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Quantum fluctuations in one-dimensional arrays of condensates
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The effects of quantum and thermal fluctuations upon the fringe structure predicted to be observable in the
momentum distribution of coupled Bose-Einstein condensates are studied by the effective-potential method.
For a double-well trap, the coherence factor recently introduced by Pitaevskii and Stringari~e-print cond-mat/
0104458! is calculated using the effective potential approach and is found in good agreement with their result.
The calculations are extended to the case of a one-dimensional array of condensates, showing that quantum
effects are essentially described through a simple renormalization of the energy scale in the classical analytical
expression for the fringe structure. The consequences for the experimental observability are discussed.
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Recently, extensive theoretical work was devoted to
problem of the coherence properties arising from the in
action among two or more trapped condensates@1–3#. These
effects are experimentally accessible@4# and can be consid
ered of the same nature as in Josephson junctions@5#. As a
matter of fact, the condensates can be characterized by
phasesŵ i and atom numbersn̂i , which are conjugate ca
nonical variables satisfying@ŵ i ,n̂ j #5 id i j . The Hamiltonian
looks indeed like the Josephson one@5,6#, namely

Ĥ5
EC

4 (
i 51

NS

n̂i
22EJ(̂

i j &
cos~ ŵ i2ŵ j !, ~1!

for an array ofNS condensates, where the second summa
runs over the nearest-neighbor condensates. For two inte
ing condensates (i 51,2), this reduces to

Ĥ05
EC

2
n̂22EJcosŵ, ~2!

wheren̂5(n̂12n̂2)/2, ŵ5ŵ12ŵ2, and the unessential con
served term (EC/8)(n̂11n̂2)2 is omitted. The interaction pa
rametersEC andEJ depend on the chemical potential and t
wave-function overlap of neighboring condensates, resp
tively @5#. For the above Hamiltonians it is convenient
define a quantum coupling parameterg as the ratio between
the quantum energy scale\v05AECEJ of the quasiharmonic
excitations and the overall energy scale of the nonlinear
teraction,EJ, so that quantum effects are weak~strong! for

g5AEC/EJ ~3!

small ~large! compared to 1. The temperature is also con
niently measured in the scale ofEJ by the dimensionless
parametert[T/EJ.
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For the two-condensate case, starting from the uncerta
principle ^Dn̂2& ^D sin2 ŵ&>(\2/4) ^cosŵ&, the authors of
Ref. @3# introduced thecoherence factoras the thermody-
namic average

a~g,t !5^cosŵ&, ~4!

a parameter that can be directly related with the fringe str
ture in momentum space, which is due to the onset of co
ence between the weakly linked condensates and can be
tected by light scattering experiments. Indeed, the obser
momentum distributionn(p) turns out to be described, in
terms of the single-condensate distributionn0(p), as @2,3#
n(p)52@11a(g,t)cos(px d/\)#n0( p), where d is the dis-
tance of the condensate traps~assumed along thex axis!. In
an analogous way, purely quantum-mechanical correlati
between identical particles lead to a reduction of the neut
scattering intensity of protons or deuterons that can be
plained by a similar mechanism@7#. At zero temperature
12a measures the decoherence effect of the only zero-p
quantum fluctuations. The valuea51 occurs when the quan
tum couplingg50 and corresponds to the classical lim
while a decreases for increasing values ofg. When the tem-
perature is finite,a decreases further due to the thermal flu
tuations that contribute to the destruction of coherence. T
thermal decoherence turned out to be significant even at
low temperatures where the condensation starts to occu
shown in Ref.@3# for the single BEC junction. However, th
analogous calculation for an array of condensates, that
volves the phase correlation function

Gr~g,t !5^cos~ ŵ i2ŵ i 1r !&, ~5!

cannot be performed by a direct numerical solution of
Schrödinger equation, as done in Ref.@3#.

We note that an ideal tool to face such calculations
represented by the effective potential method@8#. Several
applications@9# proved indeed its usefulness: in particular,
can be used for one-~1D! and two-dimensional~2D! arrays
©2001 The American Physical Society01-1
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@10#, where, otherwise, the exact quantum solution can
obtained only by resorting to much heavier quantum Mo
Carlo simulations. The method is a semiclassical expan
in terms of the quantum couplingg5AEC/EJ. The only
pure-quantum part of the fluctuations is considered in
self-consistent Gaussian approximation so that the quan
Hamiltonian is reduced to a classical-like one, where
parameters of the potential are renormalized by the p
quantum effects at any temperature. Of course this renorm
ization vanishes at high temperatures, (b51/T→0), the ap-
proximation thus being more and more accurate.

Let us first consider thetwo-condensate case. The renor-
malization parameter that takes into account the quan
fluctuations only, is related to the pure-quantum Gauss
spread of the phase; it turns out to be

D0~g,t !5Dŵ tot
2 2Dŵclass

2 5
g

2k0S cothf 2
1

f D , ~6!

where f (g,t)5b\v/25gk0 /(2t) and the renormalized fre
quency isv5k0v0; the pure-quantumHartree factor@9#

k0~g,t !5e2D0(g,t)/4 ~7!

is determined self-consistently withD0(g,t), which is a de-
creasing function of temperature and vanishes fort→`. The
effective classical Hamiltonian@9# corresponding to Eq.~2!
bears the same functional form,

H05
EC

2
n22EJk0

2~g,t !cosw, ~8!

with the renormalized Josephson couplingEJk0
2(g,t) ~some

additive uniform terms, which do not affect the calculation
thermal averages, have been neglected!. In the effective po-
tential formalism any quantum average is evaluated
means of a classical-like expression, that for the case of
coherence factor reads

a~g,t !5
1

ZCE dw~k0
2 cosw!expFk0

2

t
coswG5k0

2I0~k0
2/t !,

~9!

whereI0 is the logarithmic derivative of the modified Bess
function of the first kindI 0(x):

I0~x!5
d ln I 0~x!

dx
5

I 1~x!

I 0~x!
. ~10!

For g50 one hask0(0,t)51 and Eq.~9! reduces to the exac
classical coherence factoracl(t)5I0(1/t), while it is worth-
while to notice that within our approximation quantum e
fects are described by a renormalization of the tempera
scale. The results are reported for different quantu
coupling values in Fig. 1, where comparison with the ex
ones is made. It appears that the method is reliable as lon
the renormalizations are small;D0&1. Note thatD0 is a
decreasing function oft, so this condition is verified also a
strong coupling ift is high enough, while the validity in the
whole temperature range requiresD0(g,0)&1, i.e., g&1.5.
06160
e
e
n

e
m
e
e-
al-

m
n

f

y
he

re
-
t
as

The result forg51 is in very good agreement with the co
responding one of Ref.@3# in the whole temperature range
while, as expected, the result forg5A3 matches the exac
data fort*0.5. This testifies to the reliability of the method
which can be then pursued also for condensate arrays, w
quantum fluctuations are expected to be weaker.

Let us now come to the case of a1D condensate array.
The effective Hamiltonian corresponding to Eq.~1! reads

H5(
i 51

NS FEC

4
ni

22EJk
2~g,t !cos~w i2w i 11!G , ~11!

where now the pure-quantum Hartree factor is given by

k~g,t !5e2D1(g,t)/4, ~12!

and is to be self-consistently evaluated together with
renormalization parameter

D1~g,t !5
g

2A2k

1

NS
(

k
Usin

k

2US cothf k2
1

f k
D , ~13!

which is a decreasing function oft since

f k~g,t !5
b\vk

2
5

gk

A2t
Usin

k

2U; ~14!

indeed, the renormalized dispersion relation takes
form \vk5A2kv0usin(k/2)u. The approximation holds if
D1(g,t)&1, and since at zero temperatureD1(g,0)
5g/(A2pk), the condition amounts to requireg&3.5.

For the correlation function 5 the effective-potenti
recipe gives@11#

Gr~g,t !5e2Dr /2@I0~k2/t !# ur u, ~15!

FIG. 1. Coherence factora(g,t)5^cosŵ&, Eq. ~4!. Solid line,
g50 ~classical!; dotted line,g50.5; dashed line,g51; dash-dotted
line, g5A3. The symbols are the exact result@2# for g51 ~full
circles! and g5A3 ~open circles!. The latter value corresponds t
EC /EJ53.
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with I0(x) as in Eq.~10!; the analytical evaluation uses p
riodic boundary conditions and the translation invariance
the potential@11#. The renormalization parameters for ther th
neighbors read

Dr~g,t !5
g

2A2k

1

NS
(

k

sin2~rk/2!

usin~k/2!u S coth f k2
1

f k
D ;

~16!

for r→` one can replace sin2(rk/2) by its average 1/2 and
get the asymptotic valueD`(g,t), which is logarithmically
divergent for t50. In particular, one has the powe
law asymptotic behavior e2D`(g,t)/2;th, with h
5g/@4A2pk(g,0)#5D1(g,0)/4. Moreover, the zero-t corre-
lation function behaves asGr(g,0)5e2Dr (g,0)/2;r 2h in
agreement with the theoretical prediction for the lo
coupling phase@12#.

For the first-neighbor correlation, we can define the a
log of the coherence factor, Eqs.~4!, which in the effective-
potential approximation bears the same form of Eq.~9!,

^cos~ ŵ i2ŵ i 11!&5k2I0~k2/t !; ~17!

it is plotted in Fig. 2. Comparing with the two-condensa
case~e.g., curves forg50.5 and 1), it appears that the qua
tum correction is weaker. It is worthwhile to notice that
the classical case, i.e.,g50, Eq. ~15! reduces to the correc
classical expression.

The formulas above can also be easily generalized@10# to
the 2D case, of recent experimental realization@13#, but the
involved classical-like integrals cannot be evaluated ana
cally as in Eq.~15!, so a numerical approach is needed, e
Monte Carlo~MC! simulation~still much easier than quan
tum MC!.

For the multicondensate array~with spacing d along
the x direction!, the momentum distribution n(p)
5NSn0(p)J(px) exhibits a fringe structure determined b
the structure function

FIG. 2. Nearest-neighbor correlation function of the 1D cond
sate chainG1(g,t)5^cos(ŵi2ŵi11)&, Eq. ~17!. Solid line, g50
~classical!; dotted line, g50.5; short-dashed line,g51; long-
dashed line,g52; dash-dotted line,g53.
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J~px![(
r

e2 irp xd/\^cos~ ŵ i2ŵ i 1r !&

5(
r

e2 irp xd/\e2Dr /2@I0~k2/t !# ur u, ~18!

where Eq. ~15! has been inserted; clearly,J(px)5J(px
12p\/d) is periodic. In this expression one can take adva
tage of the fact that the renormalization coefficientsDr(g,t)
rapidly converge to the asymptotic valueD`(g,t), separating
it as

J~px!5J0~px!1J1~px!, ~19!

J0~px!5e2D`/2
12a2

11a222a cos~pxd/\!
, ~20!

J1~px!5(
r

e2 irp xd/\a ur u~e2Dr /22e2D`/2!, ~21!

where the quantity

a~g,t !5I0„k
2~g,t !/t… ~22!

characterizes the coherence effect. Looking at Eq.~21! it
appears that the difference in parentheses cuts off the co
bution from large values ofr, so this term does not show
sharp features and the fringe structure is mostly given
Eq. ~20!. In the classical limit (g50) Dr50 vanishes and so
doesJ1(px), and the exact classical result@3# is immedi-
ately recovered sincea(0,t)5acl(t).

Representative results for the full structure functi
J(px) and the correctionJ1(px) are reported in Fig. 3 for
some values of the quantum couplingg at fixed temperature
t50.5. The stronger the quantum effects~i.e., highg and low
t) the higher isJ1(px), but in the considered paramete
range the relative contribution ofJ1(px) is small and broad,
confirming that the main structure is contained inJ0(px). In

- FIG. 3. Structure functionJ(px ;g,t) of the 1D condensate
chain@Eq. ~19!# at fixed t50.5. Solid line,g50 ~classical!; dotted
line, g51; dashed line,g52; dash-dotted line,g53. The low-
lying curves report the small contribution of the termJ1(px ;g,t)
for the same values ofg. One single periodic interval is displayed
1-3



ec
tr
a

nd

a

um
n-
by

ri,
M.
d by

f the

RAPID COMMUNICATIONS

CUCCOLI, FUBINI, TOGNETTI, AND VAIA PHYSICAL REVIEW A 64 061601~R!
Fig. 4 the structure functionJ(px) is plotted for fixed
g50.5 and different temperatures, in a wider range ofpx so
to display the periodic behavior.

Finally, let us discuss how phase fluctuations do aff
the observable fringe structure. Neglecting the con
bution of J1(px), the structure function shows maxim
JM5e2D`/2(11a)/(12a) around the points px

52l p\/d (l integer!, and minimaJm5e2D`/2(12a)/(1
1a) in between. The contrast factor is defined as

Q~g,t !5~JM2Jm!/~JM1Jm! ~23!

(Q;1 means good contrast!, while the peak widthG, de-
fined as the full width at half height between maxima a
minima, is

G~g,t !5~4\/d!tan21@~12a!/~11a!#. ~24!

For G!2p\/d, i.e., when a is not far from its zero-
temperature valuea(g,0)51, the peaks are sharp and have
quasi-Lorentzian shape. However, Eq.~20! shows that the
overall intensity is depressed by the factore2D`/2, which is
plotted in Fig. 5 together withQ and G, for different

FIG. 4. Structure functionJ(px ;g,t) of the 1D condensate
chain @Eq. ~19!#, at fixedg50.5. Solid line,t50.2; dotted line,t
50.5; dashed line,t51.
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coupling values: it appears that the main effect of quant
fluctuations is to weaken the overall intensity, while the co
trast and the peak width are predominantly driven
temperature.

The authors wish to thank L. Pitaevskii and S. Stringa
as well as F. S. Cataliotti, F. Ferlaino, C. Fort, and
Inguscio for useful discussions. This research is supporte
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FIG. 5. Characteristics of the fringe structureJ(px ;g,t) of the
1D condensate array vs temperature and for different values o
quantum coupling:g50 ~solid lines, classical!, g51 ~dotted lines!,
g52 ~dashed lines!, and g53 ~dash-dotted lines!. Top, quantum
attenuation factore2D`/2. Middle: contrast factorQ(g,t), Eq. ~23!.
Bottom: peak widthG(g,t), Eq. ~24!.
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