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Theory of pseudomodes in quantum optical processes
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This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of
guantum electromagnetic field modes, with particular relevance to atoms interacting with the field @ high-
cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for
single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system
in which the atomic transitions are coupled to a discrete sétafity) quasimodes, which in turn are coupled
to a continuum set ofexternal quasimodes with slowly varying coupling constants and continuum mode
density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual
reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasi-
mode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master
equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete
guasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with
the true mode density rather than the coupling constants, the single quantum excitation case appears to be
equivalent to a case with two discrete quasimodes.
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I. INTRODUCTION environment induced decohererjde9] is responsible for the
The quantum behavior of a small system coupled to alensity operator becoming diagonal in the pointer baxtis-

large one has been the subject of many studies since quantuerwise a macroscopic superposition of pointer readings
theory was first formulated. The small system is usually ofwould resulj.
primary interest and generally microscogitom, nucleus, A standard method for describing the reservoir effects on
molecule, or small collections of thedeut currently systems the small system is based on the Born-Markoff master equa-
of a more macroscopic natufBose condensate, supercon- tion for the system density operatft0—13. This depends
ductor, quantum computeare being studied. The large sys- on the correlation time for the reserv@as determined from
tem is invariably macroscopic in natutfree space or uni- the behavior of two-time correlation functions for pairs of
verse modes of the electromagnédtidM) field, lattice modes reservoir operators involved in the system-reservoir interac-
in a solid, collider atoms in a gaand is of less interest in its tion) being very short compared to that of the relaxation and
own right, being primarily of relevance as a reservoir or bathnoise processes of the system. In general terms, the more
affecting the small system in terms of relaxation and noiseslowly varying the coupling constants for this interaction or
processes. The large system is often a model for the entirdne density of reservoir states are with reservoir frequencies,
external environment surrounding the small system. Changebe shorter the correlation time will be. For many situations
in the small system statdgescribed in terms of its density in the field of quantum optics, nuclear magnetic resonance
operatoy can be divided into two sorts—effects on the state(NMR), and solid-state physics, the Born-Markoff master
populations(energy loss or gajnor effects on the state co- equation provided an accurate description of the physics for
herencegdecoherence or induced coherendequivalently, the system. Elaborations or variants of the method such as
guantum information(described via the von Neumann en- quantum state trajectoried14,15, Fokker-Planck or
tropy) would be lost or gained due to the interaction with thec-number Langevin equatiof40,16], and quantum Lange-
environment, and its loss is generally associated with decosin equation§10,11,13 are also used. Sometimes an appar-
herence. Interestingly, as the small system becomes larger ently non-Markovian problem can be converted to a Markov-
occupies states that are more classical the time scale for d&n one by a more suitable treatment of the internal system
coherence can become much smaller than that for energpteractions(for example, the use of dressed atom states
loss. This is of special interest in quantum information pro-[17,18 for treating driven atoms in narrow-band squeezed
cessing 1-3] where the small system is a collection of gbits vacuum field419,20)).
making up a quantum computer weakly coupled to the out- However, situations in which the reservoir correlation
side world, or in measurement thedd~7], where the small times are too long for the system time scales of interest—
system is a microsystem being measured, coupled to an apnd thus the standard Born-Markoff approach is no longer
paratus(or pointepy that registers the results. For quantum appropriate—have also been studied. An early paper on this
computers it is desirable that decoherence is negligible dusubject is Ref[21], where atomic decay into a narrow reso-
ing the overall computation timig] (otherwise error correc- nance of an optical cavity is treated. Two regimes are
tion methods have to be incorporated, and this is costly irdistinguished—a weak-coupling regime, where the atomic
terms of processing timewhereas in measurement theory, behavior is Markovian and irreversible decay occurs, and a
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strong-coupling regime, where non-Markovian atomic dy-include part of the reservoithe pseudomode—which could
namics occur accompanied by an oscillatory reversible debe bosonic or fermionic depending on the Qasigereby
cay. In such situations a structured rather than a flat reservoforming a bigger system in which the Markoff approximation
situation applies, and the recent reviews in RE?2,23 in-  applies when the coupling to the remainder of the reservoir is
dicate the current upsurge of interest in non-Markovian betreated. At present the pseudomode method is restricted to
havior as well as providing the reader with references tcsingle reservoir excitation cases, but like the essential states
some of the earlier work. The situations studied include caseapproach, has the advantage of giving exact solutions with-
where the reservoir coupling constants vary significantlyout making use of perturbation theory. The pseudomddes
with frequency, such as the interaction of atshor quantum  rather their amplitudgsare mathematically defined in terms
dots with light in highQ cavities Refs[21,24], including  of the positions and residues of simple poles of the reservoir
microcavities(see, for example, Ref§25-29) and micro-  structure function in the lower-half complex-frequency
spheregsee, for example, Refg30,31)). Laser-driven atoms plane, where the reservoir structure function is proportional
in structured reservoirgesulting in modified resonance fluo- to the reservoir mode density times the modulus squared of
rescence and non-Markovian atomic dynarmibave also the coupling constants. Each pole is associated with a
been treatedsee for example, Ref$32—37). Other cases pseudomode. Since it is related to the description of the res-
where the reservoir mode densities have structure in the formarvoir in terms of its true modd$4—66—which are solu-
of gaps and non-analytic behavior also occur, such as ations of the Helmholtz equation for the exact spatially depen-
atom(or many atoms—super-radiandateracting with light ~ dent permittivity that describes the optical systyem—the
in photonic band-gap materigl&2,38—42. Non-Markovian ~ pseudomode theory is dependent on the reservoir structure
effects in the excitation of continuum state resonances due tlunction having simple poles in the lower-half plane, and is
threshold effects have been studied in R48]. Also, quan- therefore not yet applicable to cases such as realistic photo-
tum feedback situationgt4,45 can involve significant time nic band-gap systems where nonanalytic behavior of the res-
delays in the feedback circuit, and thus result in non-ervoir structure function occurs. Nevertheless, in other cases
Markovian dynamics for the system itself. Furthermore, sysit can be applied without knowing why the poles occur,
tems with several degrees of freedom, such as in quantuthough the disadvantage of this is that the physical nature of
measurementgfor example, the Stern-Gerlach experiment the pseudomodes is then left obscure. The pseudomode
could involve situations where the decoherence times asstheory has also been used to obtain exact Markovian master
ciated with some degrees of freeddsuch as the position of equations for the combined atom plus pseudomodes system.
the atomic spih could become so short that the Markoff The Fano diagonalization methodhvolves replacing the
condition might no longer be valid, and the effects of suchoriginal system-reservoir Hamiltonian by a diagonal form,
non-Markovian relaxation on the decoherence times assocand relates the causes of non-Markovian effects to various
ated with more important degrees of freedgatom spin  underlying features displayed by the new Hamiltonisach
state$ would be of interest. as the presence of bound states in the case of atom)lalsers

A number of methods for treating non-Markovian pro- certain cases it is closely related to the pseudomode method,
cesses have been developed and successfully applied to pras will be seen below. A combination of an improved
lems involving structured reservoirs. Apart from direct nu-pseudomode method with the inclusion via Fano diagonal-
merical simulationgfor example, Ref[46]) these include ization of a suitable model describing the physics of the res-
the Zwanzig-Nakajima non-Markovian master equation ancervoir, would advance the methodology for a simple treat-
its extensiong§47-49, the time-convolutionless projection ment of non-Markovian behavior. Threudden decoherence
operator master equatidb0], Heisenberg equations of mo- methodenables decoherence effects on time scales that are
tion [40,51, stochastic wave-function methods for non- short compared to system Bohr periods to be treated simply
Markovian processegb2—-57, methods based on the essen-by ignoring the system Hamiltonian. In certain respects this
tial states approximation or resolvent operat®8,39,58, method is more universal than the others but it is restricted to
the pseudomode approadl®9,60, Fano diagonalization short-time scales, and therefore has a limited capacity for
[61,12,62 and the sudden decoherence approximalt&si. development. It has, however, been applied to improve our
The last four methods are simple to apply, providing cleaunderstanding of short-time scale decoherence in general
physical insight into the processes involved, and their keysystemdq63] .
features follow. This paper deals with the relationship between the current

The essential states methadvolves the set of coupled pseudomode method for single-quantum reservoir excitations
amplitude equations for the physically important states. Thisand the Fano diagonalization method for situations where the
method can become complicated when multiple excitationseservoir structure is due to the presence of a discrete system
of the reservoir are involvedsince the equations become of (quas) modes, which are coupled to other continuum
unwieldy and difficult to solve. The method of solution gen- (quas) modes. This important case applies to atomic systems
erally involves Laplace transform methods, the final expreseoupled to the quantum EM field in higD resonant cavities,
sions for the amplitudes are obtained via contour integrationsuch as microspheres or microcavities. The aim is to under-
This does have the advantage of enabling nonanalytic effecttand the physical origin of the pseudomodes in terms of
due to thresholdp43] and band gapg39] to be treated. The quasimode$67,68,63, which are solutions of the Helmholtz
pseudomode methadarts from the essential states approxi-equation for an idealized spatially dependent permittivity
mation and is based on the idea of enlarging the system tthat approximately models the actual optical system. In the
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case of cavity QED, one discrete quasimode can be chosen to 4
occur for each resonance of the cavity, though each such
resonance is associated with large numbers of true modes
[69,65. A further objective of this paper is to see whether the

pseudomode theory restriction to single quantum excitations
of the reservoir can be lifted through the explicit introduction hw
of this physical model for the pseudomodes. It is shown that
the pseudomode method for single quantum excitations of
the structured reservoir can be obtained by applying the Fano
diagonalization method to a system featuring a set of discrete

——|0)

quasimodes 67,68,69 together with a set of continuum \ J \ J
guasimodes, whose mode density is slowly varying. The

structured reservoir of true modg84—64 is thus replaced Two-Level Atom Strucmr.ed

by the quasimodes. The interaction between the discrete and Reservoir

CO”“_””“T“ quaSImodes_ is treated in _the rotat_lng—wave aP- F|G. 1. llustration of a two-level atom coupled to a structured
proximation and assuming slowly varying coupling constant§ageryoir.

[69,70. The atomic system is assumed to be only coupled to

the discrete quasimodes. The density of continuum quasimQgqerygir. Only one photon excitation process will occur.
des is explicitly included in the model. Although the behaV'However, the formalism would also apply to any spin-1/2

ior of the atomic system itself is non-Markovian, the en-¢emion system coupled to a bath of bosonic oscillators. The

Iarge_d system obtalned_ by~ combining . t_he d'scr_etel-|amilt0nian is given in the rotating-wave approximation by
guasimodes with the atomic system now exhibits Markovian

dynamics. The discrete quasimodes are identified as pseudo- 1

modes. The continuum quasimodes are identified as the flat A= hwala,t-ho(ct o —o o)

reservoir to which the enlarged Markovian system is A 2

coupled. Explicit expressions for the atom-true modes cou-

pling constants are obtained, exhibiting the rapidly varying +E (hoy é}\&++H.c.), D
frequency dependence characteristic of structured reservoirs. A

At present the treatment is restricted to cases where threshold

and band-gap effects are unimportant, but may be applicabl@heres™,o~ are the usual atomic spin operatas, a, are

to two-dimensional photonic band-gap materials. Howeverthe annihilation creation operators for the moxeof the
the problem of treating multiple excitation processes for cerfield, w, is the atomic transition frequency, is the mode
tain types of structured reservoirs can now be treated via thRequency, and), are the coupling constants. This system is
quasimode theory, since the Markovian master equation faflustrated in Fig. 1.

the atom-quasimode system applies for cases involving mul- To describe a one-photon excitation process, the initial
tilevel atoms or cases of several excited two-level atomsgondition is the atom excited and no photons present in the
Further extensions of the treatment to allow for atomic sysfield. Hence the initial Schrodinger picture state vector is
tems driven by single mode external laser fields are also

possible, with the original atomic system being replaced by | (0))=|1)|...0y...). 2

the dressed atom.

The plan of the paper is as follows. In Sec. Il the key |, the essential states approach, the state vector at later
features of pseudomode theory are outlined. Section Il pregme t will be a superposition of the initial state and states

sents the Fano diagonalization theory for the quasimode Sysyith the atom in its lower state and one photon in various

tem, with details covered in Appendices A, B, and C. In Secmodesx. With El ,EA defining the complex amplitudes for

IV specific cases such as one or wo discrete quasimodes e atomic excited state and the one photon states, the state

where the variation of discrete-continuum coupling constants .
. . " vector is
can be ignored, are examined, giving results for the atom-

true mode coupling constants and reservoir structure func-

tions in these situations. Section V contains the Markovian [W(t))=cy(t)e"“r[1)] ... 0y ...)

master equation for the atom plus discrete quasimode sys- _

tems. Section VI briefly examines the situation where cou- + e(be o) ... 1, L), 3
A

pling constants and mode densities are not slowly varying.
Conclusions and comments are set out in Sec. VII.
Substitution into the time-dependent Schrodinger equa-

tion leads to the following coupled complex amplitude equa-
II. PSEUDOMODE THEORY tions:

The simplest case to which pseudomode thd68] can
be applied is that of a two-level atom coupled to the modes
of the quantum EM field—which constitutes the structured

d. s
|mcl=; gre M\, ,
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d. o ing the actual functiorD(w,) in an approximate form that
'acngxem“cl- 4 satisfies the analyticity requirements. In additiamorder to
calculate the contour integralé will be assumed thaD
whereA, = w, — »; are detunings. tends to zero at least as fast akwl/| as|w,| tends to infin-

Formally eliminating the amplitudes for the one-photon ity.

states enables an integrodifferential equation for the excited Based on the above assumption regarding the reservoir
atomic amp”tude to be derived_ Th|s is structure fUnCtlorD y the kerneG may be eVaIUated In terms

of the poles and residues &f(w,) in the lower-half com-
d~ too_ o plex w, plane. It is assumed that these simple poles can be
giciV=- deTG(T)Cl(t_T) (®)  enumerated. The poles are locatedzaz,, . ..z ... and
their residues areq,r,, ...r,.... Thepolez; may be ex-
pressed in terms of a real angular frequeagyand a width
factor I') via zj=w,—iI"}/2. Contour integration methods
_ . show that the sum of the residues equial3he kernel is
G(T)Zg NECE=S obtained in the form

and involves a kerneb given by

[ G(h=—i0?2 —i(z—wy) 7
=dexp(wx)|g>\|2e"A“. 6) G(7) iQ zl re ta-edT (9

The integrodifferential equatiof®) for the excited atomic
amplitude involves a convolution integral on the right-hand
side and may be solved using Laplace transform methods.
It is apparent from Eq(5) that the behavior of the atomic The atomic behavior obtained is well knop2i,64] and will

system only depends on the reservoir structure functioﬁ&gggg driigegxeﬁgiziolt(ﬁ Iﬂgnt?atr?;iif)hnersetrgaeg:hwct)origijrir;:?,
D for this single- ntum excitation fin ; ) . !
(,) for this single-quantum excitation case defined by width factors. These aré) a strong-coupling regime with

The mode densityp(w,) is introduced after replacing the
sum overh by an integral over the mode angular frequency
Wy .

02 non-Markovian atomic dynamics, which occurs whén
Px|gx|2:ED(0)x), (7) >T", and(b) a weak-coupling regime with Markovian atomic
dynamics, occuring whef) <T".

The pseudomode approach continues by considering poles
of the reservoir structure functiol (w,) in the lower-half
complex w, plane. Each pole will be associated with one

where a transition strengfd is introduced to normalizP so
that its integral gives 2. The transition strengtk) is given

b
y pseudomode. Reverting to Schrodinger picture amplitudes
5 5 via cl(t)=?:1(t)e““’lt etc., pseudomode amplitudes associ-
Q%= | doyp(wy)|g,]* ®  ated with each pole dD are introduced as defined by
The reservoir structure functiob(w,) enables us to de- e 7iz|tft r nizgt! /
scribe the various types of reservoir to which the atomic bi(t) 1y—ine odt e cu(t). (10

system is coupled. ID is slowly varying as a function ab,
then the reservoir is “flat,” while “structured” reservoirs are ~ From the definition ofb, and by substituting the form
whereD varies more rapidly, as seen in Fig. 1. There are of Eq(9)] for the kernelG that involves the poles dJ, it is not
course two factors involved in determining the behavior ofdifficult to show that the excited atomic amplitude and the
D—the mode density(w,) and the coupling constant via pseudomode amplitudes satisfy the following coupled equa-
|g,|? . Either or both can determine how structured the restions:
ervoir is. Photonic band-gap materials are characterized by

mode densities that are actually zero over the gaps in the idcl(t) = :C (t)+2 Kby ()

allowed mode frequencies, and which have nonanalytic be- dt t o R

haviors near the edges of the band gaps. All mode densities

are zero for negative, , so threshold effects are possible — _dby(t)

see Ref[43], for example. In cavity QED situations, such as =g ~abi O+ Kica(D), (11)

for microspheres and other highcavities, the coupling con-

stant varies significantly near the cavity resonant frequenwhereC,=Q+/—ir, are pseudomode coupling constants. In
cies, so in these cases it is the coupling constant that givegeneral, the residues, are not pure imaginary, so the
structure to the reservoir. For the present it will be assumegseudomode coupling constants are not real.

that (apart from simple polg< is analytic in the lower-half The important point is that the atom plus pseudomodes
complexw, plane, and any other nonanalytic features can beystem now satisfies Markovian equatidg(11)]. With a
disregarded. It is recognized of course that this restrictiorfinite (or countabl¢ set of pseudomodes, the original atom
places a limit on the range of applicability of the theory, plus structured continuum has now been replaced by a sim-
though it may be possible to extend this range by represenpler system, which still enables an exact description of the
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atomic behavior to be obtaineBxact master equations in- = — TRUE
volving the pseudomodes have been derived, and in general ATC%S‘ <«—> | MODES
the pseudomodes can be couplede Ref[59]). There are o A(w), At(w)
however, difficulties in cases where the pseudomode cou- -
pling constants are not real, which can occur in certain cases System: ) Reservoir:
where there are several pseudomodes. Apart from the general Non-Markovian Structured
difficulty associated with situations wheg@part from having Behavior

simple poleg the reservoir structure functiop is not ana-

lytic in the lower-half complex plane, there is also consider-
able difficulty in extending the above theory to treat cases
where multiple excitations of the structured reservoir occur,

True-mode picture

such as when the two-level atom is replaced by a three-level

atom in a cascade configuration with the atom initially in the ____| QuasI QUASI
topmost state. The problem is that applying the usual essen- | [ ATOMS | MODES «p| MODES

tial states approach leads to tfar more photon states now o (CAVITY) (EXTERNAL)
appearing in the state vectfef. Eq(3)], and the resulting i, af b(A),b1(A)
coupled amplitude equationgcf. Eq(4)] do not apear .
to fgcilitate Itohe sucesqsive formal glimination of thF(Je one, New Bystem: Reservoir:
two, ... photon amplitudes, as is possible in the single- gi:;"o‘:‘n Flat

photon excitation case treated above. It is, therefore, not
clear how pseudomode amplitudes can be introduced, along
the lines of Eq(10), so the pseudomode method has not yet
been generalized from its original formulation to allow for
multiple reservoir excitations.

Quasi-mode picture

; PSEUDO

ATOMS
IIl. FANO DIAGONALIZATION = nikd MOPEﬁ MV
FOR A QUASIMODE SYSTEM - bi, b;

A. Description of the approach Pseudo-mode picture

The case of multiple excitation of a structured reservoir
involves systems more complex than the two-level atom FIG. 2. Three pictures of the coupled atomic system. Intthe
treated above. It will be sufficient for the purpose of linking mode picturgthe atom is coupled directly to true modes that have
the pseudomode and Fano diagonalization methods to costructure. In theguasimode pictur¢ghe atoms are coupled to quasi-
sider single multilevel atomic systems, although multiatommodes, which are in turn coupled to external quasimodes. In the
systems would also be suitable as both systems could resugeudomode picturthe atoms are coupled to dissipative pseudo-
in multiphoton excitations of the quantum EM field. Accord- modes.
ingly the two-level Hamiltonian given as the second term in
Eqg. (1) is now replaced by the multilevel atomic Hamil- Hamitonian, the Hamiltonian for the single laser mode, and
tonian: the atom-laser mode coupling term. In effect the atomic
Hamitonian is replaced by the dressed atom Hamiltonian
N S [71].
A ; Mo T T = T o). 12 As indicated in Sec. Il, an important pseudomode situa-
tion is where the reservoir structure is due to the presence of

The indexk represents an atomic transition associated with & discrete system ofguas) modes, which are coupled to
pair of energy levelsk={u,1}) with energy differencéw,.  Other continuuniquasj modes with slowly varying coupling
The quantitiesy, are numbers chosen so tHag equals the CONStants. This important case applies to atomic systems

atomic Hamiltonian, apart from an additive constant energygﬁgﬁli‘i trc:]itgrisquﬁg::?;“fﬂ‘;ﬁgjcgvmgg r?’i%nir:n%a\élit;e%nal-
for example, in a two-level atorp= 3 for the single transi- P ' 9

tion, while in a three-level atom in ¥ configuration with ization method is then based around the idea that the struc-

degenerate upper levels, = 7,= 1 for the two optical fre- tured reservoir of the quantum EM field modes can be de-

o . . scribed in two different ways, which will now be outlined.
guency transitions, ang;=0 for the zero frequency transi-

tion. Details are set out in Appendix A. The atomic transition.FIgure 2 lllustrates these two descriptions, along with that

~ a~ o involving pseudomodes.
operators arer, =|u){l|=(oy)". As the Hamiltonians for
other fermionic systems can also be written in the same form
as in Eq.(12), the treatment is not just restricted to single
multilevel atom systems. The case of an atom driven by a The first approach is to treat the quantum EM field in
single mode laser field can also be treated. Here the atomierms of a quasimode descriptip6i7,68,69. The quasimode
Hamiltonian would be replaced by the sum of the atomicfunctions are here obtained as solutions of the Helmholtz

1. Quasi modes
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equation for an idealized spatially dependent permittivitythe discrete quasimodes. This would apply for the typical
that approximately models the actual optical system. Thetructured reservoir situation for the area of cavity QED in
are not Fox-Li mode§72], which are obtained by a different the familiar case where the atoms are located inside the cav-
principle as eigenfunctions of a non-Hermitian operator conity. The energy of an excited atom escapes to the external
structed via applying the paraxial approximation to theregion in a two-step process: first, a photon is created in a
Huygen-Fresnel integral73]. Such non-Hermitian mode discrete(cavity) quasimode via the atom-discrete quasimode
functions and their adjoint modes satisfy biorthogonality re-interaction, second, this photon is destroyed and a photon is
lations, unlike the normal orthogonality relations satisfied bycreated in a continuurfexternal quasimode via the discrete-
both true modes and quasimodes. The quasimodes behaveamtinuum quasimode coupling. For the quasimode descrip-
coupled quantum harmonic oscillators. These consist of twdion, the atom-field interaction will be given as

types; the first is a set of discrete quasimodes, the second is
a set of continuum quasimodes. In a typical structured reser-
voir situation for the area of cavity QED69], the quasi-
modes represent a realistic description of the physical sys-
tem. The discrete modes are cavity quasimodes—one faghere\,; is the coupling constant for tHeatomic transition
each cavity resonance and appropriate for describing the EMnd thei quasimode.

field inside the cavity and the continuum modes are external

guasimodes that describe the field outside the cavity. The 2. True modes

interaction between the discrete and continuum quasimodes

will be treaFed in thg rotating-wave approximatiqn assuming[erms of its true modd$4 —66. The true mode functions are
slowly varying coupling constan{$9,68,70. Rotating-wave here obtained as solutions of the Helmholtz equation for the

approximation couplings between the discrete quasimodes . o '

. . . actual spatially dependent permittivity that applies to the op-

are also included, but couplings between the continuumn)

; . : tical system. The true modes behave as uncoupled quantum
guasimodes are not included—such couplings can be r

moved by pre-diagonalization. For the quasimode descri Sarmonic oscillators. These modes are also used in cavity

tion the field Hamiltonian is given by

HAng E (hNfajoy +H.c), (15)

The second way of describing the quantum EM field is in

p'QED and are often referred to as “universe modes.” The
pseudomode theory presented in Sec. Il is also based on true
modes. For frequencies near the cavity resonances, these
I:|F=E hwiéréﬁrz hvijé?éj modes are large inside the cavity and small outside; for fre-
: 1% guencies far away from the resonance, the opposite applies.
L The distinction between true modes and quasimodes is dis-
+E f dA pC(A)[ﬁWi(A)a;‘b(A)JrH.c.] cussed in some detail in recent papgs$,74 and their de-
! tailed forms and features in the specific case of a planar
R R Fabry-Perot cavity are demonstrated in R68]. In terms of
+f dA p(A) AADT(A)b(A), (13 true modes, the field Hamiltonian is now given in the alter-
native form as

wherea;, a/ are the annihilation creation operators for the

discrete quasimode w; is its frequencyp(A),bT(A) are the HFZJ do p(0) oA (w)A(w), (16)
annihilation creation operators for the continuum quasimode

of frequencyA, the coupling constants between ihe dis- \ hare A(w), A'(w) are the annihilation creation operators
crete quasimodes are;; (vj;=vj), while the quantity ¢, yhe continuum true mode of frequenay The integrals
W;(A) is the coupling constant between theiscrete and\ 1 the quasicontinuum frequenayinvolve the true con-
continuum quasimodes. The integrals over the quasiCoryy, m mode density(w), which is not in general the same
tinuum frequencyA involve a quasicontinuum mode density f,ction asp (A). It is also not necessarily a slowly varying
pc(4). Both Wi(A) and pc(A) are usually slowly varying.  f,nction of . The continuum true mode annihilation cre-

The discrete quasimode annihilation creation operators Salyion gperators satisfy Dirac delta function commutation
isfy Kronecker delta commutation rules, while those for the |aq:

continuum quasimode operators satisfy Dirac delta function

mmutation rules: A A / /
commutation rues [A(0),Al(0")]= 800"} p(w). (17)
S S
EFCHE In all these Hamiltonians the coupling constants have dimen-
. N ) sions of frequency, while the annihilation and creation opera-
[b(A),b'(A")]=6(A—A")pc(A). (14)  tors are dimensionless, as are the atomic transition operators.
The p. factor on the right-hand side gives annihilation and 3. Relating quasi and true modes

creation operators that are dimensionless. ] i ) ]
For the quasimode description the interaction between the AS Will be demonstrated in Sec. Ill B, Fano diagonaliza-

atomic system and the quantum EM field will be given in thetion involves determining tbe relationship between the true

rotating-wave approximation and only involve coupling to mode annihilation operato(w) and the quasimode anni-
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hilation operators; andb(A). The A(w) will be written as ~ We would then refer to discrete quasioscillators, continuum
a linear combination of th&, (sum overi) andb(A) (inte- quasioscillators, or true oscillators. The physical basis for a
gral overA) [see Eq(22) bellovv] which involves the func- quasimode description of the reservoir of bosonic oscillators

tions e () and B(w,A). This relationship can be inverted will depend on the particular situation; in general they will
N ] N be idealized approximate versions of the true modes.
to give thea; as an integral ovew of the A(w) [see Eq(52)

below]. This enables the true mode form of the atom-field

interaction to be given as B. Diagonalization of the quasimode Hamiltonian:

Dressing the quasimode operators

|:|AF: z 2 f do p(w)[ﬁ)\’;fiai* (w)/:\(w)(}: +H.cl. 1. Basic equations for Fano diagonalization
o 18 We start with a multiple quasimode description of the
(18) guantum EM field, for which the Hamiltonian is given above

Comparing Egs(15) and (18) we see that the atom-true 25 Eq.(13). This Ham_ilt(_)nian can also be written in terms_, of
mode coupling constarg“(w) (for the k atomic transition the true mode description as in E46), and the problem is

and thew true modg is given by the expression to relate the true mode annihilation operat8(s») in terms
of the quasimode annihilation operatarsandb(A). In view
gk(w): Z MNai(@). (19) of the rotating-wave approximation form of the Hamiltonian,

the quasimode creation operators are not involved in the re-
lationship [67]. Fano diagonalization for the nonrotating
This can be a complicated function a@f in a structured res- wave approximation has been treated for the case of a single
ervoir, as will be seen from the forms obtained for the func-mode coupled to a reservoir in Ref§5,76. In making a
tion «;(w) [for example, Eq(67)]. This expression for the Fano diagonalization, we will follow the lines of RdfL2]
atom-true mode coupling constant is one of the key results iiSec. 6.6 on dressed operalprsather than Ref[62], but
our theory, and enables the pseudomode and quasimode deste that a new feature here is the presence of the mode-
scriptions of decay processes for structured reservoirs to b@ode coupling term in the Hamiltonian E@.3). In addition,
related. Note that the true mode coupling constant now inwe explicitly include the mode densities from the beginning.
volves two factors: the atom-quasimode coupling constanThe physical realization of the quasimode model for the EM
M\ki, and the functiony;(w) that arises from the Fano diago- field really determines the quasicontinuum mode density
nalization process. pc(4), just as it does the coupling constants,W;(4A), and
For the situation where only a single atomic transitida ~ \,;. It is therefore important to be able to find tipg(w)
involved, the equivalent reservoir structure function is givendependence of quantities such as the reservoir structure func-
by tion D(w) [as we will see, the final expressifAg. (50)] for
. ‘ 5 the latter does not involve the true mode dengifw)]. It is
D*(w)=Cp(w)|g (w)|*, (200 of course possible to scale all the other quantities to make

hereC is th lizi hich f . p=p.=1, and then rescale afterwards to allow for the ac-
wherew 1S the norma 1Ing constant, which for _convemencetualp,pc that apply for the system of interest, but this would
we will set equal to unity as it does not contain amyde-

. ) . lead to a great deal of duplication of the results we present.
pendence. This expression will be used to compare the rg-. completeness, the scaling is set out in Appendix B.

s_ults from the quasilmo_de approach to those of the presgnt From the form of the true mode Hamiltonian in EA6)
single quantum excitation pseudomode theory. As we W'"and the commutation rules EL7) to be satisfied by the

see, the true mode density cancels out. A~ . I
Finally, athough our results are still correct for cases (@), itis clear that the true mode annihilation operators are

where the quasimode densipy(A) and the coupling con- €igenoperators of the quantum field Hamiltonieiz and

stantsw;(A) are not restricted to being slowly varying func- Must satisfy

tions of A, their utility, where this is not the case, is some- . . .

what limited. The theory is mainly intended to apply to the [Alw),He]=hoA(w). (21

important pseudomode situation, where the reservoir struc-

ture is actually due to the presence of a discrete system of In general, the true mode annihilation operath(s) can

quasimodes that are coupled to other continuum quasimodég expressed as linear combinations of the quasimode anni-

via slowly varying coupling constants. For example, thepjjation operators;, andb(A) in the form[68,67]

guantum EM field in highQ resonant cavities can be accu-

rately described in terms of the quasimode model that has ~ ~

these features, the discrete quasimodes being the cavity A(w)=2 ai(w)aﬁrf dA po(A)B(w,A)b(A), (22)

guasimodeglinked to the cavity resonancdewith which the '

Er?1tg:1ness IEZ:gS ttrTee e(::;\elzlrt?\/aflnrt'r?gilceté.and fhe contnuum U8 here a_i(w) and_,B(w,A_) are funcFions to lcge det_ermined,
As pointed out previously, the structured reservoir can bend which are dimensionless. This form f&(w) is then

any set of bosonic oscillators, not just the quantum EM field Substituted into Eq21) and the commutator evaluated using

The above treatment would thus apply more generally, anthe quasimode form, Eq13), for Hg and the commutation
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rules in Eq.(14). The coefficients of the the operat@sand  (see belowfrom the requirement that the form for tid w)

b(A) on both sides of Eq21) are then equated, giving a set 9iven in Eq. (22) satisfies the commutator relation
of coupled equations for the;(w) and B(w,A). These are  [A(w),AT(w')]=8(w— ')/ p(w) [Eq. (17)]. This indeed
leads to a nonzero expression B{W;(w)c«;(w) [see Eq.
(39 below]. After finding both p(w)z(w) and
2;W,(w)a;(w), the results can be substituted back into Egs.
(26). By eliminating the factoZ;W;(w) «;(w) from the last

_ term in Egs.(26), we obtain a set of inhomogeneous linear
+f dA po(8) B, AIWF(4)=0, (23 equations for thex;(w), which can then be solved for the
ai(w) [and henceg3(w,A)].

The general expression far,(w) z(w) can be obtained
from the matrix equatior{28). With E the unit matrix we
introduce the square matr®, the column matrixV*, and

To solve Eqg23) and (24) for the unknowna;(w) and  the row matrixW' by
B(w,A), we first solve forg in terms of thew; . This gives

(wi—w)ai(w)+]§i vjiaj(w)

(A=) B(w,A)+ >, W(A)a;(w)=0. (24)

1 Qjj(0) = w6+ (1= 6j)vj+Fjj(w) (30
Blw,A)=|P—+2(w)d(w—A) > W (A)aj(w),

© j and W*(0)= {W}(0),W3(0)W5(w),...}7, WT(o)
(29 = 1wy (w),Wy(w),Wa(w), ...}, and then write Eq(28) in

wherez(w) is a dimensionless function yet to be determined.the form

This expression is then substituted into E2@3) to obtain a T

set of linear homogeneous equations for téw) in the [~ (0E=Q)+pe(@)Z(0)W* W ]a=0. 31
form

Now the matrix€2 is Hermitian and positive definite, having
real eigenvalues close to the real and positiye The matrix
oE—Q can be hence assumed to be invertible, so by multi-

(wi_w)ai(w)+; Ujiaj(w)"‘; Fijaj(w)
plying Eq.(31) from the left byWT(wE— Q) ! we see that

2 W (0)Wi(@)p(@)2()aj(@) =0.(26) 1t ()20 o) W a0, @)

In these equations, a frequency shift maffix(w) appears,
which involves a principal integral of products of the
discrete-continuum quasimode coupling constants together

where the functiond(w) is defined by

_ T -1
with the quasicontinuum mode density. This is defined by @) =W (0E-Q)""W*. (33
W (A)W;(A) Now the quantityW e is equal to=;W;(w) «;(w), which is
Fij(“’)zpf dA pe(A)———x— (27) assumed to be nonzero for reasons explained above. This
means thaf — 1+ p.(w)z(w)J(w)]=0, and this gives for
and satisfies the Hermiticity conditid®y; = F . pc(w)z(w) the general result:
Equation(26) can be written in the matrix form
-1
ma=0, (28) pe(w)Z(w)= Zj) Wi(w)(wE—Q(w))iJ-lV\f,-*(w)] ,
(34

where the column matrixw={a,(®),a(w),as(w), ...} "

and the square matrim is given by ) _ ) )
which only involves the various coupling constants and an-

mi ()= (w;,— )8+ (1= 8:)vi+Fii (o) gular frequencies, along with the quasicontinuum mode den-
ij i ij ij)Uiji ij .
sity. In general thes dependence of the result fpg(w) z( w)
+ W (0)Wj(0)pe(0)Z(w). (29 is complicated, since both the coupling constafsand the
matrix Q (by the matrixF) will depend onw. In some
2. Solution of equations for amplitudeg;(w) and B(w,A) important cases however, theirdependence can be ignored.

The approach used to solve these equations is as follows, AS indicated previously, Eq$26) or (28) only determine
It is clear that Eq(28) can give an(unnormalizedl solution  the @i(®) [and hences(w,A)] to within an arbitary scaling
for a in terms of the functiop.()z(w). We can now use factor, as can be seen from their linear form. The rjormahza-
Eq. (28) itself to obtain the expression fai,(w)z(w), sub-  tion of the solutions is fixed by noting that we neadw),
ject to the assumption that the quantyW(w)a;(w) is EQ- (22, to satisfy the commutator relation
nonzero. This assumption will be verifiedposteriorifrom  [A(w),AT(0’)]=8(w—w')/p(») [Eq(17)]. This leads to
the normalization condition for the;(w), which will follow the condition
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> ai(w)ai*(w')+f dA pe(A) B(w,A) B*(w",A) P (0—w')=1 (38)

w—w'

=8(w— ") p(w). 35 . .
( Jp(w) @9 along with Eq.(26) to substitute for2;F{i(w") e} (»") and

Then substituting fol3(w,A) from Eq. (25) and using Eq.  2iFji(@)ai(w) and finally obtain

(27), we find after considerable algebra that

2 Wi(@)W (0)ai(o)af (@)
> ai(w)af (o) +8w— o) (m+|2(0)?) pdw) :

2
=2 Wiw)a(v)
><E] Wi(0) W () aj(w)af (o) '
1
= 5 - (39
+P > ai(w)af (0)[F} (o) p(w)p()(m+|z(w)|?)
wme v This fixes, albeit with the coefficien®/;(w), the normaliza-
—Fji(w)+Z*(w')Pc(w')Wi(w')\A/f(w') tion of the «;(w). Note the appearance of both mode densi-
ties in the result. Finally, with a suitable choice of the overall
—Z(w)p(@)Wi(0) W] (w)] phase we can fix the result for the important quantity
:5(w_w,)/p(w). (36) EiWi(w)ai(w) to be
: . . 1
Note that we have used certain properties of the principal Wi (o) a;(w)= . (40
parts and delta functionsee, for example, Ref12]) 21 ' il Vp(o)pe(w)[7m+iz(w)]
S(w—A)S(w'—A) Having obtained this result foE;W,(w)«a;(w) we then
, substitute back into Eqg26), eliminating this factor from
=do—w')s(o-A) the last term to give a set of inhomogeneous linear equations
=5(w—w’)5(w’—A), for theai(w):
1 1 (w_wi)ai(w)_z_ Ujiaj(w)_E Fija;(w)
P S(w—A)y=P——8(w—A) 7 ]
o' —A o' —w
W (@)p0)2(w) )
ool ol 1 (p 1ot ) Vo(@pa @)l +iz(0)]
e DR A R W After some algebra, introducing the mat€¥(w) from Eq.
+728(w—A)S(w' —A) (37)  (30) and then substituting from E¢g4) for [pe(®)z(w)] ™Y,
the last equations can be solved for thgw), giving the
to obtain the last equation. We then also use solution in matrix form as
|
. pe(w) 1 _
a(w)=—11/ wE—Q(w)) 'W* (). 42
() p(w) [1—iwpc(w)WT(w)(wE—Q(w))_lw*(w)]( (@) (@) 42

In this result all the terms that in general dependware explicitly identified. It is also convenient to write the inverse matrix
in terms of its determinant and the adjugate matrix by

(0E—Q(0)) 1= (0E— Q())*PY|wE— Q(w)] (43

and then the solution foa(w) becomes

a(w)= —i /P ! (VE—Q(0) W ().  (44)
P(0) [|wE—Q(w)| —imp( @)W (0)(0E—Q(0))*PIW* (w)]

The result for the expansion coefficieffw,A) then follows from Eq(25) and substituting fop(w)z(w) from Eq.(34).
After some algebra we find that
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1
el @) W () (0E~ () W* (@)

(0,0)=—i
plo Jp(@)pol)

[1-imp(@)WT(0)(0E— Qo)) *W* (w)]

(49

We see that the solutions for thg(w) and 8(w,A) only involve the various coupling constants and the mode densities.

3. Coupling constants and reservoir structure function

Introducing the column matrid,={Ay1, N2, g3, - -
written as

.}7 the expressior(19) for the coupling constang*(w) can be

V p(0) [|0E—Q(w)| =i mpe(0)WT(0) (0E—Q(0)"PIW* ()]

@) Qe
p(w) Polw)

where the function®,(») and Qﬁ_l(w) are defined by

Pn(w)= |wE—ﬂ(w)| —impe(w)
XWT () (wE—Q(w)) P'W* ()
=|wE—Q(w)|—imp(w)

X2 Wi(w)(@E- ()W (0) (49
Qf_1(0) = M(wE— () PW* ()

—2 Mi(0E— Q)W (0). (49

In the case where thew dependence of the quantities

pc(®), Fij(w), and Wj(w) can be ignored,P,(w) and
Q,_1(w) would be polynomials inw of degreesn andn
—1, respectively, as will be seen in Sec. IV.

M(0E—Q(0)"PW*(0)  (46)

(47)

the functionz(w) occurring inm is obtained from Eq(28)

and given by Eq(34). The solutions for;(w) are scaled in
accordance with Eq35) and the normalization for the quan-
tity 2;W,(w) a;(w) is given in Egqs(39) and (40). The nor-
malized solutions fore;(w) are obtained as Eq$42) or

(44). The coefficients3(w,A) are then found from Eq25)

and the result is given in Eq45). The true mode coupling
constantg“(w) and the reservoir structure functid(w)

are obtained as Eq#&47) and(50). These results involve the
functionsP () andQﬁ,l(w) defined in Eqs(48) and(49).

The results depend on the quasicontinuum mode depsity
as well as on the various coupling constants and angular
frequencies. It should be noted that a unique expression has
been obtained forz(w), and hence for thex;(w) and
B(w,A), even though the determinental equation|=0
might appear to give anything up tosolutions, whera is

the number of discrete quasimodes. This feature is due to the
specific form of the matrixn that is involved. The overall
process amounts to dagonalizationbecause the EM field

The reservoir structure function can then be expressed ddamiltonian in the nondiagonal quasimode form, is now re-

(C=1):

1QK_1(w)|?

k =
D¥w)=pel) o=

(50

placed by the diagonal true mode form given by ELf).

C. Inverse diagonalization:
Undressing the true mode operators

We can also proceed in the opposite direction from Fano

where we note the cancellation of the true mode densityliagonalization, that is, we can also find the quasimode op-
p(w) and the proportionality to the quasicontinuum mOdeeratorsé, and b(A) in terms of the true mode operators

densityp.(w). The significance of the(w) cancellation will
be discussed in Sec. lll C. There is, however, further depen-
dence on the quasicontinuum mode density within the func-
tion P,(w), as can be seen from E@8). The role of this

(w) In general[68,67] the quasimode annihilation opera-
tors a; andb(A) can also be expressed as linear combina-
tions of the true mode annihilation operatok$w) in the

dependence will be discussed in Sec. IV when we have oform

tained expressions for the reservoir structure function for

specific cases.

In summary, if we are given the Hamiltonian in the quasi-
mode form, Eq(13), we can obtain the true mode operators

(22) which satisfy the eigenoperator condition Eg1). The
coefficientsa;(w) are found by solvingna=0, Eq. (28);

=f do p(o) ¥i(0)A(w),

B(A):f do p(0) (A, 0)A(w), (51)
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where the functionsy;(w) and §(A,w) have to be deter- IV. APPLICATIONS
mined. These can be obtained in terms of théw) and

B(w,A) by evaluating the commutatorfA(w),a’] and _ _ _ .
A B(A)] using the basic commutation rules in 43 For this case no coupling constant between discrete quasi-
[A(w),b(A)"] using q modes is present and we may easily allow for a nonzero shift

and(14). For the first commutator, on substituting #€w)  matrix elementF,, and for nonconstaritv;(A). Noting that
from Eq.(22) we obtaina;(w), on the other hand, substitut- [ »E— Q()]*P?=1 and|wE—Q(w)|=0—w;—F;(v), a
ing instead fora; from Eq. (51) gives ¥ (w), and hence simple evaluation of Eqg34), (42), and(47) gives the fol-
a;= 1y} . Carrying out a similar process for the second com-lowing results:

mutator gives the resuff=6* and thus

A. Case of a single quasimode

0=~ Fy(w)
n ~ pc(w)Z(w)= 2 ' (55)
aizf do p(w)af (w)A(w), |Wi(w)]
A A ) Wi (0)*
b(A):J do p(@) B* (A, @)A(w). 2 )= plw) w_wl_Fll(w)_i7TPc(“’)|W1(w)|2,
As has been already described in Sec. Il A, the first of these (56)
two equations enables us to relate the two descriptions of th@ (@) =Nz (w)
atom-field interaction given in Eq915) and (18). Ulti-
mately, the key expression we have obtained in @§) for _ [pe(®) Mg Wi (w)*
the atom-true mode coupling constant rests on this result. As P(®) w—w;—F1y(w)—imp(w)|Wi(w)|?
we will see in Sec. 1V, this enables us to relate pseudomodes
to the discrete quasimodes. In terms of a frequency shifAw,; and half-widthT'/2
As a final check of the detailed expressions, in Appendixdefined as
C we start with the field Hamiltonian in the quasimode form,
Eq. (13), then substitute our solutions fef(») and B(w,A) Awi(w)=Fy(o), (57
into the expressions fa, andb(A) given in Egs.(52). On r
evaluating the result, the Hamiltonian in the true mode form, ﬂ: 7pe( ®)| Wi (w)]? (58)
Eq. (16), is obtained—as required for consistency. 2 ¢ ’

It has already been noted in Sec. Ill B that the final ex- ) . .
pression for the reservoir structure functibfi(w) in terms € reservoir structure functidisee Eq.(20)] for the situa-
of quasimode quantities is independent of the true mode der®" where only a single atomic transitidais involved, is
sity p(w). Also, we have found no equation that actually then found to be ¢=1)
gives an expression fop(w) in terms of the quasimode Nl 2T ()2
quantities, including the continuum quasimode density DX(w)= k| T (w)/2m .
pc(A)—a somewhat surprising result. The true mode density [0—0;— Ao (w)]?+T(w)%/4
therefore does not play an important role in the quasimode
theory. The reason for this is not that hard to find, howeverln the situation where the quasimode dengitfA) and the
The theory can be recast withoth the p(w) and p,(A)  coupling constantV;(A) are slowly varying functions of
factors incorporated into the various operators and coupling, these quantities can be approximated as constants in the
constants. In Appendix B we show thatw) andp,(A) can  expressions for the frequency shift and width. The reservoir
be scaled away to unity. For example, from E4®), (45),  sStructure function is then a Lorentzian shape with a single
and (22) we see that the true mode annihilation operator igpole in the lower-half plane ab; +Aw;,—iI'/2 correspond-
proportional to 1{/p(w) , the other(operatoy factor only ing to a single pseudomode. Thus the single discrete quasi-
depending on quasimode quantities. Hefa® in Appendix ~mode is associated with a single pseudomode, whose posi-
B) we may scale away the(w) dependence via the substi- tion z; is given byw;+Aw;—il'/2 in terms of quasimode

(59

tution: quantities.
o A(S)(w) B. Case of zero discrete quasimode-quasimode coupling
Alw)= W ' (53 and flat reservoir coupling constants

A The theory becomes rather simpler if there is no coupling
where A®(w) is independent of. If this substitution is between the discrete quasimodes, that is
made, then the field Hamiltonian is given by

He= f do 7iwA® T (0) A (w) (54)  This could be in fact arranged by prediagonalizing the part of
the HamiltonianH that only involves the discrete quasi-
without anyp(w) term. mode operators. Thus we write
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quasimode coupling constant#/;(A) and the quasicon-

Z ﬁwiéréﬁ; hvjala; (61)  tinuum mode density.(A) are slowly varying functions of
' A. This results in the shift matrif;; elements being small,
in the form so it would be appropriate to examine the case where they
are ignored, that is
2 ngele, (62 Fij=0 (64)

with both p., and theW; are assumed constant.

For the case;;=0, Fj;=0, p.(A)=p, andW;(A) =W,
. . (constantsthe quantities involved in the inverse of the ma-
CF? Uija;, (63 trix wE—Q(w) are

via the transformation

whereU is unitary. The last equation can be inverted to give |0E—Q(0)|=(0—w)(0—w)) - (0—wy),

the a; in terms of thec; and the result substituted in other (E—= ()22 = (0= w1)(0—wy) - (w—w;_y)
parts ofH¢ [Eq. (13)] andH Ar [Eq. (15)]. The original cou- b '
pling constants\,; and W;(A) would be replaced by new X(0=wii1) ... (0—wy);. (69

coupling constants via suitable linear combinations involving ] o
the matrixU, and these generally would have similar prop-A straightforward application of Eq¢34) and (44) leads to

erties(e.g., flatnessas the original ones. the simple results:
The idea of replacing the structured reservoir of true W21 -1
modes by quasimodes, in which the continuum quasimodes p2(w)= E |Wil (66)
constitute a flat reservoir, implies that the discrete-continuum ¢ T o-of
|
e (0w (e-wg) (0= )@= o) (0= o)
aj(w)=—i p(w)‘Ni* P (@) , (67)
|
where the func@iorPn(w) [which is defined in Eq(48)], is =S(w—0))(w—0y)- - (0—6,_1), (72
now a polynomial of degrer, whose roots are designated as
& . Itis now given by whereS, is a strength factor defined as
Prlw)=(0—0)(0—wy) - (0—wvy,) Sk:Z )\kiWi*- (72)

—i W2 (w—wq) - (w0—w;_
Trpcg Wil o=@y (0= 0j-1) The reservoir structure functidd*(») [see Eq(50)] for

the k transition is then given byG=1)
X(w=wj1) (0~ wp)
(o _ _ —0)(0—0,)- - (0—0,_1)|?
=(0—&)(0—&) (0= &). (68) Dk(w):pc|sk|2|<w V(@=0p)- (0= by 1>2| _
. |(w—§l)(w—§2)~-(cu—§n)|
For the true mode coupling constan§ w), the general (73
result in Eq.(47) can be applied to give

Since products of the forma(— &) (w— £€*) can be writ-

) [ pe QX (w) ten as —Ref)?+(Im&)?, the behavior of the reservoir
9 (@)= p(0) (w—E)(w—E&) - (w0—E&) structure functionD*=p(w)|gX(w)|? [see Eq.(20)] as a

(69)  function of w is now seen to be determined by the product of
n Lorentzian functions associated witl,(w)|? with the

where the functiorQﬁ,l(w) [which is defined in Eq(49)]is  modulus squared of the polynomial of degree1 given by
now a polynomial of orden— 1, whose roots are designated |Q¥_,(w)|?. The quasicontinuum mode density merely pro-
as 6, . It is now given by vides an uninteresting multiplicative constant, except insofar
as it is involved in expressions for the width and shift fac-
tors. In the case where there aréliscrete quasimodes, then
irrespective of the location of the roofs of the polynomial
equationP,(w)=0, the reservoir structure functidd"(w)
X(0—wji1) (0~ wp) (700 for a single quantum excitation hagpoles in the lower-half

Qﬁ_l<w>=2 NWE (0= ) (0= w3) - - - (0— wj_1)
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p|ane, each Corresponding to eitf‘é‘eror gl* . As there aren stants, and jUSt consider a two-level atom, so onIy two cou-

roots whenn discrete quasimodes are present, we see thdliNg constants\;,\, are involved. In this case the atom-
each discrete quasimode corresponds to one af figeudo-  U€ mode coupling constant can be obtained from (E€)

modes, whose position is equal to, or to & . Thus, for ~andis

the case here where the coupling constants and the quasicon- NWE NS WE _

tinuum mode density are independent of frequency, the fea- g(w)=—i pe_ (MW 2Wa ) (@ wO), (74)
ture that leads to a pseudomode is the presence of a discrete p(w) (0=&1) (0= &)

guasimode. .
wherew, and the roots; , of P,(w)=0 are given by

C. Case of two discrete quasimodes

- - : - AW A WI
The results in the previous section can be conveniently wo= w,+
illustrated for the case of two discrete quasimodes. For sim- (NWT + A oW5) (NWT +AoW5)
plicity we will again restrict the treatment to the situation
where v1,=0, Fj;=0,pc(A)=p., and W;(A)=W; (con- and

w, (75

1 ) 1 .
§1,2:§{(w1+ w,) +impe(|Wy)?+ |W2|2)}i§\/{(w1_ w2) +iTpe(|Wy|?—|W,|?) 12— 4m2pZ Wy 2|Wo|2.  (76)

It will also be useful to introduce widthE; defined by 2. Special subcase: Equal quasimode reservoir coupling
constants
— 2
[i=2mp | Wi 77 In this case we choose

and which can be later identifigdee Sec. Yas the discrete W, =W,=W (82)
guasimode decay rat¢gq. (99)]. These results will be now

examined for special subcases. and find that

1. Special subcase: Equal quasimode frequencies wg=wctAowc,

In this case we choose
‘Uc:z(ﬁ)ﬁ'wz),

W= W= wc (78)

and find that Ao MR (0y— 1)

TN TNy 2P
wWo= wc,
. ; 2
£10= wc,wctTimpc(|Wi|>+[W,l?), (79 §1Y2=§(w1+w2)+|7-rpc|W|

giving for the atom-true mode coupling constant 1

=5 V(1= wp)?— 4w pWI*. (83)
. Pc (A WT +N,W5)
9(w)=—i Here wy has been written in terms of the quasimodes center

_ i 2 2\’
P(@) @ ot i mpo(|Wa|*+ |W5l%) frequencywc and a frequency shithwc, depending on the

difference between the two atom-discrete quasimodes cou-
pling constants\; and the discrete quasimodes detuning.
There are now two regimes depending on the relative size of
the discrete quasimodes separatjon — w,| compared to
[NWE + N W | (81) the square root of the quasicontinuum mode densipy
(w—we)2+([T'1+ FZ]/2)2' times the reservoir coupling constavt Equivalently, the
regimes depend on the relative size of the separdtign
This corresponds to a single pole in the lower-half plane— w,| compared to the width facto(decay ratg I'=T";

and for the reservoir structure function

D(w)=pc

for the reservoir structure functiofsee Eq.(20)] and thus =I',=2mp|W|2.
only results in asingle pseudomode, albeit for a casetofo a. Regime 1: Large separatiofw;— w,|>1". Adopting
degenerate discrete quasimodes. the convention that;<w,, we can write
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1 1
E\/(wl—w2)2—4ﬂ'2p§|W|4=E(wz—wl)—AwR, (84)

whereA wg, is a reservoir induced frequency shift. The atom-true mode coupling constant now becomes:

(0)=—i [ Pc NN )WF (0— wc—Awe) .
’ P(®) (0— wy+ Awg—imp W) (0— 01— Awg—impW|?)

and the reservoir structure function is then

IN1+ M| AT R27) (00— wc— Awe)?

D(w)= .
(@) [(w— wy+ Awg) 2+ T%/4][(0— w;— Awg)?+T%/4]

(86)

The reservoir structure functidd [see Eq(86)] will be zero at the shifted center frequensy+ A w . There are two poles
in the lower-half plane leading to Lorentzian factors centerd at frequensiesA wg and w;+ A wg, and which have equal
widths 27p.|W|2. We note that the effect of the coupling to the reservoir is to decrease the effective discrete quasimodes
separation by 2 wg.

b. Regime 2: Small separatigw;— w,|<I'. We now write

1
VAT W] = (01— wp) *= o WIH(1 - Afp), (87)

whereAfr is a fractional change in width factors associated with discrete quasimode separation. The atom-true mode coupling
constant now becomes

o(w)= —i [ Pe N+ N)WH (0 —wc—Awc) (89)
1 1
plw) w—wc—2i7'rpc|W|2(1—§Afp) (w—wc—impe W|2ATT)

and the reservoir structure function is

IN N A(T27) (0 — we— Awe)?

1 1
(w—wc)?+T? 1-SAfp (w—wc)?+T1? SAf
|
The reservoir structure functio® [see Eq.(89)] will to note that the reservoir structure function related to their
again be zero at the shifted center frequengy+Awc. theory is of the same form as that obtained here from Eq.
There are two poles in the lower-half plane leading to(89) if the following identifications are made:
Lorentzian factors both centerd at the same frequengy
but which have unequal widths7h|W|?(1—3Af;) and q——Aowc,
mpe| W|?Afr. If Afp<1, one width is much smaller than
the other. 1 » 1
In their work on super-radiance in a photonic band-gap E"_’ZWPC|W| (1_ ZAfr ),
material, Bayet al. [77] assume as a model for the mode
density, a so-called Fano profile of the form 1
5 Y= Tpc| WIPAfy. (91)
()= flo—wc—q)?
prer ». (1 2 2 z For situations such as atomic systems coupled to the field in
(@=wc)™+|5k| (0= wc) |5y high Q cavities, the physics is different of course, with the

(90) resonant behavior in the reservoir structure function being
due to the atom-true mode coupling constants rather than the
with the two-level atom coupling constag{w) given by a  reservoir mode densitwhich we assume is slowly varyiing
slowly varying function proportional ta/w. It is interesting  Nevertheless, our two discrete quasimode model—with
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equal reservoir coupling constaiéthat are large compared tem can be obtained that exhibits Markovian dynamics—and
to the discrete quasimodes detunjag — w,|—does provide which includes the small system, whose dynamics can be
anequivalentphysical model for the photonic band-gap caseobtained later. In our example of a multilevel atomic system
that Bayet al. treated, the lack of which was commented oncoupled to the quantum EM field as a structured reservoir,
in the review by Lambropoulost al. [22]. we can proceed as follows. The overall system of the &dpm
The band-gap case was also treated as a specific examglkis quantum EM field is partitioned into a Markovian sys-

by Garraway{59] in the original pseudomode theory paper.tem consisting of the atom plus the discrete quasi-
A model for the reservoir structure function was assumed irmodes and a flat reservoir consisting of the continuum quasi-

the form of a difference between two Lorentzians: modes. The system Hamiltoniats is
r r N a aa .
D(@)=w, Tz W R Hs=2 mdion 0 oy — oy o)+ 2 fiwala,
(00_(1)c)2+ §F1> (w—wc)2+(§l"2) “ I
(92) +§j hoala;+ 2 X (hNGaok +He) (99)

where the weightsv,,w, satisfy w;—w,=1. Again, apart
from an overall proportionality constant this same form ca
be obtained her¢see Eq.(89)] for the reservoir structure
function D, if we choose the atom-discrete quasimode cou-

"Wwhile the reservoir Hamiltoniahi  is

pling constants\;,\, to be equalso that the frequency shift Hg= J dA p(A) KADT(A)D(A) (96)
Awc is zero:
N1=A,, and the system-reservoir interaction Hamiltonfag  is
Awc=0, (93)

Ao w= S [ s pa)AW(0)8IBA)+He), ©7)
and where the following identifications are made:

so that the total Hamiltonian is still equal to the sum of

Ha, Ar, andHap, given in Egs.(12), (13), and(15). The

distinction between the non-Markovian true mode treatment

and the Markovian quasimode approach is depicted in Fig. 2.
It is of course the slowly varying nature of the coupling

constantd/V;(A) and the mode density.(A) that results in

a Markovian master equation for the reduced density opera-

tor p of the atom-discrete quasimodes system. Rather than

1- EMF derive the master equation for the most general state of the
T-AT reservoir, we will just consider the simplest case in which the

r reservoir of continuum quasimodes are all in the vacuum
state. Again, the coupling constam will be assumed con-
EM stant so that no shift matrik;; elements are present. The

r . . . 3

master equation is derived via standard proceed(Besn
(94) and Markoff approximations[12,20, which require the
evaluation of two-time reservoir correlation functions in
As will be seen in Sec. V, the existence of unusual forms ofwhich the required reservoir operators are the quantities
the reservoir structure functiofsuch as the presence of [dA p.(A)W;(A)b(A) and their Hermitian adjoints. To ob-
Lorentzians with negative weightsloes not rule out Mar- tain Markovian behavior, we require the quantities
kovian master equations being applied to the atom-discretg (A)W;(A)W: (A) to be slowly varying withA, so that the
quasimodes system. Thus, for the situation of a single quafteservoir correlation timer, [inversely proportional to the
tum excitation, where the pseudomodes are always equivagandwidth ofpo(A)W;(A)WF (A)] is sufficiently short that
lent to discrete quasimodes, we can always obtain Markoviaghe interaction picture densny operator hardly changes dur-

1 ) 1
§F1—>27TpC|W| l_EAfF f

1 2
EFZH mpc| WA T,
Wl_)

W T TAT,

master equations for the pseudomode-atom system. ing ..
The standard procedure then yields the master equation in
V. MARKOVIAN MASTER EQUATION FOR THE the Lindblad form:

ATOM-DISCRETE QUASIMODES SYSTEM
dp - .. A an “ o~ on
A key idea for treating the behavior of a small system “F . —[FAs, pl+ ; WchiVVf{[aj ,pai‘r]_'_[ajp,ai’r]}.

coupled to a structured reservoir is that although the behaviodt
of the small system itself is non-Markovian, an enlarged sys- (98
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Direct couplings between the discrete quasimodes involvingituation may be seen both from the general result for the
thev;; are included in the system Hamiltoniéy. Radiative ~ reservoir structure functiofEq. (50)] or the specific result
processes take place via the atom-discrete quasimodes int&€ have obtained for the case where there is a single discrete
action also included iri:ls, though still given as shown in quasimod¢Eq. (59)]. In the former case, the functid?,(w)

Eq. (15). The loss of radiative energy to the reservoir isWould not be a polynomial of degre® and therefore could
: I4161ve more tham roots, leading to more pseudomodes than

The diagonal terms wheie=j describe the relaxation of the d!screte quas!modes. In the '?‘ter case involving .JUSt one
discrete quasimode, even having the mode densityw)

ith quasimode in which the decay rate is proportional to . .
pcWi|2. A typical decay ratd’; for the ith discrete quasi- [and hencd’(w)] represented by a single peaked function

mode into the reservoir of continuum quasimodes will be Would result inD () going from a single peaked function to
a triple peaked function, corresponding to three pseudo-

modes.
i~ cl Wil owever, wherep. or W; are no longer slowly varying,
Ti=2mpc|W;|? (99 H herep, or W, longer slowly varying
an examination of the underlying causes for this variation
Note that the off-diagonal termis#j involve pairs of dis- M2y _suggest replacing the present atom plus discrete and
. ~ ~t . continuum quasimode model by a more elaborate system that
crete quasimode operatasig anda; , so there is also a type

X e . ) ._better represents the physics of the situation, with slowly
of rotating-wave approximation interaction taking place via

. . . varying parameters now involved. Fano diagonalization
the reservoir between these discrete quasimodes, as well B3sed on such a more elaborate model could produce the
via direct Hamiltonian coupling involving the;; . The stan-

dard criterion for th i fthe B Markoff desired link up with the pseudomode approach and enable a

ard criterion for ﬁ validity of the Born- afl‘? masltgr suitable, enlarged system to be identified, which has Markov-
equation Eq(98) is thatl'7,<1. Processes involving multi- 5 hepayior, as well as overcoming the problem of treating
photon excitation of the reservoisuch as may occur for

: . ; X multiple reservoir excitations. One possible elaboration
excited rr_lultllevel atomscan be studu_ed using standa_rd Mas-\would be to add a further continuum of quasimodes that are
ter equation methods, thereby enabling mu]nple excitation otsmionic rather than bosonic.
the structured reservoir to be treated via the quasimode
theory.

As indicated previously, the case of an atom driven by a

single mode laser figld can also be treated. Here the atomic The theory presented above is mainly intended to apply to
Hamiltonian term inHg would be replaced by the dressed the important situation where the reservoir structure is actu-
atom Hamiltonian given as the sum of the atomic Hamil-ally due to the presence of a discrete system of quasimodes
tonian, the Hamiltonian for the single laser mode, and thehat are coupled to other continuum quasimodes via slowly
atom-laser mode coupling term. For the quasimode treatvarying coupling constants. For example, the quantum EM
ment, where the cavity mode is included explicitly and thefield in high Q resonant cavities can be accurately described
reservoir is in the vacuum state, the reservoir correlation timén terms of the quasimode model which has these features,
would be too short for any dressed atom modifications to theéhe discrete quasimodes being the cavity quasimddesed
relaxation rates to be presdi@3]. This would not necessar- to the cavity resonancesvith which the atoms inside the
ily be the case if a true mode approach to the structuredavity interact, and the continuum quasimodes being the ex-
reservoir is usefi35-37. ternal modes.
For this situation it has been shown that, for the present
case of single quantum excitations, the pseudomode method
VI. NONSLOWLY VARYING MODE DENSITIES AND /OR  for treating atomic systems coupled to a structured reservoir
COUPLING CONSTANTS of true quantum EM field modes, can be obtained by apply-
The basic model treated in this paper is that of atomidnd the _Fano diagonalization met_hod to the fie_ld described in
systems coupled to a set of discrete quasimodes of the ERI? €quivalent way as a set of discrete quasimodes together
field, which are in turn coupled to a continuum set of quasi-With @ set of continuum quasimodes, whose mode density is
modes. Although expressions for the true mode couplingSSumed to be slowly varying. The interaction between the
constant and the reservoir structure function have been ofliScrete and continuum quasimodes is treated in the rotating-
tained for the general case where the quasimode depsity WaV€ approximation assuming slowly varying coupling con-
and the coupling constant/; are not necessarily slowly stants, gnd the atomic system is assumgd to be only coupled
varying functions ofA [see Eqs(47) and (50)] the useful- to the discrete quasimodes. The theory includes the true and

ness of the results where this is not the case is somewh§PntinUUM quasimode densities epr|C|tIy.A .

limited. As indicated in the previous section, the master Expressions for the quasimode opera@aysaandb(A) in

equation for the atom plus discrete quasimodes system witerms of the true mode operatdk$w) (and vice versphave

no longer be Markovian, so the enlargement of the systerbeen found, and explicit forms for the atom-true mode cou-

based on adding the discrete quasimodes to produce a Masling constants have been obtained and related to the reser-

kovian system fails. voir structure function that applies in pseudomode theory.
Also, for the nonslowly varying. or W, case, we can no We have seen that the feature that leads to a pseudomode is

longer link each discrete quasimode to a pseudomode. Thike presence of a discrete quasimode. Each discrete quasi-

VII. CONCLUSIONS
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mode corresponds to one of the pseudomodes, whose posi- ACKNOWLEDGMENTS
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and the master equation for this enlarged system has been
obtained. Using the quasimode theory, processes involving
multiphoton excitation of the structured reserv@uch as As an example of writing the atomic Hamiltonian in the
may occur for excited multilevel atotnsan now be studied form given in Eqg.(12), consider a three-level atom in\a
using standard master equation methods applied to the atornenfiguration with upper statd®),|1) and lower staté0),
discrete quasimodes system. Furthermore, cases with umwhose energy is chosen for convenience to be zero. The
usual forms of the reservoir structure function for singleatomic transition operators are; =|2)(0| and o5 =|1)(0|
quantum excitation(for example, containing Lorentzians for the two optical transitions of frequencies andw,, and

v_v|th negative WelghDSStI” result in Mgrkgwan master equa- r=|2)(1| for the Zeeman transition of frequenay— w;.

tions. Since for single quantum excitation the pseudomodes The form given in Eq(12) is

are equivalent to discrete quasimodes, we can now always

obtain Markovian master equations for pseudomode-atom - ApAl Ay ApA_ Ay

systems by our approach. Ha=mhwi(oy 0y —0oy01)+ nohwy(o; 05 05 05)
Although not so useful in such cases, the present theory

does lead to general expressions for the true mode coupling
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APPENDIX A: ATOMIC HAMILTONIAN

+ m3h(wy— 1) (03 05 — 05 73)

constant and the reservoir structure function for single quan- = 7 w1(|1){(1|—|0){0|) + n.f w,(|2)(2| —|0)(0])
tum excitation. These expressions are still valid for the gen- 5 N2l — 111 AL
eral case where the quasimode dengityand the coupling + mafi(wa— 01)(12)(2 —|1)(1]). (A1)

constantsW; are no longer slowly varying functions .

However, the master equation for the atom plus discret

guasimodes system will no longer be Markovian, so the en- ~

largement of the system based on adding the discrete quasi- Ha=7% w1 1)(1|+hw,]2)(2[+hw(|0)(0]

?oondjév\};) prod_uce a Markovian system fails. Alsp, for the 1ML+ |2)2)), (A2)
y varyingp. or W; case, we can no longer link each

discrete quasimode to a pseudomode—there may be MOhce by equating the coefficients of the three projection op-

pseudomodes_ than discrete quasimodes. In §uch Casesepators, we obtain a set of linear equations for 447, , 73,
would be desirable to replace the present quasimode systeg,,, \which are solvable—in fact the solutions are not even
by a more elaborate quasimode system involving only Slow%nique. These equations are

varying quantities, and which better represents the underly-

ing physical causes of the variation\i4, andp. that occurs

in the present model. This may make possible an extension

of the Fano diagonalization approach that still links quasimo-

des with pseudomodes, and results in a Markovian master N1~ 73w~ 01) =0+,

equation for the enlarged atom plus quasimode system. In

such an elaborated system, the disadvantage of the present

pseudomode treatment in treating multiple excitations of the

structured reservoir could still be removed. Adding these equations and then substituting into the first
The treatment has been outlined in the case of a multilevelyo gives

atom coupled to a structured reservoir of quantum EM field

modes, but a similar approach would apply for any fermionic 1

system coupled to a structured reservoir of bosonic oscilla- o=—s(witw,), (A4)

tors. Extensions to fermionic reservoirs should also be pos- 3

sible. At present the treatment is restricted to cases where

él’his expression may also be written in the form

702+ N3(w— w1) = 0+ @,

01T 0= 0. (A3)

threshold and band-gap effects are unimportant, but may be 1 2

applicable to two-dimensional photonic band-gap materials. ty(wymwy)= - gt 3 772) w3,

Further extensions of the treatment to allow for atomic sys-

tems driven by single mode external laser fields are also

possible, with the original atomic system being replaced by — a0y wy)= E_ or— }w (A5)
the dressed atom. 3\ @2m @)= 3T @01 3 @2
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The last two equations fjo not produce a unique solution fofij|| give the Hamiltonians equivalent téiz and H g in
71,7m2,m3. We can arbitarily choosey;=0 for the low-  ejther true or quasimode forni€gs. (16), (13), (18), and

frequency transition, and then we find that (15)] in which the mode densities are put equal to one. In
addition, the modified forms of the relationships between
1 1(wy—wq) true and quasimode annihilation operatPEgs. (22) and
M=3737 & (52)] can be obtained in whicp and p, are made equal to
unity, as can the revised forms of the commutation rules. The
latter are

1 1 -
I G

2= § 3 w5 (AG)

[69(4),b®T(AN]=5(A-4"), (B8)
This givesn,= 7,=3 for two degenerate optical frequency
transitions. R .
Comparing the two expressions fbir, in Egs. (A1) and [A®(0), ADT(0")]=8(0—w"). (B9)

(A2), where 51,7, are given by Eq(A6) (with 75 set to

zerg and w by Eq. (A4), we see that Eq(A2) gives the In  addition, the various equations for the

atomic energy apart from the constant tef# (w,+w,).  Fij(®),ai(0),8(w,A),z(w),g"(w), and D¥(w) now apply
with p andp. put equal to unity. It should be noted that the

APPENDIX B: SCALING FOR MODE DENSITIES quantitieséi ,0; ,vjj ,A,» are not replaced, nor are any of the
p(®),p(A) EQUAL TO UNITY atomic quantitiedd o, 7, @y, 0 0 OF Ny -
The equations presented in the first part of Sec. Il are
based on true and quasicontinuum mode densities that are APPENDIX C: THE HAMILTONIAN  Hg
not necessarily equal to unity. To compare our expressions IN DIAGONALIZED FORM

with those in Ref[12], we now set out the scalings needed

for the various quantities to give the Hamiltonians equivalent W(_a show by starting with the. fie_Id Hamiltonia}n in the
~ - . . guasimode form Eq( 13), substituting the solutions for
to He and Hap, in either true or quasimode fornj&qgs.

(16), (13), (18), and(15)] in which the mode densitigsand ~ #i(®) and B(w,A) into the expressions foa; and b(A)
p. are made equal to unity. The creation and anihilation op9"’ef? in _Eqs_.(52) and then evaluating the r_esult, that the
erators are no longer dimensionless, the coupling constan'éam"ton'a” in the tr.u.e mode fgrm, Eq16), '*S obtained.
and angular frequencies do not have dimensions of frel € Symmetry conditions=; =Fj and »;=wvj; are used
quency, and the expansion coefficients are not dimensionles§iroughout. . .
The scaled quantities appearing in the Hamiltonians or rela- Using the expressions fa; andb(A) given in Eqs.(52)
tionships between annihilation operators will be denotedhe Hamiltonian in the quasimode form, EG.3), is then
with a superscript®. given by

The following replacements were made to the annihilation
and creation operators:

|:|,:=ﬁf dw p(w) f dw’p(w’)AT(w)A(w')l(w,w’),

Vpo(A)b(A)—bO(A), (B1) (Cy
o M)bT(A)—BOT(A), (B2) where the function (w,") is

Vp(0)A(0)—AB(w), (B3) I(w,w')=2 wiai(w)af (o)
Vp(@Al(w)~AT(w), B4 = [ s pu(a)3p(a.0)8% (801

to the coupling constants

+ > vjai(w)al (o)

Vpc(A)Wi(4) W (A) (B5) oD
and to the expansion coefficients, +2_ f dA p(A)W,(A)ai(w)B* (A, 0")
Vo(w)ai(w)— aj(w)®, (B6)

+2 f dA p(AWF (M) (o) B(A, ®).
Vpe(A)p(w)B(w,A)— B9 (w,A) (B7) (C2)
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Substituting forB(w,A) in terms of theq;(w) from Eq. )
(25), using the expressiof27) for F;; and then Eq(26) for Z f dA p(A)Wi(A)ai(w)B* (A, ")
the «;(w), we get for certain contributions within the last

two terms in Eq(C2), :_z (00— ") aj(o)a* (o)

f dA p(AW(A)B* (A, ") —ij%i) viai(w)af ('), (C4

=—(wi—w')ai*(w')—j(]z¢i) v]-*iaj*(w'), 2| fdApc(A)Wi*(A)a'r(w’),B(A,w)

=-2 (0-o)a(w)af (o)
| aspeawr ama,0)
—2 Vjiaj(w)ai*(w’). (C5)
ij(j#i)

In the second term of EqC2) substitution for8(w,A)
and B* (w',A) in terms of thee;(w) andaj (w') from Eq.
(25) and then using Eqg37) for manipulating principal in-
leading to tegrals and delta functions leads to

=—(0—w)a(w)— X via(e), (C3
j(#i)

1 1 1
fdApC(A)APw,_w(Pw_A—P A)Wi(A)ai(w)Wj*(A)aj (o)

o' —

f dA pc(A)AB(A,w)B*(A,w’):% [

+m28(w— ') pe( @) oW () ai(0) W (0) af ()

+ o' P——p(0)Z* (0 YWi(0") ai(0)W} (0")af (0')
w—w
+ wP———po(®)Z(0)Wi(0) ai(0) W (0)af (o)
w —w
+wﬁ(w—w’)pc(w)Z(w)Z*(w)Wi(w)ai(w)Wj*(w)a,*(w)}- (C6)
Then using Eq(38) we show that
1 1 3 1 ) 1
A P—w_A_Pw’—A = a)Pw_A—w Pa)’—A (C7)

and following the introduction of th&;; from Eq. (27) we get

1 1
f dA p(A)AB(A,0)B* (A, 0")=2, {wp—, Filo)ai(w)af (0') =o' P——Fj(o')aj(w)a] (o)
1] w —w w —w

+twP pc(@)Z(@)Wi(w)ai(0) W (0)af (o)

o' —w

1
0 P p(0)2 (0 W0 i)W (o) (@)

+wd(w—0')p ) 7 +]2(0) PIWi(0) @i(0) W (o) af (o) (- (C8)
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The last term is justy §(w— w')/p(w) by using the normal-
ization condition Eq(39), and thep.(w) factor cancels out.
The next step is to eliminate ti€; using Eq.(26) for the

ai(w) twice. After further algebra using E¢38), again we
find that

fdAPc(A)AB(A,w)B*(A,w')
=wé(w—ow')p(w)

+2 wiai(w)af (o) —(o+ w’)z aj(w)a (0')

+ > viai(w)af (o). (C9

ij(1#1)
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The results in Eqs(C9), (C4), and(C5) can be substituted
back into Eq.(C2) for I(w,w'). It is found that there is
extensive cancellation leading to the final expression

(w0 )=wd(w—o') p(w) (C10

and hence the HamiltoniatlzlF in Eq. (C1) is now in its true
mode form:

I:I,:Zf do p() hoAT(0)A(w), (C1y

thus showing that the true and quasimode formsE-Iefare
equal.
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