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We study the quasienergy spectrum and the nonadiabatic time dynamics of the open quantum system, which
incorporates the two-level atom dipole coupled to both the quantized mode and the polychromatic classical
field. Both the numeric calculations and the original perturbation technique are applied to track the quasilevel
positions against the strength of the classical field. The first-order perturbation theory predicts the singular
behavior of the system including the infinitely large squeezing of the quantized mode quadratures at certain
values of the field strength. The singularity is removed here by allowing for the nonadiabatic transitions among
the quasienergy states and the higher perturbations as well.
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[. INTRODUCTION gain a different meaning thereof. In this way, various non-
classical states of ion motion have been predicted theoreti-
The recent progress in the technology of trapped-atoneally and observed experimentally, for instance, Fock states,
lasers and the cavity QED experimefifs-5] has resumed Schralinger cat states, even and odd coherent states, etc.
the interest of researchers in the single-atom Jaynedviore detailed information on this matter may be found in
Cummings (JCM) model [6], the multiatom Tavis- Refs.[12].
Cummings mode{TCM) [7], and the modifications of these The nonclassical states of the electromagnetic field and
basic models as well. One may use, particularly, the supefhose of the confined movement of trapped atoms, as well,
conductive high® cavity to reach the strong coupling re- have found various applications including nondemolition

gime of the atom and cavity mode, with the cavity decay ratdneasurementsl3) A figld of resea_lrch caIIed. i14] the
being much smaller than the coupling constant between th uantum state engineering deals with generation schemes for

atom and the modg4]. This makes it possible for a photon the predefined quantum states. These schemes are based, as a

to be absorbed and reemitted by the atom repeatedly beforerllt"e' on the JCM generalizations. It seems, therefore that the

escapes the cavity. In this way, the experimentalists havexternally driven(open JCM and TCM may be subjects of

. . gpecial interest.
observed some nontrivial effects predicted for the JCM. The first studies of the open models of this kind have

These include, in particular, the collapses and revivals Ofjemonstrated a number of interesting phenomena. For in-
atomic inversion[S], the coupling-induced normal-mode giance using an external classical field to drive the JCM
splitting [4], the squeezed-light generati¢8], the macro-  rovides a means for obtaining some nonclassical states of
scopic superposition of statéSchralinger cat statg$9], the  jight with predefined characteristifs4]. To get the informa-
Fock states of the quantized mode], the correlated atom-  tjon on the dynamics of the driven JCM, one may measure
field stated?2], etc. A detailed review on this topic may be the spectrum of the resonance fluoresceiéa.
found in Refs[1] and[2]. The authors of Ref.16] have found the eigenvectors and
The solutions obtained for the models in question may behe corresponding eigenvalues of the modified JCM, where
considered in the context of other issues. A particular exeither the atom or the cavity mode is coupled to the external
ample is the theory of laser cooling of trapped atoms andnonochromatic classical field with the carrier frequency co-
ions. Referenc¢ll] demonstrates here that the JCM Hamil- inciding to that of the cavity mode. In the case of the driven
tonian may describe the interaction between the translationaltom, it was demonstrated that the eigenvectors of this model
and internal degrees of freedom of a driven atom in a trap irare the properly shifted eigenvectors of the conventional
the Lamb-Dicke limit. In this context, the boson operatorsJCM, while the eigenvalues of both models are the same.
describe the confined translational motion and the quantize®he derivation above means, in essence, that one can remove
field effects, those found earlier for the conventional JCMthe driving field from the model by incorporating it into the
cavity field of the same carrier frequency. In the case of the
driven cavity mode, the results of Rdfl6] are somewhat

*Electronic address: mirosh@mkk.ifmo.ru more interesting. The eigenvectors are found to be the direct
"Electronic address: mz_smirnov@mailru.com; FAX872315-  products of the special states of the atom and the squeezed
71-33 number states of the cavity mode with the degree of squeez-
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ing depending on the strength of the classical field. The latter operator, in its turn, is determined by the fol-
A more general JCM maodification called the dressed-atontowing equations:

Jaynes-Cummings moddDAJCM) was introduced in Refs.

[17]. This model includes the polychromatiperiodically ) : :

modulated classical field coupled to the atom. The eigenvec- g7 Y(D=H()-UM); U0)=I; UU=U-U'=I,

tors of the model Hamiltonian obtained within the second (2.3

RWA appeared to be the bilinear combinations of the

quasienergy(Floque} states of the dressed atom and theyyith | being the identity operator. Based on the Floguet theo-

;queezed number states of the_ m{)m. The most interest- e [19], the solution to Eqs(2.3 may be chosen in the
ing feature of the DAJCM, which is not a property of the following general form:

other known JCM modifications, is the presence of singular
points at certain values of both the amplitude and the modu- U =ublexd —i Ot): u0)=I: u(t+T)=u(t

lation frequency of the driving field. At these points, the (O=uOexp—1QY; U=l ult+T)=ul )’24
degree of squeezing of the cavity mode tends to infinity, 24

while the eigenvalue spectrum becomes continuous. with Q and u(t) being the time-independeriHermitian

In this paper, we present the theory of the DAJCM based,asienergy operator and a time-periodic unitary operator,
on the quasienergy approach. This theory also applies to thegpectively. It should be noted here that the quasienergy
multiatom case. We develop the perturbation technique tQperator is determined ambiguously. Actually, one may aug-
find the quasienergy operator of the DAJCM. The first-ordefnent each eigenvalue of this operator by a multiple of the
quasienergy .operator coincides he'reby with the effectivg,qqulation frequencywy=2 7/T without violating rela-
DAJCM Hamiltonian of Refs[17] derived from the second isns(2.4). Therefore, one may always redistribute the eigen-
RWA. However, to explain some interesting features of the giyes of the quasienergy operator among the Brillouin
quasienergy diagram that were calculated numerically, 0ng,,q4s with the interband spacing equakdg .
needs at least the third-order perturbation technique. Then, gq,tion (2.4) gains a particular physical significance if

we describe the possible method of squeezing the quadragyme eigenvalues of quasienergy operdmithin the first
tures of the cavity mode and analyze the basic limitations oty ijiouin bang are small compared t@,, . If this is the case

the squeezing de_zgree result from the nonadiat_)atic transitionfe time dynamics of the system branches into the fast and
among the quasienergy states and from the higher-order pelyq, oscillations, with the specific time for the fast oscilla-

turﬁ)_zra]tlon terms as welfl. h . foll . Secti IItions being 27/ w),. Simultaneously, the specific time for
g le org:;mzaﬂon cb) the papﬁl’.ls an 0 %WS'Sdﬁft'on the slow oscillations is determined by the small eigenvalues
evelops the perturbation technique for the 9" mentioned above. If one is interested in the slow oscillations,

equation with time-periodic Hamiltonian. Section Il pre- o yhe course-grained time scale may be introduced with
sents the quasienergy approach to the theory of DAJCMy o grain size being great compared tar/2sy, but much

mpludmg the case of many atoms. Thg subsequent Cons'de&naller than the specific time for the slow oscillations. From
ations are restricted to the case of single atom and bichr

ic drivin field. Section 1V h . i Ghis point of view one may consider the quasienergy operator
matic driving field. Section IV .compares the quasienergy dia,g e «sjow Hamiltonian,” which governs the slow oscilla-

grams calcu_lated numerically \.N'th thosg obtained using t_h('ﬁons but neglects the fast oscillations. The slow oscillations
first- and third-order perturbation techniques. The nonadia;

are described here in the course-grained time scale.
batic effect appearing at the change of the driving field I : urse-grai !

strength is studied in Sec. V, using the first-order perturbatio Now, let HamiltonianH(t) be a sum of the two time-
/ . PR i eriodic terms: the zeroth-order Hamiltonibiy(t), and the
technique. Finally, Sec. VI outlines the major results of the B(0)

small perturbation ternv(t)

paper.
H(t)=Ho(t) +V(1),
Il. PERTURBATION THEORY FOR THE QUASIENERGY (2.5
OPERATOR Ho(t+T)=Ho(t); V(t+T)=V(t); [V|<|H,|
0 0 ’ y ol-
In this section we give a brief summary on the Sehro )
dinger equation with time-periodic Hamiltonian given by Furthermore, we suggest that the zeroth-order Schro

dinger equation with Hamiltoniad ; may be solved to yield
d _ the corresponding quasienergy operatQp and time-
EW(I)):—'H(I)W(U): H(t+T)=H(t). (2.) periodic operatouy(t).
Substituting Eq(2.4) into Eq. (2.3) and using presenta-

Then, we develop a perturbation technique to find thetion (2.9 yields the following equation:

guasienergy operator of a quantum system driven by a time-
periodic exte_rnal force. . iiu+u‘Q=(Ho+V)-u, (2.6)
The solution to Eq(2.1) may be expressed in terms of dt
time-evolution operatod(t)
while the zeroth-order operato@, andug(t) obey the same
| 4(1))y=U(1)|(0)). (2.2 equation, with ternV being eliminated
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Now, let us return to Eqs(2.11) and (2.12. As argued
157 Uo+ Uos Qo=Ho- Uo. (2.7 above, these two equations yield relatio@=Q,
+M{V1p(t)-W(t)}. Substituting the latter relation into Eq.
Our aim is to develop the perturbation technique for solv-(2.11) yields the self-consistent equation for operatét)
ing Eq.(2.6). As a first step, we use unitary transfou(t)
to get anew time repre_se_ntatlon referred to here as the time- i — +[W,Qq]=Vip- W—W-M{Vp- W}, (2.15
periodic picture(TP). Within the TP operatoru(t) is pre- dt

sented as )
where square brackets stand for the commutator,[iegh]

u(t)=up(t)- W(t), (2.9 =ab-b-a
We seek for the solution of Eq2.15 in the form.

whereW(t) is unitary and time-periodic operator that obeys
the initial condition W=Wqo+W;+Wpt---. (2.16

W(0)=1. (2.9 Here, termW, is of thenth infinitesimal order assuming
operatorV,p to be of the first infinitesimal order. Substitut-
Simultaneously, the perturbation Hamiltonian is repre-ing Eq. (2.16 into Eqg.(2.15 and equating variables of the

sented by same infinitesimal order yields the following set of equa-
tions:
Vrp(t) = Uf(1)- V() Ug(t). (2.10 ;
The equation for operatow(t) is obtained here in a imW(rl—[Wo,Qo]:O,
straightforward manner. Substituting EG.8) into Eq. (2.6)
and using Eq(2.7), one gets d -1
g Wi+ W, ,Qo]=VTp-Wj—1—n§0 W,_p_1-M
imW+W-Q:(QO+VTp)W. (2.11 _
X{VTP'Wn}, J:1,2, .
To simplify the further derivations, let us first replace, (2.17
temporarily, initial condition(2.9) by the following condi- ) ) )
tion: One may choose the solution for the first equation of set
(2.17 to be Wy=1. When solving the other equations, the
M{W}=lI, (2.12  constants of integration should be chosen to meet conditions

M{W;}=0, j=12,....

where notationM{e} stands for time averaging of a time-
periodic operator over its period, particulariy{W} IIl. POLICHROMATICALLY DRIVEN SYSTEM
=T M gW(t)dt. OF ATOMS: A QUASIENERGY APPROACH

To get the solution of Eq(2.11) satisfying condition ) ) )
(2.12, one may use various asymptotic methods described Now, let us apply the formalism of the previous secthn to
elsewheresee book Ref[21] for a detailed review A par- ~ Study the dynamics of a system of two-level atoms dipole
ticular example is a direct expansion of the solution intocOUpled to the quantized mode of electromagnetic field and
power series itV1p as outlined a shade below. At this point, {0 the polychromatidmodulated electromagnetic field as
we suggest thatv(t) is a solution for Eqs(2.11) and(2.12) well. The modulation frequgncyoM is assumed to be very
obtained in some way. How to get the quasienergy operatotmall compared to the carrier frequen@yof the polychro-
Q from this solution? While averaging both sides of Eq.Matic field, the quantized field carries, and the atomic
(2.11) over time intervalT=2(m/w),), one notes that the transnmn frequencyuo. Dropping the fast-oscillating terms,
time derivative of periodic operatoN averages to zero. the Hamiltonian of the system reads

Then, using conditiori2.12 one gets H(t) = wa' a+ woS,+ g(H)exp —i QD)S,
Q=Qo+M{Vyp(t)-W(t)}. (213 +g* (Dexpi QS+ kS, -a+S -ah),

It should be noted that Eq2.13 does not give us the (3.9
final result yet, since initial conditio(2.12) does not coin- _ o
cide with the true initial condition2.9). To get the correct Where the first two terms are the Hamiltonians of the unper-

quasienergy and time evolution operators, one has to appigrbed quantized mode and the unperturbed TLA, respec-

the following transform: tively, the next couple of terms describes the interaction be-
tween the TLA and the polychromatic field, and the last
Q=W(0)-Q-W(0)~%;  W(t)=W(t)-W(0) %, couple of terms are the interaction Hamiltonian between the

(2.14  TLA and the quantized mode. The notations in E3]1) are
~ 5 as follows: w is the eigenfrequency of the quantized mode,
whereW andQ are the solution obeying conditidq@.12). wq is the atomic transition frequenog(t) is the strength of
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the polychromatic field assumed to be a periodic function othan(). Assuming the carrier frequency to coincide with the
time with periodT=2 n/wy, kq is the coupling constant atomic transition {=w,), one solves the zeroth-order
between the atom and the quantized marlanda’ are the ~ Schralinger equation to yield

annihilation and creation operators of the quantized mode,

S,, S_, andS, are the cooperative pseudospin operators Qo=(w—0)a’a+gy(S; +S.),

obeying commutation relations: (3.10

Up(t)=cog G(t) ]I —i sif G(1) ](S, +S),
[S:,S-1=25,,[S,,S.]=S,, [S,.S]=-S.,

(3.2 whereG(t)=f}g(t')dt’ is a time-periodic function.
For the sake of simplicity, we consider below the case of
re resonance only, wheie= wy={). If this is the case,

SO S one may set amplitudg, to zero without limiting the gen-
To make the model Hamiltonian time periodic, we turn toerality of the analysis. Actually, ifo=0 term goS,

the rotating frame by applying unitary transfori(t) +gS_ is eliminated from Hamiltonian(3.4) by applying

=exd —i Q(S,+a'-a)t]. The model Hamiltonian and the - . :

other operators of the system are transformed here in thlvjanltary t.ransforer(—_gO/Kaq)T, whsreD(a) IS the. shift op-
following manner: €rator given bp(a)—exp(aa —a*a) [20]. .PhyS|caIIy, the

transform mentioned above moves the field component at

d frequency() from the driving field to the quantized mode

H'(t)=R"(t)-H(t)-R(t)—i RT(t)- mR(t), without changing the actual dynamics of the system. For this
reason, we assume hereafter thgt=0 and, thereforeQ,

3.3 =0. Moreover, we consider here the case of a single atom
called the dressed-atom Jaynes-Cummings m@a0lCM)

whereA stands for each operator of the system. This yields(see[ﬂ] and[18]) where pseudospin operatdés andS.

the time periodic Hamiltonian Obey relations

and, finally, the unit system is used where both the Planclf)u
constant and the speed of light are set to one.

A'(H)=RT(t)-A-R(1),

, S,-S +S_-S,=I; S.)?=(S.)?=0. (3.1
H(t) =(wo—Q)S,+(w—Q)a" -a’ +g(t)S, +g*(1)S_ " * (S+)7=(S-) (3.19
Using unitary transformuy(t) to convert the interaction

’ ’ ’ 1!
+kag(S,-a'+S0-al). (34 term (3.9 to the time-periodic picture one gets

In Egs.(3.3) and (3.4), the primes are used to label op- i
erators in the rotating frame. It is conventional, however, to  Vp(t) = g} S+ i co{ZG(t)]Sy—E sim2G(1)]S;( -a
use the same notations for operators in all the time represen-
tations. For this reason we drop the primes hereafter. +H.c., (3.12

The next step in our paper is to present the model Hamil-
tonian(3.4) as a sum of the zeroth-order Hamiltonian and theyhere S=(S;+S.)/2, S,=(S;—S.)/(2i), and H.c.
interaction Hamiltonian. Assuming coupling constaitto  stands for Hermitian conjugation. The first-order quasienergy
be small compared to both the modulation frequency and thgperator is then obtained from E@2.13 assumingQ,

strength of the polychromatic field, mag()|), we set =0, W(t)=Wy(t)=1. In this way one gets
Ho(t):HOa(t)+H0f, (35) ) |
Q1=M{V1p}= kiq| Scti¢1S,— Ellfzsz] -at+H.c.,
Hod(1) = (0= Q)S,+g(1)S, +g*(1)S-, (3.6 (3.13
Ho=(0—-Q)a" a, 3.7 wherey,=M{cog2G(t)]} and ¢, = M{sif2G(t)]}. The first-
; order quasienergy operator above coincides with the effec-
V(1) = k(S -a+S_-ah). (3.8 tive Hamiltonian obtained ifi17] using the other approach.

S The spectrum of this Hamiltonian is calculated, in its turn, in
The zeroth-order Hamiltonian is a sum of the two com-Ref, [18].

mutative operators: the time-periodic Hamiltonian of the | ot ys focus on a particular case where the driving field is

dressed atonto,(t), and that of the quantized mod€y.  pichromatic. More precisely, we sef(t) = cwy Sin(wyt),
The time-periodic field strengt(t) may be represented as \whereo is the scaled amplitude of the driving field assumed
follows: to be much greater than the scaled coupling constant,

- - =i/ wy . This yields ¢, =Jo(20) and ¢,=0. Based on
g(t)=got+9(t);  go=M{g}; M{g}=0, (2.26  Ref.[18], the eigenvalues of the first-order quasienergy op-

erator are
wheregg is the amplitude of the field component oscillating
at the carrier frequenc, while functiong(t) is the remain- Eo=0; E.,=*oyky|D|n, n=12,...,
ing part of the driving field oscillating at frequencies other (3.19
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whereD is the numeric parameter called the DAJCM dis- * ) ,
criminant. The discriminant above depends on the strength ofF ,(g)=2 >, T +1(2 ) a1l 2 0) e i + (2 0)
the driving field. The particular values of the field strength Kk =—o0 (2k+1)(2k"+1)
whereD=0 are referred to here as the singular points. At o

these points, the quasienergy spectruii,:n=0,*1, 1 D B (20) (2 0) o2k (2 0) ,

+2,...,} becomes continuous while the eigenvectors gain 2 kKo —w 2k2k’
infinite norm. The discriminant of quasienergy operagris (k,k’,k+ K’ ;so,)
D=J(20) and, therefore, the singular points are the zeros .
of the Bessel function. W'tE ‘]k(zal):(_l)k J—k(zal h ding ei
Based on the formalism of Reff18] the eigenvectors of | orx<1, otr;ega%/ ieQENQé' e_gorr%sriqon |fng elgeE-
guasienergy operatdd, in case of the bichromatic driving values given by 93.14 may be attributed therefore to the
field are obtained from those of the conventional JCMcentraI potential well centered at=0. There are two other
Hamiltonian by applying squeeze opera&{r)=exp(r*a potential wells settled symmetrically around the central one

—r(ah21/2) 1o vield and refe_zrred to here as the side wells. To rgveal the presence
r(@)7)/2) toyie of the side wells, let us transform opera@g in the follow-
[ho)=S(1)| o) 3em=10;1 )] 61), ing manner:Qg=exp(Xyp) Qe exp(—ixop) with X, being a

3.15 real number. It is worth noting that expgp) is the unitary

( ; . : . .
) =S| ) sem= (LIN2)(In;r)| 8y £in—1:r)|6,)),  Shift operator obeying relation exgfp)x exp(—ixop)=x
- - +Xq. Parametex, should be chosen here to eliminate the

where the squeeze parameter is given by pure atomic term iQ¢ which does not depend on bottand
p. This yields the following expression determining the lo-
r=—In(/|%(20)|). (3.16  cation of the side dips related to the central one:
Here,|6,) and|6,) are the eigenvectors of opera®yin Xo= £ \21(2 0)/[ kK*Fy(0)]. (3.20

the time-periodic representation called the quasienergy states. i
or the Floquet states as well and vectprs') = S(r)|n) are It is assumed here that® does not exceed the first zero of

the squeezed number states of the quantized mode. Note tHhe Bessel function,020). _ .
|0;r)=S(r)|0) is the conventional squeezed vacuum state. To find the approximate expressions for the quasienergy

The quasienergy operat@ calculated to an arbitrary or- SPectrum of the side dips, one may linearize operggr

der of the perturbation theory may be represented as with respect tox yielding
Q=L-QgL", (3.17 P'=\20u k[pSA20)—2xS,h(20)], (3.21)
where operato® includes the odd-order perturbations only. Where J(27)=1+2F,(0)%(2 0)/F;(o). Similarly to the
The unitary transforni is given by first-order quasienergy operatQy, the linearized third-order
quasienergy operat@'é” is the bilinear combination of the
L=exp(i V2kx-S,f1)exp —ixk?(p-x+Xx-p)-S,f,), atomic pseudospin operators and the photon annihilation and

(3.18 creation operators. The formalism of RéL8] may be ap-
plied, therefore, to find the eigenvalues of oper
with x=i(a—a")/y2 andp=(a+a'")/\/2 being the effective yielding
coordinate and the effective momentum of the quantized .
field, respectively. Numeric parametdrsandf, depend on E"i”n= *oyxyD'n, n=0,1,..., (3.22
the strength of the driving field. We do not issue the cumber-
some relations for these parameters here since the eigenvalwéh the discriminant given byD'=2J4(2 0)J(2 o). The
spectrum of the quasienergy operator does not deperfd on eigenvectors of this operator may be expressed here in terms
andf,. of the shifted squeezed number states of the quantized mode
Apparently, the eigenvalue spectrum of the reducedn;r’;xo)=exp(—ixop)|n;r’) with the squeeze parameter de-
quasienergy operatdg is the same as that of the quasien-termined by: exp{2r')=J(20)/[2Jy(20)]. Using the for-
ergy operatoQ. In the framework of the third-order pertur- malism of Ref.[18] one get{compare with Eq(3.15]
bation theory operatoQg assumes the form
[0) =10;r";%0)| 61),

= Q1+ Qgs, ) .
|y = (AN2) (i1 xo) o) =i [N =13 "3 %) 61)).
Qes=wm\263(x-p-x- SF1(0) — $x°- S F2(0)), (3.23
where (3.19 It appears, therefore, that the spectrum of the quasienergy

operator includes three series of eigenvalues corresponding
w 2002 to three potential wells: the central well and the side ones as

Fi(o)= _22 (‘Jk( ‘7)) , well. Here, the term “potentllal well” refers to the domal_n of
k x values where the generalized JCM Hamiltonian considered

053801-5



GEORGII P. MIROSHNICHENKO AND MICHAEL Z. SMIRNOV PHYSICAL REVIEW A64 053801

in Ref.[18] may approximate the quasienergy operator of the
system in question. Apparently, if the distance between the 2
side wells determined by E@3.20 is large enough, the ei- SN
genvalueg3.22 are doubly degenerate. However, bringing
together the side wells should remove the degeneracy 45|
through the barrier tunneling effect. This means that thew
guasienergy levels of the side wells should split into doubletng
at certain values of field strength, The results of the per- w°
turbation approach, including the quasilevel splitting effect,
are proved below using the precise numerical solution of the
time-dependent Schdinger equation.

Apparently, the conclusion that three wells are only 0sf
present comes from using the third-order perturbation theory.
Including higher-order perturbations may increase the num-
ber of wells. However, to reach a well of high order, one 00 ¥ ; s
needs a significant number of photons to be present in the ’ o

quantized mode. It seems, therefore, that the wells of a low ) _ ) _ _

order are only relevant to the up-to-date QED experiments. FIG. 1. Quasilevel diagram of the bichromatically driven
The accuracy of the analytical theory above can hardly b@AJCM. Quasilevels 1 — 4 are obtained by Eg.14 assuming

evaluated. For this reason, we present the comparison of trf&=Jo(2- o) and correspond to the limiting case of infinitesimal

analytical results and the straightforward numeric computal "¢ Other quasilevels are obtained for=0.1 using the numeric

tions below. technique described in Sec. IV.

the singular point are the approximatéiist-orde) quasien-
ergy values of the central potential well given by E8.14)
with D=Jy(20). Far from the singular point, the approxi-
We used the sparse matrix techniquevefiLAB 6 to cal-  mated quasienergy values come close to those calculated nu-
culate the quasienergy spectrum of the bichromaticallymerically.
driven DAJCM. The calculations were organized in the fol- The quasienergy levels undergoing double splitting at cer-
lowing order: First, we applied the fourth-order Runge-Kuttatain values of the driving field strengthare attributed to the
method for solving the matrix differential equation for the side potential wells. More detailed diagrams of these
time-evolution operator: qguasienergy levels are presented in Figs) 2nd 2Zb). In
this figure, the solid plots are calculated using the numeric
d i technigue above fon,,,=125. Simultaneously, the dashed
ﬁw(t):_'VTP(t)'W(t)' (4. plots obtained within the third-order perturbation theory
show the eigenvalues of quasienergy oper&prgiven by
with initial condition W(0)=1. Here,W(t) is the time evo- EQ. (3.19. In casex=0.05[Fig. 2a)], the third-order per-
lution operator, and/p(t) is the time-periodic perturbation turbation theory describes the splitting of the quasienergy
Hamiltonian with periodT =2/ wy given by Eq.(3.12. levels due to the tunneling effect with rather good accuracy.
The driving field was implied bichromatic and, therefore, weFor «=0.1[Fig. 2(b)], the third-order calculations yield ap-
setG(t) = o sin(wyt). We used the matrix representation of preciable errors yet exhibiting the qualitative agreement with
operatorsW(t) and V(t) in the basis of product states the numeric results.
[n)|6p) and |n)|6,) wheren=0,1,2...,. Therepresenta-
tion was truncated ah=n,,,. The maximum number of
photonsn,., was chosen here to calculate all the quasien-
ergy levels of interest with a sufficient accuracy. Practically,
the numeric results were obtained foy,,,=60-130. Equa- This section discusses a possible way of obtaining a high
tion (4.1 was solved for matrixV(t) within the time do- squeezing degree in one of the field quadratures. The consid-
main 0<t<T,, to yield the monodromy matrixM eration is restricted to the case of the bichromatic driving
=W(Ty) [19]. Then, given the monodromy matrix, the field with the function of modulation given byg(t)
guasienergy operatd® is determined by the relatiofil9] = owy Sin(wyt).
M=exp(—i QTy). At the final step of our calculations, the It is seen from Eq.3.15 that eigenvectot,) of the
eigenvaluesE,, of the quasienergy operator were evaluatedfirst-order quasienergy operator includes the squeezed
numerically and put in the ascending order. vacuum|0,r) of the cavity field. The squeeze paramatés
Figure 1 presents the quasienergy diagram obtained in thisbtained here from Eq3.16). Within the first-order approxi-
way for k=0.1. To get the reliable results, the calculationsmation, the squeeze parameter becomes infinitely large when
were repeated several times for various valuengf,. It 20 tends to the first zero of the Bessel functidg(20). To
was found that the sufficient accuracy was reachedfgr,  get a large degree of squeezing, one may start, therefore,
=70. The additional plots 1—4 crossing the horizontal axes afrom the situation where the driving field is off, the cavity

IV. QUASILEVEL DIAGRAM OF THE
BICHROMATICALLY DRIVEN DAJCM

V. SQUEEZING AND NONADIABATIC TRANSITIONS IN
THE BICHROMATICALLY DRIVEN DAJCM
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1

nique for solving the atom-field Schiimger equation and its
ol software implementation were similar to those described in
the previous section. At the final step of the calculations we
08F-- evaluated the standard deviatidiX,; of cavity field quadra-
07} ture X;=(a+a')/2. It is worth noting here that the squeez-
osl ing occurs provided\ X;=<0.5[20].
= The alternative way of describing the nonadiabatic transi-
QE 05} tions between the quasienergy states is to include a special
wooal Hamiltonian proportional tar(t). This Hamiltonian called
hereon the nonadiabatic Hamiltonian may be derived as ex-
031 plained below.
02} - It follows from Egs. (3.13—(3.195 that the first-order
o1l ) quasienergy operator of the bichromatically driven DAJCM,
I Q1= wyk[S+iJo(20)S/]-a+H.c., can be represented as
s s 0s o 1 105 14 mis  Qu=30(20)S(r(0))HyewS'(r(0)), where Hicm
o =wyk(5+iS)-at+H.c. is the conventional JCM Hamil-
{a) tonian andS(r)=exp(r*a?—r(a")?]/2) is the squeeze op-

erator with the squeeze parametegiven by relation(3.16).
Neglecting the fast oscillations at the multiples of the modu-
lation frequency, the first-order Schiinger equation is

.d
il =Qulo(®1]#). (5.)
_;‘ One may describe the nonadiabatic time evolution in the
W explicit manner using the following change of time represen-
tation
02 ’ [9(0)=S"r (a(OD] (D). (52
o ___./ Actually, applying transforng5.2), the Schrdinger equa-
0 . s . s s tion becomes
0.7 075 08 0.85 08 095 1 105 1.1
c
d ~
" 119 =032 Hocwt Hoodll 9, (63

FIG. 2. Fragments of the quasilevel diagram £er 0.05(a) and
0.1 (b) exhibiting the quasilevel splitting effect. The solid plots with the nonadiabatic Hamiltonian given by
present the precise numeric results. The dashed plots are the eigen-
values of the third-order quasienergy opera@y given by Eq.

(3.19. Hoor= — 3 L2 (@)

2 dt Jo(20) 4

Jof

J1(20)

20)|
field is in the vacuum stat®), and the TLA is in the upper
energy statél). This means that the DAJCM is initially at The first term in Eq.(5.3) describes the adiabatic time
the quasienergy levet, with the zero value of the squeeze evolution of the DAJCM. Given by this type of time evolu-
parameter. Then, the driving field amplitudeshould grow tion the probability of disclosing the system at any quasien-
slowly until J,(20) becomes zero. At the same time, theergy level,E.,,, n=0,1,2..., is held fixed in time while
squeeze parameter should reach its maximum value. the phases of the corresponding wave functions change. On

Using the procedure above, the maximum attainable dethe contrary, HamiltoniarH,,, enforces transitions among
gree of squeezing is limited by the two unavoidable effectsthe quasienergy states with the transition rate being propor-
First, the higher-order terms of the quasienergy operator matjonal to the first-time derivative of the driving field ampli-
cause additional fluctuations of the cavity field. Second, théude. It should be emphasised that expresg®d) for the
system may skip nonadiabatically from quasienergy I&gl nonadiabatic Hamiltonian is valid for the first-order pertur-
to the other quasienergy levé2]. The skipping probability bation theory only. Therefore, it becomes inapplicable just
increases here near the singular point where the quasienerggar the singular points where the denominatdj(20)],
levels come close to each other. becomes small. Simultaneously, the numeric results are al-

To study the dynamics of the bichromatically driven ways available by solving the Schlinger equation with
DAJCM at the slow increase of the driving field amplitude time-dependent Hamiltoniar(3.4) using a Runge-Kutta
we solved the Schrdinger equation with HamiltoniafB.4) method. The latter calculations are rather time consuming.
numerically assumingg(t)=o(t) wy sin(wyt). The tech- Actually, the time step should be chosen much shorter than

053801-7
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(a) FIG. 4. The standard deviation of quadrati¢e vs the scaled
amplitude of the driving field foro=1.35Xsin(0.2X wy X
09 : : : X1/1.35) andx=0.005. Plot 1 is the same as in Fig. 3; plot 2

(ABCD) is the precise numeric solution for the time-dependent
Schralinger equation.

nitely large squeezing at the singular point. Plot 2 is obtained
by using the nonadiabatic Hamiltonian as described above.
This approach allows for the nonadiabatic transitions but yet
it neglects the perturbations of order more than one. There-
fore, it becomes invalid just near the singular point where we
interrupt plot 2. Finally, plot 3 presents the precise numeric
solution of the Schidinger equation with Hamiltonia(B.4)

as explained above.

It appears that for the sufficiently small coupling constant,
x~0.005, the first-order perturbation theory gives rather pre-
cise results. Actually, one finds no appreciable distinction
between lines 2 and 3 in Fig(l3. Furthermore, fast oscilla-

o tions at frequencyy, are still present fok=0.15[Fig. 3@)]
() but they fully smooth out fok=0.005[Fig. 3(b)]. However,
the maximum attainable degree of squeezing does not in-

FIG. 3. The standard deviation of quadratite vs the scaled crease significantly when switching the coupling constant
amplitude of the driving field foro=0.05X wy X kXt, with x from 0.15 to 0.005.
=0.15(a) andk=0.005(b). Plot 1 is obtained within the first-order In order to enhance squeezing of the cavity field, one may
perturbation theory dropping the nonadiabatic transitions, plot 2try to cross the singular point several times in alternating
allows for the nonadiabatic transitions but still uses the first-ordety: o ~tions. However, Fig. 4 suggests that the effect of the
perturbation theory, and plot 3 presents the precise numeric solutiofg g crossing should be rather small because the first
for the time-dependent Schiinger equation. crossing perturbs the system so that it skips l&gewith a
ignificant probability.

the modulation period while the simulation should cover a°
long time interval wherer changes from zero to the singular
point.

Let us turn to the calculation results. In Figs. 3 and 4, the We have developed a perturbation technique to derive the
TLA is initially in the upper-state one while the cavity field quasienergy operator of the dressed-atom Jaynes-Cummings
starts its time evolution from the vacuum state. Thereforemodel (DAJCM), the latter being the dipole-coupled system
the system is initially at the quasienergy letg| while both  of a polychromatically driven atom and a cavity mode. The
the driving field amplitude and the squeeze parameter areigenvectors of the first-order quasienergy operator include
zero. Figure 3 shows the standard deviation of quadradyre the squeezed number states of the cavity mode. At certain
against amplituder when the amplitude grows linearly in values of the driving field amplitude called the singular
time: 0=0.050 xt, with k=0.15(a) andx=0.005(b). Plot  points, the squeezing degree becomes infinitely large while
1 is calculated using relation X;=0.5exp—r(o)], where the eigenvalues of the quasienergy operator come together to
the squeeze parameter is given by E8.16. Hence, this form the continuous spectrum. The infinite values are re-
plot neglects the effect of the higher-order perturbations andnoved by allowing for the perturbations of order more than
that of the nonadiabatic transitions either exhibiting the infi-one. Simultaneously, the additional eigenvalues appear. All

VI. CONCLUSION

053801-8
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the eigenvalues obtained within the third-order perturbatiorable effects that limit the maximum attainable squeezing de-
technique may be attributed hereby to three potential wellgree, specifically, the nonadiabatic transitions among the
with the eigenvalues of the central well corresponding to thejuasienergy levels and terms of order three and higher in the
first-order quasienergy operator. The doubly degenerated gperturbative expansion of the quasienergy operator. Both ef-
genvalues of the side wells correspond to the third-ordefects gain special significance near the singular points. The
term in the perturbation expansion of the quasienergy opergoprmer effect may be described by embedding the additional
tor. At certain vglyes of the driving field amplitude, the sideterm in the first-order Schebnger equation. Being propor-
wells come sufficiently close to the central one to remove thgjong) to the first-time derivative of the driving field ampli-
degeneracy. This results in double splitting of the correy,qe this term is called the nonadiabatic Hamiltonian.

spondlng_ guasienergy Ieve_ls. . We used the precise numerical solution of the time-

In addition to the approxmat_ed analytical the_ory, we havedependent Schdinger equation, and the first-order perturba-

Sgl\ﬂosped the numerical teghmque for calculating the e'genﬁPn techniqgue with nonadiabatic Hamiltonian as well, to
pectrum of the quasienergy operator. It appeared tha L . )

the numerical and analytical results exhibit quantitative"’\nalyze the I|m|t§t|ons of the attainable squeezing dggree. To

agreement. The calculated quasienergy levels undergo Sp“?_nhance Squeezing, one may cross the singular point several

ting and avoided crossing when the amplitude of the driving“mes in alternating directions. It appears, however, that the
field approaches the singular points. nonadiabatic effect perturbs significantly the quantum state

A possible way of squeezing a cavity field quadrature‘?f the system at_the_z first crossing. Consequentl_y, the addi-
consists of tempering the amplitude of the driving field to-tional squeezing in time of the subsequent crossings reduces
wards a singular point. In this respect, there are two unavoido’ becomes fully eliminated.
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