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Entanglement in a two-identical-particle system
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The definition of entanglement in identical-particle system is introduced. The separability criterion in two-
identical-particle system is given. The physical meaning of the definition is analyzed. Applications to two-
boson and two-fermion systems are made. It is found that some different entanglement and correlation phe-
nomena in identical-boson systems exist, and they may have applications in the field of quantum information.
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There is no doubt that the phenomenon of quantum
tanglement lies at the heart of the foundation of quant
mechanics. The original investigation on entanglement be
from the famous Einstein-Podolsky-Rosen-Gedanken exp
ment. Entanglement has been widely applied in many asp
of quantum information such as quantum teleportation, qu
tum cryptography, and quantum computation. However,
though it is well studied in distinguishable-particle system
entanglement in identical-particle system has hardly been
vestigated, and even a proper definition is not given yet.
noted that entanglement in certain systems such as qua
dots @1#, Bose-Einstein condensates@2#, and parametric
down-conversion@3# must be dealt with in an identical
particle manner. Recently, this problem was noted
Schliemannet al. @1,4# and they discussed the entangleme
in two-fermion system. They have found that entanglem
in two-fermion system is analogous to that in a tw
distinguishable-particle system, and the results obtained
two-distinguishable-particle system can be translated into
two-fermion system. However, due to the fundamental d
ference between bosons and fermions, the concept in
boson systems is quite different. In this paper, we explore
definition of entanglement in indistinguishable-particle s
tems. We first show that factorization alone is not able
define entanglement in a two-boson system. Then we ga
general definition for entanglement in identical-particle s
tems. We show that this definition works well for two-bos
systems as well as for two-fermion systems. Furtherm
the definition can be generalized into systems with more t
two identical particles. We also address the concept of r
tive correlation.

Entanglement in distinguishable-particle systems has b
well studied. For a system of two distinguishable partic
possessing single-particle Hilbert space labeled byH1 and
H2, the states can be described as vectors in the direct p
uct spaceH1^ H2.

uC&125(
i , j

ci j uf i&1^ uw j&2 , ~1!

where $uf i&% is basis forH1 and $uw j&% is basis forH2,
respectively. The stateuC& is called separable if and only i
it can be written asuC&125uc&1^ uc8&2, where uc&1PH1
and uc8&2PH2, otherwise it is entangled. We can define l
1050-2947/2001/64~5!/054302~4!/$20.00 64 0543
n-

an
ri-
cts
n-
l-
,
n-
is
um

y
t
t

or
e

-
o-
e
-
o

a
-

e,
n

a-

en
s

d-

cal operations as those operations acting onH1 andH2, re-
spectively. A separable state cannot be transformed into
entangled state by any local operation and classical com
nication.

What will happen in indistinguishable-particle system
Can the same definition be used? First, let us see the di
ence between distinguishable-particle systems and ident
particle systems. Suppose we have a two-photon Bell st

u↔&1ul&21ul&1u↔&2 , ~2!

whereu↔& and ul& stand for states with horizontal and ve
tical polarization, respectively. If the two photons are se
rable, say the two photons have different momentum tho
their frequencies are the same, then we can write state~2! in
second-quantization formalism as (a1

†a3
†1a2

†a4
†)u0&, where

a1
†u0&, a2

†u0&, a3
†u0&, and a4

†u0& stand for single-photon
statesu↔&1 , ul&1 , u↔&2, and ul&2, respectively.u0& is the
vacuum state. Each photon in the system can be in one o
four modes (ai

†u0&,i 51,2,3,4), which span a four
dimensional Hilbert spaceH5H1% H2 . (a1

†a3
†1a2

†a4
†)u0& is

not separable and thus it is entangled. However, if the
photons are indistinguishable, then state~2! will be repre-
sented bya↔

† al
†u0&, which is separable, and hence not e

tangled.
In identical-particle systems, it is impossible to disti

guish the two particles. A direct-sum resolution of the sing
particle state into two-constituent particle state is not p
sible. We can only say that there is one particle in a giv
state, but we cannot tell which of the two particles is in th
state. Because of this, a separable state in identical par
system may be defined, analogous to the case of distingu
able particles.

In an identical two-particle system whose single-parti
Hilbert spaceH is spanned bya i

†u0&,i 51,2, . . . ,N, a state is
separable if it can be written asc†d†u0&, where
c†u0&,d†u0&PH. Otherwise it is entangled.

It will be shown next that this definition does not cover a
the entangled states in two-boson systems. The stateuC& of
two identical bosons with a single-particle Hilbert spaceH
5CN can be described as follows:

uC&5 (
i , j 51

N

v i j ai
†aj

†u0&, ~3!
©2001 The American Physical Society02-1
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where v i j 5v j i is an N3N complex symmetric matrixV
and it can be decomposed to a diagonal matrix by the lem
below.

Lemma. For any symmetricN3N matrix S there exists a
unitary transformationU, such thatS5UDMUT, where the
matrix DM is diagonal,

DM5diag@d1 ,d2 , . . . ,dM ,Z#, ~4!

and Z is a (N2M )3(N2M ) null matrix. This lemma is
analogous to a lemma given in Ref.@4# for an antisymmetric
matrix in the identical-fermion case. The proof of this lemm
will be given in the Appendix.

Now, we can diagonalize the state~3! by a unitary trans-
formationU,

uC&5(
j 51

M

l j cj
†cj

†u0&, ci
†5(

j 51

N

uji aj
† , ~5!

whereU is a representation transformation and we arra
the eigenvalues in absolute value descending orderul1u
>ul2u>•••>ulMu. The above diagonal form can be r
garded as a standard form because it is unique excep
global phases in the definite two-boson basis states. Sinc
rank of the matrixV, M , does not change under unita
transformation, and it can be used as the criterion of
tanglement for identical two-boson systems.

If N52, the standard form of Eq.~5! can be written as
(r 1eiwc1

†c1
†1r 2e2 iwc2

†c2
†)u0& after neglecting an overal

phase factor wherer 1 andr 2 are non-negative. The state ca
be written as@(r 12r 2) f 1

†f 1
†12Ar 1r 2f 1

†f 2
†#u0& by a represen-

tation transformation,

~c1
† c2

†!5~ f 1
† f 2

†!

3S eiw/2A r 1

r 11r 2
2 ieiw/2A r 2

r 11r 2

2 ie2 iw/2A r 2

r 11r 2
e2 iw/2A r 1

r 11r 2

D .

~6!

If r 15r 2, the state will bef 1
†f 2

†u0& whose rank of coefficien
matrix is 2@5#. It would be a separable state if the lemma
used.

It is easy to check that if Eq.~3! has the standard form a
follows:

uC&5(
i 51

L

zi~eiw i f 1i
† f 1i

† 1e2 iw i f 2i
† f 2i

† !u0&. ~7!

It can be transformed into( i 51
L 2zic1i

† c2i
† u0&, which can be

discussed as a system with distinguishable particles. If it
at least two nonzerozi , it can be defined as a distinguishab
entangled state because it is identical to entangled state
distinguishable-particle systems. In general, a separable
according to the lemma can be written asc†(ac†1bb†)u0&
with the rank being either 1 or 2, wherec† and b† are or-
thogonal. States such asc†(c†1b†)u0& need special atten
05430
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tion. It has no invariant particle number in the modesc†, b†,
or c†1b† and seems to have some persistent correlation.
density matrix of this state is not separable and it is an
separable state. So the definition of entanglement has t
changed to letc†(c†1b†)u0& be entangled and hold fo
states such asc†d†u0& andc†c†u0& as separable. It is worth
pointing out here thatc†c†u0& can be regarded as if it were
single particle, and we treat them as separable. Of course
definition should be generalizable to identical multipartic
systems.

Now we can give the following definition of separabilit
and entanglement in identical-particle systems.

Definition 1. A state with identicalk particles is separable
if it can be written asc1

†c2
†
•••ck

†u0&, whereci
† and cj

† are
either equal or orthogonal. Otherwise it is entangled.

This definition works for both identical-boson an
identical-fermion systems, because in the fermion syst
the Pauli principle prohibits two particles from occupyin
the same state, states withc†(c†1b†)u0&5c†b†u0& that be-
comes the product of two orthogonal states automatically
is interesting to point out that an equivalent definition can
formulated in the following: a state with identicalk particle
is separable if it is an eigenvector of a complete set of o
body Hermitian operators. Otherwise it is entangled. Co
plete operator sets can be generated by the opera
$(ai

†aj1aj
†ai)/2, i , j 51,2, . . . ,n%. This alternative defini-

tion is consistent with the statement in@6,7#, which says that
any basis that is eigenvectors of complete set consist
one-body mechanical quantities must be separable
distinguishable-particle case.

For systems with two bosons, we have the standard fo
~5! to tell whether a state is entangled or not. A state mus
entangled if the rank of its coefficient matrixV is greater
than 2. If rank~V! is 2, it is also easy to judge whether it
entangled or not from its standard form according to defi
tion 1. From a normalized standard form such as Eq.~5!, we
can define the entanglement measure as

24(
i 51

M /2

~ ul2i 21l2i u!ln~ u4l2i 21l2i u! ~8!

for a two-boson system. It is similar to that i
distinguishable-particle systems and if the standard form
be written as Eq.~7!, which has a counterpart in distinguish
able systems, the entanglement measure thus defined w
just the partial entropy in distinguishable-particle syste
@11#. But for systems withk(k.2) bosons, it is more diffi-
cult to give the standard forms to tell whether a state
separable. It is also noted that the quantitative descriptio
entanglement in multiparticle systems is a very hard ma
ematical problem, and it is still not solved in distinguishab
particle systems. The problem to quantify entanglemen
multi-identical-boson systems is even more difficult and
mains an open challenge.

A different kind of entanglement has been found
identical-boson systems. They may have important appl
tions different from those in distinguishable-particle system
For example (a†a†1b†c†)u0& is an entangled state in a
2-2



t
w

t t
e
n
e
ts
io
e

de
ui

t

ed
-
ra
in
li
in
h
e

u
ee

v

r
ar
o

-

nk

is
p
e
it
i
d

gl

-
s
th

or
ab
fin

to

ed
ical
n

lled
nt

ons
tion

in
e

icle
cor-
tes.
ms
e-
ar-
ent
l-
en
at
ch

ay
de-
n-

g,
and
by
o.

the
on

s

ce
nal

BRIEF REPORTS PHYSICAL REVIEW A 64 054302
identical-boson system withN53 single-particle space. I
can denote a superposed state of two-photon states, one
two photons sent to Alice, and one with one photon sen
Bob and the other sent to Clare. Alice, Bob, and Clare m
sure the number of photons. If Alice gets two photons,
photon will reach Bob and Clare, and if no photon reach
Alice, either Bob or Clare will have one photon. If Bob ge
one photon, the other photon will reach Clare. The situat
of Clare is similar to that of Bob. So if one person of th
three gets a result, the results of the other two are deci
which means that some kind of communication can be b
with only two photons.

The above definition of entanglement also applies
many-identical fermion system. Schliemannet al. have dis-
cussed entanglement in two-fermion systems@4#. For a two-
fermion system having the single-particle Hilbert spaceC 2K,
an arbitrary state has the formuC&5( i , j 51

2K v i j ai
†aj

†u0&,
where V5(v i j ) are antisymmetric. It can be decompos
into a standard form( i

Kzi f 1i
† f 2i

† u0& by a representation trans
formation @4#, which implies that entanglement and sepa
bility in two-fermion systems are equivalent with those
distinguishable-particle systems. However, when genera
ing this into many-fermion system, this elegant property
two-fermion system disappear in many-fermion system. T
can be easily understood that the single-particle Hilb
spaceH for a state in system withk greater than two-
identical fermions cannot be decomposed to a direct-s
resolution ofk subspaces. For example, composing a thr
fermion state with single-particle Hilbert spaceC 3N to three-
orthogonal N-dimension subspaces requires 7N329N2

12N real equations satisfied while the group SU(3N) can
only provide 9N221 real parameters. The equations ha
the required number of parameters only whenN51 or N
52. It is easy to check that lemma and definition 1 a
equivalent for identical-fermion systems because arbitr
two fermions cannot be in one state. Hence for identical-tw
fermion systems, the rank ofV is the criterion to judge en
tanglement or separability: rank (V)52 for separability and
rank (V).2 for entanglement. It must be noted that ra
(V)Þ1 for two-fermion systems.

Another important concept is quantum correlation. It
quite often used in literature of physics. A recent develo
ment has made this concept an important one. It is w
known that quantum teleportation can be implemented w
Bell states that are distinguishably entangled. Lee and K
gave an experimental scheme, in which a state superpose
one photon and vacuum can be teleported with a sin
photon state (a†1b†)u0& @8#, wherea† and b† are particle
creation operators in pathA andB. It is meaningless to dis
cuss entanglement for a single particle, therefore, there i
entanglement in this teleportation scheme. They suggest
entanglement may not be necessary for quantum telep
tion, because it can even be implemented with separ
states. To study phenomenon like this, it is useful to de
relative correlation.

Definition 2. A state is said to have correlation relative
a quantum-mechanical quantityF, if and only if the state is
not an eigenvector ofF.

According to the definition above, the quantityF is im-
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portant for certain correlation. A correlation must be relat
to certain measurement corresponding to the mechan
quantityF. In fact, the so-called correlation is the correlatio
between eigenvectors with different eigenvalues ofF. Opera-
tions in eigenvectors with the same eigenvalue may be ca
local operations. Operations in eigenvectors with differe
eigenvalues are nonlocal. It is obvious that local operati
do not change eigenvectors’ eigenvalues. There is correla
relative to particle numbera†a or b†b in (a†1b†)u0& and no
correlation relative to the two-particle number operators
a†b†u0&, where a† and b† are orthogonal. For the stat
a†b†u0&, local operations relative toa†a do not affect the
particle at modeb†, and the similar occurs tob†b. Hence
a†b†u0& is called a separated state in distinguishable-part
systems. Entanglement must have some correlation, but
relation can happen in both separable and entangled sta

To summarize, entanglement in identical-particle syste
can be well distinguished by definition 1. This definition r
duces to that in distinguishable-particle system if the p
ticles are distinguishable. It is noted that the entanglem
definition of both distinguishable-particle and identica
particle systems can be dealt with using the definition giv
in this paper. Using identical-particle formalism to tre
identical-particle systems is important, examples of su
treatment can be found in Refs.@9,10#. There are also differ-
ent phenomena in identical-particle systems, which m
have future applications. Moreover, relative correlation is
fined, and it may be physically more important than e
tanglement.
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APPENDIX: PROOF OF LEMMA

Similar to the proof in Ref.@4# for identical fermions, we
prove the lemma here. LetSbe aN3N, complex, symmetric
matrix, ST5S. HenceSS* 5SS† is Hermitian that can be
diagonalized by a unitary transformationU8: SS*
5U8DU8†, D diagonal. Let us defineC5U8†SU8* . It is
easy to check thatC is symmetric and normalCC†5C†C.
Then we will decomposeC into its real and imaginary part
C5F1 iG. SinceC is normal,F and G commute. ThusF
andG are real, symmetric, and commuting matrices. Hen
they can be simultaneously diagonalized by a real orthogo
transformationO, F5OD1OT, and G5OD2OT. Thus C
5ODMOT(DM5D11D2) and finally

S5U8ODMOTU8T5UDMUT, ~A1!

whereU5U8O.
2-3
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