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Simple pulses for universal quantum computation with a HeisenbergABAB chain

Simon C. Benjamin*
Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, OX1 3PU, United Kingdom

~Received 12 June 2001; published 18 October 2001!

Recently, Levy has shown that quantum computation may be performed using anABAB . . . chain of
spin-1/2 systems with nearest-neighbor Heisenberg interactions. Levy notes that all necessary elementary
computational ‘‘gates’’ may be achieved purely by manipulating the spin-spin interaction: he proposes using
‘‘spin-resonance’’ techniques involving modulating the interaction strength at high frequency. Here, we estab-
lish an alternative: it is possible to perform the elementary gates via simple, nonoscillatory switching of the
interaction strength. This approach removes a time ‘‘bottle neck’’ in Levy’s scheme, so that all elementary
operations may now be performed within a time scale of order\/(EA2EB).

DOI: 10.1103/PhysRevA.64.054303 PACS number~s!: 03.67.Lx
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The question of how to design a solid-state quantum co
puter has attracted tremendous interest recently. One st
possibility is to use an array of simple systems~e.g., single
electron spins! coupled by the Heisenberg~or ‘‘Exchange’’!
interaction@1#. It has recently been shown that in systems
this general kind, all the necessary computational build
blocks may be realized purely by manipulating the inter
tion strengths@2,3#. If all of the component cells are phys
cally identical systems, then this technique requires e
logical qubit to be encoded into at least three physical qu
~e.g., spins!. Recently, Levy has shown that this ratio may
improved to two physical qubits per logical qubit, if th
single-particle~Zeeman! energies of the spins along the arr
alternate in anABABAB. . . pattern @4#. Note that then
these energies are assumed to remain fixed over time
Levy’s scheme, performing a computation involves modu
ing the interaction strength at high frequency, a kind of ‘‘sp
resonance.’’ This resonance approach is most natural for
regime whereEA2EB is of a greater order than the intera
tion strength: however, typical physical systems~e.g., quan-
tum dots ing-factor ‘‘engineered’’ materials! are likely to be
in the opposite limit. Here, we present a simple and effici
approach for this regime.

Consider a pair of independent~pseudo-!spin-1/2 systems
with transition energiesA and B. Now suppose that thes
systems may be coupled by a Heisenberg-type interaction
that the Hamiltonian is

Ĥ52
A

2
ŝA

z
^ Î B2

B

2
Î A^ ŝB

z 1JŝA^ ŝB .

Here,\51, subscriptsA andB refer to the 2̂ 2 subspace of
the corresponding system,$ŝx,ŝy,ŝz% are the Pauli matrices
and ŝ[ i ŝx1 j ŝy1kŝz. We will consider the dynamics o
the system as the magnitude ofJ is abruptly switched be-
tween steady values~the square wave case!. Other simple
pulse shapes, such as the more realistic Gaussian form,
have comparable effects.

The dynamics of the constant-J system are easy to esta
lish by diagonalizingĤ. It is convenient to add a~physically
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meaningless! global energy-shift termJÎA^ Î B— this pro-
vides a slight simplification to the matrix form ofH

Ĥ→S 2V1K 0 0 0

0 v K 0

0 K 2v 0

0 0 0 V1K

D
in the basis$u00&,u01&,u10&,u11&%. Here,K[2J, V[1/2(A
1B) andv[1/2(A2B). SinceĤ is already diagonal in the
$u00&,u11&% subspace, we may concentrate on the$u01&,u10&%
subspace. Following Levy, we will identify this as the su
space of a single logical qubit, writingu01&[u0&L and u10&
[u1&L . Diagonalization is straightforward:

ĤL→S v K

K 2v
D 5R†S v8 0

0 2v8
DR5v8R†ŝzR

in basis$u0&L ,u1&L%, wherev85(v21K2)1/2 and

R5S cos
u

2
sin

u

2

2sin
u

2
cos

u

2

D with u5arctan~2J/v!.

The effect on the logical qubit of applyingJ5J0 for a period
t is therefore given~in the basis$u0&L ,u1&L%) by

Û~ t !5exp~2 iĤ Lt !5exp~2 iv8tR†szR!

5R†S e2 iv8t 0

0 eiv8tD R.

In order to understand this in terms of the Bloch sphere qu
representation@Fig. 1~a!#, we employ the operatorR̂n(c)

[cos(c/2)Î2i sin(c/2)(nxŝx1nyŝy1nzŝz). This represents a
rotation on the sphere byc radians about the axis specifie
by unit vectorn5 inx1 jny1 iknz @5#. Then, we find that our
Û(t)5R̂u(2v8t) with u[cosui1sinuk, i.e., the effect of
applyingJ5J0 for time t is a rotation by 2v8t about an axis
©2001 The American Physical Society03-1
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in the z-x plane.~All rotations here are in the lab frame; th
rotating frame is considered later.!

Let us assume thatv[1/2(A2B) is fixed ~as in the case
for example, that our physical qubitsA and B are electron
spins in quantum dots of a different localg factor in astatic
global B field!. We will also assume thatJ cannot be
switched from positive right though to negative@6#. Then we
may never-the-less vary the axis of rotation by choosing
magnitude ofJ. If J50, then the rotation isR̂k(2vt), i.e., a
simple rotation about thez axis. WithJ.0, we have a rota-
tion about an axis lying in thez-x plane at an angleu
5arctan(2J/v) to thez direction. To achieve a rotation abou
an axis close to thex direction, we would therefore require
very largeJ value ~infinite for a purex rotation!. This is
impractical, but we may instead synthesize a purey axis
rotation by a sequence of more modest rotations. For
ample, sinceR̂j (2u)5R̂k(p)R̂u(p), we can generate an

R̂j (0<c<2p/3) provided that the range of availableJ is
0<J<A3v. Moreover, we may concatenate such pairs
rotations in order to achieve anyR̂j (0<c<2p)—a maxi-
mum of three pairs will suffice. Figure 2 shows two su
pairs being concatenated to produceR̂j (p).

Given that we may achieve purez rotations and purey
rotations, we may use the sequenceR̂k(a)R̂j (b)R̂k(g) to
synthesize~up to a meaningless global phase! the general
single-qubit transform

Ĝ5S e2 i (a/21g/2)cos
b

2
2ei (2a/21g/2)sin

b

2

ei (a/22g/2)sin
b

2
ei (a/21g/2)cos

b

2

D .

FIG. 1. ~a! The two spin-1/2 systems and the correspond
Bloch sphere for the logical qubit.~b! Bloch sphere schematic
showing the flow of states over time, depending onv[1/2(A
2B) andJ.
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This formal construction therefore corresponds to a ma
mum of seven steps for any single-qubit gate (1161158,
but we may amalgamate the last two, since both arez rota-
tions!. In practice, there will be shorter sequences for a
given operation. For example, the important Hadamard tra
form corresponds to just a single step@e.g., applyingJ
52v for time t5p/(2A2v)#. The time requirement for the

R̂j (p) rotation shown in Fig. 2~a! is probably quite
typical—it is p(11A2)/(2v).

One might object that since theother qubits in the com-
puter are also~presumably! represented by anAB pair, these

qubits will have performed az axis rotationR̂k(2vt) while

we were performingĜ on our target qubit. We should tak
these rotations into account, i.e., we should really be work
in the rotating frame of a passive qubit. A naive method~not

the most efficient! for achieving this is to supplement ourĜ
sequence with a rotationRu(2p), which has no net effect in
the lab frame but takes timet85p/v8. With an appropriate
choice ofu(⇒v8), the total gate timet is then such that
vt52np, so that the ‘‘other’’ qubits have experienced ze
net rotation. More efficiently, one would incorporate th
consideration into the process of deriving the optimal sh

rotation sequence forĜ.
The above analysis therefore demonstrates that

single-qubit gate may be efficiently performed on the logi
qubit via by a short sequence of fixedJ values. It is straight-
forward to extend this approach to produce a particular tw
qubit gate that, together with our universal single-qubit ga
will form a complete set of gates for computation. Consid
a ABAB section of a quantum computer, and suppose t
two logical qubits are represented in this section, one in
first AB pair and one in the second@see Fig. 2~b!#. Now
suppose that the interaction is ‘‘off’’ between all spins exce
the middle BA pair ~which spans the two logical qubits!.
With an appropriate short sequence@7# of nonzeroJ values,
we may produce the net effect

g

FIG. 2. ~a! A sequence of four steps to synthesizeR̂j (p). ~b!
Two steps suffice for a certain two-qubit gate.
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Ûgate52 i S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 1

D Û0

in the basis$u00&,u01&,u10&,u11&% of the central two spins
Here, Û0 denotes the time evolution thatwould have oc-
curred if the interaction had simply been off for the who
period. Thus, the effect in the rotating frame~up to a mean-
ingless global phase of2 i ) is to introduce a phase of21
conditional on central spin-pairBA being in stateu10&. Re-
membering that the logical qubits on the twoAB pairs are
represented asu01&[u0&L and u10&[u1&L , this condition
translates to both logical qubits being in stateu0&L . Our
transformation is therefore a two-qubit gate comparable
the so-called nAND gate, which inverts the phase of th
u1&Lu1&L component of a superposition. The difference
simply that our gate applies the inversion to theu0&Lu0&L
component instead—we might therefore denote our gat
‘‘n NOR.’’

As a final remark, it is worth noting that although th
above approach does not require thev[(A2B)/2 parameter
B

n-

-
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to be varied, never the less, such an ability would be adv
tageous. In particular, it would be useful ifv could be
switched to zero, because this would then allow theSWAP

operation to be performed with a single pulse, and on a t
scale limited only by the maximum strength ofJ. Any one-
dimensional computer based on nearest-neighbor interac
must spend much of its time simply moving qubits aroun
therefore, efficient performance of the operationSWAPis very
desirable. One might imagine a quantum dot implementa
where theB-field has a cycle involving being ‘‘off’’ for a
period of the time~during which qubits are moved around!,
before being pulsed to a large value in order to allow gene
one- and two-qubit gates as described above.

To conclude, we have explicitly shown that one can p
form universal computation on anABAB Heisenberg chain
using only simple fixed values ofJ. This scheme, with its
relatively modest set of physical requirements, is a stro
candidate architecture for solid-state quantum computing

As a postscript, we note that certainJ-pulse sequence
introduced in this report have now been demonstrated wi
a simple NMR system@8#.

The author wishes to thank Ernesto Galva˜o and Jeremy
Levy for useful conversations.
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@7# One such sequence for the given matrix consists of just
steps as follows: for time t52pa1 /v apply J
5v/2(1/a1

2 21)1/2, then for time t52pa2 /v apply J
5v/2(1/a2

2 21)1/2. Here,a1/25(51/2A7)/8.
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