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Absorption with inversion and amplification without inversion in a coherently prepared V system:
A dressed-state approach

D. Braunstein and R. Shuker*
Department of Physics, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel

~Received 14 March 2001; published 12 October 2001!

Light-induced absorption with population inversion and amplification without population inversion in a
coherently prepared closed three level V-type system are investigated. This study is performed from the point
of view of a two color dressed-state basis. Both of these processes are possible due to atomic coherence and
quantum interference contrary to simple intuitive predictions. Merely on a physical basis, one would expect a
complementary process to the amplification without inversion. We believe that absorption in the presence of
population inversion found in the dressed-state picture utilized in this study, constitutes such a process. We
derive approximate analytic time-dependent solutions, for coherences and populations that are compared with
full numerical solutions exhibiting good agreement. Steady-state quantities are also calculated, and the condi-
tions under which the system exhibits absorption and gain with and without inversion, in the dressed-state
representation are derived. It is found that for weak input probe-laser field absorption with inversion and
amplification without inversion may occur, for a range of system parameters. These take place at resonance and
the generalized Rabi ac Stark-shifted frequencies, in agreement with exprimental investigations, and at beat
frequencies, depending on the relevant parameters.

DOI: 10.1103/PhysRevA.64.053812 PACS number~s!: 42.50.Ct, 42.50.Gy
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I. INTRODUCTION

Recently there has been tremendous interest in the s
of light amplification and lasing without the requirement
population inversion~LWI !, potentially capable of extendin
the range of laser devices to a spectral region in which,
various reasons, population inversion is difficult to achie
These spectral regions include UV that can be obtained f
atomic vapor, and mid-to-far infrared, obtained by intersu
band transitions in quantum wells. Many models for LW
have been proposed, mostly three and four level scheme
L andV configurations. The dependence of optical gain
system parameters has also been investigated@1–19#.

The key mechanism, which is common to most of t
proposed schemes, is the utilization of external cohe
fields, which induce quantum coherence and interferenc
multilevel systems. An exception of LWI without the use
coherent fields was also reported@9#. In particular, it was
shown that if atomic coherence between certain atomic st
is established, different absorption processes may inter
destructively, leading to the reduction or even the cance
tion of absorption@7,13#. At the same time, stimulated emis
sion may remain intact, leading to the possibility of ga
even if only a small fraction of the population is in the e
cited state.

Experimental observations of inversionless gain and
ing without inversion have been reported by several gro
@20–25#. Off-resonance@20# and on-resonance@21,22# gain
were reported.

Inversionless lasers have been shown to have un
properties such as nonclassical photon statistics and sub
tially narrow spectral features@26,27#. In a recent paper, Y
Zhu @12# analyzed the transient and steady-state propertie
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light amplification without population inversion in a close
three-level V-type system in the bare-state basis. Steady-
dressed-state populations were also calculated, in the lim
a strong driving laser.

In this paper we study a V-type three-level model with
the framework of the dressed-state basis, and give exp
analytic time-dependent solutions, as well as steady-state
lutions for populations and coherences for the case o
strong drive field. This paper details the calculations of LW
in the dressed-state basis, which is valid to atoms dres
both by the pump and probe lasers. Moreover, we offer a
of theoretical tools allowing one to obtain explicit time
dependent solutions for populations and coherences. T
calculations show the possibility of inversion and inversio
less gain in the dressed basis, as well as gain without po
lation inversion in the bare-state representation. Our st
shows explicitly the existence of absorption despite popu
tion inversion ~ADI !. Although this effect is contrary to a
simple physical intuitive explanation of absorption, this pr
cess has a conceptual reasoning. From basic physical a
ments, one expects a complementary process to amplifica
without inversion. We believe that absorption in the prese
of population inversion, found in the dressed-state pictu
constitutes such a process@18#. It is another manifestation o
the quantum interference that may occur in multilevel s
tems where coherently prepared states present the possi
of interfering channels@28#. This phenomenon should be in
terpreted as a quantum interference constructive proces
the stimulated absorption, just as LWI is obtained from
quantum interferencedestructiveprocess of absorption. Suc
a phenomenon was alluded to in the work of Marlan
Scully and Shi-Yao Zhu@18#.

In Sec. II, we present the model system and the ma
equation used to derive the equations of motion for the e
ments of the density matrix. We have chosen to emplo
fully quantum-mechanical Hamiltonian, even though la
on, the density-matrix equations are reduced to their se
©2001 The American Physical Society12-1
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D. BRAUNSTEIN AND R. SHUKER PHYSICAL REVIEW A64 053812
classical version. The quantum-mechanical Hamilton
gives rise to a simple picture of the stationary dressed-sta
In Sec. III, the dressed levels are introduced and the ma
equation is projected over the dressed-state basis. Phy
interpretation of relaxation coefficients in the dressed bas
given and the role that quantum coherences and interfere
play is elucidated. In Sec. IV, we present approximate tim
dependent and steady-state analytic solutions for the dres
state populations and coherences. Comparison is made
the bare-state results. In Sec. V, a short sketch of a calc
tion of the active frequencies is presented. It is perform
by a unitary transformation of the time-dependent den
matrix from the interaction picture into the Schro¨dinger one.
The resulting time-dependent elements of the density ma
are then Fourier transformed into the frequaency domain
order to extract the relevant frequencies at which LWI a
ADI may take place for an appropriate set of paramete
Section VI summarizes the findings of our calculations a
draws conclusions.

II. HAMILTONIAN AND MASTER EQUATION
FOR THE ATOM

Let us consider the closedV-type three level system illus
trated in Fig. 1. The transitionua&↔ub& of frequencyvba is
driven by a strong, single-mode laser of frequencyvL . The
transitionua&↔uc& of frequencyvca is pumped incoherently
with a rateL. A single-mode probe laser~not necessarily
weak! is applied to the transitionua&↔uc&. gb (gc) is the
spontaneous emission rate from the stateub& (uc&). The
statesub& and uc& are not directly coupled.

We have chosen to work within the frame of the mas
equation for the atom, since it being an operator equa
independent of representation, it can be projected over
basis. We use a generalization of a standard master equ
adjusted to account for the scheme described above@29#. The
master equation is given by

ṡ52
i

\
@H,s#2

gb

2
@s1s2s1ss1s2#1gbs2ss1

2
gc

2
@s18 s28 s1ss18 s28 #1gcs28 ss18

2
L

2
@s18 s28 s1ss18 s28 #2

L

2
@s28 s18 s1ss28 s18 #

1Ls18 ss28 1Ls28 ss18 . ~1!

Here,s is the density operator for the atom,s1(s2), s18 (s28 )
are the atomic raising and lowering operators, for
ua&↔ub& and ua&↔uc& transitions, respectively.H is the
Hamiltonian of the global system and we take it to be fu
quantum mechanical. The quantum-mechanical Hamilton
gives rise to a simple picture of the stationary dressed-sta
The Hamiltonian in the dipole and rotating wave approxim
tion is given by
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H5\vbaub&^bu1\vcauc&^cu1\vLS a†a1
1

2D
1\vpS a8†a81

1

2D1g~s1a1s2a†!

1g8~s18 a81s28 a8†!. ~2!

g andg8 are coupling constants and are assumed to be r
The eigenstates of the unperturbed part of the Hamilton
form a three-dimensional manifold labeled by the atomic
dexes, the laser photon numberN and by the probe photon
numberN8. The manifold is written

«~N,N8!5$ua,N11,N811&,ub,N,N811&,uc,N11,N8&%.
~3!

We represent the uncoupled eigenstates of the atom
the two noninteracting field modes as

ua,N11,N811&5S 1

0

0
D , ub,N,N811&5S 0

1

0
D ,

uc,N11,N8&5S 0

0

1
D . ~4!

In this basis, the Hamiltonian takes the form

HInt5S 0 2V 2G

2V 2D1 0

2G 0 2D2

D , ~5!

where we have defined the Rabi frequencies and the de
ings, in their quantum form by

2gAN115\V; 2g8AN8115\G;

D15vL2vba ; D25vp2vca . ~6!

To obtain the semiclassical equations of motion for t
elements of the density matrix we project the master eq

FIG. 1. A three level V-type system for LWI.
2-2
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ABSORPTION WITH INVERSION AND AMPLIFICATION . . . PHYSICAL REVIEW A64 053812
tion ~1! over the basis~4! and perform the following reduc
tion operation by introducing the reduced populations a
coherencesr i j via

raa5 (
N,N8

^a,N11,N811usua,N11,N811&, ~7a!

rab5 (
N,N8

^a,N11,N811usub,N,N811&, ~7b!

and similar relations for the other populations and coh
ences. Taking into account the above-reduced quantities
obtain the density-matrix equations@19#

ṙaa52Lraa1~L1gc!rcc1gbrbb1 iV~rba2rab!

1 iG~rca2rac!, ~8a!

ṙbb52gbrbb1 iV~rab2rba!, ~8b!

ṙcc5Lraa2~L1gc!rcc1 iG~rac2rca!, ~8c!

ṙab52F1

2
~L1gb!1 iD1Grab1 iV~rbb2raa!1 iGrcb ,

~8d!

ṙac52F1

2
~L1gc!1 iD2Grac1 iG~rcc2raa!1 iVrbc ,

~8e!

ṙbc52F1

2
~L1gb1gc!1 i ~D22D1!Grbc1 iVrac2 iGrba .

~8f!

III. DRESSED STATES AND DENSITY-MATRIX
EQUATIONS IN THE DRESSED-STATE BASIS

The dressed states are obtained by finding the eigen
tors of the interaction Hamiltonian, Eq.~5!. To simplify
things a little, we take both the driving laser field and t
probe field to be in exact resonance with the correspond
bare state transitions, i.e., we takeD15D250. When the
detunings are set to zero, we notice that the energies in
bare-state basis are all degenerate, and in fact, equal to
~in the interaction picture!. Carrying out the diagonalization
procedure, we obtain the following eigenstates:

ua~N!~N8!&52
G

R
ub,N,N811&1

V

R
uc,N11,N8&,

~9a!

ub~N!~N8!&52
1

A2
ua,N11,N811&1

V

A2R
ub,N,N811&

1
G

A2R
uc,N11,N8&, ~9b!
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ug~N!~N8!&5
1

A2
ua,N11,N811&1

V

A2R
ub,N,N811&

1
G

A2R
uc,N11,N8&, ~9c!

and the corresponding energies

Eug&52\R; Eua&50; Eub&5\R, ~10!

where we have introduced the on resonance, two field g
eralized Rabi flopping frequencyR5AV21G2.

Note that for the caseG50, Eqs.~9b! and~9c! render the
usual coupling and non-coupling dressed-states, while
ua& state, which is identical to theuc& state, is not involved in
the interaction altogether. The energy ladder is shown sc
matically in Fig. 2. We can see that one state remained int
while the other two states were displaced by an ene
amount of\R, with respect to the bare states. In the stro
driving field limit, i.e., when V@G, we see that the
ua(N)(N8)& state has the character of the excited bare s
uc,N11,N8&, and hence, is expected to be less popula
than the other two states. By contrast, theub(N)(N8)& and
ug(N)(N8)& states have a ground-state character, and he
will be more populated than theua(N)(N8)& state. However,
both ub& and ug& states are also contaminated by the sa
amount of the first excited level, and thus, they are expec
to possess the same population content.

The eigenstates of Eqs.~9a!–~9c! define a rotation matrix
~transformation matrix!

T5S 0 2
G

R

V

R

2
1

A2

V

A2R

G

A2R

1

A2

V

A2R

G

A2R

D ~11!

that diagonalizes the Hamiltonian of Eq.~5! via the matrix
product THT21. Thus, the density operator in the dress
atom basis,rD, will be given by the matrix product

rD5TrBT21, ~12!

whererB is the density operator in the bare basis.
Projection of the master equation over the dressed-s

basis yields particularly simple equations for the first part
Eq. ~1!, i.e., the Hamiltonian part of the master equatio
However, in the dressed atom basis, the relaxation term
Eq. ~1! give rise to equations that are not as simple as E
~8a!–~8f!. In particular, couplings between dressed-st
populations and coherences between two dressed-state
pear. In the next section, we present an approximate ver
of the complete set of equations given bellow.

The equation of motion for the density-matrix elements
the dressed-state representation are given by
2-3
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FIG. 2. Manifolds e(N,N8),
e(N11,N8), e(N,N811), and
e(N11,N811), etc., of un-
coupled states of the atom1 la-
sers photons~left-hand part!. The
dressed level~perturbed levels!
are shown at the right-hand side
The circles represent steady-sta
populations.
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ṙaa52~Ga1L8!raa1G̃~rab1rba!1G̃~rag1rga!

1
1

2
L8rbb2

1

2
L8~rbg1rgb!1

1

2
L8rgg , ~13a!

ṙab52~Gab2 iR!rab2S Gb2
1

4
L8D rag2G̃8rbg

1~ G̃2G̃8!rgb1G̃raa1~ G̃1G̃8!rbb1G̃8rgg ,

~13b!

ṙag52~Gab1 iR!rag2S Gb2
1

4
L8D rab1~ G̃2G̃8!rbg

2G̃8rgb1G̃raa1G̃8rbb1~ G̃1G̃8!rgg , ~13c!

ṙbb52S Gb1
1

2
L D rbb1

1

2
~Ga1L8!raa1S Gb1

1

2
L

2
1

2
L8D rgg2G̃~rag1rga!1

1

4
L8~rbg1rgb!,

~13d!

ṙbg52~Gbg12iR!rbg2S Gb1
1

2
L2

1

2
L8D rgb

1G̃~rab1rga!12G̃~rba1rag!2
1

2
~Ga1L8!raa

2S 2Gb2
1

4
L8D ~rbb1rgg!, ~13e!
05381
ṙgg52S Gb1
1

2
L D rgg2G̃~rab1rba!1

1

4
L8~rbg1rgb!

1
1

2
~Ga1L8!raa1S Gb1

1

2
L2

1

2
L8D rbb , ~13f!

where we have again made use of the reduction operatio

r i , j5 (
N,N8

^ i ~N!~N8!usu j ~N!~N8!&, i , j 5ua&,ub&,ug&.

~14!

In obtaining Eqs.~13a!–~13f!, we have introduced the fol
lowing notation for the dressed picture decaying rates
relaxation coefficients

Ga5
1

R2
~gbG21gcV

2!, Gb5
1

4R2
~gbV21gcG

2!,

Gab5Gb1
1

2
~Ga1L1L8/2!, Gbg53Gb1

3

2
L2L8,

G̃5
GV

2A2R2
~gb2gc2L!, G̃85

GVL

2A2R2
, L85

LV2

R2
.

~15!

Ga , Gb5Gg are the spontaneous emission decay r
of the ua&, ub&, and ug& states. More precisely, the sta
ua(N)(N8)& decays by spontaneous emission with a rateGa
to the levelsub(N21)(N8)&, ug(N21)(N8)&, ub(N)(N8
21)&, and ug(N)(N821)&. Similarly, the levels
ub(N)(N8)&, ug(N)(N8)& decay with the same rateGb to the
2-4
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ABSORPTION WITH INVERSION AND AMPLIFICATION . . . PHYSICAL REVIEW A64 053812
same levels asua(N)(N8)&. The coherencesrab , and rag

(rbg) decay with a rateGab (Gbg). L8 is a dressed picture
pump rate that causes population and depopulation of
dressed levels. It also has an important influence on the
herences as can readily be seen from Eqs.~13a!–~13f!.

G̃ and G̃8 are identified asinterference terms. They in-
volve the product of two Rabi frequencies. Both paramet
vanish whenever eitherG or V are zero. These terms ar
responsible for the amplification without inversion and f
the absorption despite the inversion. This fact is verified

merically. When we have set bothG̃ and G̃8 to zero ~this
happens whenL50 andgb5gc) any previously obtained
gain has vanished. The first and second terms inGab , Gb ,
andGa/2, describe damping of the atomic coherence due
radiative transitions of the levels involved to lower leve
and is equal to half the sum of all transition rates start
from ua(N)(N8)& and ub(N)(N8)&. The remaining terms in
Gab describe damping of the coherencerab due to the inco-
herent pump. The interpretation ofGbg is similar except that
the 3Gb is composed of a 2Gb term responsible for the co
herence damping due to radiative transition, plus a singleGb
component resulting from the transfer of coherence fr
higher levels belonging to higher manifolds@29#. This fact
would have been more transparent had we written the n
reduced version of Eqs.~13a!–~13f!. Inspection of Eqs.~13!
reveals thatrab and rag have the same free evolution fre
quency R, however they oscillate out of phase. The free e
lution frequency ofrbg is twice as large, as both levelsub&
andug& are contaminated by the bare ground-stateua&. Note
that the closure of the system is satisfied by Eqs.~13a!–
~13f!, i.e.,d/dt(raa1rbb1rgg)50. Gain or absorption co
efficient for theu j &→u i & transition is proportional to Im@r i j #.
In our notation, amplification will occur if Im@r i j #&0.

In the next section, we present approximate solutions
Eqs. ~13a!–~13f!, both for the time-dependent and th
steady-state solutions. These will be compared with num
cal calculations of the full system, i.e., without any appro
mation.

IV. DENSITY-MATRIX EQUATIONS IN THE DRESSED-
STATE BASIS IN THE SECULAR APPROXIMATION

As mentioned before, the Hamiltonian part of the mas
equation has a simple form in the dressed-state basis g
by Eqs. ~9a!–~9c! ~the Hamiltonian is diagonalized in th
dressed-state representation!. The problem arises when th
spontaneous emission and pump terms are present in
master equation, Eq.~1!, giving the complicated coupling
appearing in Eqs.~13a!–~13f!. Solving exactly the complete
set seems to be a formidable task even with the help
MATHEMATICA software@30#. However, the situation can b
simplified if the frequency difference between the dres
states of the manifold, namely, the Rabi flopping frequencR
is large compared with the ratesG, gb , gc , and L, i.e.,
strong drive. We can then ignore the ‘‘nonsecular’’ term
i.e., couplings between populations and coherences~see
@29#!.
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A. The evolution of the population terms

When the ‘‘nonsecular’’ couplings between populatio
and coherences are ignored, we obtain from Eqs.~13a!,
~13d!, and~13f! the following equations for the populations

ṙaa52~Ga1L8!raa1
1

2
L8rbb1

1

2
L8rgg , ~16a!

ṙbb52S Gb1
1

2
L D rbb1

1

2
~Ga1L8!raa

1S Gb1
1

2
L2

1

2
L8D rgg , ~16b!

ṙgg52S Gb1
1

2
L D rgg1

1

2
~Ga1L8!raa

1S Gb1
1

2
L2

1

2
L8D rbb . ~16c!

Note that population conservation is still maintained. T
interpretation of Eqs.~16a!–~16c! is very clear. The stateua&
is depopulated with a rate (Ga1L8), which in turn, is dis-
tributed equally among the statesub& and ug&, as can be
readily seen from the factor of one half multiplying the c
efficient ofraa in Eqs.~16b! and~16c!. The stateua& is also
being populated with a rate 1/2L8 by the statesub& andug&.
The stateub& (ug&) is depopulated at a rate (Gb1(1/2)L)
and repopulated with the same rate fromug& (ub&). The set
~16a!–~16c! can be solved exactly by calculating its eige
values and eigenstates, subject to the conditionraa1rbb
1rgg51. This yields the temporal solution

raa~ t !5raa
st 1@raa~0!2raa

st #e2[Ga1(3/2)L8] t, ~17a!

rbb~ t !5rbb
st 1H rbb~0!2rbb

st 1
1

2
@raa~0!2raa

st #J
3e2[2Gb1L2(1/2)L8] t2

1

2
@raa~0!2raa

st #

3e2[Ga1(3/2)L8] t, ~17b!

rgg~ t !5rgg
st 2H rbb~0!2rbb

st 1
1

2
@raa~0!2raa

st #J
3e2[2Gb1L2(1/2)L8] t2

1

2
@raa~0!2raa

st #

3e2[Ga1(3/2)L8] t, ~17c!

where r i i (0) are the initial populations. The steady-sta
populations,r i i

st are given by

raa
st 5

L8

2Ga13L8
, ~18a!
2-5
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FIG. 3. Time evolution numerical simulation, of dressed-state populationraa andrbb obtained by solving Eqs.~13a!–~13f! ~solid line!,
and the approximate solution based on Eqs.~17a!–~17c! ~dashed line!. The chosen parameters are:V520gc , gb52gc , G50.1gc , L
53gc . The time is scaled bygc .
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rbb
st 5rgg

st 5
Ga1L8

2Ga13L8
. ~18b!

We can see that the populationrbb , rgg have similar
behavior, though not identical, a fact that is not surprising
all in light of the very similar composition of the statesub&
and ug&. The population of the stateua& is unique in the
sense that it decays with only one decay constant, while
other populations have a composite decay. Figure 3 sho
comparison between the exact solution forraa and rbb
~solid line!, obtained by solving numerically the equation s
~13a!–~13f!, with our approximate analytic solution~17a!–
~17c! shown in dashed line. The normalized parameters
the numerical simulation were set to beV520gc , gb
52gc , G50.1gc , L53gc . We can see that the populatio
raa is a monotonically increasing, oscillating function
time that reaches a steady-state valueraa

st '0.27. The behav-
ior of rbb is opposite, i.e., it is a monotonically decreasi
oscillating function and it reaches the steady-state va
rbb

st '0.36. rgg is not shown because of its similarity t
rbb , due the choice of parameters made. The approxim
solutions describe nicely the envelope of oscillation and
correct expression for the steady state. One can see
raa

st ,rbb
st 5rgg

st , for any finiteL, and hence, population in
version do exist in the dressed-state basis. For the transi
ua&→ub& and ua&→ug&, the population difference is nega
tive, namely noninversion. For the transitionsub&→ug& and
ug&→ub&, the population difference is zero. It remains to
seen whether these transitions amplify, and thus, resu
amplification without inversion in the dressed-state basis
the strong coupling field limit,V@G the steady-state popu
lations become

rbb
st 5rgg

st 5
gc1L

2gc13L
, ~19!

and

raa
st 5

L

2gc13L
. ~20!

In the following, we will get into more detail regarding ga
without inversion in the dressed-state basis.
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B. Evolution of coherences

Ignoring the ‘‘nonsecular’’ couplings between coherenc
and populations in Eqs.~13a!–~13f! results in equations tha
are simpler than the original ones, however, they are
very complicated, particularly the equations forrbg and its
conjugate, which are coupled to all the other coherenc
Hence, one would like to further approximate these eq
tions in such a way that the resulting solutions will be fair
simple on one hand, and be a reasonable approximatio
the exact solution on the other. We solved numerically
complete set~13a!–~13f! and found thatrbg , and hence, its
conjugate are substantially larger than the other coheren
indicating the crucial role these coherences play. In light
the above, we couple each atomic coherence to itself~de-
scribing the free evolution! and torbg andrgb acting as the
dominant source terms.

This gives the following equations:

ṙab52~Gab2 iR!rab2G̃8rbg1~ G̃2G̃8!rgb , ~21a!

ṙag52~Gag1 iR!rag1~ G̃2G̃8!rbg2G̃8rgb , ~21b!

ṙbg52~Gbg12iR!rbg2S Gb1
1

2
L2

1

2
L8D rgb ,

~21c!

along with the equation forrgb5rbg* . Solving the eigen-
value problem of Eqs.~21a!–~21c!, we find the transient so
lutions for the coherences, in the strong coupling field lim
These solutions are

rab~ t !5A exp@2~Gab2 iR!t#

1C
~ G̃2G̃8!~Gb1L/22L8/2!1 i4G̃8R

~Gb1L/22L8/2!~Gbg2Gab13iR!

3exp@2~Gbg12iR!t#

1D
~ G̃82G̃ !1 i G̃8~Gb1L/22L8/2!/4R

Gbg2Gab2 iR

3exp@2~Gbg22iR!t#, ~22a!
2-6
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rag~ t !5B exp@2~Gab1 iR!t#

1C
G̃8~Gb1L/22L8/2!2 i4R~ G̃2G̃8!

~Gb1L/22L8/2!~Gbg2Gab1 iR!

3exp@2~Gbg12iR!t#

1D
G̃82 i ~ G̃2G̃8!~Gb1L/22L8/2!/4R

Gbg2Gab23iR

3exp@2~Gbg22iR!t#, ~22b!

rbg~ t !5C
4iR

Gb1L/22L8/2
exp@2~Gbg12iR!t#

1D i
Gb1L/22L8/2

4R
exp@2~Gbg22iR!t#,

~22c!
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whereA, B, C, and D are constants ought to be calculat
from initial conditions.

The main deficiency of Eqs.~22a!–~22c! is the zero
steady-state predicted by them. The reason for this is
omission of the populations source terms in writing Eq
~21a!–~21c!. We have solved analytically Eqs.~21a!–~21c!
with the population source terms included. The tim
dependent analytical solution obtained was chec
against numerical calculations and found to be in excell
agreement. Unfortunately, the solution is so complicat
that even reduction operations carried out byMATHEMATICA

@30# could not give a manageable solution. For the purp
of finding the steady-state coherences, it is sufficient
retain the population terms in Eqs.~21a!–~21c!, set to zero
the time derivatives, and solve the resulting algebraic eq
tions. This yields, using expressions~18a! and ~18b! for
the steady-state populations, the following steady s
coherences:
rab
st 5~rag

st !* 5
~Gab1 iR!@GaG̃81~Ga12L8!~ G̃1G̃8!#

~Gab
2 1R2!~2Ga13L8!

1
4Gb~Gab1 iR!~Ga1L8!@~2G̃82G̃ !~2Gb1L2L8/2!22iRG̃#

~Gab
2 1R2!~2Ga13L8!@Gbg

2 14R22~Gb1L/22L8/2!2#
, ~23a!

rbg
st 5

4Gb~Ga1L8!

2Ga13L8

~2Gb1L2L8/2!22iR

~Gb1L/22L8/2!22~Gbg
2 14R2!

. ~23b!
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The steady-state values predicted by the last express
were checked against numerical calculation and found to
in a very good agreement. Note that expressions~23a! and
~23b! also give the steady-state dispersion and not only
gain or absorption coefficients. The expected dominanc
rbg on the other two coherences, can be seen by noting
the termG̃1G̃8, appearing inrab andrag ~but not inrbg)
varies likeo(G/R), thus, the coherencerab varies likerab
;G/R2 while rbg varies likerbg;1/R. The second term in
Im(rab) is of the orderG/R3 and can be neglected. Figure
shows the exact coherences obtained by solving numeric
Eqs.~13a!–~13f! ~solid line!, and the corresponding approx
mate analytic solutions formed byr i j (t)1r i j

st , as given by
expressions~22a!–~22c! and ~23a! and ~23b!. The chosen
parameters are the same as in Fig. 3. It can be seen tha
approximate analytic solution deviates from the exact on
deviation that decreases as time goes by. The source for
behavior is the omission of the population source terms
Eqs.~21a!–~21c!. However, the oscillation frequency is pre
dicted correctly by the approximate solutions. Moreover,
approximate solution forrbg appears to be more accura
than the other two, again indicating the crucial role played
rbg and rgb . Note also the negligible contribution ofrab
and rag to rbg . The latter coherence is not coupled
ns
e

e
of
at

lly

the
a

his
n

e

y

rab ,rag yet the approximation remains satisfactory. Equ
tion ~22c! also shows thatrbg has an almost pure sinusoid
form of frequency 2R. To the contrary,rab andrag have a
composite oscillation, being a superposition of frequenc
It can be seen from the numerical solution presented in F
4, that the coherencesrab and rag possess a definite sign
thus, the corresponding transitions between dressed-st
being either amplified or attenuated. More precisely Im(rab)
is positive in all the range shown, hence, the transitionub&
→ua& is amplified with population inversion in the dresse
state picture at the frequenciesvL1R andvp1R. The tran-
sition ua&→ug& is also amplified since Im(rga).0 @Fig.
4~b!#, however, without population inversion in this cas
This situation is very different from that occurring in th
bare-state basis, where the coherences oscillate back
forth across zero, thus experiencing periodic amplificat
and absorption@12#. In contrast torab andrag , the sign of
Im(rgb) is alternating thus the transitionub&→ug& is being
amplified and absorbed periodically. Another feature see
Fig. 4 is the strength of the coherencerbg , which is seen to
be three orders of magnitude stronger than the other
coherences. The transitionug&→ua&, however is absorbing
despitethe population inversion@see Fig. 4~b!#.

Steady-state amplification of theub&→ua& transition at
frequenciesvL1R and vp1R, occurs whenever Im(rab)
2-7



Fig.

D. BRAUNSTEIN AND R. SHUKER PHYSICAL REVIEW A64 053812
FIG. 4. Normalized time evolution numerical simulation, of dressed-state coherences obtained by solving Eqs.~13a!–~13f! ~solid line!,
and the approximate solution based on Eqs.~22a!–~22c! and ~23a! and ~23b! ~dashed line!. The chosen parameters are the same as in
3. Note the absorption despite population inversion seen in~b!.
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.0. Taking into account only the first term in Eq.~23a!, we
find gain in the following two cases.

~1! For any incoherent pump rateL ~even zero!, if gb
.gc . The physical interpretation of this result is clear:
level ub& is drained more quickly thanuc& there is no need
for the incoherent pump. The disparity between the de
ratesgb and gc acts as an effective incoherent pump. T
recycling of the population is accomplished by the coher
probe field, albeit losses.

~2! For @V2/V21R2#gc,gb,gc provided that the inco-
herent pump rate is strong enough such thatL.@Ga(gc
2gb)/Ga22V2(gc2gb)/R2#.

This gain is ‘‘regular’’ gain, due to population inversio
sincerbb.raa .

The transitionua&→ug& at frequenciesvL1R and vp
1R will be amplified for the same range of parameters
stated in items 1 and 2 above because the corresponding
coefficient is proportional to Im(rga

st )52Im(rag
st )
05381
y
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s
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5Im(rab
st ). However, this transition is inversionless, and it

due to external field induced quantum interferences
atomic coherences.

In order to interpret the result that gain exists for the ca
of L50, we have studied parametricaly the changes t
occur in the population of the stateua& and in the coher-
ences. From the numerical solution of the dressed-state
tem, it can be seen that even when the incoherent pum
zero butgb.gc , the population of the stateua& is not zero
though very small. However, one expects no population
the stateua& whenL50. The mismatch between the deca
ing ratesgb andgc is the reason for nonzero population
ua& ~see Fig. 5!. This acts as an effective incoherent pum
Indeed, whenL50 andgb5gc , no incoherent pump, effec
tive or direct, is present and it is found thatraa vanishes, as
it should.

Studying the coherences by applying the full numeri
calculation, one finds gain even if no incoherent pump
present. Figure 6 displays such a gain for inversionless t
2-8
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sition ua&→ug& for the caseL50 and nonequal decay rate
i.e., gb.gc . Figure 7 exhibits gain for the same transitio
but for nonzero incoherent pump rate and equal decay
rates. Only when the decaying rates are equal and the i
herent pump rate is zero, we effectively turn off the interf
ence effect by causingG̃50,G̃850 and both the imaginary
and the real parts of the coherencesrab andrag vanish. As
a consequence, the gain vanishes. Again this indicates
the mismatch in the decay rates acts effectively as incohe
pump.

Gain in the dressed-state picture occurs strictly at
dressed frequencies,v i6R (i 5L,p), which are shifted from
those of the bare state basis. However, no such frequen
exist in the bare-state representation. We believe that the
propriate basis to use is the dressed basis, when dealing
strong fields.

The opposite transition,ug&→ua& at frequenciesvL2R
and vp2R, exhibits absorption with population inversio
@see Fig. 4~b!#. In a sense, this is the reverse process
amplification without inversion and it is explained as a co
structive quantum interference for the stimulated absorp
process. Theub&→ug& transition, at frequenciesvL12R and
vp12R will be absorbed, since the term 4R2 appearing in
the denominator of Eq.~23b! far exceeds the other denom
nator terms, resulting in Im(rgb),0, and hence absorption

FIG. 5. Population of statea, raa for zero incoherent pump rat
and nonequal decaying rates. The chosen parameters are the
as in Fig. 3.

FIG. 6. Im(rga) as a function of normalized time parametergct
for the case of zero incoherent pump rate,L50, exhibiting gain for
the ua&→ug& transition for most of the region and especially
steady state. The chosen parameters are the same as in Fig. 3
05381
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The transition ug&→ub& in turn, at frequenciesvL22R,
vp22R will be amplified for any incoherent pump rate.

Utilizing the strong driving field limit, once again, th
imaginary parts of the steady-state coherences can be
pressed in terms of the original atomic parameters as

Im~rab
st !5Im~rga

st !5G
~gc12L!~gb2gc!1gcL

2A2V2~2gc13L!
,

~24a!

Im~rbg
st !5

gb~gc1L!

2V~2gc13L!
. ~24b!

As mentioned before, in the strong coupling field lim
~weak probe! the stateua& degenerates into the highest e
cited bare stateuc&, thus, we are facing a situation of fu
noninversionin the dressed-state basis, i.e.,rcc,rbb5rgg
@see Eqs.~19!–~20!#. Equation~24a! indicates that gain can
be obtained for theuc&→ub& and uc&→ug& transitions~the
Autler-Townes transitions@31#! for the following conditions.

~1! For any incoherent pump rateL if gb.gc .
~2! For 1/2gc,gb,gc , provided that L.@gc(gc

2gb)/2gb2gc#.

This gain iswithout inversion. The physics involved in
this condition is as follows: It states that the dephasing ti
of level uc& namely (1/2gc)

21 must be longer than any othe
decay time in the system. The dephasing process mus
slow with respect to other processes in order to preserve
phase of the dipole transitionrac . This makes possible the
quantum coherent effect whereby the interference can re
in gain without inversion.

To improve the temporal results for the populations
retained only the dominant coherences, namely,rbg andrgb
in the population equations@Eqs. ~16a!–~16c!# serving as
source terms. That is, we seek the particular solution to
set

ame

FIG. 7. Im(rga) as a function of normalized dimensionless tim
parametergct for the case of nonzero incoherent pump rate, a
equal decaying ratesgb5gc . The transition possess gain th
steady-state regime. The chosen parameters are the same
Fig. 3.
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ṙaa52~Ga1L8!raa1
1

2
L8rbb1

1

2
L8rgg

2
1

2
L8~rbg1rrgb

!, ~25a!

ṙbb52S Gb1
1

2
L D rbb1

1

2
~Ga1L8!raa

1S Gb1
1

2
L2

1

2
L8D rgg1

1

4
L8~rbg1rrgb

!,

~25b!

ṙgg52S Gb1
1

2
L D rgg1

1

2
~Ga1L8!raa

1S Gb1
1

2
L2

1

2
L8D rbb1

1

4
L8~rbg1rrgb

!,

~25c!
ia

tio

re
a

th

-
y

05381
where we take forrbg andrgb only the leading terms in Eq
~22c!. These equations are integrated giving the followi
results:

raa~ t !5raa
st 1c1e2[Ga1(3/2)L8)t1raa

par~ t !, ~26a!

rbb~ t !5rbb
st 2

1

2
c1e2[Ga1(3/2)L8] t1c2e2[2Gb1L2(1/2)L8] t

2
1

2
raa

par~ t !, ~26b!

rgg~ t !5rgg
st 2

1

2
c1e2[Ga1(3/2)L8] t2c2e2[2Gb1L2(1/2)L8] t

2
1

2
raa

par~ t !, ~26c!

where the particular solution is given by
raa
par~ t !52

rbg~0!L8@~Ga1 3
2 L82Gbg!cos~2Rt!12R sin~2Rt!#

~Ga1 3
2 L82Gbg!214R2

e2Gbgt.
ces,
ed

has
ed.

true
in

her-
rder
ust
h

The integration constants are given in terms of init
populations and coherences by

c15raa~0!2raa
st 2raa

par~0!

c25rbb~0!2rbb
st 1

1

2
@raa~0!2raa

st #.

Figure 8 shows the difference between the exact popula
raa and the approximate solution~26a!–~26c!. It can be seen
that the approximate solution is very accurate.

To compare with the steady-state situation in the ba
state basis, we need to transform back to the bare-state b
via the the matrix productrB5T21rDrT, whererDr is the
density matrix in the dressed-state basis, formed by
steady-state populations and coherences of Eqs.~18a!–~18b!
and ~23a! and ~23b!. Further utilization of the strong cou
pling field limit gives bare-state populations, in the stead
state regime.

raa5rbb5
gc1L

2gc13L
, ~27a!

and

rcc5
L

2gc13L
. ~27b!

The bare state coherences are
l

n

-
sis,

e

-

rab52 i
gb~gc1L!

2V~2gc13L!
, ~28a!

rac5 iG
L~gb2gc!2gc

2

2V2~2gc13L!
, ~28b!

and

rbc5
Ggc

V~2gc13L!
. ~28c!

In obtaining the expressions for populations and coheren
we find that our general form reduce to previously obtain
results@12#.

We see that in the bare-state basis one always
Im(rab),0, thus the coupling laser is always attenuat
The probe transition exhibits inversionless gain forgb.gc

for pump rates satisfyingL.gc
2/gb2gc . From the analysis

presented above, we conclude that for a weak probe,
lasing without population inversion can be realized, both
the bare-state and the dressed-state basis.

V. SPECTRAL SHAPE OF THE COHERENCES

The results obtained above for the populations and co
ences were derived in the interaction representation. In o
to gain knowledge regarding the true frequencies, we m
transform back to the Schro¨dinger representation, thoug
2-10
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FIG. 8. Difference between exact populatio
raa obtained by solving Eqs.~13a!–~13f! and the
approximate solutions based on solutions~26a!–
~26c!. The chosen parameters are the same a
Fig. 3.
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still remaining within the framework of the dressed-state r
resentation.

The Schro¨dinger picture bare-state density operatorrS
B is

related to the interaction picture density operatorr I
B via the

unitary transformation

rS
B5U0r I

BU0
† , ~29!

whereU05e2 iH 0t/\ is the free evolution matrix. The Schro¨-
dinger picture dressed-state density operator is expresse
terms of the bare-state operator via the following rotation

rS
D5T21rS

BT5~T21U0
BT!~T21r I

BT!@T21~U0
B!†T#

5U0
Dr I

D~U0
D!†. ~30!

Here,U0
D andr I

D are the dressed-state evolution and den
operators, respectively. The Schro¨dinger picture dressed
states coherences show several frequencies. However, th
pressions for the density-matrix elements are extremely c
plex and will not be presented here. The main features
oscillating term at resonance frequencies,vp ,vL and at the
Rabi shifted side bands, namely,v i6R, v i62R ( i 5L,p),
and other combinations.

These results determine only the existence of gain with
inversion or absorption with inversion as well as usual g
with inversion. The relevant polarizations oscillate at t
Rabi frequency. However, they do not determine the frequ
cies at which gain and absorption occur. The procedure
determine that is taking the Fourier transform of the autoc
relation function of these quantities. Due to the extre
complexity of these terms, we have resorted to numer
calculations that aids in determining the frequencies that p
role in the gain/absorption processes. These calculation
not provide the spectrum itself, but rather it is the absol
value of the transform of the density-matrix elements,rab ,
etc. The numerical results indicate that the polarizations
cillate at vL , vp , vp2vL and at the Rabi and modulate
beat frequencies.

A typical result of these calculations is displayed in Fig
in which we find spectral features atvp , vp2R, vp22R.
Similar characteristics are also found at and aroundvL and
vp2vL . Details of these calculations will be shown els
where in which a study of the parameter space will
shown.
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The experimental studies by Zibrov, Padmabandu,
Kitching and Hollberg@20–22# have shown gain without in-
version at resonance, at aboutvp , and absorption at the Rab
sidebands. These results are obtained theoretically in
bare-sate picture by various authors as well as our own b
state picture calculations, which reproduce the experime
results. However, the dressed-state picture provides insig
the true light matter interaction and in particular, a host
frequencies that could not be obtained in the bare-s
picture.

It is more complicated to work and interpret the results
the dressed-state picture, but it reveals many features u
tected in the bare-state formalism. The search for the e
parameters that correlates with the experiments is the ke
it is the key in the experiment. This is pursued theoretica
At the present state of the calculations, it is clear in princi
that one can obtain the correct gain and absorption spec
by extensive parameter search.

VI. SUMMARY

Absorption in the presence of inversion and amplificati
without inversion in a three-levelV-type system are found in
the dressed-state picture. Both of these effects are the m
festation of the quantum interference that occurs in mu
level systems. Moreover, the above two processes const
a manifestation of a complementarity principle.

FIG. 9. Spectral line shape ofrbg in the vicinity of vp . The
system parameters are the same as in Fig. 3. The inset shows a
at vp2R.
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We have presented an analysis of light amplification wi
out population inversion in this system within the framewo
of the dressed-state basis. The equations of motion for
elements of the density matrix are derived from the ma
equation. In the dressed-state picture, relaxation terms
defined that are related directly to the coherently prepa
states and the quantum interference effects. Interfere
terms are identified. They are shown to be the source
amplification without inversion and for absorption desp
the inversion. Consequently, approximate analytical tim
dependent solutions for dressed-state populations and co
ences were obtained. Comparison of these approximate s
tions with the numerically calculated quantities sho
excellent agreement. Both of these solutions exhibit the
miliar Rabi oscillations. Steady-state density-matrix e
ments were also calculated, from which we have conclu
that for a weak probe field, true lasing without inversi
exist for appropriate incoherent pump rate, i.e., lasing w
out inversion in any state basis. Steady-state quantities w
transformed back to the bare-state basis, and were foun
be in perfect agreement with results in the literature. Con
tions for inversionless gain and ADI were obtained.
y

,

e

m

.
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Gain is predicted at resonance frequencies and at the
side bands, depending on the relevant parameters. Ex
mental results have presented gain without inversion at re
nance frequency and at frequencies displaced from reson
by about the Rabi frequency in agreement with the pres
findings. It appears that the dressed-state picture is q
complicated revealing possible amplification without popu
tion inversion and absorption with population inversion, tw
counterintuitive processes prompted by quantum inter
ences. Thus, interpretation of experimental results beco
extremely subtle. In the present calculation, two fields
included and the dressing is caused by both the pump
probe lasers. Experimentaly, it would be intersting to app
another field, weak enough to avoid further dressing, in or
to probe the above-calculated quantum interference p
cesses at resonance, beat, and at the relevant Rabi-sh
frequencies.

Finally, the feature of ADI, absorption despite populati
inversion, found in this calculation emphasizes the imp
tance of quantum interference. Quantum interference is t
shown to imprint its effect on the processes in the dress
state picture.
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