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Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices
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The superfluidity of Bose-Einstein condensatB&ECS in optical lattices is investigated. Apart from the
usual Landau instability, which occurs when a BEC flows faster than the speed of sound, the BEC can also
suffer a dynamical instability, resulting in period doubling and other sorts of symmetry breaking of the system.
Such an instability plays a crucial role in the dissipative motion of a trapped BEC in an optical lattice recently
observed Burgeret al, Phys. Rev. Lett86, 4447(2001)].
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Optical lattices have long been used to manipulate ultrapotentialy and the strength of the periodic potentiaére in
cold atoms, with applications ranging from beam splitfdfls  units of 412k/m, the wave functions is in units of no, x
and accelerator$2,3] to lithography [4]. There are now s in units of 1/%, , andt is in units of m/4%k? . The cou-

growing interests in replacing the cold atoms with Bose-pjing constantc= mnqas/k?, where a;>0 is the swave
Einstein condensate®ECs of alkali atoms[5-7] to ex-  gcattering length.

plore the effects of coherence, atomic interaction, and super- Hamiltonian (1) is extremized by states in the form of

flg|d|ty, W!th important applications in atom lasef8] and  gjoch waves, by (X) = e o (X), where g (X) is of the pe-

high-precision interferometry10]. o _ riod of the optical lattice and can be expanded as a Fourier
In this paper, we investigate the superfluidity and instaseries, To find the numerical solution of a Bloch state in the

bilities of BECs in optical lattices. In free space, the superigyest bandg,(x), we truncate the series up to theh term
flow of a uniform BEC is represented by a plane Wave'<pk(x)=2'\‘

hich has Landau instability when i <t ot N @me'™ (we usedN=10). The numerical solu-
which has Landau mstg llity when it tra\{e s faster than th;q, s optained by varyinda,,} so that the wave function
sound. In an optical lattice, the natural objects of concern ar

e L s .
the BEC Bloch waves, whose amplitudes are modulated wit «(X) minimizes the systems total energy. The accuracy is

the same periodicity as the lattice. In the central region of thep?g;bz(i” Zéu;lgrsltltutlng the solutions into the Gross
Brillouin zone of the lowest band, they are found to be local '
energy minima against all sorts of perturbations and thus 1 42

represent the superflows of the BEC in optical lattices. For 5 ettt cosxg+c|gl?p=ug,

sufficiently strong repulsive interactions between the atoms,

the superfluidity region can extend over the entire Brillouin\yhich is obtained by the variation of Hamiltonidh).

zone; but for weaker interaction, Landau instability can oc- 1o determine the superfluidity of these Bloch states, we
cur in the outer regions of.the zone, where the Bloch wavegeed to find out if they remain energy minima against per-
become energy saddle points. Many of the Bloch states withrpations that break the periodicity. These perturbations can

Landau |nstab|l|ty can even be dynamica”y Unstable in thabe decomposed into different modes |abe|edqby
small initial disturbances around them grow exponentially in

time, resulting in period doubling and other forms of spon- 6<pk(x,q)=uk(x,q)eiqx+v’k‘(x,q)e*iqx, (2)

taneous breaking of the periodicity of the system. This dy-

namical instability is unique to BEC Bloch waves and is notWhereq ranges betweer-1/2 and 1/2 and the perturbation

present in BEC plane waves in free space. We map out thiinctionsu, andu, are of periodicity of 27 in x. Since the

dangerous zones of the dynamical instability, characterize theystem is periodic, the quadratic form of the energy deviation

growth rates, and discuss the experimental consequences.from the Bloch statep, is block diagonal ing, with each
We consider the situation of a one-dimensional opticalblock given by

lattice in which the motion in the perpendicular directions

are confined[8] or can be disregardefi7]. We treat the _ f ” * % Uk
atomic interaction with the mean-field theory, and obtain the OB = | dx(Uic,vioMi(a) vy’ ©
grand-canonical Hamiltonian
, where
H= | dx o* —Eﬂ—-i-v CosX ¢+E|¢|“—M|¢|2 L(k+ z
— 2 &Xz 2 ' M ( ): ( q) Cek (4)
@ I

where all the variables are scaled to be dimensionless by theith
system’s basic parameters, the atomic magsthe wave 1/ )
numberk, of the two laser lights that generate the optical : 2

. 5 . =—z|l =+ + —u+ .
lattice, and the average density of the BEC. The chemical £(k) 2\ 9x 1k b COSX— u+2¢| ¢ ®
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If M(q) is positive definite for al-1/2<q=<1/2, the Bloch v=0.01 v=0.05 v=0.10

wave ¢y is a local minimum. OtherwisejE, can be nega- = a2l 4 b.1 e

tive for someq, and the Bloch wave is a saddle point.

We first consider the special case=0, BEC in free < b3)
space, where the Bloch stafg becomes a plane waa¥*. C =l 1 I i
The operatoM,(q) becomes a X2 matrix o °

o Il )
g%/2+kg+c c a2 b.2 c2
Mi(a)= c ?l2—kg+c)’ © 9
o I} 1t - o
whose eigenvalues are found easily as S
92 ?5 : t :
No=otox K22+ 2. @ Sl a3 b.3 / c.3
o
o X} ]S - g
Sincel , is always positiveM,(q) fails to be positive defi- T )t
nite only whenx_=<0, or equivalently,|k|=\q%4+c. It &
immediately follows that the BEC flone'** becomes a 5 " }
saddle point when the flow speed exceeds the sound speed, S| ad b.4 c.4
|k|> \Jc. This is exactly the Landau condition for the break- w
down of superfluidity[11], which has recently been con- o It r - <
firmed experimentally on BEC12]. @

The stability phase diagrams for BEC Bloch waves are
shown in the panels of Fig. 1, where different valuesof °0 72 120 14 120 12 1p
andc are considered. The results have reflection symmetry in k k k
k andq, so we only show the parameter regionskK<1/2 - . . )
and 0=q=<1/2. In the shaded areflight or dark of each FIG. 1. Stability phase diagrams of BEC Bloch states in optical

lattices.k is the wave number of BEC Bloch statesdenotes the

panel, the matrV(q) has negative eigenvalues, and thewave number of perturbation modes. In the shadiggtht or dark

correspo'ndlng' BlOCh stateg, are saddle pomts and have area, the perturbation mode has negative excitation energy; in the
Landau instability. For those values beUt_S'qe the shaded dark shaded area, the mode grows or decays exponentially in time.
area, the Bloch states are Iocal_energy minima an_d represeqf triangles in(a.1—a.4 represent the boundarg?/4-+c=Kk?, of
SUperﬂqWS' Thg superflow reg'on eXpan_dS W',th 'r_]creas'ngaddle point regions at=0. The solid dots in the first column are
atomic interactiorc, and occupies the entire Brillouin zone from the analytical results of E12). The circles in(b.1) and(c.1)

for sufficiently largec. On the other hand, the lattice poten- gre hased on the analytical expressia8). The dashed lines indi-

tial strengthv does not affect the superflow region very cate the most unstable modes for each Bloch $tateandq are in
much as we see in each row. The phase boundaries for units of %, .

<1 are well reproduced from the analytical expression

=/g%/4+c for v =0, which is plotted as triangles in the first /Uy Uy I 0
column. i—( ):ng(q)( ) 0'2( ) 9
A saddle-point Bloch state, can still be dynamically I\ vy Uk 0 —I

stable in that small deviations from it remain small in the

course of time evolution if no external persistent perturba-The dynamical stability of the Bloch statg, is determined
tions are present. This is the case for all Bloch states either iBy the eigenvalues,(q) of the matrixaM(q). If they are

the absence of atomic interactions or periodic potentialsiag| for all —1/2<q=<1/2, the state is dynamically stable,
When both factors are present, many of the saddle-poingtherwise it is dynamically unstable.

Bloch states become dynamically unstable against certain Before discussing our detailed results on the dynamical
perturbation modes, shown as the dark-shaded regions injnstapility, we pause here to make some general remarks.
Fig. 1. These results are obtained from the linear stability (i) when all the eigenvalues,(q) are real, the motions

analysis of the Gross-Pitaevskii equatidrg], around the Bloch stateb, are oscillations, which can be
5 1 2 guantized to yield the phonon excitatiofid,14. The tradi-
T S n + 24 8 tional Bogoliubov approach yields the same matriM (q)
"ot ¢ 2 x2 Y cosdx)+cl 41 ® for the phonon spectrum. However, the bosonic commutation

relation for the phonon operators imposes the skewed nor-
which governs the dynamics of the system. A Bloch stite malization conditionrX'aX= 1, which selects only half of all
is a stationary solution of this equation, depending on timethe modes. The other half, satisfyingoX=—1, will be
only through the phase facter '“. Writing the deviation in  called antiphonon modes for ease of reference, but they
a form similar to Eq(2), and expanding the above equation really do not represent physical degrees of freedom indepen-
to first order, we find dent of the phonons.
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(i) When the Bloch state is a local minimupM,(q) L T

positive definitd, the dynamical eigenvalueg,(q) of © — v=0.01 §_ — v=0.01 .
oMy(q) are all real and the phonon branch of the spectrum 5 g (777 ¥=09 - T
is positive. The key to the proof is to notice that £ — 1T —
2 -
e @)X oX=X"M(q)X (10 53

for an eigenvectoX of oM (q). Because the right-hand side
is positive andXToX is real,e,(q) is real and has the same
sign asX'oX. The physical meaning of this theorem is that,
when it is a local minimum, the Bloch stat& is dynami-

cally stable and its phonon excitations are not energetically °g°— — v=0.01 - §— — v=0.01 -
favored ) - v=0.05 - v=0.05| L.
ored. . . - 5 - v=010| ] L |- wv=010] 77
(iii) Because the matrixM(q) is non-Hermitian and =
real(when expressed in the momentum representatomm- s §— ] §— o
plex eigenvalues can only appear in conjugate pairs, corre- g I R | - 1
sponding to modes growing or decaying exponentially at /7 R
rates given by the imaginary part of the eigenvalues. Because 0 0'3 Ll ms 0 0'3 s 0'4': { o5
both the quadratic forms in E¢L0) are real, they must van- k (¢=0.10) k (¢=0.15)

ish wheng,(q) is complex. It is then impossible to enforce

the normalization conditioiX'oX=1, corresponding to the FIG. 2. Growth rates of the most unstable modes of each Bloch

fact that such modes cannot be quantized. state¢ . The erratic behavior of some curves aroksedl1/2 is due
We now present our detailed results on the dynamicato the difficulty in finding the accurate Bloch waves in this

stability. Again, we first look at the case=0, where the region whenc>v [17]. k is in units of X, the growth rate is in

eigenvalues otrM(q) are units of 4ak?/m.

e-(q)=kg* Vg°c+q*/4. (1) energyE,(k+q), or vice versa. The above equation is just
. i . the resonant condition between such excitations in the lowest

These eigenvalues are "’."Ways real; the BEC ﬂOWS_ n fre%and fh=1). Alternatively, this condition may be viewed as
space are always dynamically stable. When0, the situa- 0 anergy’and momentum conservation for two particles in

tion is totally different: the eigenvalues,(q) of oM (A) e condensate to interact and decay into two different Bloch
can be complex and Bloch states can be dynamically unétatesEl(k+q) andE,(k—q).

stable. The dark-shaded areas in Fig. 1 are the places where One

common feature of all the diagrams in Fig. 1 is that
theseg(q) are complex.

In the fi | ¢ Fig. 1. wh 1. the dark-shaded there is a critical Bloch wave numbé&g beyond which the
n the first column of Fig. 1, where<1, the dark-shaded - gy statesp, are dynamically unstable. The onset instabil-
areas are like broadened curves. These curves are the SO at k4 always corresponds = 1/2. In other words, if we

tions ofe . (q—1)=¢-(a), drive the Bloch statep, from k=0 to k=1/2 the first un-
= vi — — 7 stable mode appearing is always = 1/2, which represents
k=ag’c+q%4+\(g—1)%c+(q—1)"/4, (12) period doubling. Only fokk>ky can longer wavelength in-
ptabilities occur. The growth of these unstable modes drives

which are plotted as solid dots in Fig. 1. This is the resonan
condition for a phonon mode to couple with an antiphononthe system far away from the Bloch state and spontaneously

mode by first-order Bragg scattering. The resonance is nedreaks the translation symmetry of the system. The gritical
essary because the complex eigenvalues can appear only {@lue of the Bloch wavellznumber for the casewk1 is
pairs, and they must come from a pair of real degeneratefpund to beky=(c+1/16)"* by substitutingq=3 into Eq.
eigenvalues. Resonances within the phonon spectrum §t2- In the other extreme cases<v, the same substitution
within the antiphonon spectrum do not give rise to dynamicall Ed- (13) yields ky=1/4 with the help of periodicity of the
instability; they only generate gaps in the spectra. Somehovp,a”d energy. Baseld on these results and the diagrams in Fig.
in order to produce a mode with zero normalization, onel: We find thatkg=3. o
must couple a pair of modes with opposite normalizations. ~ 1he dynamical instability discovered in this work should

In the first row of Fig. 1, we have another extreme case?€ observable in experiments. We have mapped out the dan-
c<v. The open circles along the left edges of these twdJ€rous zones of dynamical instability, which give us a good

dark-shaded areas are given by sense of where to look for unstable Bloch states and modes
of instability. In Fig. 2, the rate of growth for the most
Ei(k+q)—E;(k)=E;(k)—E;(k—q), (13 prominent modddashed lines in Fig.)lof each Bloch state
k is plotted in Fig. 2. The physical unit of the growth rate is
where E; (k) is the lowest Bloch band ofHy= 4hkf/m, which is 4.0 us™ ! for sodium and 0.16us ! for

—1/2(6%/ 9x?) + v cosx. Whenc=0, this periodic system is rubidium. Since the lifetime of BECs can be up to the order
linear; the excitation spectrum just corresponds to transitionsf second$15], these growth rates in Fig. 2 are significant. It
from the condensate of ener&y (k) to other Bloch states of is possible to directly observe the change of periodicity of
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the BEC due to the dynamical instability, by monitoring the instability discussed here is likely to play a crucial role in our
Bragg scattering of a probing laser light by the BEC cloudview. First, the experiment has~0.2 andc~0.02, where
[16]. This dynamical instability can also cause the disruptionthe dynamical instability is rampant according to Fig. 2. Sec-
of Bloch oscillationg 17]. ond, Ax, increases with decreasing lattice potentiaivhich

In a recent experiment, the superfluidity and instabilitiesis in accordance with the trend of the growth rate as a func-
of a BEC in an optical lattice was studied using a cigar-tion of v andk shown in the figure. Third, there is no dissi-
shaped(one-dimensionalmagnetic traf8]. After the BEC  pation when the BEC density is low, where Landau instabil-
was prepared in the trap in the presence of the optical latticety should be very strong but dynamical instability should be
the trap was suddenly shifted kyx along the longitudinal very weak according to Fig. 1. However, more detailed
direction. This is equivalent to displacing the whole BEC off analyses are needed to take account of the effects of inho-
the center of the harmonic trap then releasing it. The subsenogeneity and thermal cloud before a quantitative compari-
quent oscillations of the BEC are nondamped if the initialson with the experiment.
displacement is small, but become dissipativAxfis over a
critical valueAx.. This qualitatively agrees with our stabil-
ity diagrams, because largax implies larger velocity and We are grateful for helpful discussions with Mark Raizen
therefore largek. The dissipative behavior was explained asand Roberto Diener, and supports by the NSF, the Robert A.

a manifestation of the Landau instability, but the dynamicalWelch Foundation, and the NSF of China.
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