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Effects of x'® nonlinearities in traveling-wave second-harmonic generation
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We investigate the effects of self-phase and cross-phE3@onlinearities, in the process of traveling-wave
second-harmonic generation. We derive a semiclassical analytical solution for the field intensities, comparing
this with the numerically obtained fully quantum solutions. We also investigate the effects of the cross-phase
modulation on the quantum statistical properties of the fields. We find that, a8 theomponents increase,
there are qualitative changes to both the field intensities and the quantum statistics.
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I. INTRODUCTION i A R

H= T[a”b— a’b")+7x[aa’+b"%b?]+2n £atab’,

It has long been known that nonlinear parametric pro- (1
cesses such as second-harmonic generd8oiG), optical
parametric oscillatiofOPO), and amplification(OPA) can
produce nonclassical states of the electromagnetic figld

Much theoretical and experimental work has been done o

these cases, in both of which electromagnetic fields at differ i ) ion b h 4
ing frequencies are coupled by a second-org&), nonlin- nonlinear interaction between the two modgsrepresents

earity. As all real nonlinear materials are expected to have aﬁ‘e ef_fectlve strength of the self-phase modulaiéH non-
effective x® component, it is of interest to calculate the 'M€anty: and ¢ represents the strength of the cross-phase

effects of this component in these nonlinear optical pro_modulation x'*) nonlinearity. We consider here the case

cesses. where the Kerr-type interaction has equal effective strengths

There have been a number of theoretical analyses of sy‘i,(—)r each mode. T_he cross-phase modulation strength Wi.” de-
tems in which bothy® and higher-order nonlinearities are Pend on such things as the mode overlap and can typically

present, although few of these are for frequency upconver\-’ary up to the maximum of the s'elf-lnteractlon strength.
sion processes and most make a number of approximations, The operator equations of motion for the system are found
such as classical, undepleted pumpjg-4]. We have pre-

viously performed an analysis of SHG with addgd non-

linearities in both the traveling-wave and intracavity cases, da ... o A

comparing and contrasting the fully quantum solutions with FE xa'b—2iya'a®—2iab'b,

those found by the common process of linearizafish In

this previous work we gave an analytical semiclassical solu-

tion for the field intensities in the process of traveling-wave db P o o
SHG with self-phase modulation, finding that this was FE Eaz—ZiXbsz—ZigaTab, 2
closely similar to the fully quantum solutions, as opposed to

the case with pure SHG, where the semiclassical and quan-

tum solutions are markedly differe[ﬁ]' In this present pa- for which no analytical solution is known. The first level of
per we give an analytical solution for the intensities with @pproximation often used in solving operator equations is
both self-phase and cross-phase modulation present, comp&pearization, or assuming that the operators can be directly
ing this to the full quantum solutions, obtained using thereplaced by complex numbers to give the mean values of the
positiveP representatiofi7]. fields. In the case of traveling-wave pure SHG, this method
has been shown to have limited validif$], but in the
present case the analytical solution for the photon number
follows more closely the full quantum solutions when the
cross-phase modulation teri, is set to zerg5]. Following

We consider a nonlinegy® and x® crystal, in which a g similar procedure, we make the substituti@ns = ()

pump field at frequency» produces an harmonic field at and 6—>B=<6), giving the following semiclassical equa-
frequency 2». We consider here only the case of perfecttions:
phase-matching between the two fields, with both fields con-

sidered as plane waves. In the traveling-wave regime we can

write an interaction Hamiltonian, with the triviab depen- da

= _ 9 2 o 2 *
dence of the fields removed, as dz 2ix|a|*a—2i¢| B at ka® B,

wherea andb are the annihilation operators for photons at
Hequenciesﬂ) and 2w, respectively, at positiom inside the
nonlinear crystalx represents the effective strength of the

Il. ANALYTICAL SOLUTION
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dz ®)

2ix| B2B—2iélal?B~ 5
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Note that we have not bothered with the normal method of

calculating fluctuations around the classical solutions, as ex-
perience with the pure SHG system has shown the results to

be highly inaccurate after a short-interaction length and we

would expect this to be the case here also.

Defining a(z)=|a(2)|? and b(z)=|B(2)|?> (note that
these are real numbers, not the operators used aboee
find that Eq.(3) can be written as

da_

E—kv,
db k
FERd 4

where
v=a*?B+a’p*.

©)

From Eq.(4) and the principle of conservation of energy, it
follows thatcy[ =a(z) +2b(z)] is a constant of the propa-
gation. In pure SHG, wherdB(0)|?>=0, we have c,
=|a(0)|2. If we now introduce the variable

w(z)=i(a*?B—a®B*),

we can write Eq(3) in the form

(6)

dv_

iz =ka(4db—a)+2[(2xy—&)a+(2&— x)b]w,

4z~ 2lx—28)b+(¢-2y)alv. (7)

Using the fact thata=cy—2b and introducing a new
variable
X(2)=2(x—2§)b+2({—2x)a=(10x—8¢)b

+2¢0(£—2x), 8

we can combine Eqs4) and(7) in the form
dx
d_Z =—0gv,
dw
E =Xv,
dv 5
gy~ @0~ X T apXtoXw, 9
where
ko
g= 71

, 8kcoy 12kv?
aoz_kCO+ - 2 )
o
_24k1/ 8kC0
Mt T e
and
12k
a’z—_z, (10)
o
in which
o=10y— 8¢,
and
v=2Co(2x—&). (12

Using the first and second equations of Ef), we can
now define another constant of the motion

1
§x2(2)+gw(z)=c1, (12)

wherec;=2(2x— &)?|«(0)|*. We can now utilize Eq910)
and(12) to find an equation of motion for the varialbtéz)

¢ +(C1+ @19)x+ 2 Ly (13)
—X=—« Cc [e% X+ agX*— =X".
47 09 1T a9 29 2
It is clear that Eq(13) can be written in the form
¢ __ U 14
X x U, (14
where the pseudopotentidl(x) has the form
1
Ux)=— E(alir ax2+agx3+asx?). (15)
In the above,
a]_: _Zaog,
a,=C;+ a0,
2
a3=§azg,
and
! 16
= 4 (16)

It is now evident that, by treating a total pseudoenergy as a
constant of the motion, we can write
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1/dx 2 In this CaseM:X]_, N:_(Xl_XA)(Xl_X3)/(X3_X4),
5\ gz TUYX=E (170 andD=(x;—x3)/(X3—Xy).
(i) Xx;=x=X,.
which leads to the first-order differential equation fqr) In this caseM =x4, N=(X1—X4) (X2—X4)/(X1—X2), and
D= (X,—X4)/(X;—X5). These two-cases correspond to mo-
dx 5 3 7 tion of a pseudoparticle in the two different branches of a
— ==+ \Jap+a;x+ax’+ax3+ax? (18)

quartic pseudpopotential.

The other type of periodic solution arises when we find
wherea,=2E. The formal solution of Eq(18) is two real roots,x; and x,, with x;>Xx,, and two complex
roots for f(x). Writing

dz

x(2) dx
z==* , 19 = —\2(x— — 2_
L(O) Vatancanitancrant 1 FO0= = N2(X=X) (X—X) (*—2ux+v),  (25)
wherex(0)=—2(2y— &) a(0)|2. the solution has the form, fot;=x=x,
We find that there are three cases where 8§) has N,
eriodic solutions. Definin X(z2)=My+ , 26
P ¢ DMt B ezt do ko 2O
4 4
f(x)= >, apxk=—N2]] (x—xy), (200  Where cn signifies the Jacobi cosine amplitude. Defining
k=0 k=1
2 2
=yX;—2ux;+v and =\X5—2uX,+ v,
wherea,= —\?, with A = 1/2, we can now examine the roots Vi LR & 2 oH (27)
of the polynomialf (x)=0.
In the first-two cases, there are four real rootg>x, we have
>X3>X,4 and the solution can be written as
Y1Xo— YoXq
MOZW,
x(2)=M+ , (21) vJe
D+srt(Qz+ ¢,k)
N _ 2Y1Y2(X1—X2)
where sn is the Jacobi sine amplitude of modWk|s§] and 0~ (Y1—Y,)?
A
Q= V(X1 X3) (X2—Xa), N1ty
2 DO_ ]
Y1—Y2
X1—X5)(Xg—X
ke \/( 17 X2) (X3 4), 22 Qo= Vy1ys,
(X2=X4) (X1 = X3)
and the constand is determined from the initial condition ko= ylyZ_X1X2+“(X1+XZ)_V,
by 2y1y>
IN=D(x(0)—M) l(Do(X(O)_Mo)_No
=sn i \/——MmMMM~ =cn Kol 28
$=sn ( X0 =M) ,k). (23 bo X(0)— M, 0 (28)
The functionx(z) is periodic, with the period given by In this case the period of(z) has the form
T Zfl dt T 4 J'l dt 4 K(ko) 29
T QJoJa1-H)(1-K1) " Qoo Ja-tH(1-KD) Qo
2
- I1l. SEMICLASSICAL SOLUTIONS
g KK, (24)

Solving the semiclassical equatio(® for the field am-
whereK (k) is the full elliptic integral. It is clear from the plitudes numerically using a fourth- and fifth-order Runge-
definition that the period ok(z) is the same as that of Kutta method also shows that the mean-field intensities un-
la(2)?. dergo periodic revivals, as shown in Fig. 1. The horizontal

We find that there are two separate cases for the solutioaxis is a normalized interaction distange= xz|a(0)|/V2.
given by Eq.(21). The first of these cases, which is that Note that there is no visible difference in the solutions for
encountered for the parameters we have used in this investi®)=10"7 whether we ignore the effects of the cross-phase
gation is where modulation or set it to its maximum valué= y= x®, how-

(i) Xg=x=X,4 ever when the Kerr nonlinearity is increased by an order of
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The fact that the numerical solutions for the field ampli-
tudes show oscillations is interesting in itself when compared
with the semiclassical solution for the field amplitudes in
traveling-wave SHG, which does not exhibit any periodicity
[10], although writing equations for the field intensities leads
to a periodic solution in terms of Jacobi elliptic functidies.

The essential difference is that the semiclassical solutions for
the field amplitudes in pure SHG stay real when we have
phase matching, unlike the solutions with adgé8 compo-
nent, which causes the phase of the amplitude variables to
rotate. The real-valued solution fa#(z) in pure SHG can go

to zero, after whichB(z) cannot change, as the equation for
B then becomesig/dz=0. This can be further understood
because in the pure-SHG cagebecomes negative and real,
while a remains positive and real. This means that/dz

<0 anddp/dz=0, but with the phase rotation due to ti&
interaction,da/dz can periodically become positive, hence
the revivals in the fundamental. Quantum mechanically,

FIG. 1. The semiclassically calculated intensities of the fundathere are always fluctuations present in the amplitudes in
mental as functions of the normalized interaction distapcefpr  €ither case, which also prevent$z) from reaching zero.
|a(0)]?=10°, k=0.01, and values of=¢=10"7 and 10°°. Note However, as has been shown previoy#yl1,13, neither
that all quantities plotted in the figures are dimensionless. the analytical nor the numerical solutions of the classical

equations allow us to reliably calculate any of the quantum
magnitude, the two solutions do become slightly different.statistics of the two fields after a certain interaction length.
When they® component is increased even further, t6 10  To do this we turn to one of the phase-space representations
as seen in Fig. 2, self-phase modulation makes a markeaf quantum optics.
difference to the solutions, changing both the period and am-
plitude of the oscillations. Although the Kerr nonlinearity
used in this example is rather high for nonlinear optical crys-
tals, this result suggests that the oscillations between atomic Although the inclusion of what we would expect to be the
and molecular condensates predicted in photoassociation giaximum value of the cross-phase term makes no visible
Bose-Einstein condensatg®] should be sensitive to the ac- difference to the mean fields for small values of the Kerr
tual atom-atom, atom-molecule, and molecule-molecule scahonlinearity[5], it is still of interest to investigate what effect
tering lengths, as these are typically huge compared to thig may have on the quantum statistics of the two fields. We

2
o]

IV. QUANTUM PROPERTIES

nonlinearities found in optical systems. can also investigate whether the quantum solutions for the
X mean-fields diverge from the semiclassical solutions as the
12810 : : : : : , Kerr nonlinearity is increased.

Using the usual method43], this system can be mapped
exactly onto stochastic partial differential positiPeequa-
tions (note that we are using ltwalculug, via the master and
Fokker-Planck equations. We find that, unlike the case with
no cross-phase modulation, the positReFokker-Planck
equation for the system no longer has a diagonal diffusion
matrix, which means that no simple and obvious factoriza-
6 ] tion resulting in the stochastic differential equations suggests
itself. However, the factorization we have chogerhich is
by no means unigyeleads to the following system of sto-
chastic equations:

Intensities

a da

2
’ - . . —2i
oz~ Ka'B-2ixa’a’ = 2igap'pr \|——tam(2)
.-'\‘ XN ',»—\l\ % T‘\ s l\\ /".\\ ) - dz X
° 1 2 3 5 6 7

° + KB 2ia®(x— &x) n3(2),

© A~

FIG. 2. The semiclassically calculated intensities of the funda-

mental and harmonic as functions of the normalized interaction dis- da' P e ot \F +
tance,p, for |a(0)|?=10°, k=0.01, andy=10"°. The full lines dz =kaf +2ixaTat2ifa BBt Yéa 72(2)
are for £=y, while the dash-dotted lines are without self-phase

modulation. +kBT+2ia(x— €1 x) n4(2),
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. - ) FIG. 4. TheX, quadrature variances, calculated using 4®-
FIG. 3. The intensities of the fundamental and harmonic ashastic trajectories, fdw(0)|2=10° andx=0.01. The solid line is
functions of the normalized interaction distangs, for |a(0)|? for y=¢=10""7, the dash-dotted line is foy=10"7 and £=0,

=10°, x=0.01, andy=¢=10"", calculated using the positiM@-  \hile the variance for pure SHG is shown by the dashed line.
representation. The dash-dotted lines are 6?=0, the case of

pure second-harmonic generation. although whether this difference would be significant in

practice is difficult to judge. Both results with Kerr nonlin-

dg K ; : ; ;

__ 2_ o9 @2pt _oie T o earity experience excess noise well before the variance for

—_—=— 2i 2i +J=2iyB2n,(z , ) . ;

dz 2 XB°B ca‘ap XB"m(2) pure SHG begins to increase. The peak value of the variance,
where the fields exhibit almost thermal statistics due to the

dpt K semispontaneous nature of the downconversion process, is

o ZaT2+ 2ixB12B+2itataBl+2ixB 2 n,(2), about 10% greater with the full value @f included. This
(30) peak value is so large that it cannot be shown in Fig. 4 while
still leaving the amount of noise reduction visible.
where the noise terms;(z) are real and Gaussian such that When we increase the Kerr nonlinearity to 10 the
quantum solutions, shown in Fig. 5 are still indistinguishable
7212 ) =83 8(z—7'). (31)  from the semiclassical solutions, but, as can be seen, the

Due to the independence of these noise terms, the variable 10X 10°
« anda' [also(B, B7)] are not complex conjugate except in

the mean of a large number of stochastic trajectories. o .
From numerical integration of these equations we find lo®

that the intensities of the two fields are not noticeably I |

changed from the semiclassical solutions, whethve0 or is 7t .

equal toy. This can be seen in Fig. 3, where we show the

quantum solutions for the field intensities with= é=10"7, 8 |
with the solutions for pure SHG given for purposes of com- 2 5 B2 .
. . . 7]

parison. The fact that inclusion of the quantum features does il = 7/ @\ = ~
not invalidate the semiclassical predictions can be explainec N\

by the fact that it is the phase rotation that has the dominan s} Y .
effect on the dynamics and this is well described by the . /

semiclassical equations. This type of effect is also apparen o ¥ ®

in the superchemistry of Bose-Einstein condensates, wher 1} s =]
as long as the coupling lasers are not too strong, the proces
of molecular photoassociation is well described by the semi- g 1 2 3 4 5 6 7
classical equation®,14]. The solutions with Kerr nonlinear- P

ity present do not noticeaply change here whether we !nclude FIG. 5. The intensities of the fundamental and harmonic as
the cross-phase mcidu[atlon or not. When we examine thf?mctions of the normalized interaction distangs, for |a(0)|?
variance of theX,(=a+a') quadrature for the same param- =10°, k=0.01, andy=10"5, calculated using the positie-rep-

eters, as shown in Fig. 4, we see that there is slightly lesgesentation. The solid line is f@g=10"8, while the dash-dotted line
squeezing available when the cross-phase term is introduced, for £¢=0.
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the maximum value of phase-modulation nonlinearity, i.e.,
2i x(|a|?+|B|?), so that these contours will deform at their
maximum rate. This naturally leads to an increase in the
quadrature variances.

V. CONCLUSION

We have analyzed traveling-wave second-harmonic gen-
eration in the case where the nonlinear crystal has agtféd
nonlinearities, finding a semiclassical analytical solution for
the generalized case where both self-phase and cross-phase
modulation are present. We find marked differences between
the dynamical behavior of the fields with and without the
u X components. As the nonlinearity is increased, both the
" period and amplitude of the oscillations between the funda-
. mental and harmonic are changed. This feature is also of
relevance to proposals for coherent molecular photoassocia-
tion of Bose-Einstein condensatéBECS, where the self-

FIG. 6. TheX, quadrature variances, calculated using $®-  interaction and cross-interaction terms are typically much
chastic trajectories, toéra(0)|2=106, x=0.01, andy=10"°. The  |arger than in optical systems. Although BECs are not single-
solid line is for§=10"" and the dash-dotted line is fgr=0. mode systems, the effects we find here should be present at

least in a qualitative sense. As far as the quantum statistics of
addition of cross-phase modulation does make a perceptible fields are concerned, we find that less squeezing is
difference to the mean intensities. For this value of nonlin-achievable in the((3) case, with the addition of cross-phase
earity there is significantly less quadrature squeezing preseniodulation worsening the squeezing as the modulation
with cross-phase modulation, as shown in Fig. 6. The maxistrength increases.
mum value of the squeezing is now found @t 6, well As all materials have somg® component, and the ratios
beyond the experimentally achievable parameter regimes. Abf y(3)/y(?) that we have used are typical of nonlinear media,
the results of stochastic integration shown have samplingrom optical crystals to BEC, it is of interest to know what
errors of typically less than 1%. the signatures of this component are. We have found several

The fact that the addition of self-phase modulation de-signatures that should be accessible to experimental observa-
creases the degree of squeezing available can be explaingdn and have shown that if it is either a maximum of noise
by the fact thaly? and x* processes introduce different types supression or large amplitude oscillations that is sought, ma-
of dynamical phase matching and hence interfere with eacterials should have as smally@® component as possible.
other. As quadrature squeezing is phase sensitive, it naturally
decreases. The further degree to which the cross-phase
modulation decreases the squeezing can be understood as a
shearing, rotation, and deformation of the contours of the This research was supported by the Marsden Fund of the
Wigner function, a property of® processe$15]. When we  Royal Society of New Zealand and the Foundation for Re-
look at Eq.(3), we can see that whef= y, both fields have search, Science, and Technolo@ontract No. UFRJ0001
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