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Theory of pseudomodes in quantum optical processes
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This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of
quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q
cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for
single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system
in which the atomic transitions are coupled to a discrete set of~cavity! quasimodes, which in turn are coupled
to a continuum set of~external! quasimodes with slowly varying coupling constants and continuum mode
density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual
reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasi-
mode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master
equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete
quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with
the true mode density rather than the coupling constants, the single quantum excitation case appears to be
equivalent to a case with two discrete quasimodes.
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I. INTRODUCTION

The quantum behavior of a small system coupled to
large one has been the subject of many studies since qua
theory was first formulated. The small system is usually
primary interest and generally microscopic~atom, nucleus,
molecule, or small collections of these! but currently systems
of a more macroscopic nature~Bose condensate, superco
ductor, quantum computer! are being studied. The large sy
tem is invariably macroscopic in nature~free space or uni-
verse modes of the electromagnetic~EM! field, lattice modes
in a solid, collider atoms in a gas! and is of less interest in its
own right, being primarily of relevance as a reservoir or b
affecting the small system in terms of relaxation and no
processes. The large system is often a model for the e
external environment surrounding the small system. Chan
in the small system states~described in terms of its densit
operator! can be divided into two sorts—effects on the sta
populations~energy loss or gain! or effects on the state co
herences~decoherence or induced coherence!. Equivalently,
quantum information~described via the von Neumann e
tropy! would be lost or gained due to the interaction with t
environment, and its loss is generally associated with de
herence. Interestingly, as the small system becomes larg
occupies states that are more classical the time scale fo
coherence can become much smaller than that for en
loss. This is of special interest in quantum information p
cessing@1–3# where the small system is a collection of qb
making up a quantum computer weakly coupled to the o
side world, or in measurement theory@4–7#, where the small
system is a microsystem being measured, coupled to an
paratus~or pointer! that registers the results. For quantu
computers it is desirable that decoherence is negligible
ing the overall computation time@8# ~otherwise error correc
tion methods have to be incorporated, and this is costly
terms of processing time! whereas in measurement theor
1050-2947/2001/64~5!/053813~21!/$20.00 64 0538
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environment induced decoherence@4,9# is responsible for the
density operator becoming diagonal in the pointer basis~oth-
erwise a macroscopic superposition of pointer readi
would result!.

A standard method for describing the reservoir effects
the small system is based on the Born-Markoff master eq
tion for the system density operator@10–13#. This depends
on the correlation time for the reservoir~as determined from
the behavior of two-time correlation functions for pairs
reservoir operators involved in the system-reservoir inter
tion! being very short compared to that of the relaxation a
noise processes of the system. In general terms, the m
slowly varying the coupling constants for this interaction
the density of reservoir states are with reservoir frequenc
the shorter the correlation time will be. For many situatio
in the field of quantum optics, nuclear magnetic resona
~NMR!, and solid-state physics, the Born-Markoff mas
equation provided an accurate description of the physics
the system. Elaborations or variants of the method such
quantum state trajectories@14,15#, Fokker-Planck or
c-number Langevin equations@10,16#, and quantum Lange
vin equations@10,11,13# are also used. Sometimes an app
ently non-Markovian problem can be converted to a Marko
ian one by a more suitable treatment of the internal sys
interactions~for example, the use of dressed atom sta
@17,18# for treating driven atoms in narrow-band squeez
vacuum fields@19,20#!.

However, situations in which the reservoir correlatio
times are too long for the system time scales of interes
and thus the standard Born-Markoff approach is no lon
appropriate—have also been studied. An early paper on
subject is Ref.@21#, where atomic decay into a narrow res
nance of an optical cavity is treated. Two regimes a
distinguished—a weak-coupling regime, where the atom
behavior is Markovian and irreversible decay occurs, an
©2001 The American Physical Society13-1
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strong-coupling regime, where non-Markovian atomic d
namics occur accompanied by an oscillatory reversible
cay. In such situations a structured rather than a flat reser
situation applies, and the recent reviews in Refs.@22,23# in-
dicate the current upsurge of interest in non-Markovian
havior as well as providing the reader with references
some of the earlier work. The situations studied include ca
where the reservoir coupling constants vary significan
with frequency, such as the interaction of atom~s! or quantum
dots with light in highQ cavities Refs.@21,24#, including
microcavities~see, for example, Refs.@25–29#! and micro-
spheres~see, for example, Refs.@30,31#!. Laser-driven atoms
in structured reservoirs~resulting in modified resonance fluo
rescence and non-Markovian atomic dynamics! have also
been treated~see for example, Refs.@32–37#!. Other cases
where the reservoir mode densities have structure in the f
of gaps and non-analytic behavior also occur, such as
atom~or many atoms—super-radiance! interacting with light
in photonic band-gap materials@22,38–42#. Non-Markovian
effects in the excitation of continuum state resonances du
threshold effects have been studied in Ref.@43#. Also, quan-
tum feedback situations@44,45# can involve significant time
delays in the feedback circuit, and thus result in no
Markovian dynamics for the system itself. Furthermore, s
tems with several degrees of freedom, such as in quan
measurements~for example, the Stern-Gerlach experimen!
could involve situations where the decoherence times a
ciated with some degrees of freedom~such as the position o
the atomic spin! could become so short that the Marko
condition might no longer be valid, and the effects of su
non-Markovian relaxation on the decoherence times ass
ated with more important degrees of freedom~atom spin
states! would be of interest.

A number of methods for treating non-Markovian pr
cesses have been developed and successfully applied to
lems involving structured reservoirs. Apart from direct n
merical simulations~for example, Ref.@46#! these include
the Zwanzig-Nakajima non-Markovian master equation a
its extensions@47–49#, the time-convolutionless projectio
operator master equation@50#, Heisenberg equations of mo
tion @40,51#, stochastic wave-function methods for no
Markovian processes@52–57#, methods based on the esse
tial states approximation or resolvent operators@22,39,58#,
the pseudomode approach@59,60#, Fano diagonalization
@61,12,62# and the sudden decoherence approximation@63#.
The last four methods are simple to apply, providing cle
physical insight into the processes involved, and their k
features follow.

The essential states methodinvolves the set of coupled
amplitude equations for the physically important states. T
method can become complicated when multiple excitati
of the reservoir are involved, since the equations becom
unwieldy and difficult to solve. The method of solution ge
erally involves Laplace transform methods, the final expr
sions for the amplitudes are obtained via contour integrat
This does have the advantage of enabling nonanalytic eff
due to thresholds@43# and band gaps@39# to be treated. The
pseudomode methodstarts from the essential states appro
mation and is based on the idea of enlarging the system
05381
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include part of the reservoir~the pseudomode—which coul
be bosonic or fermionic depending on the case! thereby
forming a bigger system in which the Markoff approximatio
applies when the coupling to the remainder of the reservo
treated. At present the pseudomode method is restricte
single reservoir excitation cases, but like the essential st
approach, has the advantage of giving exact solutions w
out making use of perturbation theory. The pseudomodes~or
rather their amplitudes! are mathematically defined in term
of the positions and residues of simple poles of the reser
structure function in the lower-half complex-frequen
plane, where the reservoir structure function is proportio
to the reservoir mode density times the modulus square
the coupling constants. Each pole is associated with
pseudomode. Since it is related to the description of the
ervoir in terms of its true modes@64–66#—which are solu-
tions of the Helmholtz equation for the exact spatially dep
dent permittivity that describes the optical systyem—t
pseudomode theory is dependent on the reservoir struc
function having simple poles in the lower-half plane, and
therefore not yet applicable to cases such as realistic ph
nic band-gap systems where nonanalytic behavior of the
ervoir structure function occurs. Nevertheless, in other ca
it can be applied without knowing why the poles occu
though the disadvantage of this is that the physical natur
the pseudomodes is then left obscure. The pseudom
theory has also been used to obtain exact Markovian ma
equations for the combined atom plus pseudomodes sys
The Fano diagonalization methodinvolves replacing the
original system-reservoir Hamiltonian by a diagonal for
and relates the causes of non-Markovian effects to vari
underlying features displayed by the new Hamiltonian~such
as the presence of bound states in the case of atom laser!. In
certain cases it is closely related to the pseudomode met
as will be seen below. A combination of an improve
pseudomode method with the inclusion via Fano diagon
ization of a suitable model describing the physics of the r
ervoir, would advance the methodology for a simple tre
ment of non-Markovian behavior. Thesudden decoherenc
methodenables decoherence effects on time scales that
short compared to system Bohr periods to be treated sim
by ignoring the system Hamiltonian. In certain respects t
method is more universal than the others but it is restricte
short-time scales, and therefore has a limited capacity
development. It has, however, been applied to improve
understanding of short-time scale decoherence in gen
systems@63# .

This paper deals with the relationship between the curr
pseudomode method for single-quantum reservoir excitat
and the Fano diagonalization method for situations where
reservoir structure is due to the presence of a discrete sy
of ~quasi! modes, which are coupled to other continuu
~quasi! modes. This important case applies to atomic syste
coupled to the quantum EM field in highQ resonant cavities,
such as microspheres or microcavities. The aim is to un
stand the physical origin of the pseudomodes in terms
quasimodes@67,68,65#, which are solutions of the Helmholt
equation for an idealized spatially dependent permittiv
that approximately models the actual optical system. In
3-2
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THEORY OF PSEUDOMODES IN QUANTUM OPTICAL . . . PHYSICAL REVIEW A 64 053813
case of cavity QED, one discrete quasimode can be chos
occur for each resonance of the cavity, though each s
resonance is associated with large numbers of true mo
@69,65#. A further objective of this paper is to see whether t
pseudomode theory restriction to single quantum excitati
of the reservoir can be lifted through the explicit introducti
of this physical model for the pseudomodes. It is shown t
the pseudomode method for single quantum excitations
the structured reservoir can be obtained by applying the F
diagonalization method to a system featuring a set of disc
quasimodes@67,68,65# together with a set of continuum
quasimodes, whose mode density is slowly varying. T
structured reservoir of true modes@64–66# is thus replaced
by the quasimodes. The interaction between the discrete
continuum quasimodes is treated in the rotating-wave
proximation and assuming slowly varying coupling consta
@69,70#. The atomic system is assumed to be only coupled
the discrete quasimodes. The density of continuum quasi
des is explicitly included in the model. Although the beha
ior of the atomic system itself is non-Markovian, the e
larged system obtained by combining the discr
quasimodes with the atomic system now exhibits Markov
dynamics. The discrete quasimodes are identified as pse
modes. The continuum quasimodes are identified as the
reservoir to which the enlarged Markovian system
coupled. Explicit expressions for the atom-true modes c
pling constants are obtained, exhibiting the rapidly vary
frequency dependence characteristic of structured reserv
At present the treatment is restricted to cases where thres
and band-gap effects are unimportant, but may be applic
to two-dimensional photonic band-gap materials. Howev
the problem of treating multiple excitation processes for c
tain types of structured reservoirs can now be treated via
quasimode theory, since the Markovian master equation
the atom-quasimode system applies for cases involving m
tilevel atoms or cases of several excited two-level ato
Further extensions of the treatment to allow for atomic s
tems driven by single mode external laser fields are a
possible, with the original atomic system being replaced
the dressed atom.

The plan of the paper is as follows. In Sec. II the k
features of pseudomode theory are outlined. Section III p
sents the Fano diagonalization theory for the quasimode
tem, with details covered in Appendices A, B, and C. In S
IV specific cases such as one or two discrete quasimode
where the variation of discrete-continuum coupling consta
can be ignored, are examined, giving results for the ato
true mode coupling constants and reservoir structure fu
tions in these situations. Section V contains the Markov
master equation for the atom plus discrete quasimode
tems. Section VI briefly examines the situation where c
pling constants and mode densities are not slowly vary
Conclusions and comments are set out in Sec. VII.

II. PSEUDOMODE THEORY

The simplest case to which pseudomode theory@59# can
be applied is that of a two-level atom coupled to the mo
of the quantum EM field—which constitutes the structur
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reservoir. Only one photon excitation process will occ
However, the formalism would also apply to any spin-1
fermion system coupled to a bath of bosonic oscillators. T
Hamiltonian is given in the rotating-wave approximation

Ĥ5(
l

\vlâl
†âl1

1

2
\v1~ ŝ1ŝ22ŝ2ŝ1!

1(
l

~\gl* âlŝ11H.c.!, ~1!

whereŝ1,ŝ2 are the usual atomic spin operators,âl , âl
† are

the annihilation creation operators for the model of the
field, v1 is the atomic transition frequency,vl is the mode
frequency, andgl are the coupling constants. This system
illustrated in Fig. 1.

To describe a one-photon excitation process, the ini
condition is the atom excited and no photons present in
field. Hence the initial Schrodinger picture state vector is

uC~0!&5u1&u . . . 0l . . . &. ~2!

In the essential states approach, the state vector at
time t will be a superposition of the initial state and stat
with the atom in its lower state and one photon in vario
modesl. With c̃1 ,c̃l defining the complex amplitudes fo
the atomic excited state and the one photon states, the
vector is

uC~ t !&5 c̃1~ t !e2 iv1tu1&u . . . 0l . . . &

1(
l

c̃l~ t !e2 ivltu0&u . . . 1l . . . &. ~3!

Substitution into the time-dependent Schrodinger eq
tion leads to the following coupled complex amplitude equ
tions:

i
d

dt
c̃15(

l
gl* e2 iDltc̃l ,

FIG. 1. Illustration of a two-level atom coupled to a structur
reservoir.
3-3
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i
d

dt
c̃l5gleiDltc̃1 , ~4!

whereDl5vl2v1 are detunings.
Formally eliminating the amplitudes for the one-phot

states enables an integrodifferential equation for the exc
atomic amplitude to be derived. This is

d

dt
c̃1~ t !52E

0

t

dt G̃~t!c̃1~ t2t! ~5!

and involves a kernelG̃ given by

G̃~t!5(
l

uglu2e2 iDlt

5E dvl r~vl!uglu2e2 iDlt. ~6!

The mode densityr(vl) is introduced after replacing th
sum overl by an integral over the mode angular frequen
vl .

It is apparent from Eq.~5! that the behavior of the atomi
system only depends on the reservoir structure func
D(vl) for this single-quantum excitation case defined by

rluglu25
V2

2p
D~vl!, ~7!

where a transition strengthV is introduced to normalizeD so
that its integral gives 2p. The transition strengthV is given
by

V25E dvl r~vl!uglu2. ~8!

The reservoir structure functionD(vl) enables us to de
scribe the various types of reservoir to which the atom
system is coupled. IfD is slowly varying as a function ofvl

then the reservoir is ‘‘flat,’’ while ‘‘structured’’ reservoirs ar
whereD varies more rapidly, as seen in Fig. 1. There are
course two factors involved in determining the behavior
D—the mode densityr(vl) and the coupling constant vi
uglu2 . Either or both can determine how structured the r
ervoir is. Photonic band-gap materials are characterized
mode densities that are actually zero over the gaps in
allowed mode frequencies, and which have nonanalytic
haviors near the edges of the band gaps. All mode dens
are zero for negativevl , so threshold effects are possible —
see Ref.@43#, for example. In cavity QED situations, such
for microspheres and other highQ cavities, the coupling con
stant varies significantly near the cavity resonant frequ
cies, so in these cases it is the coupling constant that g
structure to the reservoir. For the present it will be assum
that ~apart from simple poles! D is analytic in the lower-half
complexvl plane, and any other nonanalytic features can
disregarded. It is recognized of course that this restrict
places a limit on the range of applicability of the theo
though it may be possible to extend this range by repres
05381
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ing the actual functionD(vl) in an approximate form tha
satisfies the analyticity requirements. In addition~in order to
calculate the contour integrals! it will be assumed thatD
tends to zero at least as fast as 1/uvlu as uvlu tends to infin-
ity.

Based on the above assumption regarding the reser
structure functionD , the kernelG may be evaluated in term
of the poles and residues ofD(vl) in the lower-half com-
plex vl plane. It is assumed that these simple poles can
enumerated. The poles are located atz1 ,z2 , . . .zl . . . and
their residues arer 1 ,r 2 , . . . r l . . . . Thepole zl may be ex-
pressed in terms of a real angular frequencyv l and a width
factor G l via zl5v l2 iG l /2. Contour integration method
show that the sum of the residues equalsi. The kernel is
obtained in the form

G̃~t!52 iV2(
l

r le
2 i (zl2v1)t. ~9!

The integrodifferential equation~5! for the excited atomic
amplitude involves a convolution integral on the right-ha
side and may be solved using Laplace transform metho
The atomic behavior obtained is well known@21,64# and will
not be rederived here. It is found that there are two regim
depending on the ratio of the transition strength to typi
width factors. These are~a! a strong-coupling regime with
non-Markovian atomic dynamics, which occurs whenV
@G, and~b! a weak-coupling regime with Markovian atom
dynamics, occuring whenV!G.

The pseudomode approach continues by considering p
of the reservoir structure functionD(vl) in the lower-half
complex vl plane. Each pole will be associated with on
pseudomode. Reverting to Schrodinger picture amplitu
via c1(t)5 c̃1(t)e2 iv1t etc., pseudomode amplitudes asso
ated with each pole ofD are introduced as defined by

bl~ t !52 iVA2 ir le
2 izl tE

0

t

dt8eizl t8c1~ t8!. ~10!

From the definition ofbl and by substituting the form
@Eq.~9!# for the kernelG that involves the poles ofD, it is not
difficult to show that the excited atomic amplitude and t
pseudomode amplitudes satisfy the following coupled eq
tions:

i
dc1~ t !

dt
5v1c1~ t !1(

l
Klbl~ t !,

i
dbl~ t !

dt
5zlbl~ t !1Klc1~ t !, ~11!

whereKl5VA2 ir l are pseudomode coupling constants.
general, the residuesr l are not pure imaginary, so th
pseudomode coupling constants are not real.

The important point is that the atom plus pseudomo
system now satisfies Markovian equations@Eq.~11!#. With a
finite ~or countable! set of pseudomodes, the original ato
plus structured continuum has now been replaced by a s
pler system, which still enables an exact description of
3-4
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THEORY OF PSEUDOMODES IN QUANTUM OPTICAL . . . PHYSICAL REVIEW A 64 053813
atomic behavior to be obtained.Exact master equations in
volving the pseudomodes have been derived, and in gen
the pseudomodes can be coupled~see Ref.@59#!. There are
however, difficulties in cases where the pseudomode c
pling constants are not real, which can occur in certain ca
where there are several pseudomodes. Apart from the ge
difficulty associated with situations where~apart from having
simple poles! the reservoir structure functionD is not ana-
lytic in the lower-half complex plane, there is also consid
able difficulty in extending the above theory to treat ca
where multiple excitations of the structured reservoir occ
such as when the two-level atom is replaced by a three-l
atom in a cascade configuration with the atom initially in t
topmost state. The problem is that applying the usual es
tial states approach leads to two~or more! photon states now
appearing in the state vector@cf. Eq.~3!#, and the resulting
coupled amplitude equations@cf. Eq.~4!# do not apear
to facilitate the sucessive formal elimination of the on
two, . . . photon amplitudes, as is possible in the sing
photon excitation case treated above. It is, therefore,
clear how pseudomode amplitudes can be introduced, a
the lines of Eq.~10!, so the pseudomode method has not
been generalized from its original formulation to allow f
multiple reservoir excitations.

III. FANO DIAGONALIZATION
FOR A QUASIMODE SYSTEM

A. Description of the approach

The case of multiple excitation of a structured reserv
involves systems more complex than the two-level at
treated above. It will be sufficient for the purpose of linkin
the pseudomode and Fano diagonalization methods to
sider single multilevel atomic systems, although multiato
systems would also be suitable as both systems could r
in multiphoton excitations of the quantum EM field. Accor
ingly the two-level Hamiltonian given as the second term
Eq. ~1! is now replaced by the multilevel atomic Hami
tonian:

ĤA5(
k

hk\vk~ ŝk
1ŝk

22ŝk
2ŝk

1!. ~12!

The indexk represents an atomic transition associated wit
pair of energy levels (k[$u,l %) with energy difference\vk .
The quantitieshk are numbers chosen so thatĤA equals the
atomic Hamiltonian, apart from an additive constant ener
for example, in a two-level atomh5 1

2 for the single transi-
tion, while in a three-level atom in aV configuration with
degenerate upper levelsh1 5h25 1

3 for the two optical fre-
quency transitions, andh350 for the zero frequency trans
tion. Details are set out in Appendix A. The atomic transiti
operators areŝk

1[uu&^ l u[(ŝk
2)†. As the Hamiltonians for

other fermionic systems can also be written in the same f
as in Eq.~12!, the treatment is not just restricted to sing
multilevel atom systems. The case of an atom driven b
single mode laser field can also be treated. Here the ato
Hamiltonian would be replaced by the sum of the atom
05381
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Hamitonian, the Hamiltonian for the single laser mode, a
the atom-laser mode coupling term. In effect the atom
Hamitonian is replaced by the dressed atom Hamilton
@71#.

As indicated in Sec. II, an important pseudomode sit
tion is where the reservoir structure is due to the presenc
a discrete system of~quasi! modes, which are coupled t
other continuum~quasi! modes with slowly varying coupling
constants. This important case applies to atomic syst
coupled to the quantum EM field in highQ resonant cavities,
such as microspheres or microcavities. The Fano diago
ization method is then based around the idea that the st
tured reservoir of the quantum EM field modes can be
scribed in two different ways, which will now be outlined
Figure 2 illustrates these two descriptions, along with t
involving pseudomodes.

1. Quasi modes

The first approach is to treat the quantum EM field
terms of a quasimode description@67,68,65#. The quasimode
functions are here obtained as solutions of the Helmh

FIG. 2. Three pictures of the coupled atomic system. In thetrue
mode picture, the atom is coupled directly to true modes that ha
structure. In thequasimode picturethe atoms are coupled to quas
modes, which are in turn coupled to external quasimodes. In
pseudomode picturethe atoms are coupled to dissipative pseud
modes.
3-5
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equation for an idealized spatially dependent permittiv
that approximately models the actual optical system. T
are not Fox-Li modes@72#, which are obtained by a differen
principle as eigenfunctions of a non-Hermitian operator c
structed via applying the paraxial approximation to t
Huygen-Fresnel integral@73#. Such non-Hermitian mode
functions and their adjoint modes satisfy biorthogonality
lations, unlike the normal orthogonality relations satisfied
both true modes and quasimodes. The quasimodes beha
coupled quantum harmonic oscillators. These consist of
types; the first is a set of discrete quasimodes, the secon
a set of continuum quasimodes. In a typical structured re
voir situation for the area of cavity QED@69#, the quasi-
modes represent a realistic description of the physical
tem. The discrete modes are cavity quasimodes—one
each cavity resonance and appropriate for describing the
field inside the cavity and the continuum modes are exte
quasimodes that describe the field outside the cavity.
interaction between the discrete and continuum quasimo
will be treated in the rotating-wave approximation assum
slowly varying coupling constants@69,68,70#. Rotating-wave
approximation couplings between the discrete quasimo
are also included, but couplings between the continu
quasimodes are not included—such couplings can be
moved by pre-diagonalization. For the quasimode desc
tion the field Hamiltonian is given by

ĤF5(
i

\v i âi
†âi1(

iÞ j
\v i j âi

†â j

1(
i
E dD rc~D!@\Wi~D!âi

†b̂~D!1H.c.#

1E dD rc~D! \Db̂†~D!b̂~D!, ~13!

where âi , âi
† are the annihilation creation operators for t

discrete quasimodei, v i is its frequency,b̂(D),b̂†(D) are the
annihilation creation operators for the continuum quasim
of frequencyD, the coupling constants between thei , j dis-
crete quasimodes arev i j (v i j 5v j i* ), while the quantity
Wi(D) is the coupling constant between thei discrete andD
continuum quasimodes. The integrals over the quasic
tinuum frequencyD involve a quasicontinuum mode densi
rc(D). Both Wi(D) and rc(D) are usually slowly varying.
The discrete quasimode annihilation creation operators
isfy Kronecker delta commutation rules, while those for t
continuum quasimode operators satisfy Dirac delta func
commutation rules:

@ âi ,aj
†#5d i j ,

@ b̂~D!,b̂†~D8!#5d~D2D8!/rc~D!. ~14!

The rc factor on the right-hand side gives annihilation a
creation operators that are dimensionless.

For the quasimode description the interaction between
atomic system and the quantum EM field will be given in t
rotating-wave approximation and only involve coupling
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the discrete quasimodes. This would apply for the typi
structured reservoir situation for the area of cavity QED
the familiar case where the atoms are located inside the
ity. The energy of an excited atom escapes to the exte
region in a two-step process: first, a photon is created i
discrete~cavity! quasimode via the atom-discrete quasimo
interaction, second, this photon is destroyed and a photo
created in a continuum~external! quasimode via the discrete
continuum quasimode coupling. For the quasimode desc
tion, the atom-field interaction will be given as

ĤAF5(
k

(
i

~\lki* âi ŝk
11H.c.!, ~15!

wherelki is the coupling constant for thek atomic transition
and thei quasimode.

2. True modes

The second way of describing the quantum EM field is
terms of its true modes@64–66#. The true mode functions ar
here obtained as solutions of the Helmholtz equation for
actual spatially dependent permittivity that applies to the
tical system. The true modes behave as uncoupled quan
harmonic oscillators. These modes are also used in ca
QED and are often referred to as ‘‘universe modes.’’ T
pseudomode theory presented in Sec. II is also based on
modes. For frequencies near the cavity resonances, t
modes are large inside the cavity and small outside; for
quencies far away from the resonance, the opposite app
The distinction between true modes and quasimodes is
cussed in some detail in recent papers@67,74# and their de-
tailed forms and features in the specific case of a pla
Fabry-Perot cavity are demonstrated in Ref.@69#. In terms of
true modes, the field Hamiltonian is now given in the alt
native form as

ĤF5E dv r~v!\vÂ†~v!Â~v!, ~16!

where Â(v), Â†(v) are the annihilation creation operato
for the continuum true mode of frequencyv. The integrals
over the quasicontinuum frequencyv involve the true con-
tinuum mode densityr(v), which is not in general the sam
function asrc(D). It is also not necessarily a slowly varyin
function of v. The continuum true mode annihilation cre
ation operators satisfy Dirac delta function commutati
rules:

@Â~v!,Â†~v8!#5d~v2v8!/r~v!. ~17!

In all these Hamiltonians the coupling constants have dim
sions of frequency, while the annihilation and creation ope
tors are dimensionless, as are the atomic transition opera

3. Relating quasi and true modes

As will be demonstrated in Sec. III B, Fano diagonaliz
tion involves determining the relationship between the t
mode annihilation operatorsÂ(v) and the quasimode ann
3-6
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hilation operatorsâi and b̂(D). The Â(v) will be written as
a linear combination of theâi ~sum overi ) and b̂(D) ~inte-
gral overD) @see Eq.~22! below#, which involves the func-
tions a i(v) and b(v,D). This relationship can be inverte
to give theâi as an integral overv of theÂ(v) @see Eq.~52!
below#. This enables the true mode form of the atom-fie
interaction to be given as

ĤAF5(
k

(
i
E dv r~v!@\lki* a i* ~v!Â~v!ŝk

11H.c.#.

~18!

Comparing Eqs.~15! and ~18! we see that the atom-tru
mode coupling constantgk(v) ~for the k atomic transition
and thev true mode! is given by the expression

gk~v!5(
i

lkia i~v!. ~19!

This can be a complicated function ofv in a structured res-
ervoir, as will be seen from the forms obtained for the fun
tion a i(v) @for example, Eq.~67!#. This expression for the
atom-true mode coupling constant is one of the key result
our theory, and enables the pseudomode and quasimod
scriptions of decay processes for structured reservoirs to
related. Note that the true mode coupling constant now
volves two factors: the atom-quasimode coupling cons
lki , and the functiona i(v) that arises from the Fano diago
nalization process.

For the situation where only a single atomic transitionk is
involved, the equivalent reservoir structure function is giv
by

Dk~v!5Cr~v!ugk~v!u2, ~20!

whereC is the normalizing constant, which for convenien
we will set equal to unity as it does not contain anyv de-
pendence. This expression will be used to compare the
sults from the quasimode approach to those of the pre
single quantum excitation pseudomode theory. As we w
see, the true mode density cancels out.

Finally, athough our results are still correct for cas
where the quasimode densityrc(D) and the coupling con-
stantsWi(D) are not restricted to being slowly varying fun
tions of D, their utility, where this is not the case, is som
what limited. The theory is mainly intended to apply to t
important pseudomode situation, where the reservoir st
ture is actually due to the presence of a discrete system
quasimodes that are coupled to other continuum quasim
via slowly varying coupling constants. For example, t
quantum EM field in highQ resonant cavities can be acc
rately described in terms of the quasimode model that
these features, the discrete quasimodes being the c
quasimodes~linked to the cavity resonances! with which the
atoms inside the cavity interact, and the continuum qu
modes being the external modes.

As pointed out previously, the structured reservoir can
any set of bosonic oscillators, not just the quantum EM fie
The above treatment would thus apply more generally,
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we would then refer to discrete quasioscillators, continu
quasioscillators, or true oscillators. The physical basis fo
quasimode description of the reservoir of bosonic oscillat
will depend on the particular situation; in general they w
be idealized approximate versions of the true modes.

B. Diagonalization of the quasimode Hamiltonian:
Dressing the quasimode operators

1. Basic equations for Fano diagonalization

We start with a multiple quasimode description of t
quantum EM field, for which the Hamiltonian is given abov
as Eq.~13!. This Hamiltonian can also be written in terms
the true mode description as in Eq.~16!, and the problem is
to relate the true mode annihilation operatorsÂ(v) in terms
of the quasimode annihilation operatorsâi andb̂(D). In view
of the rotating-wave approximation form of the Hamiltonia
the quasimode creation operators are not involved in the
lationship @67#. Fano diagonalization for the nonrotatin
wave approximation has been treated for the case of a si
mode coupled to a reservoir in Refs.@75,76#. In making a
Fano diagonalization, we will follow the lines of Ref.@12#
~Sec. 6.6 on dressed operators!, rather than Ref.@62#, but
note that a new feature here is the presence of the m
mode coupling term in the Hamiltonian Eq.~13!. In addition,
we explicitly include the mode densities from the beginnin
The physical realization of the quasimode model for the E
field really determines the quasicontinuum mode den
rc(D), just as it does the coupling constantsv i j ,Wi(D), and
lki . It is therefore important to be able to find therc(v)
dependence of quantities such as the reservoir structure f
tion D(v) @as we will see, the final expression@Eq. ~50!# for
the latter does not involve the true mode densityr(v)]. It is
of course possible to scale all the other quantities to m
r5rc51 , and then rescale afterwards to allow for the a
tual r,rc that apply for the system of interest, but this wou
lead to a great deal of duplication of the results we pres
For completeness, the scaling is set out in Appendix B.

From the form of the true mode Hamiltonian in Eq.~16!
and the commutation rules Eq.~17! to be satisfied by the
Â(v), it is clear that the true mode annihilation operators
eigenoperators of the quantum field HamiltonianĤF and
must satisfy

@Â~v!,ĤF#5\vÂ~v!. ~21!

In general, the true mode annihilation operatorsÂ(v) can
be expressed as linear combinations of the quasimode a
hilation operatorsâi and b̂(D) in the form @68,67#

Â~v!5(
i

a i~v!âi1E dD rc~D!b~v,D!b̂~D!, ~22!

where a i(v) and b(v,D) are functions to be determined
and which are dimensionless. This form forÂ(v) is then
substituted into Eq.~21! and the commutator evaluated usin
the quasimode form, Eq.~13!, for ĤF and the commutation
3-7
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rules in Eq.~14!. The coefficients of the the operatorsâi and
b̂(D) on both sides of Eq.~21! are then equated, giving a s
of coupled equations for thea i(v) andb(v,D). These are

~v i2v!a i~v!1(
j Þ i

v j i a j~v!

1E dD rc~D!b~v,D!Wi* ~D!50, ~23!

~D2v!b~v,D!1(
i

Wi~D!a i~v!50. ~24!

To solve Eqs.~23! and ~24! for the unknowna i(v) and
b(v,D), we first solve forb in terms of thea i . This gives

b~v,D!5FP
1

v2D
1z~v!d~v2D!G(

j
Wj~D!a j~v!,

~25!

wherez(v) is a dimensionless function yet to be determine
This expression is then substituted into Eq.~23! to obtain a
set of linear homogeneous equations for thea i(v) in the
form

~v i2v!a i~v!1(
j Þ i

v j i a j~v!1(
j

Fi j a j~v!

1(
j

Wi* ~v!Wj~v!rc~v!z~v!a j~v!50. ~26!

In these equations, a frequency shift matrixFi j (v) appears,
which involves a principal integral of products of th
discrete-continuum quasimode coupling constants toge
with the quasicontinuum mode density. This is defined b

Fi j ~v!5PE dD rc~D!
Wi* ~D!Wj~D!

v2D
~27!

and satisfies the Hermiticity conditionF ji 5Fi j* .
Equation~26! can be written in the matrix form

ma50, ~28!

where the column matrixa[$a1(v),a2(v),a3(v), . . . %Á

and the square matrixm is given by

mi j ~v!5~v i2v!d i j 1~12d i j !v j i 1Fi j ~v!

1Wi* ~v!Wj~v!rc~v!z~v!. ~29!

2. Solution of equations for amplitudesa i„v… and b„v,D…

The approach used to solve these equations is as follo
It is clear that Eq.~28! can give an~unnormalized! solution
for a in terms of the functionrc(v)z(v). We can now use
Eq. ~28! itself to obtain the expression forrc(v)z(v), sub-
ject to the assumption that the quantity( iWi(v)a i(v) is
nonzero. This assumption will be verifieda posteriori from
the normalization condition for thea i(v), which will follow
05381
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~see below! from the requirement that the form for theÂ(v)
given in Eq. ~22! satisfies the commutator relatio

@Â(v),Â†(v8)#5d(v2v8)/r(v) @Eq. ~17!#. This indeed
leads to a nonzero expression for( iWi(v)a i(v) @see Eq.
~39! below#. After finding both rc(v)z(v) and
( iWi(v)a i(v), the results can be substituted back into E
~26!. By eliminating the factor( iWi(v)a i(v) from the last
term in Eqs.~26!, we obtain a set of inhomogeneous line
equations for thea i(v), which can then be solved for th
a i(v) @and henceb(v,D)].

The general expression forrc(v) z(v) can be obtained
from the matrix equation~28!. With E the unit matrix we
introduce the square matrixV, the column matrixW* , and
the row matrixWT by

Vi j ~v!5v id i j 1~12d i j !v j i 1Fi j ~v! ~30!

and W* (v)[ $W1* (v),W2* (v),W3* (v), . . . %Á, WT(v)
[ $W1(v),W2(v),W3(v), . . . %, and then write Eq.~28! in
the form

@2~vE2V!1rc~v!z~v!W* WT#a50. ~31!

Now the matrixV is Hermitian and positive definite, havin
real eigenvalues close to the real and positivev i . The matrix
vE2V can be hence assumed to be invertible, so by mu
plying Eq. ~31! from the left byWT(vE2V)21 we see that

@211rc~v!z~v!J~v!#WTa50, ~32!

where the functionJ(v) is defined by

J~v!5WT~vE2V!21W* . ~33!

Now the quantityWTa is equal to( iWi(v)a i(v), which is
assumed to be nonzero for reasons explained above.
means that@211rc(v)z(v)J(v)#50, and this gives for
rc(v)z(v) the general result:

rc~v!z~v!5H(
i j

Wi~v!„vE2V~v!…i j
21Wj* ~v!J 21

,

~34!

which only involves the various coupling constants and
gular frequencies, along with the quasicontinuum mode d
sity. In general thev dependence of the result forrc(v)z(v)
is complicated, since both the coupling constantsWi and the
matrix V ~by the matrix F) will depend onv. In some
important cases however, theirv dependence can be ignore

As indicated previously, Eqs.~26! or ~28! only determine
the a i(v) @and henceb(v,D)] to within an arbitary scaling
factor, as can be seen from their linear form. The normali
tion of the solutions is fixed by noting that we needÂ(v),
Eq. ~22!, to satisfy the commutator relatio

@Â(v),Â†(v8)#5d(v2v8)/r(v) @Eq.~17!#. This leads to
the condition
3-8
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( a i~v!a i* ~v8!1E dD rc~D!b~v,D!b* ~v8,D!

5d~v2v8!/r~v!. ~35!

Then substituting forb(v,D) from Eq. ~25! and using Eq.
~27!, we find after considerable algebra that

( a i~v!a i* ~v8!1d~v2v8!~p21uz~v!u2!rc~v!

3(
i j

Wi~v!Wj* ~v!a i~v!a j* ~v!

1P
1

v2v8
(
i j

a i~v!a j* ~v8!@Fi j* ~v8!

2F ji ~v!1z* ~v8!rc~v8!Wi~v8!Wj* ~v8!

2z~v!rc~v!Wi~v!Wj* ~v!#

5d~v2v8!/r~v!. ~36!

Note that we have used certain properties of the princ
parts and delta functions~see, for example, Ref.@12#!

d~v2D!d~v82D!

5d~v2v8!d~v2D!

5d~v2v8!d~v82D!,

P
1

v82D
d~v2D!5P

1

v82v
d~v2D!

P
1

v2D
P

1

v82D
5P

1

v2v8
S P

1

v82D
2P

1

v2D D
1p2d~v2D!d~v82D! ~37!

to obtain the last equation. We then also use
05381
al

P
1

v2v8
~v2v8!51 ~38!

along with Eq.~26! to substitute for( jFi j* (v8)a j* (v8) and
( iF ji (v)a i(v) and finally obtain

(
i j

Wi~v!Wj* ~v!a i~v!a j* ~v!

5U(
i

Wi~v!a i~v!U2

5
1

r~v!rc~v!~p21uz~v!u2!
. ~39!

This fixes, albeit with the coefficientsWi(v), the normaliza-
tion of thea i(v). Note the appearance of both mode den
ties in the result. Finally, with a suitable choice of the over
phase we can fix the result for the important quant
( iWi(v)a i(v) to be

(
i

Wi~v!a i~v!5
1

Ar~v!rc~v!@p1 iz~v!#
. ~40!

Having obtained this result for( iWi(v)a i(v) we then
substitute back into Eqs.~26!, eliminating this factor from
the last term to give a set of inhomogeneous linear equat
for the a i(v):

~v2v i !a i~v!2(
j Þ i

v j i a j~v!2(
j

Fi j a j~v!

5
Wi* ~v!rc~v!z~v!

Ar~v!rc~v!@p1 iz~v!#
. ~41!

After some algebra, introducing the matrixV(v) from Eq.
~30! and then substituting from Eq.~34! for @rc(v)z(v)#21,
the last equations can be solved for thea i(v), giving the
solution in matrix form as
rix
a~v!52 iArc~v!

r~v!

1

@12 iprc~v!WT~v!„vE2V~v!…21W* ~v!#
„vE2V~v!…21W* ~v!. ~42!

In this result all the terms that in general depend onv are explicitly identified. It is also convenient to write the inverse mat
in terms of its determinant and the adjugate matrix by

„vE2V~v!…215„vE2V~v!…ADJ/uvE2V~v!u ~43!

and then the solution fora(v) becomes

a~v!52 iArc~v!

r~v!

1

@ uvE2V~v!u2 iprc~v!WT~v!„vE2V~v!…ADJW* ~v!#
„vE2V~v!…ADJW* ~v!. ~44!

The result for the expansion coefficientb(v,D) then follows from Eq.~25! and substituting forrc(v)z(v) from Eq.~34!.
After some algebra we find that
3-9
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b~v,D!52 i
1

Ar~v!rc~v!

Fd~v2D!1P
1

v2D
rc~v!WT~v!„vE2V~v!…21W* ~v!G

@12 iprc~v!WT~v!„vE2V~v!…21W* ~v!#
. ~45!

We see that the solutions for thea i(v) andb(v,D) only involve the various coupling constants and the mode densities

3. Coupling constants and reservoir structure function

Introducing the column matrixlk[$lk1 ,lk2 ,lk3 , . . . %Á the expression~19! for the coupling constantgk(v) can be
written as

gk~v!52 iArc~v!

r~v!

1

@ uvE2V~v!u2 iprc~v!WT~v!„vE2V~v!…ADJW* ~v!#
lk

T
„vE2V~v!…ADJW* ~v! ~46!

52 iArc~v!

r~v!

Qn21
k ~v!

Pn~v!
, ~47!
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where the functionsPn(v) andQn21
k (v) are defined by

Pn~v!5uvE2V~v!u2 iprc~v!

3WT~v!„vE2V~v!…ADJW* ~v!

5uvE2V~v!u2 iprc~v!

3(
i j

Wi~v!„vE2V~v!…i j
ADJWj* ~v! ~48!

Qn21
k ~v!5lk

T
„vE2V~v!…ADJW* ~v!

5(
i j

lki„vE2V~v!…i j
ADJWj* ~v!. ~49!

In the case where thev dependence of the quantitie
rc(v), Fi j (v), and Wi(v) can be ignored,Pn(v) and
Qn21(v) would be polynomials inv of degreesn and n
21, respectively, as will be seen in Sec. IV.

The reservoir structure function can then be expresse
(C51):

Dk~v!5rc~v!
uQn21

k ~v!u2

uPn~v!u2
, ~50!

where we note the cancellation of the true mode den
r(v) and the proportionality to the quasicontinuum mo
densityrc(v). The significance of ther(v) cancellation will
be discussed in Sec. III C. There is, however, further dep
dence on the quasicontinuum mode density within the fu
tion Pn(v), as can be seen from Eq.~48!. The role of this
dependence will be discussed in Sec. IV when we have
tained expressions for the reservoir structure function
specific cases.

In summary, if we are given the Hamiltonian in the qua
mode form, Eq.~13!, we can obtain the true mode operato
~22! which satisfy the eigenoperator condition Eq.~21!. The
coefficientsa i(v) are found by solvingma50, Eq. ~28!;
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the functionz(v) occurring inm is obtained from Eq.~28!
and given by Eq.~34!. The solutions fora i(v) are scaled in
accordance with Eq.~35! and the normalization for the quan
tity ( iWi(v)a i(v) is given in Eqs.~39! and ~40!. The nor-
malized solutions fora i(v) are obtained as Eqs.~42! or
~44!. The coefficientsb(v,D) are then found from Eq.~25!
and the result is given in Eq.~45!. The true mode coupling
constantgk(v) and the reservoir structure functionDk(v)
are obtained as Eqs.~47! and~50!. These results involve the
functionsPn(v) andQn21

k (v) defined in Eqs.~48! and~49!.
The results depend on the quasicontinuum mode densitrc
as well as on the various coupling constants and ang
frequencies. It should be noted that a unique expression
been obtained forz(v), and hence for thea i(v) and
b(v,D), even though the determinental equationumu50
might appear to give anything up ton solutions, wheren is
the number of discrete quasimodes. This feature is due to
specific form of the matrixm that is involved. The overall
process amounts to adiagonalizationbecause the EM field
Hamiltonian in the nondiagonal quasimode form, is now
placed by the diagonal true mode form given by Eq.~16!.

C. Inverse diagonalization:
Undressing the true mode operators

We can also proceed in the opposite direction from Fa
diagonalization, that is, we can also find the quasimode
erators âi and b̂(D) in terms of the true mode operato
Â(v). In general@68,67# the quasimode annihilation opera
tors âi and b̂(D) can also be expressed as linear combi
tions of the true mode annihilation operatorsÂ(v) in the
form

âi5E dv r~v!g i~v!Â~v!,

b̂~D!5E dv r~v!d~D,v!Â~v!, ~51!
3-10
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where the functionsg i(v) and d(D,v) have to be deter-
mined. These can be obtained in terms of thea i(v) and
b(v,D) by evaluating the commutators@Â(v),âi

†# and

@Â(v),b̂(D)†# using the basic commutation rules in Eqs.~17!

and ~14!. For the first commutator, on substituting forÂ(v)
from Eq. ~22! we obtaina i(v), on the other hand, substitu
ing instead forâi from Eq. ~51! gives g i* (v), and hence
a i5g i* . Carrying out a similar process for the second co
mutator gives the resultb5d* and thus

âi5E dv r~v!a i* ~v!Â~v!,

b̂~D!5E dv r~v!b* ~D,v!Â~v!. ~52!

As has been already described in Sec. III A, the first of th
two equations enables us to relate the two descriptions o
atom-field interaction given in Eqs.~15! and ~18!. Ulti-
mately, the key expression we have obtained in Eq.~19! for
the atom-true mode coupling constant rests on this result
we will see in Sec. IV, this enables us to relate pseudomo
to the discrete quasimodes.

As a final check of the detailed expressions, in Appen
C we start with the field Hamiltonian in the quasimode for
Eq. ~13!, then substitute our solutions fora i(v) andb(v,D)
into the expressions forâi and b̂(D) given in Eqs.~52!. On
evaluating the result, the Hamiltonian in the true mode fo
Eq. ~16!, is obtained—as required for consistency.

It has already been noted in Sec. III B that the final e
pression for the reservoir structure functionDk(v) in terms
of quasimode quantities is independent of the true mode d
sity r(v). Also, we have found no equation that actua
gives an expression forr(v) in terms of the quasimode
quantities, including the continuum quasimode dens
rc(D)—a somewhat surprising result. The true mode den
therefore does not play an important role in the quasim
theory. The reason for this is not that hard to find, howev
The theory can be recast withboth the r(v) and rc(D)
factors incorporated into the various operators and coup
constants. In Appendix B we show thatr(v) andrc(D) can
be scaled away to unity. For example, from Eqs.~42!, ~45!,
and ~22! we see that the true mode annihilation operato
proportional to 1/Ar(v) , the other~operator! factor only
depending on quasimode quantities. Hence~as in Appendix
B! we may scale away ther(v) dependence via the subst
tution:

Â~v!5
Â(s)~v!

Ar~v!
, ~53!

where Â(s)(v) is independent ofr. If this substitution is
made, then the field Hamiltonian is given by

ĤF5E dv \vÂ(s)†~v!Â(s)~v! ~54!

without anyr(v) term.
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IV. APPLICATIONS

A. Case of a single quasimode

For this case no coupling constant between discrete qu
modes is present and we may easily allow for a nonzero s
matrix elementF11 and for nonconstantWi(D). Noting that
@vE2V(v)#ADJ51 anduvE2V(v)u5v2v12F11(v), a
simple evaluation of Eqs.~34!, ~42!, and~47! gives the fol-
lowing results:

rc~v!z~v!5
v2v12F11~v!

uW1~v!u2
, ~55!

a1~v!52 iArc~v!

r~v!

W1~v!*

v2v12F11~v!2 iprc~v!uW1~v!u2
,

~56!

gk~v!5lk1a1~v!

52 iArc~v!

r~v!

lk1W1~v!*

v2v12F11~v!2 iprc~v!uW1~v!u2
.

In terms of a frequency shiftDv1 and half-width G/2
defined as

Dv1~v!5F11~v!, ~57!

G~v!

2
5prc~v!uW1~v!u2, ~58!

the reservoir structure function@see Eq.~20!# for the situa-
tion where only a single atomic transitionk is involved, is
then found to be (C51)

Dk~v!5
ulk1u2G~v!/2p

@v2v12Dv1~v!#21G~v!2/4
. ~59!

In the situation where the quasimode densityrc(D) and the
coupling constantW1(D) are slowly varying functions of
D, these quantities can be approximated as constants in
expressions for the frequency shift and width. The reserv
structure function is then a Lorentzian shape with a sin
pole in the lower-half plane atv11Dv12 iG/2 correspond-
ing to a single pseudomode. Thus the single discrete qu
mode is associated with a single pseudomode, whose p
tion z1 is given byv11Dv12 iG/2 in terms of quasimode
quantities.

B. Case of zero discrete quasimode-quasimode coupling
and flat reservoir coupling constants

The theory becomes rather simpler if there is no coupl
between the discrete quasimodes, that is

v i j ⇒0. ~60!

This could be in fact arranged by prediagonalizing the par
the HamiltonianĤF that only involves the discrete quas
mode operators. Thus we write
3-11
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(
i

\v i âi
†âi1(

iÞ j
\v i j âi

†â j ~61!

in the form

(
i

\j i ĉi
†ĉi ~62!

via the transformation

ĉi5(
j

Ui j â j , ~63!

whereU is unitary. The last equation can be inverted to g
the âi in terms of theĉi and the result substituted in othe
parts ofĤF @Eq. ~13!# andĤAF @Eq. ~15!#. The original cou-
pling constantslki and Wi(D) would be replaced by new
coupling constants via suitable linear combinations involv
the matrixU, and these generally would have similar pro
erties~e.g., flatness! as the original ones.

The idea of replacing the structured reservoir of tr
modes by quasimodes, in which the continuum quasimo
constitute a flat reservoir, implies that the discrete-continu
as

d

05381
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quasimode coupling constantsWi(D) and the quasicon-
tinuum mode densityrc(D) are slowly varying functions of
D. This results in the shift matrixFi j elements being small
so it would be appropriate to examine the case where t
are ignored, that is

Fi j ⇒0 ~64!

with both rc , and theWi are assumed constant.
For the casev i j 50, Fi j 50, rc(D)5rc, andWi(D)5Wi

~constants! the quantities involved in the inverse of the m
trix vE2V(v) are

uvE2V~v!u5~v2v1!~v2v2!•••~v2vn!,

„vE2V~v!…i j
ADJ5~v2v1!~v2v2!•••~v2v i 21!

3~v2v i 11! . . . ~v2vn!d i j . ~65!

A straightforward application of Eqs.~34! and ~44! leads to
the simple results:

rcz~v!5H(
i

uWi u2

v2v i
J 21

, ~66!
a i~v!52 iA rc

r~v!
Wi*

~v2v1!~v2v2!•••~v2v i 21!~v2v i 11!•••~v2vn!

Pn~v!
, ~67!
r

of

o-
far
c-
n

where the functionPn(v) @which is defined in Eq.~48!#, is
now a polynomial of degreen, whose roots are designated
j i . It is now given by

Pn~v!5~v2v1!~v2v2!•••~v2vn!

2 iprc(
j

uWj u2~v2v1!•••~v2v j 21!

3~v2v j 11!•••~v2vn!

5~v2j1!~v2j2!•••~v2jn!. ~68!

For the true mode coupling constantsgk(v), the general
result in Eq.~47! can be applied to give

gk~v!52 iA rc

r~v!

Qn21
k ~v!

~v2j1!~v2j2!•••~v2jn!
,

~69!

where the functionQn21
k (v) @which is defined in Eq.~49!# is

now a polynomial of ordern21, whose roots are designate
asu i . It is now given by

Qn21
k ~v!5(

i
lkiWi* ~v2v1!~v2v2!•••~v2v i 21!

3~v2v i 11!•••~v2vn! ~70!
5Sk~v2u1!~v2u2!•••~v2un21!, ~71!

whereSk is a strength factor defined as

Sk5(
i

lkiWi* . ~72!

The reservoir structure functionDk(v) @see Eq.~50!# for
the k transition is then given by (C51)

Dk~v!5rcuSku2
u~v2u1!~v2u2!•••~v2un21!u2

u~v2j1!~v2j2!•••~v2jn!u2
.

~73!

Since products of the form (v2j)(v2j* ) can be writ-
ten as (v2Rej)21(Im j)2, the behavior of the reservoi
structure functionDk5r(v)ugk(v)u2 @see Eq.~20!# as a
function ofv is now seen to be determined by the product
n Lorentzian functions associated withuPn(v)u2 with the
modulus squared of the polynomial of degreen21 given by
uQn21

k (v)u2. The quasicontinuum mode density merely pr
vides an uninteresting multiplicative constant, except inso
as it is involved in expressions for the width and shift fa
tors. In the case where there aren discrete quasimodes, the
irrespective of the location of the rootsj i of the polynomial
equationPn(v)50, the reservoir structure functionDk(v)
for a single quantum excitation hasn poles in the lower-half
3-12
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plane, each corresponding to eitherj i or j i* . As there aren
roots whenn discrete quasimodes are present, we see
each discrete quasimode corresponds to one of then pseudo-
modes, whose positionzi is equal toj i or to j i* . Thus, for
the case here where the coupling constants and the quas
tinuum mode density are independent of frequency, the
ture that leads to a pseudomode is the presence of a dis
quasimode.

C. Case of two discrete quasimodes

The results in the previous section can be convenie
illustrated for the case of two discrete quasimodes. For s
plicity we will again restrict the treatment to the situatio
where v1250, Fi j 50, rc(D)5rc , and Wi(D)5Wi ~con-
n
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stants!, and just consider a two-level atom, so only two co
pling constantsl1 ,l2 are involved. In this case the atom
true mode coupling constant can be obtained from Eq.~69!
and is

g~v!52 iA rc

r~v!

~l1W1* 1l2W2* !~v2v0!

~v2j1!~v2j2!
, ~74!

wherev0 and the rootsj1,2 of P2(v)50 are given by

v05
l2W2*

~l1W1* 1l2W2* !
v11

l1W1*

~l1W1* 1l2W2* !
v2 ~75!

and
j1,25
1

2
$~v11v2!1 iprc~ uW1u21uW2u2!%6

1

2
A$~v12v2!1 iprc~ uW1u22uW2u2!%224p2rc

2uW1u2uW2u2. ~76!
ter

ou-
g.

e of
It will also be useful to introduce widthsG i defined by

G i52prcuWi u2 ~77!

and which can be later identified~see Sec. V! as the discrete
quasimode decay rates@Eq. ~99!#. These results will be now
examined for special subcases.

1. Special subcase: Equal quasimode frequencies

In this case we choose

v15v25vC ~78!

and find that

v05vC ,

j1,25vC ,vC1 iprc~ uW1u21uW2u2!, ~79!

giving for the atom-true mode coupling constant

g~v!52 iA rc

r~v!

~l1W1* 1l2W2* !

v2vc1 iprc~ uW1u21uW2u2!
,

~80!

and for the reservoir structure function

D~v!5rc

ul1W1* 1l2W2* u2

~v2vc!
21~@G11G2#/2!2

. ~81!

This corresponds to a single pole in the lower-half pla
for the reservoir structure function@see Eq.~20!# and thus
only results in asinglepseudomode, albeit for a case oftwo
degenerate discrete quasimodes.
e

2. Special subcase: Equal quasimode reservoir coupling
constants

In this case we choose

W15W25W ~82!

and find that

v05vC1DvC ,

vC5
1

2
~v11v2!,

DvC5
~l12l2!

2~l11l2!
~v22v1!,

j1,25
1

2
~v11v2!1 iprcuWu2

6
1

2
A~v12v2!224p2rc

2uWu4. ~83!

Herev0 has been written in terms of the quasimodes cen
frequencyvC and a frequency shiftDvC , depending on the
difference between the two atom-discrete quasimodes c
pling constantsl i and the discrete quasimodes detunin
There are now two regimes depending on the relative siz
the discrete quasimodes separationuv12v2u compared to
the square root of the quasicontinuum mode densityArc
times the reservoir coupling constantW. Equivalently, the
regimes depend on the relative size of the separationuv1
2v2u compared to the width factor~decay rate! G5G1
5G252prcuWu2.

a. Regime 1: Large separationuv12v2u.G. Adopting
the convention thatv1,v2, we can write
3-13
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1

2
A~v12v2!224p2rc

2uWu45
1

2
~v22v1!2DvR, ~84!

whereDvR is a reservoir induced frequency shift. The atom-true mode coupling constant now becomes:

g~v!52 iA rc

r~v!

~l11l2!W* ~v2vC2DvC!

~v2v21DvR2 iprcuWu2!~v2v12DvR2 iprcuWu2!
~85!

and the reservoir structure function is then

D~v!5
ul11l2u2~G/2p!~v2vC2DvC!2

@~v2v21DvR!21G2/4#@~v2v12DvR!21G2/4#
. ~86!

The reservoir structure functionD @see Eq.~86!# will be zero at the shifted center frequencyvC1DvC . There are two poles
in the lower-half plane leading to Lorentzian factors centerd at frequenciesv22DvR andv11DvR, and which have equa
widths 2prcuWu2. We note that the effect of the coupling to the reservoir is to decrease the effective discrete quas
separation by 2DvR .

b. Regime 2: Small separationuv12v2u,G. We now write

1

2
A4p2rc

2uWu42~v12v2!25prcuWu2~12D f G!, ~87!

whereD f G is a fractional change in width factors associated with discrete quasimode separation. The atom-true mode
constant now becomes

g~v!52 iA rc

r~v!

~l11l2!W* ~v2vC2DvC!

Fv2vC22iprcuWu2S 12
1

2
D f GD G~v2vC2 iprcuWu2D f G!

, ~88!

and the reservoir structure function is

D~v!5
ul11l2u2~G/2p!~v2vC2DvC!2

F ~v2vC!21G2S 12
1

2
D f GD 2GF ~v2vC!21G2S 1

2
D f GD 2G . ~89!
to

n

a
e

eir
Eq.

d in
e
ing
the

ith
The reservoir structure functionD @see Eq.~89!# will
again be zero at the shifted center frequencyvC1DvC .
There are two poles in the lower-half plane leading
Lorentzian factors both centerd at the same frequencyvC ,
but which have unequal widths 2prcuWu2(12 1

2 D f G) and
prcuWu2D f G . If D f G!1, one width is much smaller tha
the other.

In their work on super-radiance in a photonic band-g
material, Bayet al. @77# assume as a model for the mod
density, a so-called Fano profile of the form

r~v!5
f ~v2vC2q!2

F ~v2vC!21S 1

2
k D 2GF ~v2vC!21S 1

2
g D 2G

~90!

with the two-level atom coupling constantg(v) given by a
slowly varying function proportional toAv. It is interesting
05381
p

to note that the reservoir structure function related to th
theory is of the same form as that obtained here from
~89! if the following identifications are made:

q→2DvC ,

1

2
k→2prcuWu2S 12

1

2
D f GD ,

1

2
g→prcuWu2D f G . ~91!

For situations such as atomic systems coupled to the fiel
high Q cavities, the physics is different of course, with th
resonant behavior in the reservoir structure function be
due to the atom-true mode coupling constants rather than
reservoir mode density~which we assume is slowly varying!.
Nevertheless, our two discrete quasimode model—w
3-14
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equal reservoir coupling constantsW that are large compare
to the discrete quasimodes detuninguv12v2u—does provide
anequivalentphysical model for the photonic band-gap ca
that Bayet al. treated, the lack of which was commented
in the review by Lambropouloset al. @22#.

The band-gap case was also treated as a specific exa
by Garraway@59# in the original pseudomode theory pape
A model for the reservoir structure function was assumed
the form of a difference between two Lorentzians:

D~v!5w1

G1

~v2vC!21S 1

2
G1D 2 2w2

G2

~v2vC!21S 1

2
G2D 2 ,

~92!

where the weightsw1 ,w2 satisfy w12w251. Again, apart
from an overall proportionality constant this same form c
be obtained here@see Eq.~89!# for the reservoir structure
function D, if we choose the atom-discrete quasimode c
pling constantsl1 ,l2 to be equal~so that the frequency shif
DvC is zero!:

l15l2 ,

DvC50, ~93!

and where the following identifications are made:

1

2
G1→2prcuWu2S 12

1

2
D f GD ,

1

2
G2→prcuWu2D f G ,

w1→
12

1

2
D f G

12D f G
,

w2→

1

2
D f G

12D f G
. ~94!

As will be seen in Sec. V, the existence of unusual forms
the reservoir structure function~such as the presence o
Lorentzians with negative weights! does not rule out Mar-
kovian master equations being applied to the atom-disc
quasimodes system. Thus, for the situation of a single qu
tum excitation, where the pseudomodes are always equ
lent to discrete quasimodes, we can always obtain Markov
master equations for the pseudomode-atom system.

V. MARKOVIAN MASTER EQUATION FOR THE
ATOM-DISCRETE QUASIMODES SYSTEM

A key idea for treating the behavior of a small syste
coupled to a structured reservoir is that although the beha
of the small system itself is non-Markovian, an enlarged s
05381
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tem can be obtained that exhibits Markovian dynamics—a
which includes the small system, whose dynamics can
obtained later. In our example of a multilevel atomic syste
coupled to the quantum EM field as a structured reserv
we can proceed as follows. The overall system of the atom~s!
plus quantum EM field is partitioned into a Markovian sy
tem consisting of the atom plus the discrete qua
modes and a flat reservoir consisting of the continuum qu
modes. The system HamiltonianĤS is

ĤS5(
k

hk\vk~ ŝk
1ŝk

22ŝk
2ŝk

1!1(
i

\v i âi
†âi

1(
iÞ j

\v i j âi
†â j1(

k
(

i
~\lki* âi ŝk

11H.c.! ~95!

while the reservoir HamiltonianĤR is

ĤR5E dD rc~D! \Db̂†~D!b̂~D! ~96!

and the system-reservoir interaction HamiltonianĤS2R is

ĤS2R5(
i
E dD rc~D!@\Wi~D!âi

†b̂~D!1H.c.#, ~97!

so that the total Hamiltonian is still equal to the sum
ĤA , ĤF , andĤAF , given in Eqs.~12!, ~13!, and ~15!. The
distinction between the non-Markovian true mode treatm
and the Markovian quasimode approach is depicted in Fig

It is of course the slowly varying nature of the couplin
constantsWi(D) and the mode densityrc(D) that results in
a Markovian master equation for the reduced density op
tor r̂ of the atom-discrete quasimodes system. Rather t
derive the master equation for the most general state of
reservoir, we will just consider the simplest case in which
reservoir of continuum quasimodes are all in the vacu
state. Again, the coupling constantsWi will be assumed con-
stant so that no shift matrixFi j elements are present. Th
master equation is derived via standard proceedures~Born
and Markoff approximations! @12,20#, which require the
evaluation of two-time reservoir correlation functions
which the required reservoir operators are the quanti
*dD rc(D)Wi(D)b̂(D) and their Hermitian adjoints. To ob
tain Markovian behavior, we require the quantiti
rc(D)Wi(D)Wj* (D) to be slowly varying withD, so that the
reservoir correlation timetc @inversely proportional to the
bandwidth ofrc(D)Wi(D)Wj* (D)] is sufficiently short that
the interaction picture density operator hardly changes d
ing tc .

The standard procedure then yields the master equatio
the Lindblad form:

dr̂

dt
5

2 i

\
@ĤS , r̂ # 1 (

i j
prcWiWj* $@ â j ,r̂âi

†#1@ â j r̂,âi
†#%.

~98!
3-15
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Direct couplings between the discrete quasimodes involv
thev i j are included in the system HamiltonianĤS . Radiative
processes take place via the atom-discrete quasimodes
action also included inĤS , though still given as shown in
Eq. ~15!. The loss of radiative energy to the reservoir
described via the relaxation terms in the master equat
The diagonal terms wherei 5 j describe the relaxation of th
i th quasimode in which the decay rate is proportional
rcuWi u2. A typical decay rateG i for the i th discrete quasi-
mode into the reservoir of continuum quasimodes will be

G i52prcuWi u2. ~99!

Note that the off-diagonal termsiÞ j involve pairs of dis-
crete quasimode operatorsâ j and âi

† , so there is also a type
of rotating-wave approximation interaction taking place v
the reservoir between these discrete quasimodes, as we
via direct Hamiltonian coupling involving thev i j . The stan-
dard criterion for the validity of the Born-Markoff maste
equation Eq.~98! is thatGtc!1. Processes involving multi
photon excitation of the reservoir~such as may occur fo
excited multilevel atoms! can be studied using standard ma
ter equation methods, thereby enabling multiple excitation
the structured reservoir to be treated via the quasim
theory.

As indicated previously, the case of an atom driven b
single mode laser field can also be treated. Here the ato
Hamiltonian term inĤS would be replaced by the dresse
atom Hamiltonian given as the sum of the atomic Ham
tonian, the Hamiltonian for the single laser mode, and
atom-laser mode coupling term. For the quasimode tr
ment, where the cavity mode is included explicitly and t
reservoir is in the vacuum state, the reservoir correlation t
would be too short for any dressed atom modifications to
relaxation rates to be present@33#. This would not necessar
ily be the case if a true mode approach to the structu
reservoir is used@35–37#.

VI. NONSLOWLY VARYING MODE DENSITIES AND ÕOR
COUPLING CONSTANTS

The basic model treated in this paper is that of atom
systems coupled to a set of discrete quasimodes of the
field, which are in turn coupled to a continuum set of qua
modes. Although expressions for the true mode coup
constant and the reservoir structure function have been
tained for the general case where the quasimode densitrc
and the coupling constantsWi are not necessarily slowly
varying functions ofD @see Eqs.~47! and ~50!# the useful-
ness of the results where this is not the case is somew
limited. As indicated in the previous section, the mas
equation for the atom plus discrete quasimodes system
no longer be Markovian, so the enlargement of the sys
based on adding the discrete quasimodes to produce a
kovian system fails.

Also, for the nonslowly varyingrc or Wi case, we can no
longer link each discrete quasimode to a pseudomode.
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situation may be seen both from the general result for
reservoir structure function@Eq. ~50!# or the specific result
we have obtained for the case where there is a single disc
quasimode@Eq. ~59!#. In the former case, the functionPn(v)
would not be a polynomial of degreen, and therefore could
have more thann roots, leading to more pseudomodes th
discrete quasimodes. In the latter case involving just o
discrete quasimode, even having the mode densityrc(v)
@and henceG(v)] represented by a single peaked functi
would result inD(v) going from a single peaked function t
a triple peaked function, corresponding to three pseu
modes.

However, whererc or Wi are no longer slowly varying,
an examination of the underlying causes for this variat
may suggest replacing the present atom plus discrete
continuum quasimode model by a more elaborate system
better represents the physics of the situation, with slow
varying parameters now involved. Fano diagonalizat
based on such a more elaborate model could produce
desired link up with the pseudomode approach and enab
suitable, enlarged system to be identified, which has Mark
ian behavior, as well as overcoming the problem of treat
multiple reservoir excitations. One possible elaborat
would be to add a further continuum of quasimodes that
fermionic rather than bosonic.

VII. CONCLUSIONS

The theory presented above is mainly intended to appl
the important situation where the reservoir structure is ac
ally due to the presence of a discrete system of quasimo
that are coupled to other continuum quasimodes via slo
varying coupling constants. For example, the quantum
field in high Q resonant cavities can be accurately describ
in terms of the quasimode model which has these featu
the discrete quasimodes being the cavity quasimodes~linked
to the cavity resonances! with which the atoms inside the
cavity interact, and the continuum quasimodes being the
ternal modes.

For this situation it has been shown that, for the pres
case of single quantum excitations, the pseudomode me
for treating atomic systems coupled to a structured reser
of true quantum EM field modes, can be obtained by app
ing the Fano diagonalization method to the field described
an equivalent way as a set of discrete quasimodes toge
with a set of continuum quasimodes, whose mode densit
assumed to be slowly varying. The interaction between
discrete and continuum quasimodes is treated in the rotat
wave approximation assuming slowly varying coupling co
stants, and the atomic system is assumed to be only cou
to the discrete quasimodes. The theory includes the true
continuum quasimode densities explicitly.

Expressions for the quasimode operatorsâi and b̂(D) in
terms of the true mode operatorsÂ(v) ~and vice versa! have
been found, and explicit forms for the atom-true mode co
pling constants have been obtained and related to the re
voir structure function that applies in pseudomode theo
We have seen that the feature that leads to a pseudomo
the presence of a discrete quasimode. Each discrete q
3-16
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mode corresponds to one of the pseudomodes, whose
tion zi in the lower-half complex plane is determined fro
the rootsj i of a polynomial equation depending on the p
rameters for the quasimode system.

Although the behavior of the atom itself is non
Markovian, an enlarged system consisting of the atom p
the discrete quasimodes coupled to a flat reservoir consis
of the continuum quasimodes, exhibits Markovian dynam
and the master equation for this enlarged system has
obtained. Using the quasimode theory, processes invol
multiphoton excitation of the structured reservoir~such as
may occur for excited multilevel atoms! can now be studied
using standard master equation methods applied to the a
discrete quasimodes system. Furthermore, cases with
usual forms of the reservoir structure function for sing
quantum excitation~for example, containing Lorentzian
with negative weights! still result in Markovian master equa
tions. Since for single quantum excitation the pseudomo
are equivalent to discrete quasimodes, we can now alw
obtain Markovian master equations for pseudomode-a
systems by our approach.

Although not so useful in such cases, the present the
does lead to general expressions for the true mode coup
constant and the reservoir structure function for single qu
tum excitation. These expressions are still valid for the g
eral case where the quasimode densityrc and the coupling
constantsWi are no longer slowly varying functions ofD.
However, the master equation for the atom plus discr
quasimodes system will no longer be Markovian, so the
largement of the system based on adding the discrete q
modes to produce a Markovian system fails. Also, for
nonslowly varyingrc or Wi case, we can no longer link eac
discrete quasimode to a pseudomode—there may be m
pseudomodes than discrete quasimodes. In such cas
would be desirable to replace the present quasimode sy
by a more elaborate quasimode system involving only slo
varying quantities, and which better represents the unde
ing physical causes of the variation inWi andrc that occurs
in the present model. This may make possible an exten
of the Fano diagonalization approach that still links quasim
des with pseudomodes, and results in a Markovian ma
equation for the enlarged atom plus quasimode system
such an elaborated system, the disadvantage of the pre
pseudomode treatment in treating multiple excitations of
structured reservoir could still be removed.

The treatment has been outlined in the case of a multile
atom coupled to a structured reservoir of quantum EM fi
modes, but a similar approach would apply for any fermio
system coupled to a structured reservoir of bosonic osc
tors. Extensions to fermionic reservoirs should also be p
sible. At present the treatment is restricted to cases wh
threshold and band-gap effects are unimportant, but ma
applicable to two-dimensional photonic band-gap materi
Further extensions of the treatment to allow for atomic s
tems driven by single mode external laser fields are a
possible, with the original atomic system being replaced
the dressed atom.
05381
si-

-

s
ng
,
en
g

m-
n-

es
ys
m

ry
ng
n-
-

te
-
si-

e

re
s it
em
y
y-

on
-
er
In
ent
e

el
d
c
-

s-
re
be
s.
-
o
y

ACKNOWLEDGMENTS

The authors are grateful to D. G. Angelakis, J. Wang, P
Knight, and A. Imamoglu for helpful discussions. This wo
was supported by the United Kingdom Engineering a
Physical Sciences Research Council. S.M.B. acknowled
support from the Royal Society of Edinburgh and the Sc
tish Executive Education and Lifelong Learning Departme

APPENDIX A: ATOMIC HAMILTONIAN

As an example of writing the atomic Hamiltonian in th
form given in Eq.~12!, consider a three-level atom in aV
configuration with upper statesu2&,u1& and lower stateu0&,
whose energy is chosen for convenience to be zero.
atomic transition operators areŝ2

1[u2&^0u and ŝ1
1[u1&^0u

for the two optical transitions of frequenciesv2 andv1, and
ŝ3

1[u2&^1u for the Zeeman transition of frequencyv22v1.
The form given in Eq.~12! is

ĤA5h1\v1~ ŝ1
1ŝ1

22ŝ1
2ŝ1

1!1h2\v2~ ŝ2
1ŝ2

22ŝ2
2ŝ2

1!

1h3\~v22v1!~ ŝ3
1ŝ3

22ŝ3
2ŝ3

1!

5h1\v1~ u1&^1u2u0&^0u!1h2\v2~ u2&^2u2u0&^0u!

1h3\~v22v1!~ u2&^2u2u1&^1u!. ~A1!

This expression may also be written in the form

ĤA5\v1u1&^1u1\v2u2&^2u1\v~ u0&^0u

1u1&^1u1u2&^2u!, ~A2!

since by equating the coefficients of the three projection
erators, we obtain a set of linear equations for theh1 ,h2 ,h3,
andv, which are solvable–in fact the solutions are not ev
unique. These equations are

h2v21h3~v22v1!5v21v,

h1v12h3~v22v1!5v11v,

2h1v12h2v25v. ~A3!

Adding these equations and then substituting into the fi
two gives

v52
1

3
~v11v2!, ~A4!

1h3~v22v1!52
1

3
v11S 2

3
2h2Dv2 ,

2h3~v22v1!5S 2

3
2h1Dv12

1

3
v2 . ~A5!
3-17
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The last two equations do not produce a unique solution
h1 ,h2 ,h3. We can arbitarily chooseh350 for the low-
frequency transition, and then we find that

h15
1

3
2

1

3

~v22v1!

v1
,

h25
1

3
1

1

3

~v22v1!

v2
. ~A6!

This givesh15h25 1
3 for two degenerate optical frequenc

transitions.
Comparing the two expressions forĤA in Eqs. ~A1! and

~A2!, whereh1 ,h2 are given by Eq.~A6! ~with h3 set to
zero! and v by Eq. ~A4!, we see that Eq.~A2! gives the
atomic energy apart from the constant term2 1

3 \(v11v2).

APPENDIX B: SCALING FOR MODE DENSITIES
r„v…,rc„D… EQUAL TO UNITY

The equations presented in the first part of Sec. III
based on true and quasicontinuum mode densities tha
not necessarily equal to unity. To compare our express
with those in Ref.@12#, we now set out the scalings need
for the various quantities to give the Hamiltonians equival
to ĤF and ĤAF , in either true or quasimode forms@Eqs.
~16!, ~13!, ~18!, and~15!# in which the mode densitiesr and
rc are made equal to unity. The creation and anihilation
erators are no longer dimensionless, the coupling const
and angular frequencies do not have dimensions of
quency, and the expansion coefficients are not dimension
The scaled quantities appearing in the Hamiltonians or r
tionships between annihilation operators will be deno
with a superscript(s).

The following replacements were made to the annihilat
and creation operators:

Arc~D!b̂~D!→b̂(s)~D!, ~B1!

Arc~D!b̂†~D!→b̂(s)†~D!, ~B2!

Ar~v!Â~v!→Â(s)~v!, ~B3!

Ar~v!Â†~v!→Â(s)†~v!, ~B4!

to the coupling constants

Arc~D!Wi~D!→Wi
(s)~D! ~B5!

and to the expansion coefficients,

Ar~v!a i~v!→a i~v!(s), ~B6!

Arc~D!r~v!b~v,D!→b (s)~v,D! ~B7!
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will give the Hamiltonians equivalent toĤF and ĤAF in
either true or quasimode forms@Eqs. ~16!, ~13!, ~18!, and
~15!# in which the mode densities are put equal to one.
addition, the modified forms of the relationships betwe
true and quasimode annihilation operators@Eqs. ~22! and
~52!# can be obtained in whichr andrc are made equal to
unity, as can the revised forms of the commutation rules. T
latter are

@ b̂(s)~D!,b̂(s)†~D8!#5d~D2D8!, ~B8!

@Â(s)~v!,Â(s)†~v8!#5d~v2v8!. ~B9!

In addition, the various equations for th
Fi j (v),a i(v),b(v,D),z(v),gk(v), and Dk(v) now apply
with r andrc put equal to unity. It should be noted that th
quantitiesâi ,v i ,v i j ,D,v are not replaced, nor are any of th
atomic quantitiesĤA ,hk ,vk ,ŝk

1 ,ŝk
2 or lki .

APPENDIX C: THE HAMILTONIAN H F

IN DIAGONALIZED FORM

We show by starting with the field Hamiltonian in th
quasimode form Eq.~ 13!, substituting the solutions fo
a i(v) and b(v,D) into the expressions forâi and b̂(D)
given in Eqs.~52! and then evaluating the result, that th
Hamiltonian in the true mode form, Eq.~16!, is obtained.
The symmetry conditionsFi j 5F ji* and n i j 5n j i* are used
throughout.

Using the expressions forâi and b̂(D) given in Eqs.~52!
the Hamiltonian in the quasimode form, Eq.~13!, is then
given by

ĤF5\E dv r~v! E dv8r~v8!Â†~v!Â~v8!I ~v,v8!,

~C1!

where the functionI (v,v8) is

I ~v,v8!5(
i

v ia i~v!a i* ~v8!

1E dD rc~D!Db~D,v!b* ~D,v8!

1 (
i j ( iÞ j )

n i j a i~v!a j* ~v8!

1(
i
E dD rc~D!Wi~D!a i~v!b* ~D,v8!

1(
i
E dD rc~D!Wi* ~D!a i* ~v8!b~D,v!.

~C2!
3-18
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Substituting forb(v,D) in terms of thea i(v) from Eq.
~25!, using the expression~27! for Fi j and then Eq.~26! for
the a i(v), we get for certain contributions within the la
two terms in Eq.~C2!,

E dD rc~D!Wi~D!b* ~D,v8!

52~v i2v8!a i* ~v8!2 (
j ( j Þ i )

n j i* a j* ~v8!,

E dD rc~D!Wi* ~D!b~D,v!

52~v i2v!a i~v!2 (
j ( j Þ i )

n j i a j~v!, ~C3!

leading to
05381
(
i
E dD rc~D!Wi~D!a i~v!b* ~D,v8!

52(
i

~v i2v8!a i~v!a i* ~v8!

2 (
i j ( j Þ i )

n j i* a i~v!a j* ~v8!, ~C4!

(
i
E dD rc~D!Wi* ~D!a i* ~v8!b~D,v!

52(
i

~v i2v!a i~v!a i* ~v8!

2 (
i j ( j Þ i )

n j i a j~v!a i* ~v8!. ~C5!

In the second term of Eq.~C2! substitution forb(v,D)
andb* (v8,D) in terms of thea i(v) anda j* (v8) from Eq.
~25! and then using Eqs.~37! for manipulating principal in-
tegrals and delta functions leads to
E dD rc~D!Db~D,v!b* ~D,v8!5(
i j

H F E dD rc~D!DP
1

v82v
S P

1

v2D
2P

1

v82D
D Wi~D!a i~v!Wj* ~D!a j* ~v8!G

1p2d~v2v8!rc~v!vWi~v!a i~v!Wj* ~v!a j* ~v!

1v8P
1

v2v8
rc~v8!z* ~v8!Wi~v8!a i~v!Wj* ~v8!a j* ~v8!

1vP
1

v82v
rc~v!z~v!Wi~v!a i~v!Wj* ~v!a j* ~v8!

1vd~v2v8!rc~v!z~v!z* ~v!Wi~v!a i~v!Wj* ~v!a j* ~v!J . ~C6!

Then using Eq.~38! we show that

DS P
1

v2D
2P

1

v82D
D 5S vP

1

v2D
2v8P

1

v82D
D ~C7!

and following the introduction of theFi j from Eq. ~27! we get

E dD rc~D!Db~D,v!b* ~D,v8!5(
i j

H vP
1

v82v
F ji ~v!a i~v!a j* ~v8!2v8P

1

v82v
F ji ~v8!a i~v!a j* ~v8!

1vP
1

v82v
rc~v!z~v!Wi~v!a i~v!Wj* ~v!a j* ~v8!

2v8P
1

v82v
rc~v8!z* ~v8!Wi~v8!a i~v!Wj* ~v8!a j* ~v8!

1vd~v2v8!rc~v!@p21uz~v!u2#Wi~v!a i~v!Wj* ~v!a j* ~v!J . ~C8!
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The last term is justvd(v2v8)/r(v) by using the normal-
ization condition Eq.~39!, and therc(v) factor cancels out.
The next step is to eliminate theFi j using Eq.~26! for the
a i(v) twice. After further algebra using Eq.~38!, again we
find that

E dDrc~D!Db~D,v!b* ~D,v8!

5vd~v2v8!/r~v!

1(
i

v ia i~v!a i* ~v8!2~v1v8!(
i

a i~v!a i* ~v8!

1 (
i j ( j Þ i )

n j i* a i~v!a j* ~v8!. ~C9!
-

p

S

05381
The results in Eqs.~C9!, ~C4!, and ~C5! can be substituted
back into Eq.~C2! for I (v,v8). It is found that there is
extensive cancellation leading to the final expression

I ~v,v8!5vd~v2v8!/r~v! ~C10!

and hence the HamiltonianĤF in Eq. ~C1! is now in its true
mode form:

ĤF5E dv r~v! \vÂ†~v!Â~v!, ~C11!

thus showing that the true and quasimode forms ofĤF are
equal.
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