uxu.3 The function
uc0(x,t)u2 is represented by the dotted line in Fig. 1~we shall
give more details on the numerical simulation below!. A
cloud analogous toc0(x,t) also exists in the stable case@19#.
The difference is that in the stable case there is no decay,
we haveg50, while in the unstable case we haveg.0.
Thus for the unstable case the cloud decays exponentiall
uc0(x,t)u25exp(22gt)uc0(x,0)u2.

2. The Zeno photons

The functionuc1(x,t)u2 @see Eq.~68!# corresponds to the
cut contribution of the correlation components. This functi
represents two wave packets that move away from the
ticle ~see Fig. 1!. They have peaks centered atx5t and

3We are considering a massless scalar field. If the field were m
sive, the cloud would decrease exponentially in space.
1-8
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x52t, respectively. As explained below, the wave pack
play an important role in the deviations from exponent
decay of the survival probability of the excited state. Th
includes the Zeno effect@20# and thus we call the wave pack
ets ‘‘Zeno photons.’’

Similar to the cloud, the Zeno photons are nonlocalized
space and have long tails that decrease with an inverse p
law of 6x2t for largeu6x2tu. Although these tails are no
confined to the light cone of the particle, as we have sho
in Ref. @19#, this does not violate causality because the Ze
photons move with the speed of light.4

The cloud and the Zeno photons lead to a ‘‘curtain’’ effe
that describes the dressing process@10,19#. At early times the
Zeno photons interfere destructively with the cloud@at t50
we havec0(x,0)5c1(x,0)#. In other words the cloud is hid
den behind a curtain made by the Zeno photons. As the Z
photons move away, the cloud emerges.

3. The decay products

The pole contributionsp0(x,t) and p1(x,t) associated
with the dressed particle and correlation components, res
tively, lead to the decay products

up0~x,t !2p1~x,t !u25u~ t2uxu!up0~x,t !u2

52puu~z1!u2u~ t2uxu!e2g(uxu2t),

~84!

4If we include virtual processes in the Hamiltonian, then the fi
intensity created by the bare particle is strictly confined inside
light cone@21# as the tails of the cloud and the Zeno photons th
cancel foruxu.t. On the other hand for partially dressed states
long tails may lead to nonlocal effects that simulate superlumina
@19#.

FIG. 1. Cloud~dotted line!, Zeno photons~solid line!, and decay
products ~dashed line! emitted by the bare-excited particle. Th
cloud centered around the particle atx50 decays while the Zeno
photons and the decay products run away from the particle. In
and the subsequent figures we use units with\51 andc51. Both
x and t are measured in units of the inverse frequencyv1

2151 of
the unstable state. The field intensity is dimensionless.
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which stay inside the light cone. The exponential growth
the decay products in space within the light cone is direc
related to a ‘‘history’’ of the exponential decay of the ba
particle. For early times the particle is more likely to em
than for later times. Therefore the field further away from t
particle~which was emitted earlier! is stronger than the field
closer to the particle. Since the emission of photons starte
t50, the wave fronts of the decay products end atx56t
~see Fig. 1!.

Neglecting the cut contributions, one can write the em
ted field as

I ~x,t !}u~ t2uxu!e2g(uxu2t), ~85!

which for givenx decays exponentially inside the light cone
t.uxu. The deviations from exponential decay are due to
Zeno photons as well as the interference effects involving
Zeno photons, the cloud and the decay products. The no
ponential contributions are strongest within the early no
Markovian time scale

tZ;uv1u21!g21, ~86!

which is proportional to the characteristic size of the clo
and Zeno photons@19#.

The deviations from exponential decay are manifest a
in the survival probability of the bare state. The time scaletZ
gives an upper bound of the so-called Zeno time@20,22,23#.
Equation~86! agrees with an estimation of the time scale f
the onset of exponential decay given by Peres@24#, based on
the rigorous solution of Schro¨dinger’s wave equation for
general Hamiltonian systems.5

After the time scaletZ , when the Zeno photons mov
away from the cloud~as in Fig. 1!, the survival probability of
the bare particle decays in an approximately exponential w
in time with a small disturbance due to the long tails of t
Zeno photons in space. For much longer timest@g21, the
cloud sticking around the particle disappears exponentia
On the other hand the effect of the long tails of the Ze
photons remains since the tails decay slowly in space,
lowing a power law. This corresponds to the well-know
power-law decay in time of the survival probability of th
bare particle for extremely long times@1,24#.

D. Numerical plots

The components involved in the dressing and decay p
cess can be visualized with the help of numerical simu
tions.

In Fig. 1, we show the clouduc0(x,t)u2, the Zeno photons
uc1(x,t)u2 and the decay productsuu(t2uxu)p0(x,t)u2. We
have chosen the parameters asv151, l50.1, andt524.
For the numerical plots, the discreteness of the space c
dinate introduces a natural cutoffkmax for the momenta. We
havekmax5p/Dx whereDx is the spacing between the dis
crete coordinatesx. The potential isVk5(2vk /L)1/2u(kmaxe

n
e
y 5Equation~86! agrees with Eqs.~50! and~52! of Ref. @24# applied
to the Friedrichs model with the form factor in Eq.~7!.

is
1-9
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2uku) with L51250 andkmax52p. The plots were obtained
through a direct numerical calculation of our theoretical f
mulas. We solved numerically the equationh1(z1)50 to
obtainz1'0.952 i0.02.

In Fig. 1 we havegt'0.48. The cloud at the center
decaying. The decay products and the Zeno photons m
away from the particle at a speedc51.

The theoretical field intensityI (x,t) obtained by combin-
ing the above contributions as well as their interferen
terms is shown by the dashed line in Fig. 2. The solid l
shows the result obtained through the numerical solution
Schrödinger’s equation, obtained by the diagonalization
the discretized Hamiltonian matrix~see Ref.@19# for a de-
scription of the numerical method; we have used
250032500 Hamiltonian matrix!. Both numerical plots are
in good agreement.

For reference, we have also plotted the theoretical con
bution from the dressed particle alone given byI 1

(0)(x,t) ~the
dotted line in Fig. 2!. This is the Markovian component o
the field. Note that outside the light coneI 1

(0)(x,t) continues
to grow exponentially in space. This exponential growth
canceled by the dressed correlations~non-Markovian! com-
ponent of the field shown in Fig. 3.

E. Global quantities

So far we have considered the local-field operator^^x;xu
for which the dressed states could be factorized in term
Gamow states, e.g.,

^^x;xur1
0&&5^^x;xuf1 ;f1&&. ~87!

Now we consider an example where this equivalence
longer holds. Our example is the global observable

p̂F[(
k

uk&^ku5(
k

^^k;ku. ~88!

FIG. 2. Field intensityI (x,t) for the unstable case: solution o
the Schro¨dinger equation~solid line!, and theoretical estimation us
ing Eq. ~70!. Also plotted is the field intensityI 1

(0)(x,t) of the
dressed unstable state~dotted line!.
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The expectation value of this observable gives the total em
sion probability. The operatorp̂F is a component of the trace
Indeed, the trace is the expectation value of the unit opera
which may be written as

15 p̂F1^^1;1u. ~89!

As shown in Ref.@4# we have Tr@exp(2iLHt)r1
0#51. Hence

^^ p̂Fue2 iL Htur1
0&&512^^1;1ue2 iL Htur1

0&&512uN1ue22gt,
~90!

where we have used Eq.~40!. In contrast, for the dyad
uf1 ;f1&& we have@8#

^^ p̂Fue2 iL Htuf1 ;f1&&52uN1ue22gt. ~91!

Equations~90! and~91! clearly show the distinction betwee
ur1

0&& and uf1 ;f1&& for observables with diagonal singular
ties in momentum. In general, the two states have differ
expectation values for observables that include terms of
form f̂ 5(kf k^^k;ku, where f k is a function independent o
the volumeL. An example of such observable is the Ham
tonianH.

For ur(t)&&5exp(2iLHt)u1;1&&, the expectation value o
p̂F may be written as an integration over space,

^^ p̂Fur~ t !&&5E
2`

`

dxr~x,t !, ~92!

where

r~x,t ![(
k,k8

exp@ i ~k2k8!x#^^k;k8ur~ t !&& ~93!

is the photon density emitted by the bare particle. Similar
the field intensity in Eq.~75!, we can decompose the photo
density into its dressed state components as

FIG. 3. Non-Markovian fieldI (x,t)2I 1
(0)(x,t). It shows fluctua-

tions due to the preparation inside the light cone, and counterfi
that cancel the exponential growth ofI 1

(0)(x,t) outside the light
cone.
1-10
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SPACE-TIME FORMULATION OF QUANTUM TRANSITIONS PHYSICAL REVIEW A64 062101
r~x,t !5 (
d50

2

r (d)~x,t !, ~94!

where

r (d)~x,t !5(
k,k8

ei (k2k8)x^^k;k8uP (d)ur~ t !&&. ~95!

Then we have

^^ p̂Fur~ t !&&5E
2`

`

dx(
d50

2

r (d)~x,t !. ~96!

Note that the summation(d50
2 has to be taken before th

integration overx, in order to cancel the exponential grow
in space of the separate components. Under the integra
over x, the relation~87! no longer holds. We have to use th
complete expression@cf. Eq. ~34!#

ur1
0&&5uf1 ;f1&&1(

k
bkuf̃k ;f̃k&& ~97!

in order to get a consistent decomposition in terms of
sybdynamics. The second term in Eq.~97! is essential to
preserve the trace within theP (0) Markovian component.

IV. HILBERT-SPACE APPROXIMATION
TO THE DRESSED UNSTABLE STATE

As mentioned in the preceding section, the evolution
the unperturbed excited stateu1;1&& deviates from the expo
nential law in a short-time scale~the quantum Zeno effect!
and in a long-time scale~the long-time tail!. This is a direct
consequence of the well-known fact that any state in
Hilbert space cannot decay in a strictly exponential way.
contrast the dressed excited stateur1

0&& can decay in a strictly
exponential way because it does not belong to the Hilb
space. However, sincê̂ x;xur1

0&&5I 1
(0)(x,0)/^^r̃1

0u1;1&& di-
verges exponentially forx→`, the non-Hilbertian state
ur1

0&& cannot be prepared as an isolated state.
We now show that one can construct a dressed exc

state in the Hilbert space whose emitted field inside the li
cone uxu,t is close to the field ofur1

0&&. In this sense this
new Hilbert-space state is a better approximation to
dressed excited stateur1

0&& than the unperturbed excited sta
u1;1&&. Since this new state is localized in space, we m
prepare it in isolation, which is in contrast tour1

0&&.

A. Approximation of the emitted field

We introduce the state6

uc1&[n1
1/2F u1&1(

k
uk&

lVk

z1
c.c.2vk

G , ~98!

6A state close touc1& has been proposed by Passante@25#.
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where n1 is the normalization constant~see Appendix B!.
The stateuc1& consists of the bare stateu1& plus a cloud.
Note that this is not an eigenstate ofH. To uc1& we associate
the density operatoruc1 ;c1&&, which we shall compare with
ur1

0&&.
For weak coupling the approximate time evolution of t

amplitude^xuc1& is given by

^xuc1~ t !&'n1
1/2F c0~x,t !1u~ t2uxu!p0~x,t !2c1~x,t !

1E
2`

` dk

A2p

lu~vk!

z1
c.c.2vk

ei (kx2vkt)G , ~99!

where

uc1~ t !&5e2 iHt uc1&. ~100!

The first line in Eq.~99! gives the evolution of the bare
particle@cf. Eq.~69!#, and the second line gives the evolutio
of the cloud ofuc1& in the lowest-order approximation. Th
‘‘cut’’ part of this cloud coincides with the cut part off 1(x,t)
in Eq. ~61!, i.e., with the Zeno photonsc1(x,t). Hence, the
Zeno photons are canceled in this approximation. The
maining field amplitude is given by

^xuc1~ t !&'n1
1/2@c0~x,t !1u~ t2uxu!p0~x,t !

2u~ uxu2t !A2p ilu~v1!eiz1
c.c.(uxu2t)#.

~101!

The field intensity u^xuc1(t)&u2 includes the usual cloud
uc0(x,t)u2, the decay products and an additional cloud, wh
comes from the pole contribution of the second line in E
~99! and is shown on the second line of Eq.~101!. The ad-
ditional cloud decreases as exp@22g(uxu2t)# for uxu.t. This
additional cloud already exists att50. Therefore, the pres
ence of a field outside the light cone does not imply a
violation of causality. It simply means that the initial sta
includes an extended field.

Comparing Eq.~101! with Eq. ~82! we see that~up to the
normalization factors! inside the light cone the field intens
ties of ur1

0&& and uc1 ;c1&& coincide in the lowest-order ap
proximation.

In Fig. 4 we show a comparison of the field intensiti
u^xuc(t)&u2 for uc&5uc1& ~dashed line! and uc&5u1& ~solid
line! for fixed x. For easier comparison we have adjusted
normalization constant ofuc1& to n151. We have obtained
this graph through numerical calculations based on a dia
nalization of the Hamiltonian for the same parameters
scribed in Sec. III. The graph shows that inside the lig
cone, fort.uxu, the stateuc1& has smaller deviations from
exponential than the bare state~note that the stateur1

0&& has
an exactly exponential evolution for allt). In Fig. 4 one can
also see the additional cloud ofuc1& for t,uxu.
1-11
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B. Line shape and survival probability

Now we consider the line shape of emission of the st
uc1& and the survival probability. We start with a few gene
remarks.

The line shape of any stateuc;c&& is given by

hk~c![u lim
t→`

^kuc~ t !&u25u^f̃k
2uc&u2, ~102!

whereuf̃k
2& is the ‘‘out’’ Mö ller scattering state

uf̃k
2&[uf̃k&

c.c.. ~103!

The survival probability ofuc& is given by

Sc~ t ![^^c;cue2 iL Htuc;c&&5u^cuexp~2 iHt !uc&u2.
~104!

For short times we have

Sc~ t !512~ tDEc!21O~ t3!, ~105!

where

~DEc!2[^cuH2uc&2^cuHuc&2

5(
k

hk~c!vk
22F(

k
hk~c!vkG2

~106!

is the energy fluctuation. For example for the bare stateuc&
5u1& we have

~DE1!25E
2`

`

dk l2v2~vk!. ~107!

The fluctuationDE1 is large, of the order of the ultraviole
cutoff vM of the interaction.

For states belonging to the Hilbert space the line sh
and the survival probability are closely connected. Inde
using the completeness relation of the Mo¨ller states we have

FIG. 4. Field intensityI 5u^xuc(t)&u2 for uc&5u1& ~solid line!
anduc&5uc1& ~dashed line!, for x5100. The dressed stateuc1& has
smaller deviations from exponential decay than the bare state.
easier comparison we have normalized the stateuc1& with n151.
06210
e
l

e
,

Sc~ t !5U(
k

hk~c!e2 ivktU2

. ~108!

As seen in Eq.~105! the energy fluctuation is associated wi
the early stage of the evolution ofSc(t). This early stage for
states in the Hilbert space typically corresponds to a dres
process, rather than a decay process. For example, fo
bare state the fluctuationDE1 is associated with the initia
dressing time scaletdress;1/DE1, during which the Zeno ef-
fect @20# may take place.

In general, the energy fluctuation consists of two comp
nents, one due to the resonance pole and the other du
branch-point~or other! singularities of the line shape. Sinc
the branch point is related to the dressing of the particle,
component gives the dressing time scale. On the other h
the fluctuation associated with the resonance gives the re
ation time. Peres@24# has shown that in order to have
well-defined exponential regime in thesurvival probability
of Hilbert-space statesuc&, one should haveDEc@g. This
means that the branch-point contribution of the energy fl
tuation should dominate. This is indeed the case foru1&, for
which the energy fluctuation is entirely due to the branc
point contribution. We have a clear separation of time sca
for dressing and decay:DE1@g.

We now turn to the line shape and survival probability
the stateuc1&. The overlap of this state with the Mo¨ller states
gives ~see Appendix B!

^f̃k
2uc1&5

lVk

h1~vk!

n1
1/2

z1
c.c.2vk

3l2E dl v2~v l !

3F 1

~z2v l !z
1
c.c.

2 2
1

z1
c.c.2v l

G . ~109!

In the lowest-order approximation we have

hk~c1!'S 2p

L D 1

p

g3

@~vk2ṽ1!21g2#2
'bk , ~110!

where we have replacedl2v2(vk) by lv2(v1)'g/(2p), as
the resonance atvk5z1 gives the dominant contribution
Therefore, the line shape ofuc1 ;c1&& coincides with the line
shape ofur1

0&& in the lowest-order approximation. As show
in Ref. @4#, the line shape in Eq.~110! leads to the energy
fluctuation

~DEc1
!2'g2. ~111!

The resonance pole gives the dominant contribution to
energy fluctuation, while the branch-point~dressing! contri-
bution is negligible in this approximation. This is due to th
fact that the stateuc& has already a dressingt50.

In Appendix B we show that the average energies
uc1 ;c1&& and ur1

0&& coincide up to theO(l2) correction.
Our results, up to now, demonstrate that the suppres

of dressing effects, the energy fluctuation and exponen
decay of the field are linked together for states in the Hilb

or
1-12
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SPACE-TIME FORMULATION OF QUANTUM TRANSITIONS PHYSICAL REVIEW A64 062101
space, such asuc1 ;c1&&. As compared with the bare stat
the dressing effects in this state are significantly reduced
to the approximate elimination of the Zeno photons. T
emitted field is closer to exponential decay and the ene
fluctuation is much smaller,DEc1

!DE1.
So far we have pointed out the similarities between

statesuc1 ;c1&& and ur1
0&&. Now we comment on the differ

ences. For the survival probability, using Eq.~108! we obtain

u^c1uc1~ t !&u2;e22gt~11gt !2. ~112!

The polynomial factors int are due to the existence of
double pole in the line shapehk(c1).7 On the other hand for
ur1

0&& we have to define the survival probability in a gene
alized way, sinceur1

0&& is outside the Hilbert space. We de
fine a generalized survival probability as

S̃~ t ![^^r̃1
0ue2 iL Htur1

0&&5exp~22gt !. ~113!

In contrast to the survival probability ofuc1 ;c1&&, this is
strictly exponential, regardless of the line shape. Furth
more, in the local-field description the stateur1

0&& also decays
exponentially regardless of the line shape. Therefore, the
lation between time evolution and line shape ofur1

0&& is dif-
ferent than for Hilbert-space states. Forur1

0&& the line shape
only appears in the global time evolution, where it det
mines the distribution of emitted field modes@cf. Eq. ~40!#.

Our discussion above states in a more precise way
relation between dressing and exponential decay for unst
states we have mentioned in our previous paper@4#.

Let us finally note that a state close touc1& has been
proposed in 1956 by Glaser and Ka¨llén @26#. They consid-
ered the Lee model. Translated into our present model t
state corresponds to

ucGK&5nGK
1/2F u1&1(

k
uk&

lVk

ṽ12 i g̃2vk
G , ~114!

wherenGK is the normalization constant andg̃ is a charac-
teristic parameter, which should satisfy the conditiong̃@g

for their case. Forg̃Þg the double pole in the line shape
avoided, and one obtains a superposition of two exponen
decays, one with a rateg and the other with a rateg̃. On the
other hand, if we chooseg̃5g, one can show that this stat
has exactly the same line shape asuc1& ~note that forg̃5g
we haveucGK&5uc1&

c.c.).

C. Possible experiments

Our study of the Markovian and non-Markovian comp
nents of the field emitted by the bare-excited state has le
to the Hilbert-space stateuc1 ;c1&& that, in the sense dis

7For uc&5uc1&, Peres’s conditionDEc@g @24# is not met, which
is consistent with the nonexponential behavior in Eq.~112!. Note
that the deviations from exponential in Eq.~112! are due to the
resonance-pole contribution, and not to branch-point contributio
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cussed above, comes close to the dressed unstableur1
0&&. The

appearance ofuc1 ;c1&& ~or a state close to it! in an experi-
mental situation can be checked through the line shape.
line shape of this dressed state must be narrower than
Lorentzian and decay asvk

24 for largevk @see Eq.~110!#.8

One possibility to observe line shapes narrower than
Lorentzian is to discard the measured field correspondin
the early stages of evolution of the initial state, after whi
the atom may be found in a dressed or partially dressed s

In order to study the physical effects of the unstab
clouds, one may consider the force between two excited
oms. This force depends on the overlapping of the fie
surrounding each atom@21#. This involves not only the off-
resonance cloud, but also the field due to resonance eff
To study this force one can consider the emission spect
and the line shape of the two-atom system as a function
the distance between the atoms. This can then be comp
with a theoretical estimation based on the dressed state
side the Hilbert space or its Hilbert-space approximation
theoretical analysis on the forces between excited atoms
be presented elsewhere.

V. H FUNCTION

Because of the instability, which is due to the resonan
effect, one can introduce a microscopic analog of Bol
mann’s H theorem by constructing a Lyapounov opera
that decays monotonically for all times@see Eqs.~1! and~2!#.
As noticed in Sec. I this quantity is defined outside the H
bert space. The expectation value of this operator is
Lyapounov function that depends on the initial stateuj& of
the system

^H~ t !&[^juH~ t !uj&5e22gt^H~0!&5e22gt^juf̃1&^f̃1uj&.
~115!

As discussed in Ref.@8#, theH function gives an indication
of how far the system is from its final asymptotic state, wh
the dressed particle disappears. TheH function decreases
until it reaches its asymptotic value^H(`)&50. Most initial
conditions, including ones giving rise to a temporary ‘‘bac
wards’’ evolution~e.g., after a momentum inversion! eventu-
ally end up with the particle relaxing to the ground state a
all the field moving away from the particle to infinity.9 This
behavior justifies the interpretation of theH function as a
measure of the distance to the asymptotic state: the large
H function, the more one has to wait to reach the asympt
state.

s.

8In contrast, if the initial state is close to a bare state, then a
shape close to the Lorentzian should be observed. The infinite
ergy fluctuation of the Lorentzian shape~which approximatesDE1)
is connected to the rapid dressing process that occurs during
Zeno period. Conversely, a suppression of the Zeno effect sh
lead to a narrower line shape.

9An exception is given by initial conditions that are th
asymptotic states of a backwards time evolution. Such states tak
infinite amount of time to reach the forward asymptotic state.
1-13
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A microscopicH operator in the Liouville space was a
ready introduced many years ago by one of the present
thors~I.P.! asM5L†L ~see Ref.@5#!. To connect this opera
tor with our presentH function, we note that for system
with many particles or field modes we may introduce a
duced Lyapounov operator

Ma5L†un̂a&&^^n̂auL, ~116!

wheren̂a is a one-particle observable corresponding to p
ticle a. This is similar to a Gibbs entropy with the replac
ment of unitary transformationsU by L ~for unitary trans-
formations the Gibbs entropy is an invariant of motion, wh
with L the entropy evolves monotonically!. The Lyapounov
function is the expectation value ^^Ma(t)&&
[^^r(t)uMaur(t)&&, where ur(t)&&[exp(2iLHt)ur&&. For
states with no diagonal singularity in momentum represe
tion, which were discussed at the end of Sec. II, there
simple relation between this Lyapounov functionMa and the
H operator in Eq.~115!. For example, ifr is a pure stater
5uj&^ju normalized as Tr(r)51, we have for un̂1&&
5u1;1&&, @c.f. Eq. ~51!#

^^M1~ t !&&[^^r~ t !ur̃1
0&&^^r̃1

0ur~ t !&&. ~117!

Here the statê^r(t)u plays the role of a test function with n
diagonal singularity. This allows us to writê̂ r(t)ur̃1

0&&
5^^r(t)uf̃1 ;f̃1&& and the corresponding relation for th
dual states. Thus we obtain

^^M1~ t !&&5^^r~ t !uf̃1 ;f̃1&&^^f̃1 ;f̃1ur~ t !&& ~118!

or

^^M1~ t !&&5@^H~ t !&#2, ~119!

where^H(t)&5^juH(t)uj&.
For states with diagonal singularities theM1 operator is

no longer factorizable in terms of Gamow states. States w
diagonal singularities occur naturally in systems in the th
modynamic limit, e.g., for a particle coupled to a heat ba
This will be studied in a separate publication.

A. Scattering of a wave packet

To illustrate the connection between theH function and
dynamics, we consider the scattering of a wave packet~i.e., a
state with no diagonal singularities!.

At the initial state the particle is in its ground state. W
consider a rectangular wave packet of widthb in x represen-
tation,

^xuj&5
eixk0

b1/2
@u~x2x02b/2!2u~x2x01b/2!#.

~120!

The packet is centered atx5x0,0, with ux0u@b. The mo-
mentum representation is given by^kuj&5(2p/L)1/2jk with
06210
u-

-

r-

a-
a

th
r-
.

jk522A2vk

W
e2 ix0(k2k0)

sin@b~k2k0!/2#

~2pb!1/2~k2k0!
, ~121!

whereW is a normalization factor. We decompose the wa
packet into two components,

jk5u~k!jk1u~2k!jk5jk
11jk

2 . ~122!

This decomposition appears naturally due to the positivity
the energyvk5uku @10#. Under free motion, the two compo
nents move undistorted in opposite directions,

^xue2 iH 0tuj6&5^~x7t !uj6&. ~123!

Both components are nonlocal, i.e., they have long tails
space. Att50 the long tails cancel to obtain the rectangu
shape ofuj&. For t.0, as the two components move awa
from each other, the long tails no more longer cancel~we
have called this the ‘‘curtain’’ effect@10#!. Thus, in principle,
the particle may be excited immediately aftert50. This non-
local effect does not violate causality, because the com
nents move with the finite speedc51 (uj2& to the left and
uj1& to the right!. We note that nonlocal tail effects appe
even if the initial wave packet is not strictly localized. F
example, if it is a Gaussian wave packet, there will app
tails that extend over a much larger range than the Gaus
tails. Our main focus here is, however, not the study of n
local effects. We shall neglect the interaction with the tails
we have assumed that the interaction between the par
and the photons is of short range. Hence we approxim
H'H0 for t!t1 where t1[2(x01b/2). Around t5t1 the
interaction between the wave packetujk

1& and the particle is
no more negligible as the body of the wave packet come
contact with the particle. Aroundt5t2[2(x02b/2), the
body of the wave packet finishes passing through the p
ticle, and only the tail effects remain. Therefore, neglect
the tail effects we may separate the evolution in three p
ods: t,t1 ~before the collision ofujk

1& with the bare par-
ticle!, t1,t,t2 ~during the collision! and t.t2 ~after the
collision!.

The relative sizes of the two componentsujk
6& in x repre-

sentation depend on the sign of the initial momentumk0. For
k0.0 the componentujk

1& is large whileujk
2& is small, and

the opposite is true fork0,0. The intensity of the scattering
depends on how far the energyvk0

is from the energy of the

particle. Forvk0
'ṽ1 the intensity is largest and we have

strong resonance scattering.
In Figs. 5–7 we show numerical plots of the field inte

sity. The numerical plots are obtained by solving the Sch¨-
dinger equation through diagonalization of the Hamiltoni
matrix, with the same parameters described in Sec. III. T
wave packetujk& at t50 is shown in Fig. 5. We have chose
k05ṽ1. For these parameters the componentujk

2& is very
small. This component has two peaks at the edges@10#. In
Fig. 6 these two peaks correspond to the two small peak
the left hand side. The central part of the wave packetujk

2& is
too small to be seen in this figure.
1-14
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SPACE-TIME FORMULATION OF QUANTUM TRANSITIONS PHYSICAL REVIEW A64 062101
In Fig. 6 one can also see the interaction between
wave packetujk

1& and the bare particle at an intermedia
time t1,t,t2 when the wave packet is passing through
particle. During this period the particle is excited~see Ap-
pendix C for detailed calculations!. The interference pattern
to the left of the bare particle is due to the interference
tween the incident wave packet and the emitted photons
the right of the particle we have the part of the incident wa
packet that has been transmitted. It presents a dip toward
origin, as part of it has been absorbed by the particle. Ft
.t2 ~Fig. 7! the particle decays, emitting the decay produc
The transmitted wave packet is seen to the right of the p
ticle ~it is no more a rectangular wave packet, as it has b
partially ‘‘eaten’’ by the particle!. The distant profile to the
left of the particle~in the regionx,2Q, whereQ[t2t2)
represents the photons that were emitted as soon as they
absorbed~i.e., the reflected photons!. Around the particle at
x50 we see the cloud and the decay products emitted a
t5t2 in the regionuxu,Q. These are the same cloud an

FIG. 5. Field intensityI (x,t) for a rectangular wave packet a
t50. The wave packet is approaching the particle located atx50
from the left-hand side. Parameters areb5100, x05270, andk0

5ṽ150.95.

FIG. 6. Wave packet during the collision with the particle
t556.
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decay products that we have identified in Sec. III, when
studied the evolution of the bare-excited state. This wa
different initial condition than the one we are consideri
here. The fact that the same components appear for two
ferent initial conditions underlines the ‘‘universal’’ charact
of the dressed particle component.

We shall consider separately theH functions associated
with the two componentsuj1& and uj2&. They are given by

^H 6~ t !&[^j6uH~ t !uj6&5e22gtu^f̃1uj6&u2, ~124!

where

^f̃1uj6&5(
k

^f̃1uk&^kuj6&5E
2`

`

dk
lv~vk!

~z2vk!z1

1
jk

6

5E
0

`

dk
lv~k!

~z2k!z1

1
j6k . ~125!

As before we add and subtract an integral fromk52` to 0,
corresponding to the cut contribution

^f̃1uj6&5E
2`

`

dk
lv~k!

~z2k!z1

1
j6k1^f̃1uj6&cut. ~126!

After changingk⇒2k we have

^f̃1uj6&cut[2E
0

`

dk
lv~2k!

z11k
j7k . ~127!

This cut contribution is due to the overlap between the clo
of the dressed particle and the wave packet. One can s
that it decreases with an inverse power law of the init
distancex0. On the other hand, the first term in Eq.~126!
will give a much larger contribution at the polek5z1 if we
can close the contour in the upper infinite semicircle of co

FIG. 7. Field intensity after the collision with the particle
t5160. The field emitted after the excitation of the particle appe
in the regionuxu,Q[t2t2. The transmitted wave packet is in th
region x.Q and the reflected wave packet is in the regi
x,2Q.
1-15
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T. PETROSKY, G. ORDONEZ, AND I. PRIGOGINE PHYSICAL REVIEW A64 062101
plex k @as in Sec. III we neglect the pole contributions
v(k)#. Considering the explicit form ofjk in Eq. ~121! we
see that closing the contour is possible only if

x06b/2,0 for ^f̃1uj1&,

x06b/2.0 for ^f̃1uj2&. ~128!

As the wave packets are to the left of the particle at the ini
time, we havex06b/2,0 and, therefore, only theuj1& com-
ponent moving towards the particle gives a pole contributi
Thus, taking the residue at the pole in Eq.~126! we get

^f̃1uj1&52p ilv~z1!jz1
1^f̃1uj1&cut,

^f̃1uj2&5^f̃1uj2&cut. ~129!

The pole contribution dominates as we havejz1
}exp(gux0u).

Therefore@see Eq.~124!#

^H 1~ t !&}e2g(ux0u2t) ~130!

and ^H 2(t)& is negligible as compared witĥH 1(t)&,

^H 2~ t !&!^H 1~ t !&. ~131!

In short, the value ofH changes drastically depending on t
direction of the wave packet. It is large for the compone
moving towards the particle, and small for the compon
moving away from the particle.

To interpret this result we write

^H 6~ t !&5^^f̃1 ;f̃1ue2 iL Htuj6;j6&&

5^^r̃1
0ue2 iL Htuj6;j6&&1O~1/L !

5(
a,b

^^r̃1
0ua;b&&^^a;bue2 iL Htuj6;j6&&.

~132!

The H function is expressed as the overlap between
dressed particle and the evolving wave packets. This ove
in turn, is a superposition of the bare correlation compone
^^a;buexp(2iLHt)uj6;j6&&. For the wave packet moving to
wards the particle the initial correlation components eva
ated at the resonancevk5z1 give a large contribution tha
grows with the distance between the particle and the w
packet@cf. Eq. ~130!#. The correlations are of long range du
to the resonance. We may call them ‘‘precollisional’’ corr
lations, as they are associated with the wave packet mo
towards the particle. The wave packetuj1& is ‘‘far from
equilibrium.’’ As it approaches the particle, the correlatio
decay and theH function decreases. Eventually the partic
is excited as it absorbs the wave packet and subsequen
decays emitting photons~see Figs. 5–7!, which leads to the
continued decrease ofH. Note that the emitted photon
move away from the particle and hence they give a ne
gible contribution to theH function. In the final state, the
particle is in its ground state and all the field is emitted aw
06210
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to infinity. Using the analogy of statistical mechanics, w
may say that as a whole we go from a nonequilibrium to
equilibrium state.10

For the componentuj2& moving away from the particle
the situation is different. The initial correlation componen
simply express the overlap of the tail of the wave packet w
the the particle cloud~an off-resonance effect!. These are
‘‘postcollisional’’ correlations. As the wave packet move
further away, the correlations become weaker. There is al
small effect due to the excitation and subsequent relaxa
of the particle caused by the tail ofuj2&. As a consequence
of these two effects, theH function decreases. The final sta
is again the particle in its ground state and the field mov
away to infinity.

Of course the distinction between ‘‘towards’’ and ‘‘away
from the particle requires knowledge of the position of t
particle. In order to aim the wave packet towards the parti
we have to see the particle. This means that photons em
from the particle must have reached us first. ‘‘Aiming’’ im
plies that the particle is in the future light cone of the wa
packet. Therefore, theH function can be constructed onl
within timelike separations of the points it relates. Name
the H function gives a global information that depends
the nonlocal correlation components of the dressed par
and the field. At any given time these components depend
the states of both the particle and the field at different lo
tions @21#, which have to be communicated in accordan
with causality.

B. Momentum inversion

It is interesting to consider what happens when we p
form momentum inversion@3,8#. This is achieved by the an
tilinear time-inversion operatorTI . Suppose that at timet we
perform a momentum inversion. Then the state changes

uj6~ t !&[e2 iHt uj6&⇒TIe
2 iHt uj6&5e1 iHt uj7&5uj7~2t !&.

~133!

As a consequence of the momentum inversion the expe
tion value ofH ‘‘jumps’’ to a higher or lower value. This
corresponds to a flow of ‘‘entropy’’ from the outside. As w
shall see the direction of the jump depends on the time w
one performs the momentum inversion. The ratio of theH
function after the inversion to the one before the inversion
given by

j r
6~ t ![

^j7~2t !uHuj7~2t !&

^j6~ t !uHuj6~ t !&
5

exp~2gt !u^f̃1uj7&u2

exp~22gt !u^f̃1uj6&u2
.

~134!

Suppose that att50 we start with the componentuj1& alone.
The wave packet moves to the right. We perform moment
inversion at a time when the wave packet has excited
particle and the particle is emitting the decay products, a
Fig. 7. The momentum inversion~point A in Fig. 8! causes

10Here ‘‘equilibrium’’ means the particle in the ground state pl
the end decay products.
1-16
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the H function to jump up, as the decay products start
move towards the particle~we have an increase of ‘‘order
or a flow of negative ‘‘entropy’’ due to the correlations com
ing from outside@8#!. After the inversion, we have a ‘‘back
wards’’ evolution and we follow the inverse sequence, fro
Fig. 7 to 5. The decay products move towards the part
that subsequently absorbs them. Eventually the field coll
itself back into the initial wave packet, which then mov
away from the particle. We interpret the continued decre
of H ~solid line in Fig. 8! as due to the disappearance of t
‘‘anomalous’’ correlations that were fed to the system
point A. TheH function continues to decrease as the syst
approaches its final relaxed state.

A different situation occurs if we perform the momentu
inversion earlier, at a timet!g21 when the wave packet i
still far from the particle. The wave packet then changes
uj2& and moves to the left. At the moment of inversio
~point B in Fig. 8! we have @cf. Eq. ~130!# j r(t)
}exp(22gux0u). The H function jumps down, due to the
change of the direction of motion~dotted line in Fig. 8!. The
momentum reversal turns the precollisional correlations i
postcollisional correlations, which corresponds to a flow
positive entropy into the system.

If we start at t50 with the componentuj2& alone and
perform a momentum inversion some time later, then theH
function jumps up, because the wave packet, which w
moving away from the particle, now moves towards the p
ticle. After the inversion theH function decreases in time a
described previously~see Fig. 9!.

The examples discussed above illustrate the follow
point: if we perform momentum inversion when the entro
of the system is high, then the entropy will jump dow
Conversely, if we perform the inversion when the entropy
low, the entropy will jump up.

FIG. 8. Schematic plot of the Lyapounov functionH 1. The
time inversion atA ~before the wave packet collides with the pa
ticle! creates correlations; atB ~after the wave packet collides wit
the particle! it destroys correlations. In this figure and in Fig. 9 tim
t is measured in units of the inverse frequencyv1

2151 of the un-
stable state and the Lyapounov function is dimensionless.
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C. Space dependence ofH
Our considerations above may also be applied to the s

uj&5ux&. Then we can define space- and time-depend
Lyapounov functions as

h6~x,t ![^xu6H~ t !ux6&. ~135!

We have@cf. Eq. ~129!#

h1~x,t !}e2g(uxu2t) ~136!

and

h2~x,t !&}e22gtu^f̃1ux2&cutu2. ~137!

The functionh1(x,t) decays in time at each point in spac
and at a given instant it increases exponentially with
distance from the particle. This may be interpreted as a m
sure of the space-time dependence of the precollisional
relations of the field. Locations more distant from the p
ticle are further away from their final asymptotic state,
they have to wait for more time to interact with the partic
The functionh2(x,t) gives the space-time dependence of t
postcollisional correlations. It decays exponentially in tim
and it decreases withuxu, as a power law.

VI. CONCLUDING REMARKS

Using our states outside the Hilbert space we have se
rated preparation effects from decay effects in space re
sentation. The two types of effects correspond to bran
point singularities and pole singularities of Green’s functio
respectively. Our unstable stateur1

0&& is not a solution of the
Schrödinger or Heisenberg equations. It is a combination
eigenfunctions of the Liouville operator, which may also
written as a mixture involving dyads of Gamow vectors.

As commented at the beginning of Sec. IV, the stateur1
0&&

may not be prepared in isolation. However, we can identif
within the components of any given evolving state. T
space-time structure of the field associated withur1

0&& is

FIG. 9. Schematic plot of the Lyapounov functionH 2. The
time inversion atA creates correlations and causesH 2 to jump up.
1-17
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‘‘universal’’ as it appears for different initial condition
~compare Figs. 2 and 7 aroundx50). Furthermore we ex-
pect that the unstable cloud ofur1

0&& will play a role, e.g., in
the interatomic forces between unstable atoms.

We are aware of the limitations of our model, and w
hope to consider more realistic situations in the future. O
formulation is closely connected to the thermodynamic
pects of absorption and emission as well as the theory
‘‘quasiparticles’’ in nonequilibrium field theory@27,28#.

The H function we have studied is in a sense a mic
scopic realization of Boltzmann’sH function. TheH func-
tion distinguishes precollisional and postcollisional corre
tions, i.e., whether the particle is on target or off target. I
interesting to study the situation in two- or three-dimensio
spaces. Here the precollisional and postcollisional fields
respond, respectively, to incoming and outgoing fields. I
later paper we shall study as well the distinction between
and virtual processes from the point of view of theH func-
tion @29#.

We note that as our model is time reversal invariant~we
have @H,TI #50), all our discussions are applicable if w
exchange the roles of past and future. The main point is
there is a wide class of initial conditions that lead
asymptotic states, either on the distant future or the dis
past, where the particle has decayed and the field is em
away. This is reflected in the existence complex spectral
resentations ofH or LH . The components of these represe
tations break time symmetry. Of course, if the system
coupled to the outside world, then for consistency we hav
choose the representation that describes decay in the fu
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APPENDIX A: SIMPLE DERIVATION OF THE UNSTABLE
STATE

In Ref. @4# we have obtained the dressed unstable s
ur1

0&& and shown that it may be written in terms of Gamo
vector dyads as

ur1
0&&5Q(0)uf1 ;f1&&1P(0)@r c.c.uf1 ;f̃1&&1r uf̃1 ;f1&&].

~A1!

To obtain this result we postulated that the energy fluctua
of ur1

0&& should be of the order of the inverse lifetime. He
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we present an alternative derivation, where we invert
logic: we start by postulating the form~A1! and then we
obtain the coefficientr using normalization conditions. Thi
leads to the same results obtained in Ref.@4#, including the
energy fluctuation.

As explained below, to postulate the form~A1! we use
two arguments:~1! that the stateur1

0&& reduces to the stable
stateuf1 ;f1&& when there are no resonances and~2! that the
state ur1

0&& is Hermitian, has a unit trace, and is analy
when the coupling constant vanishes atl50.

A simple form of unstable state one may postulate is
dyad of Gamow vectorsur1

G&&[uf1 ;f1&&. However, this
dyad is both traceless and nonanalytic atl50 ~see also Ref.
@30#!. The problem occurs in theP(0) component as

Tr~r1
G!5Tr~P(0)r1

G!50. ~A2!

The P(0) component is nonanalytic inl as we have
liml→0 P(0)r1

GÞu1&^1u. In contrast, theQ(0) component is
analytic atl50. This suggests that we retain theQ(0) com-
ponent ofur1

G&& while modifying theP(0) component. The
requirement~1! and the condition of Hermiticity then lead t
the form in Eq.~A1!. The coefficientr is chosen so thatr
1r c.c.⇒1 in the stable case. This ensures that in the sta
case we recover the stable particle state as

ur1
0&&⇒Q(0)uf̄1 ;f̄1&&1~r c.c.1r !P(0)uf̄1 ;f̄1&&

5~Q(0)1P(0)!uf̄1 ;f̄1&&5uf̄1 ;f̄1&&. ~A3!

Moreover, from the condition Tr(r1
0)51 and the relations

Truf1 ;f̃1&&5Truf̃1 ;f1&&51 we obtain

r 1r c.c.51 ~A4!

also in the unstable case. To findr we take thê ^1;1u diag-
onal component in Eq.~A1! to obtain

^^1;1ur1
0&&5r c.c.^^1;1uf1 ;f̃1&&1r ^^1;1uf̃1 ;f1&&,

~A5!

where@c.f. Eq. ~18!# we have

^^1;1uf1 ;f̃1&&5N1, ^^1;1uf̃1 ;f1&&5N1
c.c.. ~A6!

From the normalization condition̂ ^r̃1
0ur1

0&&51, where

^^r̃1
0u5^^f̃1 ;f̃1uQ(0)1@^^f1 ;f̃1ur 1^^f̃1 ;f1ur c.c#P(0), we

obtain ^^1;1ur1
0&&5uN1u1O(1/L). Equation ~A5! now re-

duces to

uN1u5r c.c.N11rN1
c.c. ~A7!

or

r c.c.e2 ia1reia51, ~A8!

where we have used polar coordinatesN15uN1uexp(2ia).
This equation together with Eq.~A4! lead to the solution

r 5
exp~2 ia/2!

2 cos~a/2!
, ~A9!
1-18
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which coincides with the result given in~6.18! of Ref @4#. As
shown in Ref.@4#, this solution gives an energy fluctuation
ur1

0&& of the order ofg and also gives a small deviation of th
average energy from Green’s-function energy. It leads
well to the line shapebk of our unstable state@see Eq.~41!#.

APPENDIX B: PROPERTIES OF zc1‹

We consider here some properties of the stateuc1& de-
fined in Eq. ~98!. We note that in contrast to the Gamo
vector@see Eq.~18!#, uc1& has no analytic continuation from
the upper to the lower half plane and consequently it is
an eigenstate of the Hamiltonian. In the stable, case limiz1
becomes real and the stateuc1& reduces to the stable partic
state.

1. Normalization constant

From Eq.~98! we obtain

un1u5F11(
k

l2Vk
2

uz12vku2G21

. ~B1!

In the limit L→` the second term is the integral

E
2`

`

dk
l2v2~vk!

~vk2ṽ1!21g2
52E

0

`

dk
l2v2~k!

~k2ṽ1!21g2

'4p i
l2v2~v1!

2ig
'1, ~B2!

where we have taken the dominant contribution at the re
nance. This leads toun1u51/21O(l2).

2. Proof of Eq. „109…

Using the explicit forms of̂ f̃k
2u and uc1& we get

^f̃k
2uc1&5n1

1/2F lVk

z1
c.c.2vk

1
lVk

h1~vk!

1
lVk

h1~vk!
(

l

lVl

vk2v l1 i e

lVl

z1
c.c.2v l

G .

~B3!

Then, using the relations

(
l

l2Vl
2

vk2v l1 i e
5vk2v12h1~vk!,

1

vk2v l1 i e

1

z1
c.c.2v l

5S 1

vk2v l1 i e
2

1

z1
c.c.2v l

D 1

z1
c.c.2vk

~B4!

as well ash2(z1
c.c.)50, we obtain Eq.~109!.
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3. Average energy

Up to second order inl, the average energy of the dress
stateur1

0&& is

^^Hur1
0&&'ṽ1'v11E

2`

`

dk
l2v2~vk!

2 S 1

v12vk1 i e
1c.c.D

1O~l4!, ~B5!

which coincides with the real part of Green’s-function po
in this approximation@4#. On the other hand, the averag
energy of the stateuc1& is given by

^c1uHuc1&5un1uFv11E
2`

`

dk
l2vk

2

uz12vku2
vk

2E
2`

`

dkl2vk
2S 1

z12vk
1c.c.D G . ~B6!

With the approximation Eq.~B2! we may write the second
term as

un1u E
2`

`

dk
l2vk

2

uz12vku2vk

'
v1

2
1

1

2E2`

`

dk
l2vk

2

uz12vku2
~vk2v1!

5
v1

2
1

1

2 F2E
2`

`

dk
l2vk

2

z1
c.c.2vk

1z12v1G
'

v1

2
1

1

2 F2E
2`

`

dk
l2vk

2

v11 i e2vk
1z12v1G

5
v1

2
1O~l4!, ~B7!

where we have subtracted and addedz1 on the third line.
This leads to

^^Huc1 ;c1&&5v11E
2`

`

dk
l2v2~vk!

2 S 1

v12vk1 i e
1c.c.D

1O~l4!, ~B8!

which coincides with the energy of the dressed unstable s
up toO(l2) @we note that similar tour1

0&&, the energy of the

state uc1 ;c1&& deviates from Green’s-function energyṽ1
starting from terms ofO(l4)#.

APPENDIX C: EXCITATION PROBABILITY
IN RESONANCE SCATTERING

Here we consider the resonance scattering of the pho
wave packet considered in Sec. V@see Eq.~120!#. The en-
ergy of the wave packet is chosen so that it resonates
the energyṽ1, i.e., vk05ṽ1. In the following we estimate
the excitation probability of the bare particle.
1-19
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The excitation probability that the particle will be foun
in the bare-excited state after it absorbs the photon is g
by

E~ t ![^^1,1ue2 iL Htuj;j&&5u^1ue2 iHt uj&u2. ~C1!

As in Sec. III we splitE(t) into its dressed state componen
as

E~ t !5(
a

Ea
(0)~ t !1E(1)~ t !1E(2)~ t !, ~C2!

where

Ea
(0)~ t !5^^1,1ue2 iL Htura

0&&^^r̃a
0 uj;j&&,

E(1)~ t !5(
k

^^1,1ue2 iL Htur1k&&^^r̃1kuj;j&&1c.c.,

E(2)~ t !5 (
kÞk8

^^1,1ue2 iL Hturkk8&&^^r̃kk8uj;j&&. ~C3!

As uj;j&& is a nonsingular operator we can use the factori
form of the dressed states@cf. Eq. ~51!#. Defining

ga~ t ![E
2`

`

dk jk

lv~vk!

@vk2z#z1

1
e2 iavkt ~C4!

andg0[g0(t), we obtain forl!1,

E1
(0)~ t !'ug0u2e22gt,

E(1)~ t !'2e2 iz1t@g0g1~ t !c.c.1c.c.#,

E(2)~ t !'ug1~ t !u2. ~C5!

The contribution from the dressed photonsEk
(0)(t) is negli-

gible. Adding the terms in Eq.~C5! we have

E~ t !'ue2 iz1tg02g1~ t !u2. ~C6!

Neglecting the singularities ofv(k) we may split Eq.~C4!
into a pole and cut contribution,ga(t)'ga,p(t)1ga,c(t),
where

ga,p~ t !5E
2`

`

dk~jk1j2k!
lv~k!

@k2ṽ11 ig#1

e2 iakt, ~C7!

ga,c~ t !5E
0

`

dk~jk1j2k!
lv~2k!

k1z1
eiakt. ~C8!
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The termsjk andj2k correspond, respectively, to the com
ponentsuj1& and uj2& we have introduced in Sec. V.

For the pole contributions we have

g0,p' ig@egt22egt1#,

g1,p~ t !' ig$u~ t22t !@e2g(t2t2)21#2u~ t12t !

3@e2g(t2t1)21#%, ~C9!

wheret1,2[ux06b/2u andg[2v1g21(2p/bW)1/2.
For ṽ1@g the cut contributionsga,c(t) are relatively

small and, henceforth, we shall neglect them. Let us sim
note that the cut contributions ofg1,c(t) contain small peaks
aroundt5t i and long tails proportional to inverse powers
ut i2tu for large values ofut i2atu ~with i 51,2). This leads,
respectively, to deviations from the exponential functions E
~C10! around the pointst5t1 andt5t2, as well as the long-
time tails for t2t2@g21 ~see Refs.@10,19# for more on the
tail effects!. Another remark is that, due to the cut contrib
tions,E(t) is nonzero even beforet5t1 ~i.e., before the mo-
ment when one may expect the rectangular wave packet
‘‘touch’’ the bare particle!. As mentioned in Sec. V, this non
local effect is associated with the tails~in space! of the com-
ponents of the rectangular wave packet.

Neglecting the cut contributions we get

E~ t !'H 0 for t,t1 ,

g2@12e2g(t2t1)#2 for t1,t,t2 ,

g2e22gt@egt22egt1#2 for t.t2 .
~C10!

We note that each of the functions in Eq.~C9! contains ex-
ponentially decaying terms, and hence each dressed
component evolves irreversibly, even during the absorpt
period. The dressed particle componentE1

(0)(t) decays expo-
nentially even before the wave packet reaches the atomt
5t1. However, fort,t1 this component is canceled by th
other components and we obtain the causal behavior ofE(t),
in the pole approximation.

If we consider a large wave packet withb@g21, then the
bare particle will reach a stationary~‘‘nonequilibrium’’ ! ex-
cited state. This state is maintained from the continued e
tation due to the incoming field. In terms of our subdyna
ics, the stationary state is obtained through a bala
between the decay process of the dressed particle~contained
in the P (0) component! and the creation of dressed correl
tions in theP (d) components, withdÞ0. Note that due to
the normalization conditions of the wave packet, asb→`,
the excitation intensityE(t) goes to zero. Therefore, t
achieve the stationary state we have to give up the norm
ization condition. This corresponds to the existence o
background field~heat bath! in the thermodynamic limit.
1-20
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