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Quantum fluctuations in one-dimensional arrays of condensates
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The effects of quantum and thermal fluctuations upon the fringe structure predicted to be observable in the
momentum distribution of coupled Bose-Einstein condensates are studied by the effective-potential method.
For a double-well trap, the coherence factor recently introduced by Pitaevskii and Sttexgairit cond-mat/
0104458 is calculated using the effective potential approach and is found in good agreement with their result.
The calculations are extended to the case of a one-dimensional array of condensates, showing that quantum
effects are essentially described through a simple renormalization of the energy scale in the classical analytical
expression for the fringe structure. The consequences for the experimental observability are discussed.
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Recently, extensive theoretical work was devoted to the For the two-condensate case, starting from the uncertainty
problem of the coherence properties arising from the interprinciple (AR?) (A sin’ ¢)=(4%4) (cos¢), the authors of
action among two or more trapped condensptess]. These Ref. [3] introduced thecoherence factoms the thermody-
effects are experimentally accessibfg and can be consid- namic average
ered of the same nature as in Josephson junc{i®hs#\s a -
matter of fact, the condensates can be characterized by their a(g,t)=(cosy), 4
phasesp; and atom numbers;, which are conjugate ca-
nonical variables satisfyinpp; ,n;]1=i5;; . The Hamiltonian
looks indeed like the Josephson dmle6], namely

a parameter that can be directly related with the fringe struc-
ture in momentum space, which is due to the onset of coher-
ence between the weakly linked condensates and can be de-
tected by light scattering experiments. Indeed, the observed

. Ec Ns - L momentum distributiom(p) turns out to be described, in
H= 7 2’1 n; —E%‘,} cos @i~ ¢j), D terms of the single-condensate distributiog(p), as[2,3]

n(p)=2[1+ «(g,t)cosfp,d/z)|ny(p), where d is the dis-
tance of the condensate traf@ssumed along the axis). In
for an array ofNs condensates, where the second summatiodn analogous way, purely quantum-mechanical correlations
runs over the nearest-neighbor condensates. For two interaetween identical particles lead to a reduction of the neutron
ing condensates € 1,2), this reduces to scattering intensity of protons or deuterons that can be ex-
plained by a similar mechanisfiY]. At zero temperature,
Ec., R 1— a measures the decoherence effect of the only zero-point
- N“~E,cose, (2)  quantum fluctuations. The value= 1 occurs when the quan-
tum couplingg=0 and corresponds to the classical limit,
T, A . while « decreases for increasing valuesgofVhen the tem-
wheren=(n,—n,)/2, ¢= P12 and the unessential con- perature is finiteer decreases further due to the thermal fluc-
served term E¢/8)(n; +n,)* is omitted. The interaction pa- ations that contribute to the destruction of coherence. This
rametersEc andE; depend on the chemical potential and thehermal decoherence turned out to be significant even at very
wave-function overlap of neighboring condensates, respeqyyy temperatures where the condensation starts to occur, as
tively [5]. For the above Hamiltonians it is convenient to shown in Ref[3] for the single BEC junction. However, the
define a quantum coupling paramegeas the ratio between anajogous calculation for an array of condensates, that in-

the quantum energy scahtevy= VECE; of the quasiharmonic  yolves the phase correlation function
excitations and the overall energy scale of the nonlinear in-

7:[0:

teraction,E;, so that quantum effects are wegkrong for G,(g,t)=(cog ¢;— i), (5)
cannot be performed by a direct numerical solution of the
9= EC/E, ) P Y

Schralinger equation, as done in R¢8].

We note that an ideal tool to face such calculations is
small (large compared to 1. The temperature is also convetepresented by the effective potential metH&] Several
niently measured in the scale &; by the dimensionless applicationg9] proved indeed its usefulness: in particular, it
parametet=T/E;. can be used for ong1D) and two-dimensional2D) arrays
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[10], where, otherwise, the exact quantum solution can be 1.0

obtained only by resorting to much heavier quantum Monte

Carlo simulations. The method is a semiclassical expansion 0.8

in terms of the quantum coupling=+Ec/E; The only
pure-quantum part of the fluctuations is considered in the 06
self-consistent Gaussian approximation so that the quantum <&
Hamiltonian is reduced to a classical-like one, where the g
parameters of the potential are renormalized by the pure- = 04
guantum effects at any temperature. Of course this renormal-
ization vanishes at high temperature8=1/T—0), the ap- 0.2
proximation thus being more and more accurate.

Let us first consider thewo-condensate cas&he renor- 0.0 ‘ : ‘ : .
malization parameter that takes into account the quantum 0.0 0.5 1.0 1.5 20 25 3.0
fluctuations only, is related to the pure-quantum Gaussian t

spread of the phase; it turns out to be FIG. 1. Coherence factar(g,t)={cose), Eq. (4). Solid line,
g 1 g=0 (classica); dotted line,g=0.5; dashed lineg=1; dash-dotted
Do(9,1)=A2,— Ap2c= 2_O<Cothf_ ?), (6) line, g=+3. The symbols are the exact res[a] for g=1 (full
K circles andg=+/3 (open circles The latter value corresponds to

Ec/E;=3.
wheref(g,t) = Bhw/2=gky/(2t) and the renormalized fre- I

guency isw = kywg; the pure-quantuntHartree factof9]

The result forg=1 is in very good agreement with the cor-
Ko(g,t) = e~ Do(@:0/4 (7) responding one of Ref3] in the whole temperature range,
while, as expected, the result fge= /3 matches the exact
is determined self-consistently witdy(g,t), which is a de- data fort=0.5. This testifies to the reliability of the method,
creasing function of temperature and vanishegferc. The  which can be then pursued also for condensate arrays, where
effective classical Hamiltoniaf@] corresponding to ER)  quantum fluctuations are expected to be weaker.
bears the same functional form, Let us now come to the case ofl® condensate array
c The effective Hamiltonian corresponding to Ed) reads
Ho=7°n2—EJKS(g,t)COS<p, ®) Ns [
, H=3, | -Exi(gcosei—ei)|, (1D
with the renormalized Josephson coupliBge;(g,t) (some =1
additive uniform terms, which do not affect the calculation of
thermal averages, have been neglectetthe effective po- where now the pure-quantum Hartree factor is given by
tential formalism any quantum average is evaluated by
means of a classical-like expression, that for the case of the k(g,t)=e Pua.0/4 (12)
coherence factor reads

and is to be self-consistently evaluated together with the

1 K2 o
a(g,t)= gcf d(P(Kg COS(,D)GXF{TOCOSQD _ KSIO( Ké/t), renormalization parameter
© 9 ok 1
whereZ, is the logarithmic derivative of the modified Bessel Dig = 22« N_s K sin 2 cothfy— f_k (19
function of the first kindl 5(x):
dintg(x)  14(x) which is a decreasing function dfsince
L= =100 (10
Phog gk | K

Forg=0 one hasc,(0,t)=1 and Eq(9) reduces to the exact flgt)=——= E sinsi (14)

classical coherence factery(t) =Zy(14), while it is worth-

while to notice that within our approximation quantum ef- . . . )

fects are described by a renormalization of the temperaturldeed, the renormalized dispersion relation takes the
scale. The results are reported for different quantumiOrm 7iw,=12kwo|sin@2)|. The approximation holds if
coupling values in Fig. 1, where comparison with the exact?1(9,t)=1, and since at zero temperatur®,(g,0)
ones is made. It appears that the method is reliable as long &89/(v27), the condition amounts to requiges3.5.

the renormalizations are small,<1. Note thatD, is a For the correlation function 5 the effective-potential
decreasing function of so this condition is verified also at recipe giveq11]

strong coupling ift is high enough, while the validity in the

whole temperature range requirBg(g,0)<1, i.e.,g<1.5. G,(g,t)=e~ P T, (k?t)]", (15)
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FIG. 2. Nearest-neighbor correlation function of the 1D conden- /G- 3. Structure functiorE(py;g,t) of the 1D condensate
sate chainG,(g,t)=(cos@—@i+1)), Eq. (17). Solid line, g=0 chain[Eq. (19)] at fixedt=0.5. Solid line,g=0 (classica); dotted

(classical; dotted line, g=0.5; short-dashed lineg=1; long-  !ine, g=1; dashed lineg=2; dash-dotted lineg=3. The low-
dashed lineg=2; dash-dotted lineg=3. lying curves report the small contribution of the teEn(py;g,t)
for the same values af. One single periodic interval is displayed.

with Zo(x) as in Eq.(10); the analytical evaluation uses pe-

riodic boundary conditions and the translation invariance of = = e il coq & — b

the potentia[11]. The renormalization parameters for ttta (Px) Er: (cosei=¢irr)
neighbors read

:2 e,irpxd/ﬁefDr/Z[IO(K2/t)]‘r|, (18)
r

E smz(rk/Z)( coth fy— fi)
k

D, (g,t . — —
(e.1)= 2\/—;« Ns € [sin(k/2)] where Eq.(15) has been inserted; clearl (p,)=Z (py
(16 +27h/d) is periodic. In this expression one can take advan-

tage of the fact that the renormalization coefficieBt$g,t)

for r—o one can replace i(rk/2) by its average 1/2 and rapidly converge to the asymptotic valiie,(g,t), separating
get the asymptotic valu®..(g,t), which is logarithmically It as
divergent for t=0. In particular, one has the power- _ _ _
law asymptotic behavior e P=(9Y2—t7  with 5 E(px)=E0(Px) +E1(Px), (19
=g/[4\2mk(g,0)]=D;(g,0)/4. Moreover, the zerbcorre-
lation function behaves a$s,(g,0)=e Pr(@02—r=7 jn — D2 1-a?

i i icti : Eolpy) =€ " : (20)
agreement with the theoretical prediction for the low 2_

i 1+ a“—2a cogp,d/h)
coupling phas¢12].
For the first-neighbor correlation, we can define the ana-

log of the coherence factor, Eqgl), which in the effective- El(px)zz e Pl oIl (@~ Drl2_ g~ Dul2) (22)
potential approximation bears the same form of &), r

(00831~ 111)) = KTl k211); (y ~Vhere the quanty
a(g,t)=To(k*(g,t)/t) (22)
it is plotted in Fig. 2. Comparing with the two-condensate
case(e.g., curves fog=0.5 and 1), it appears that the quan- characterizes the coherence effect. Looking at €49) it
tum correction is weaker. It is worthwhile to notice that in appears that the difference in parentheses cuts off the contri-
the classical case, i.eg=0, Eq.(15) reduces to the correct bution from large values of, so this term does not show
classical expression. sharp features and the fringe structure is mostly given by
The formulas above can also be easily generaljzédito Eq. (20). In the classical limit §=0) D,=0 vanishes and so
the 2D case, of recent experimental realizafi®8], but the doesZ,(p,), and the exact classical res(i] is immedi-
involved classical-like integrals cannot be evaluated analytiately recovered since(0,t) = a(t).
cally as in Eq(15), so a numerical approach is needed, e.g., Representative results for the full structure function
Monte Carlo(MC) simulation(still much easier than quan- =(p,) and the correctiorE ;(py) are reported in Fig. 3 for
tum MC). some values of the quantum coupligat fixed temperature
For the multicondensate arrafwith spacingd along t=0.5. The stronger the quantum effets., highg and low
the x direction, the momentum distribution n(p) t) the higher isE4(py), but in the considered parameter
=Ngho(p)E(py) exhibits a fringe structure determined by range the relative contribution & (p,) is small and broad,
the structure function confirming that the main structure is containeddg(p,). In
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FIG. 4. Structure functiorE(py;g,t) of the 1D condensate 20
chain[Eq. (19)], at fixedg=0.5. Solid line,t=0.2; dotted linet T
=0.5; dashed linet=1. 1.5 [
=
~

Fig. 4 the structure functiorE(p,) is plotted for fixed 3 1.0 |
g=0.5 and different temperatures, in a wider rang@pf0 ~ '

to display the periodic behavior. 0.5 |
Finally, let us discuss how phase fluctuations do affect

the observable fringe structure. Neglecting the contri- 0-00 0 0.5 1.0 15

bution of E,(p,), the structure function shows maxima ’ ’ ¢ ’ )

Eu=e P=?(1+a)/(1-a) around the points py

=2/7hld (/ intege), and minimaZ,,= e*Doc/Z(l_ a)l(1 FIG. 5. Characteristics of the fringe structiE€p, ;g,t) of the

+ a) in between. The contrast factor is defined as 1D condensate array vs temperature and for different values of the

guantum couplingg= 0 (solid lines, classical g=1 (dotted lines,

QUUt)=Em—ENEu+En (23 g=2 (dashed lines and g=3 (dash-dotted lines Top, quantum

attenuation factoe™?~/2. Middle: contrast facto(g,t), Eq. (23).

(Q~1 means good contrastwhile the peak widthl", de-  Bottom: peak widthl'(g,t), Eq. (24).
fined as the full width at half height between maxima and . . .
minima. is couphng valyes. it appears that the main gffect pf guantum
' fluctuations is to weaken the overall intensity, while the con-
trast and the peak width are predominantly driven by

I'(g,t)=(4h/d)tan™ "[(1—a)/(1+a)]. (24 temperature.

For I'<27hl/d, i.e., whena is not far from its zero-

temperature value(g,0)=1, the peaks are sharp and have a  The authors wish to thank L. Pitaevskii and S. Stringari,
quasi-Lorentzian shape. However, H0) shows that the as well as F. S. Cataliotti, F. Ferlaino, C. Fort, and M.
overall intensity is depressed by the faceor” /2, which is  Inguscio for useful discussions. This research is supported by

plotted in Fig. 5 together withQ and I', for different the COFIN2000-MURST fund.
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