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Absorption with inversion and amplification without inversion in a coherently prepared V system:
A dressed-state approach
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Light-induced absorption with population inversion and amplification without population inversion in a
coherently prepared closed three level V-type system are investigated. This study is performed from the point
of view of a two color dressed-state basis. Both of these processes are possible due to atomic coherence and
guantum interference contrary to simple intuitive predictions. Merely on a physical basis, one would expect a
complementary process to the amplification without inversion. We believe that absorption in the presence of
population inversion found in the dressed-state picture utilized in this study, constitutes such a process. We
derive approximate analytic time-dependent solutions, for coherences and populations that are compared with
full numerical solutions exhibiting good agreement. Steady-state quantities are also calculated, and the condi-
tions under which the system exhibits absorption and gain with and without inversion, in the dressed-state
representation are derived. It is found that for weak input probe-laser field absorption with inversion and
amplification without inversion may occur, for a range of system parameters. These take place at resonance and
the generalized Rabi ac Stark-shifted frequencies, in agreement with exprimental investigations, and at beat
frequencies, depending on the relevant parameters.
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I. INTRODUCTION light amplification without population inversion in a closed,
three-level V-type system in the bare-state basis. Steady-state
Recently there has been tremendous interest in the studyressed-state populations were also calculated, in the limit of
of light amplification and lasing without the requirement of a strong driving laser.
population inversioLW!1), potentially capable of extending  In this paper we study a V-type three-level model within
the range of laser devices to a spectral region in which, fothe framework of the dressed-state basis, and give explicit
various reasons, population inversion is difficult to achieve analytic time-dependent solutions, as well as steady-state so-
These spectral regions include UV that can be obtained frorffitions for populations and coherences for the case of a

atomic vapor, and mid-to-far infrared, obtained by intersub-Strong drive field. This paper details the calculations of LWI
band transitions in quantum wells. Many models for Lwi1 " the dressed-state basis, which is valid to atoms dressed

have been proposed, mostly three and four level schemes, th by th? pump and prqbe lasers. Moreqver, we Qﬁe_r a set
of theoretical tools allowing one to obtain explicit time-

A andV configurations. The dependence of optical gain onde endent solutions for populations and coherences. These
system parameters has also been investigdted9). p Pop :

) L calculations show the possibility of inversion and inversion-
The key mechanism, which is common to most of the P y

d sch is the utilizati f ext | coh less gain in the dressed basis, as well as gain without popu-
broposed schemes, 1S the uliization of external co erer]&tion inversion in the bare-state representation. Our study

fleldg, which induce quantum.coherence gnd interference Bhows explicitly the existence of absorption despite popula-
multilevel systems. An exception of LWI without the use of jon inversion (ADI). Although this effect is contrary to a
coherent fields was also reportgd]. In particular, it was  gimple physical intuitive explanation of absorption, this pro-
shown that if atomic coherence between certain atomic statggss has a conceptual reasoning. From basic physical argu-
is established, different absorption processes may interfefigents, one expects a complementary process to amplification
destructively, leading to the reduction or even the cancellawithout inversion. We believe that absorption in the presence
tion of absorptior{7,13]. At the same time, stimulated emis- of population inversion, found in the dressed-state picture,
sion may remain intact, leading to the possibility of gainconstitutes such a procelgg]. It is another manifestation of
even if only a small fraction of the population is in the ex- the quantum interference that may occur in multilevel sys-
cited state. tems where coherently prepared states present the possibility
Experimental observations of inversionless gain and lasef interfering channel§28]. This phenomenon should be in-
ing without inversion have been reported by several groupserpreted as a quantum interference constructive process for
[20—25. Off-resonancg20] and on-resonanc21,22 gain  the stimulated absorption, just as LWI is obtained from a
were reported. quantum interferenceestructiveprocess of absorption. Such
Inversionless lasers have been shown to have uniqu& phenomenon was alluded to in the work of Marlan O.
properties such as nonclassical photon statistics and substa®eully and Shi-Yao Zh(i18].
tially narrow spectral featurg®6,27). In a recent paper, Y. In Sec. Il, we present the model system and the master
Zhu[12] analyzed the transient and steady-state properties @fquation used to derive the equations of motion for the ele-
ments of the density matrix. We have chosen to employ a
fully quantum-mechanical Hamiltonian, even though later
*Email address: shuker@bgumail.bgu.ac.il on, the density-matrix equations are reduced to their semi-
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classical version. The quantum-mechanical Hamiltonian
gives rise to a simple picture of the stationary dressed-states.

In Sec. lll, the dressed levels are introduced and the master <Y
equation is projected over the dressed-state basis. Physical a
interpretation of relaxation coefficients in the dressed basis is A _ _
given and the role that quantum coherences and interferences I 7A1

. . . . ncoherent |b>
play is elucidated. In Sec. IV, we present approximate time- pump Drivi \
dependent and steady-state analytic solutions for the dressed- Ia’j”‘f'r"g \ Y,
state populations and coherences. Comparison is made with \
the bare-state results. In Sec. V, a short sketch of a calcula- A}
tion of the active frequencies is presented. It is performaed la>

by a unitary transformation of the time-dependent density

matrix from the interaction picture into the Schinger one. FIG. 1. Athree level V-type system for LWI.
The resulting time-dependent elements of the density matrix

are then Fourier transformed into the frequaency domain in

order to extract the relevant frequencies at which LWI and H =% wpa b)(b|+h oy c)(c|+h o
ADI may take place for an appropriate set of parameters.

1
T+_
aa 5

Section VI summarizes the findings of our calculations and o 1 +
draws conclusions. +hopla’'a’+ 2 +9(s;a+s_a')
+g'(sha’+s"a'h). 2

Il. HAMILTONIAN AND MASTER EQUATION
FOR THE ATOM g andg’ are coupling constants and are assumed to be real.
, ) The eigenstates of the unperturbed part of the Hamiltonian
Let us consider the closedtype three level system illus- 5, 5 three-dimensional manifold labeled by the atomic in-

trated in Fig. 1. The transitiofa) —|b) of frequencywya iS  gexes, the laser photon numbérand by the probe photon
driven by a strong, single-mode laser of frequeagy. The [, mberN’. The manifold is written
transition|a)« |c) of frequencyw,, is pumped incoherently

with a rate A. A single-mode probe lasgnot necessarily e(N,N")={|a,N+1N’'+1),[b,N,N"+1),|c,N+1N")}.

weak is applied to the transitiofia)«|c). vy, (y.) is the (3)
spontaneous emission rate from the stHig (|c)). The
stategb) and|c) are not directly coupled. We represent the uncoupled eigenstates of the atom and

We have chosen to work within the frame of the masterthe two noninteracting field modes as
equation for the atom, since it being an operator equation
independent of representation, it can be projected over any 1 0
basis. We use a generalization of a standard master equation

) . ! =| 0 ! =11
adjusted to account for the scheme described afZ8le The |a,N+1N"+1) . [b.NN"+1) '
master equation is given by 0 0

_ 0
. i
O'=—%[H,O']—%[S+S,U+US+S,]+7bS,US+ lc,N+1N")={ 0. (4)
1
Ve ’ ot [ ’ ' ) . . .
— S lsislotosisi ]+ ysios, In this basis, the Hamiltonian takes the form
A[ ! i + ! ! ] A[ ! ! + I ! :l 0 _Q —G
— —[s\.s' o+0s,s' |- =[s s ,o+os's
C To2e : Hop=| —Q —A; 0 |, (5)
+As),os_+As’ oS!, . (1) -G 0 -4

where we have defined the Rabi frequencies and the detun-
Here,o is the density operator for the atosy,(s_), s’ (s”)  ings, in their quantum form by
are the atomic raising and lowering operators, for the

|a)«|b) and |a)«|c) transitions, respectivelyH is the —gVyN+1=AQ; —g'VN'+1=4G;
Hamiltonian of the global system and we take it to be fully
guantum mechanical. The quantum-mechanical Hamiltonian A =0 —wpa; Ay=wp— 0c,. (6)

gives rise to a simple picture of the stationary dressed-states.
The Hamiltonian in the dipole and rotating wave approxima- To obtain the semiclassical equations of motion for the
tion is given by elements of the density matrix we project the master equa-
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tion (1) over the basig4) and perform the following reduc- 1 Q
tion operation by introducing the reduced populations and |y(N)(N’))=—|a,N+1N’'+1)+——|b,N,N’+1)
coherencegp; via V2 V2R

G
paa= > (a,N+1N'+1|c|la,N+1N'+1), (7a +—ﬁR|c,N+1,N’>, (90
N,N’

and the corresponding energies
pan= > (a,N+I1N'+1|o|b,N,N'+1), (7b
N,N’ E|y>:_hR, E‘a>:O, E|B>:ﬁR, (10)

and similar relations for the other populations and COherwhere we have introduced the on resonance, two field gen-
ences. Taking into account the above-reduced quantities, W& glized Rabi flopping frequendy= Q2+ G2

obtain the density-matrix equatiof9] Note that for the cas€&=0, Eqs.(9b) and(9¢c) render the
. usual coupling and non-coupling dressed-states, while the
Paa= ~ Apaat (A+ve)pect YoPobT1Q(Pra= pan) |a) state, which is identical to tHe) state, is not involved in
+iG(pea— pac) 8a) the interaction altogether. The energy ladder is shown sche-
ca” Pac) matically in Fig. 2. We can see that one state remained intact,
) while the other two states were displaced by an energy
Pbb=~ YbPbbT 12(pab= Pba), (8D)  amount of#R, with respect to the bare states. In the strong
driving field limit, i.e., when Q>G, we see that the
pec=Apaa— (A+ Y pectiG(Pac—Pea)s (80 |a(N)(N')) state has the character of the excited bare state

|c,N+1N’), and hence, is expected to be less populated

) 1 ] than the other two states. By contrast, ti#€N)(N’)) and
Pap=— E(A+ Yp) TiIA1|papT 1 Q(Ppp— Paa) T1GPch |¥(N)(N')) states have a ground-state character, and hence,

. - 8d) will be more populated than tHe:(N)(N’)) state. However,

both |8) and|y) states are also contaminated by the same

1 ] amount of the first excited level, and thus, they are expected
,'Jacz — (A + ¥ TiAs | pactiG(pec— Paa) +iQppe, to possess the same population content.

12 ] The eigenstates of Eq€®a)—(9¢) define a rotation matrix
(89 (transformation matrix

- 1 : . . G Q
Poc= — E(A+'yb+')’c)+|(A2_A1) Pocti1Qpac—1Gppa- 0 _ﬁ ﬁ
(8f)
1 Q G
T=| "% &Fs Ao (11

I1l. DRESSED STATES AND DENSITY-MATRIX \/E \/ER \/ER
EQUATIONS IN THE DRESSED-STATE BASIS 1 QO G

The dressed states are obtained by finding the eigenvec- E 2R 2R

tors of the interaction Hamiltonian, Ed5). To simplify

things a little, we take both the driving laser field and the4¢ diagonalizes the Hamiltonian of EG) via the matrix
probe field to be in exact resonance with the Co”esPO”di”BroductTHT‘1. Thus, the density operator in the dressed

bare state transitions, i.e., we ta}ﬁq=A2=0. When th(_e atom basisp®, will be given by the matrix product
detunings are set to zero, we notice that the energies in the

bare-state basis are all degenerate, and in fact, equal to zero pP=TpBT 1, (12)
(in the interaction picture Carrying out the diagonalization
procedure, we obtain the following eigenstates: wherep®B is the density operator in the bare basis.

Projection of the master equation over the dressed-state
basis yields particularly simple equations for the first part of
Eqg. (1), i.e., the Hamiltonian part of the master equation.
(9a) However, in the dressed atom basis, the relaxation terms of
Eq. (1) give rise to equations that are not as simple as Eqgs.
1 Q (8a—(8f). In particular, couplings between dressed-state
IB(N)(N"))=——|a,N+1N'+ 1)+ ——|b,N,N’'+ 1) populations and coherences between two dressed-states ap-
‘/E ‘/ER pear. In the next section, we present an approximate version
of the complete set of equations given bellow.
G : ) . : .
+——]c,N+1N’), (9b) The equation of motion for the density-matrix elements in
V2R the dressed-state representation are given by

G QO
|a(N)(N’)>=—§|b,N,N’+1>+ §|C,N+1,N’),
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AhR IBN+D(N +1)>
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A IBN-1D(N +1)> FIG. 2. Manifolds e(N,N"),
AhR l(N-D)(N +1)> E(N+1,N:), e(N,N'+1), and
Y (N-D(N+1)> e(N+1N’'+1), etc., of un-
coupled states of the atom la-
sers photongleft-hand part The
‘ dressed level(perturbed levels
/ IBN+DN)> are shown at the right-hand side.
la(N+1)(N)> The circles represent steady-state
lY(N+1)(N)> populations.
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=
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=
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.
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|

baa: _(Fa+A’)paa+T(paﬁ+p,Ba)+1:(pay+pya)

1

. 1 ~ 1

Pyy=— ( Fﬂ+ zA)pyy_F(paB+pﬁa)+ ZA,(pBy+pyﬁ)
1 1
+§AIP,B,B_EA/(pﬁy+pyB)+ EA/PW, (133

1
+ E(Fa+A,)paa+

1 1

,')HB: —(Faﬁ—iR)paﬁ—(Fﬁ— 4A’)pay—f’pﬁy where we have again made use of the reduction operation
T =Tyt Tpuat T+ )ppptT'pyy, pi= 2 (((NN)[lf(NN)), ij=[a).|B).]).
(13b o (14)

- In obtaining Eqs(13a—(13f), we have introduced the fol-
Papt(I'=I")pg, lowing notation for the dressed picture decaying rates and
relaxation coefficients

. _ 1
Pay= _(Faﬁ+|R)pay_ ( Fﬁ_ ZA’

—T'pys+TpaatT ppp+(T+T")p,,, (130 . .
I,=—(v,G?+v:0?%), Tz=——=(7,0%+7.G?),
. 1 1 , 1 R2(7b Y9, Ty 4R2(7b ¥:G%)
Pog=—\Tpt 5 A |pgpt 5(Tat A )paat|Tpt5A

1 3
_ZA,)pw_F(Paﬁpw)“L4A,(pB7+Pw/ﬁ)’ 2 2
(13d co_ o, ToS0A AQ?
2 2Rz oT Ve ) 2 2R?’ RZ
r.+ia_tn (15)
pt oA 5 A Py

T=

ppy=—"(I'gyT2IR)pg,—
I',, I'y=I", are the spontaneous emission decay rate

of the |a), |B), and|y) states. More precisely, the state

|a(N)(N")) decays by spontaneous emission with a fate

. to the levels| B(N—1)(N")), [¥(N=1)(N")), |B(N)(N’

_ Y —-1)), and |y(N)(N'—1)). Similarly, the Ilevels
(21"[; 2t )(pﬁﬁ+p77)’ (139 |,8(N>)(N’)), |y(|N)(N’)> decziy with the same raf&, to the

~ ~ 1
+F(paﬁ+pya)+zr(pﬁa+pay)_ E(FQ+A,)paa
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same levels aga(N)(N’)). The coherencep,s, andp,, A. The evolution of the population terms

(ppy) decay with aratd’,z (I'g,). A’ is a dressed picture  \when the “nonsecular” couplings between populations
pump rate that causes population and depopulation of thgng coherences are ignored, we obtain from HdSa),
dressed levels. It also has an important influence on the Cq13d), and(13f) the fo”owing equations for the popu|ations:
herences as can readily be seen from Ef§33—(13f).

= ™ ; e ; ; . 1 1

I' andI'’ are identified agnterferenge termsThey in- paa=—(Tat A )paat A psst sA'p, ., (163
volve the product of two Rabi frequencies. Both parameters 2 2
vanish whenever eithe@ or ) are zero. These terms are

responsible for the amplification without inversion and for . ,
the absorption despite the inversion. This fact is verified nu- pep=—|Lpt §A PB,B+2 (Fa+A)paa
merically. When we have set boih and T’ to zero (this
_ _ ; ; 1 1
happens whem\ =0 and y,=vy.) any previously obtained + ( [t sA— —A')p ’ (16b)
gain has vanished. The first and second termE jp, I's, 2 2 I
andI’ /2, describe damping of the atomic coherence due to
radiative transitions of the levels involved to lower levels, o __[r lA 1 Y
and is equal to half the sum of all transition rates starting Pyy= "\ Tt 5A [Pyt 5 (Tat A)paa
from |a(N)(N’)) and|B(N)(N’")). The remaining terms in
I,z describe damping of the_coherer_m@ﬁ_ d_ue to the inco- 4 ( Tyt EA— EA’ Pap- (160
herent pump. The interpretation bf;,, is similar except that 2 2

the 3I'; is composed of a P4 term responsible for the co- _ R o
herence damping due to radiative transition, plus a sifigle Note that population conservation is still maintained. The
component resulting from the transfer of coherence froninterpretation of Eqs(16a—(160) is very clear. The stater)
higher levels belonging to higher manifolfig9]. This fact is depopulated with a ratd’(,+A"), which in turn, is dis-
would have been more transparent had we written the noriributed equally among the stat¢g) and|y), as can be
reduced version of Eq$133—(13f). Inspection of Eqs(13)  readily seen from the factor of one half multiplying the co-
reveals thap,, andp,., have the same free evolution fre- efficient ofp,,,, in Egs.(16b) and(160). The statg) is also
quency R, however they oscillate out of phase. The free evddeing populated with a rate 142 by the state$) and|y).
lution frequency ofp, is twice as large, as both levlg) ~ The state|8) (|)) is depopulated at a ratd’f+(1/2)A)
and|vy) are contaminated by the bare ground-staje Note ~ and repopulated with the same rate from (| 8)). The set
that the closure of the system is satisfied by E48a—  (16a—(16¢ can be solved exactly by calculating its eigen-
(13f), i.e.,d/dt(pu+pppt p,,) =0. Gain or absorption co- values and eigenstates, subject to the condiigp+pgpg
efficient for the|j)— i) transition is proportional to Ifp;;]. ~ +p,,=1. This yields the temporal solution
In our notation, amplification will occur if Ifp;;])0.

In the next section, we present approximate solutions of Paa(t)=Pitcﬁ[Paa(o)—pita]e_[r“+(3/2)A']t, (179
Egs. (139—(13f), both for the time-dependent and the
steady-state solutions. These will be compared with numeri-
ﬁ]azlit(i:srllculations of the full system, i.e., without any approxi- P;;;;(t):PZt,ca+

1
pﬁﬁ(o) _pztﬂ+ E[paa(o) - pzta]]

e 1
X e7[2FB+A7(1/2)A It— E[paa(o)_pzta]
IV. DENSITY-MATRIX EQUATIONS IN THE DRESSED-
STATE BASIS IN THE SECULAR APPROXIMATION x e~ [Tat (32Nt (17b

As mentioned before, the Hamiltonian part of the master
equation has a simple form in the dressed-state basis given ot o 1 ot
by Egs.(98—(9¢) (the Hamiltonian is diagonalized in the Py()=p%, =1 Ppp(0) —pppt E[Pw(o)_”aa]
dressed-state representajiomhe problem arises when the
spontaneous emission and pump terms are present in the
master equation, Edl), giving the complicated couplings
appearing in Eqs139—(13f). Solving exactly the complete
set seems to be a formidable task even with the help of x @~ [Tat(FA]t (179
MATHEMATICA software[30]. However, the situation can be
simplified if the frequency difference between the dressegyhere p;;(0) are the initial populations. The steady-state
states of the manifold, namely, the Rabi flopping frequeRcy populations ! are given by
is large compared with the ratés, vy,, y., and A, i.e.,
strong drive. We can then ignore the “nonsecular” terms, X
i.e., couplings between populations and coherensese e S—— (189
[29)). 2T ,+3A’

e 1
Xe AWV D (0)=pSL]
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0.4
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tYC

FIG. 3. Time evolution numerical simulation, of dressed-state populatigrandp g, obtained by solving Eq¢133—(13f) (solid line),
and the approximate solution based on Ed§a—(17¢ (dashed ling The chosen parameters afe=20y., yp,=27., G=0.1y., A
=37.. The time is scaled by, .

T +A’ B. Evolution of coherences
st _ a . .
Y of +3A" (180 Ignoring the “nonsecular” couplings between coherences
o

and populations in Eq$13a—(13f) results in equations that
are simpler than the original ones, however, they are still
very complicated, particularly the equations fof, and its

Jav = o Eonjugate, which are coupled to all the other coherences.
all in light of the very similar composition of the statg8)  ence, one would like to further approximate these equa-
and |y). The population of the statgy) is unique in the ions'in such a way that the resulting solutions will be fairly
sense that it decays with only one decay constant, while thgimple on one hand, and be a reasonable approximation to

other populations have a composite decay. Figure 3 showsge exact solution on the other. We solved numerically the
comparison between the exact solution f@f, and pgs  complete sef13a9—(13f) and found thapg, , and hence, its

(solid line), obtained by solving numerically the equation set¢onjygate are substantially larger than the other coherences,
(133—(13f), with our approximate analytic solutiol78— jgicating the crucial role these coherences play. In light of
(17¢) shown in dashed line. The normalized parameters fofe apove. we couple each atomic coherence to itskelf

the numerical simulation were set to H8=20yc, %  scribing the free evolutiorand topg, andp,z acting as the
=2v:, G=0.1y., A=3y.. We can see that the population gominant source terms.

Pae 1S @ monotonically increasing, oscillating function of  Tpis gives the following equations:

time that reaches a steady-state vaife~0.27. The behav-

ior pf Ppp is opposite, i.e._, it is a monotonically decreasing ,'JQB: —(raﬁ—iR)paﬁ—F'pBer(F—']")pyB, (21a
oscillating function and it reaches the steady-state value

pztB%OBG. pyy is not shown because of its similarity to _

ppg. due the choice of parameters made. The approximate pay=—(Fay+iR)pay-i-(f—T”)pﬁy—T"pyﬁ, (21b
solutions describe nicely the envelope of oscillation and the
cotrrect texpretssion for the steady state. One can see that
po <prs=p>., for any finite A, and hence, population in- : ) 1 1

versionﬁgo exist in the dressed-state basis. For the transitions P8y= —(Uay+2iR)pg,—| Tt EA_ EA )pﬂ?'
|@)—|B) and|a)—|7y), the population difference is nega- (210
tive, namely noninversion. For the transitioig) —|y) and

|v)—1|B), the population difference is zero. It remains to be

seen whether these transitions amplify, and thus, result iglong with the equation fop,z=p%, . Solving the eigen-
amplification without inversion in the dressed-state basis. Iryalue problem of Eq92189—(210), we find the transient so-

the strong coupling field limitQ)>G the steady-state popu- lutions for the coherences, in the strong coupling field limit.
lations become These solutions are

PEs=p

We can see that the populatigrnys, p,, have similar
behavior, though not identical, a fact that is not surprising a

t t Ve pP t —Aexq— I —iR)t
S j/»y yc+3 , (: 9) ab‘( ) ( af ) ]

J’_

and (T g+ Al2=A'12)(T g, —T 5+ 3iR)

A xexg —(I'g,+2IR)t]
Paa=37 73K (20 =, m L
2y.+3A (I'"=T)+il'"(T g+ A2—A'12)/4R

D T,-T.,—iR

In the following, we will get into more detail regarding gain By "k

without inversion in the dressed-state basis. xexd —(I'g,—2iR)t], (22a
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Pay()=Bexg — (I z+iR)t] whereA, B, C, andD are constants ought to be calculated
- o from initial conditions.
CF'(F,3+A/2—A'/2)—i4R(F—F') The main deficiency of Eqs(228—(22¢) is the zero
(T g+ AI2= A'12)(T 5~ T o5 +iR) steady-state predicted by them. The reason for this is the
_ omission of the populations source terms in writing Egs.
xexd —(I'g,+2iR)t] (21a—(210. We have solved analytically Eq&21a—(210
- e with the population source terms included. The time-
D I"—i(C-T")(T gt Al2— A'12)/AR dependent analytical solution obtained was checked
g,—T',z—3IR against numerical calculations and found to be in excellent
agreement. Unfortunately, the solution is so complicated,
xexd —(I'g,—2iR)t], (22 that even reduction operations carried OUtMYTHEMATICA
. [30] could not give a manageable solution. For the purpose
pﬂy(t)chexq—(FﬂerZiR)t] of finding the steady-state coherences, it is sufficient to
Fg+A2-A'12 retain the population terms in Eq®13—(210), set to zero
Fat AJ2—A'/2 the time derivatives, and solve the resulting algebraic equa-
+D iﬂTexp{—(Fm—ZiR)t], tions. This yields, using expressiori$8a and (18b) for

the steady-state populations, the following steady state
(220  coherences:

(L up+iR[T I+ (T, 424" )(T+T")]
(I'2;+R?)(2I,+3A")

St yx _

pos=(pey

AT y(T g+ iR+ A)[(2T' =T)(2I y+ A—A'/2) - 2iRT]
(I'23+R?)(21 ,+3A")[['5,+4R2— (I g+ Al2— A'12)?]

(233

L AT4T,#A) (2044 A-A'/2)-2iR
PEYTTOr 43N (Dt AJ2—A'[2)P—(I2 +4R?)’

(23b)

The steady-state values predicted by the last expressions,p,, yet the approximation remains satisfactory. Equa-
were checked against numerical calculation and found to bton (220 also shows thapz, has an almost pure sinusoidal
in a very good agreement. Note that expressi@8s and  form of frequency R. To the contraryp,z andp,, have a
(23b) also give the steady-state dispersion and not only th€0mposite oscillation, being a superposition of frequencies.
gain or absorption coefficients. The expected dominance df ¢an be seen from the numerical solution presented in Fig.
pp, ON the other two coherences, can be seen by noting th4y that the coherences,; and p,,, possess a definite sign,

~ =, L . thus, the corresponding transitions between dressed-states,
the termI’+1I'", appearing irp,z andp,, (but not inpg,)

. bei ith lified tt ted. More precisel
varies likeo(G/R), thus, the coherencge,; varies likep g eing either ampitied or atenuate preciselyAmg

g o . is positive in all the range shown, hence, the transitjgh
~G/R” while pg, varies likepg,~1/R. The second termin |, js amplified with population inversion in the dressed-

IM(p .p) is of the ordeiG/R* and can be neglected. Figure 4 gtate picture at the frequencies + R and wp+R. The tran-
shows the exact coherences obtained by solving numericallyitjon la)—|v) is also amplified since Im,,)>0 [Fig.
Egs.(13a—(13f) (solid line), and the corresponding approxi- 4(b)], however, without population inversion in this case.
mate analytic solutions formed hy.j(t)+pisjt, as given by  This situation is very different from that occurring in the
expressiong223—(220 and (233 and (23b). The chosen bare-state basis, where the coherences oscillate back and
parameters are the same as in Fig. 3. It can be seen that tfeth across zero, thus experiencing periodic amplification
approximate analytic solution deviates from the exact one, and absorptioi12]. In contrast top,z andp,,,, the sign of
deviation that decreases as time goes by. The source for thisi(p, ) is alternating thus the transitid)—|y) is being
behavior is the omission of the population source terms iramplified and absorbed periodically. Another feature seen in
Egs.(218—(219. However, the oscillation frequency is pre- Fig. 4 is the strength of the coherengg, , which is seen to
dicted correctly by the approximate solutions. Moreover, thebe three orders of magnitude stronger than the other two
approximate solution fop,, appears to be more accurate coherences. The transitigr)—|a), however is absorbing
than the other two, again indicating the crucial role played bydespitethe population inversiohsee Fig. 4b)].

pgy @andp, ;. Note also the negligible contribution @f, Steady-state amplification of thg8)—|«) transition at
and p,, to pg,. The latter coherence is not coupled to frequenciesw, +R and w,+R, occurs whenever In, )
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FIG. 4. Normalized time evolution numerical simulation, of dressed-state coherences obtained by solvid@dtgdl3f) (solid line),
and the approximate solution based on Hg23—(22¢) and (233 and(23b) (dashed ling The chosen parameters are the same as in Fig.
3. Note the absorption despite population inversion sedh)in

>0. Taking into account only the first term in E@339, we = Im(pfx‘ﬁ). However, this transition is inversionless, and it is
find gain in the following two cases. due to external field induced quantum interferences and
atomic coherences.

(1) For any incoherent pump rat& (even zerd, if ¥, In order to interpret the result that gain exists for the case

>vy.. The physical interpretation of this result is clear: if = . .
level |b) is drained more quickly thaft) there is no need of A=0, we have studied parametricaly the changes that

for the incoherent pump. The disparity between the deca)(?ccur in the populatlon_ of the s_tata) and in the coher-
rates y, and v, acts as an effective incoherent pump. The€nces. From the numerical solution of the dressed-state sys-

recycling of the population is accomplished by the coherenté™M. it can be seen that even when the incoherent pump is
probe field, albeit losses. zero buty,> vy, the population of the stafer) is not zero
(2) For [Q%Q2+ R%]y.< y,< 7. provided that the inco- though very small. However, one expects no population in
herent pump rate is strong enough such that[T,(y, the statda) whenA=0. The mismatch between the decay-
— y)IT = 20%(y.— ,)/R?]. ing ratesy, and v, is the reason for nonzero population in
|a) (see Fig. 5. This acts as an effective incoherent pump.
This gain is “regular” gain, due to population inversion Indeed, whem\ =0 and+y,= v., no incoherent pump, effec-
SinCepge™>pPoq- tive or direct, is present and it is found that, vanishes, as
The transition|a)—|y) at frequenciesw; +R and w, it should.
+ R will be amplified for the same range of parameters as Studying the coherences by applying the full numerical
stated in items 1 and 2 above because the corresponding gaalculation, one finds gain even if no incoherent pump is
coefficient is proportional to | yta): - Im(pij) present. Figure 6 displays such a gain for inversionless tran-
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FIG. 7. Im(p,,) as a function of normalized dimensionless time

FIG. 5. Population of state, p,, for zero incoherent pump rate parameteryt for the case of nonzero incoherent pump rate, and
and nonequal decaying rates. The chosen parameters are the sagg@ial decaying rateg,=1vy.. The transition possess gain the
as in Fig. 3. steady-state regime. The chosen parameters are the same as in

Fig. 3.

sition|a)—|y) for the case\ =0 and nonequal decay rates,
i.e., yp=>17y.. Figure 7 exhibits gain for the same transition Tpe transition|y)—|B) in turn, at frequencieso, — 2R,
but for nonzero incoherent pump rate and equal decaying, _oR will be amplified for any incoherent pump rate.
rates. Only when the decaying rates are equal and the inCO'pUtiIizing the strong driving field limit, once again, the
herent pump rate is zero, we effectively turn off the interfer-imaginary parts of the steady-state coherences can be ex-
ence effect by causin=0,I""=0 and both the imaginary pressed in terms of the original atomic parameters as
and the real parts of the coherengeg andp,, vanish. As
a consequence, the gain vanishes. Again this indicates that

the mismatch in the decay rates acts effectively as incoherent (7e+28) (7= v) + 7eA

Im(p3g) =Im(pS,) =

pump. 27202(2y,+3A)

Gain in the dressed-state picture occurs strictly at the (243
dressed frequencies; =R (i=L,p), which are shifted from
those of the bare state basis. However, no such frequencies (ye+A)
exist in the bare-state representation. We believe that the ap- Im(pSt )= 22 Vet ) (24b)
propriate basis to use is the dressed basis, when dealing with FYT 202y, +3A)
strong fields.

The opposite transitior,y)—|a) at frequenciess —R As mentioned before, in the strong coupling field limit

and wp—R, exhibits absorption with population inversion (weak probg the stateja) degenerates into the highest ex-
[see Fig. 4b)]. In a sense, this is the reverse process ofijted bare statéc), thus, we are facing a situation of full
amplification without inversion and it is explained as a con-poninversionin the dressed-state basis, i.Bec<pps=p
structive quantum interference for the stimulated absorptiovpSee Egs(19—(20)]. Equation(24a indicates that gainycyan
process. TheB)—|y) transition, at frequencies, + 2R and  pe obtained for théc)—|B) and|c)—|y) transitions(the

wp+ 2R will be absorbed, since the ternR4 appearing in ~ Autler-Townes transitiong31]) for the following conditions.
the denominator of Eq23b) far exceeds the other denomi-

nator terms, resulting in Inp(,;) <0, and hence absorption. (1) For any incoherent pump rate if y,> yc.

(2) For 1/2y.<y,<vy., provided that A>[y.(vc

0000t = ¥0)/2%0— ¥el-
0.000125 Yo=2¥c, Q=20%c, G=0.1lyc, A=0
0.0001 This gain iswithout inversion The physics involved in
0.000075 this condition is as follows: It states that the dephasing time
i Pra of level|c) namely (1/2/.) ~* must be longer than any other
0.00005 : H ;
decay time in the system. The dephasing process must be
0.000025 slow with respect to other processes in order to preserve the
0 N phase of the dipole transitiop,.. This makes possible the
\/ quantum coherent effect whereby the interference can result
~0.00002555 o5 1 15 5 in gain without inversion.

e To improve the temporal results for the populations we

FIG. 6. Im(p,,) as a function of normalized time parametgt ~ retained only the dominant coherences, namely,andp.
for the case of zero incoherent pump rates 0, exhibiting gain for  in the population equationfEqs. (16a—(160)] serving as
the |@)—|y) transition for most of the region and especially at source terms. That is, we seek the particular solution to the
steady state. The chosen parameters are the same as in Fig. 3. set
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where we take fop s, andp,; only the leading terms in Eq.
(220. These equations are integrated giving the following
results:

1
—=A' + , 25 ,
5 (pﬁy ppyﬁ) (259 Paa(t):Pita+cle_[ra+(3/2)A )t_l_pzir(t)' (263
pgs=—|T +1A +1(r +A") 1
Ppp BT 5 Ppp o\a Paa Pﬁg(t)ZPZtﬁ— Ecle—[Fa+(3/2)A’]t+Cze—[ZFB+A—(1/2)A’]t
+ F+1A 1A’) +1A’( + ) 1
P2t 2T P an e e - SR, (26
(25b
. 1 1 t)=pSt — . [T+ (32)A' Tt _ —[2 g+ A= (L2)A']t
p}”}’:_ F,B+ EA py7+§(ra+A’)paa pyy( )_p'yy Ecle CZe
Iyt oA—SA Ly - Ep"‘”(t) (260
H Pt 5 A= S A Jpppt 7 A (PayTpp ), 2Pea’t)
(2509  where the particular solution is given by
|
’ 3 r__ :
P ()= — pe QA [(I'y+35 A" =T g,)cog 2R1) + 2R sin(2RY) ] oot
“ (Fo+3A' —T5,)%+4R2
|
The integration constants are given in terms of initial (Yt A)
populations and coherences by Pab= —lm, (289
C1= Paa(0) = poe— P (0)
AYo= 7o)~ 7%
1 P 02 (2yet 30 (28D
C2=ppp(0) =gt 5[Paa(0) = Poal- Ve
and
Figure 8 shows the difference between the exact population
P .o @nd the approximate solutid86a—(260). It can be seen Gy (280

that the approximate solution is very accurate.

Poc= 0 (2y.+3A)

To compare with the steady-state situation in the bare-
state basis, we need to transform back to the bare-state basis,obtaining the expressions for populations and coherences,

via the the matrix produch®=T " 1pP'T, wherep®" is the

we find that our general form reduce to previously obtained

density matrix in the dressed-state basis, formed by theesults[12].

steady-state populations and coherences of @@= —(18b)

We see that in the bare-state basis one always has

and (23a and (23b). Further utilization of the strong cou- Im(p,,)<0, thus the coupling laser is always attenuated.
pling field limit gives bare-state populations, in the steady-The probe transition exhibits inversionless gain gy,

state regime.

— — Ye 27
Paa_Pbb_z,yC 3A’ ( 6?
and
pCC 27(: 34 . ( )

The bare state coherences are

for pump rates satisfying > yg/ Ypb— Yc- From the analysis
presented above, we conclude that for a weak probe, true
lasing without population inversion can be realized, both in
the bare-state and the dressed-state basis.

V. SPECTRAL SHAPE OF THE COHERENCES

The results obtained above for the populations and coher-
ences were derived in the interaction representation. In order
to gain knowledge regarding the true frequencies, we must
transform back to the Schdimger representation, though
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0.0008

0.0006 FIG. 8. Difference between exact population
_pheprox | pExact P . Obtained by solving Eq$13a—(13f) and the

0.0004 approximate solutions based on solutig@6g—

(260. The chosen parameters are the same as in
0.0002 Fig. 3.
0
0 0.5 1 1.5 2

still remaining within the framework of the dressed-state rep- The experimental studies by Zibrov, Padmabandu, and

resentation. Kitching and Hollberg 20—22 have shown gain without in-
The Schidinger picture bare-state density opergifris  version at resonance, at abey, and absorption at the Rabi

related to the interaction picture density opergifrvia the ~ sidebands. These results are obtained theoretically in the

unitary transformation bare-sate picture by various authors as well as our own bare-
state picture calculations, which reproduce the experimental
pg: Uop|BU$. (29) results. However, the dressed-state picture provides insight in

the true light matter interaction and in particular, a host of
frequencies that could not be obtained in the bare-state
icture.
It is more complicated to work and interpret the results in
the dressed-state picture, but it reveals many features unde-
b — 18 - s PR tected in the bare-state form_alism. The search f_or the exact
ps=T “psT=(T "UgT)(T "p; T[T *(Ug) 'T] parameters that correlates with the experiments is the key, as
/1D Dy Drt it is the key in the experiment. This is pursued theoretically.
=Ugpi(Ug) " (30 At the present state of the calculations, it is clear in principle

that one can obtain the correct gain and absorption spectrum
Here,UD andp( are the dressed-state evolution and densitypy extensive parameter search.

operators, respectively. The SchHinger picture dressed-

states coherences show several frequencies. However, the ex- VI. SUMMARY

pressions for the density-matrix elements are extremely com- o i _ e
plex and will not be presented here. The main features are Absorption in the presence of inversion and amplification

oscillating term at resonance frequencies, . and at the without inversion in.a three-levél-type system are found in _
Rabi shifted side bands, namely;* R, w;*+2R (i=L,p) the dressed-state picture. Both of these effects are the mani-
il | il | — il il

and other combinations. festation of the quantum interference that occurs in multi-

These results determine only the existence of gain withoufeVe! Systems. Moreover, the above two processes constitute
inversion or absorption with inversion as well as usual gair® Manifestation of a complementarity principle.
with inversion. The relevant polarizations oscillate at the g ——— S— —r U
Rabi frequency. However, they do not determine the frequen- . ‘bp
cies at which gain and absorption occur. The procedure tc _7 | 0y, -2
determine that is taking the Fourier transform of the autocor->=
relation function of these quantities. Due to the extremez : /\ \ I
complexity of these terms, we have resorted to numericalg s | \/
calculations that aids in determining the frequencies that play? ¢ / \
role in the gain/absorption processes. These calculations dE * | / \ \ /
not provide the spectrum itself, but rather it is the absolute .
value of the transform of the density-matrix elemeiptsg,
etc. The numerical results indicate that the polarizations os- ; A
cillate atw_ , w,, wp,—w_ and at the Rabi and modulated - & F
beat frequencies. 5 ;

A typical result of these calculations is displayed in Fig.9 ¢ —— — e
in which we find spectral features ak,, w,— R, w,—2R. HB820 SERA0 48060 SEge0 A8000 4802
Similar characteristics are also found at and arowpcand Freduency (arbitrary units
wp— o . Details of these calculations will be shown else-  FIG. 9. Spectral line shape @iy, in the vicinity of w,. The
where in which a study of the parameter space will besystem parameters are the same as in Fig. 3. The inset shows a peak
shown. at wp,—R.

whereU,=e 'Mo/# js the free evolution matrix. The Schro
dinger picture dressed-state density operator is expressed in
terms of the bare-state operator via the following rotation:

2 f

\
K
\
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We have presented an analysis of light amplification with-  Gain is predicted at resonance frequencies and at the Rabi
out population inversion in this system within the frameworkside bands, depending on the relevant parameters. Experi-
of the dressed-state basis. The equations of motion for theental results have presented gain without inversion at reso-
elements of the density matrix are derived from the mastenance frequency and at frequencies displaced from resonance
equation. In the dressed-state picture, relaxation terms at®y about the Rabi frequency in agreement with the present
defined that are related directly to the coherently preparefindings. It appears that the dressed-state picture is quite
states and the quantum interference effects. Interferenaemplicated revealing possible amplification without popula-
terms are identified. They are shown to be the source fotion inversion and absorption with population inversion, two
amplification without inversion and for absorption despitecounterintuitive processes prompted by quantum interfer-
the inversion. Consequently, approximate analytical timeences. Thus, interpretation of experimental results becomes
dependent solutions for dressed-state populations and cohexxtremely subtle. In the present calculation, two fields are
ences were obtained. Comparison of these approximate solircluded and the dressing is caused by both the pump and
tions with the numerically calculated quantities showsprobe lasers. Experimentaly, it would be intersting to applay
excellent agreement. Both of these solutions exhibit the faanother field, weak enough to avoid further dressing, in order
miliar Rabi oscillations. Steady-state density-matrix ele-to probe the above-calculated quantum interference pro-
ments were also calculated, from which we have concludedesses at resonance, beat, and at the relevant Rabi-shifted
that for a weak probe field, true lasing without inversionfrequencies.
exist for appropriate incoherent pump rate, i.e., lasing with- Finally, the feature of ADI, absorption despite population
out inversion in any state basis. Steady-state quantities weraversion, found in this calculation emphasizes the impor-
transformed back to the bare-state basis, and were found tance of quantum interference. Quantum interference is thus
be in perfect agreement with results in the literature. Condishown to imprint its effect on the processes in the dressed-

tions for inversionless gain and ADI were obtained. state picture.
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