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Singular points, squeezing, and nonadiabatic transitions in the dressed-atom
Jaynes-Cummings model
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We study the quasienergy spectrum and the nonadiabatic time dynamics of the open quantum system, which
incorporates the two-level atom dipole coupled to both the quantized mode and the polychromatic classical
field. Both the numeric calculations and the original perturbation technique are applied to track the quasilevel
positions against the strength of the classical field. The first-order perturbation theory predicts the singular
behavior of the system including the infinitely large squeezing of the quantized mode quadratures at certain
values of the field strength. The singularity is removed here by allowing for the nonadiabatic transitions among
the quasienergy states and the higher perturbations as well.
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I. INTRODUCTION

The recent progress in the technology of trapped-a
lasers and the cavity QED experiments@1–5# has resumed
the interest of researchers in the single-atom Jayn
Cummings ~JCM! model @6#, the multiatom Tavis-
Cummings model~TCM! @7#, and the modifications of thes
basic models as well. One may use, particularly, the su
conductive high-Q cavity to reach the strong coupling re
gime of the atom and cavity mode, with the cavity decay r
being much smaller than the coupling constant between
atom and the mode@4#. This makes it possible for a photo
to be absorbed and reemitted by the atom repeatedly befo
escapes the cavity. In this way, the experimentalists h
observed some nontrivial effects predicted for the JC
These include, in particular, the collapses and revivals
atomic inversion @5#, the coupling-induced normal-mod
splitting @4#, the squeezed-light generation@8#, the macro-
scopic superposition of states~Schrödinger cat states! @9#, the
Fock states of the quantized mode@10#, the correlated atom
field states@2#, etc. A detailed review on this topic may b
found in Refs.@1# and @2#.

The solutions obtained for the models in question may
considered in the context of other issues. A particular
ample is the theory of laser cooling of trapped atoms a
ions. Reference@11# demonstrates here that the JCM Ham
tonian may describe the interaction between the translati
and internal degrees of freedom of a driven atom in a tra
the Lamb-Dicke limit. In this context, the boson operato
describe the confined translational motion and the quant
field effects, those found earlier for the conventional JC
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gain a different meaning thereof. In this way, various no
classical states of ion motion have been predicted theo
cally and observed experimentally, for instance, Fock sta
Schrödinger cat states, even and odd coherent states,
More detailed information on this matter may be found
Refs.@12#.

The nonclassical states of the electromagnetic field
those of the confined movement of trapped atoms, as w
have found various applications including nondemoliti
measurements@13#. A field of research called in@14# the
quantum state engineering deals with generation scheme
the predefined quantum states. These schemes are base
rule, on the JCM generalizations. It seems, therefore that
externally driven~open! JCM and TCM may be subjects o
special interest.

The first studies of the open models of this kind ha
demonstrated a number of interesting phenomena. For
stance, using an external classical field to drive the JC
provides a means for obtaining some nonclassical state
light with predefined characteristics@14#. To get the informa-
tion on the dynamics of the driven JCM, one may meas
the spectrum of the resonance fluorescence@15#.

The authors of Ref.@16# have found the eigenvectors an
the corresponding eigenvalues of the modified JCM, wh
either the atom or the cavity mode is coupled to the exter
monochromatic classical field with the carrier frequency c
inciding to that of the cavity mode. In the case of the driv
atom, it was demonstrated that the eigenvectors of this mo
are the properly shifted eigenvectors of the conventio
JCM, while the eigenvalues of both models are the sa
The derivation above means, in essence, that one can rem
the driving field from the model by incorporating it into th
cavity field of the same carrier frequency. In the case of
driven cavity mode, the results of Ref.@16# are somewhat
more interesting. The eigenvectors are found to be the di
products of the special states of the atom and the sque
number states of the cavity mode with the degree of sque
©2001 The American Physical Society01-1
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ing depending on the strength of the classical field.
A more general JCM modification called the dressed-at

Jaynes-Cummings model~DAJCM! was introduced in Refs
@17#. This model includes the polychromatic~periodically
modulated! classical field coupled to the atom. The eigenve
tors of the model Hamiltonian obtained within the seco
RWA appeared to be the bilinear combinations of t
quasienergy~Floquet! states of the dressed atom and t
squeezed number states of the mode@18#. The most interest-
ing feature of the DAJCM, which is not a property of th
other known JCM modifications, is the presence of singu
points at certain values of both the amplitude and the mo
lation frequency of the driving field. At these points, th
degree of squeezing of the cavity mode tends to infin
while the eigenvalue spectrum becomes continuous.

In this paper, we present the theory of the DAJCM bas
on the quasienergy approach. This theory also applies to
multiatom case. We develop the perturbation technique
find the quasienergy operator of the DAJCM. The first-ord
quasienergy operator coincides hereby with the effec
DAJCM Hamiltonian of Refs.@17# derived from the second
RWA. However, to explain some interesting features of
quasienergy diagram that were calculated numerically,
needs at least the third-order perturbation technique. T
we describe the possible method of squeezing the qua
tures of the cavity mode and analyze the basic limitations
the squeezing degree result from the nonadiabatic transit
among the quasienergy states and from the higher-order
turbation terms as well.

The organization of the paper is as follows: Section
develops the perturbation technique for the Schro¨dinger
equation with time-periodic Hamiltonian. Section III pre
sents the quasienergy approach to the theory of DAJC
including the case of many atoms. The subsequent cons
ations are restricted to the case of single atom and bic
matic driving field. Section IV compares the quasienergy d
grams calculated numerically with those obtained using
first- and third-order perturbation techniques. The nonad
batic effect appearing at the change of the driving fi
strength is studied in Sec. V, using the first-order perturba
technique. Finally, Sec. VI outlines the major results of t
paper.

II. PERTURBATION THEORY FOR THE QUASIENERGY
OPERATOR

In this section we give a brief summary on the Sch¨-
dinger equation with time-periodic Hamiltonian given by

d

dt
uc~ t !&52 iH~ t !uc~ t !&; H~ t1T!5H~ t !. ~2.1!

Then, we develop a perturbation technique to find
quasienergy operator of a quantum system driven by a ti
periodic external force.

The solution to Eq.~2.1! may be expressed in terms o
time-evolution operatorU(t)

uc~ t !&5U~ t !uc~0!&. ~2.2!
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The latter operator, in its turn, is determined by the f
lowing equations:

i
d

d t
U~ t !5H~ t !•U~ t !; U~0!5I ; U†U5U•U†5I ,

~2.3!

with I being the identity operator. Based on the Floquet th
rem @19#, the solution to Eqs.~2.3! may be chosen in the
following general form:

U~ t !5u~ t !exp~2 i Q t !; u~0!5I ; u~ t1T!5u~ t !,

~2.4!

with Q and u(t) being the time-independent~Hermitian!
quasienergy operator and a time-periodic unitary opera
respectively. It should be noted here that the quasiene
operator is determined ambiguously. Actually, one may a
ment each eigenvalue of this operator by a multiple of
modulation frequencyvM[2 p/T without violating rela-
tions~2.4!. Therefore, one may always redistribute the eige
values of the quasienergy operator among the Brillo
bands with the interband spacing equal tovM .

Solution ~2.4! gains a particular physical significance
some eigenvalues of quasienergy operatorQ ~within the first
Brillouin band! are small compared tovM . If this is the case,
the time dynamics of the system branches into the fast
slow oscillations, with the specific time for the fast oscill
tions being 2p/vM . Simultaneously, the specific time fo
the slow oscillations is determined by the small eigenval
mentioned above. If one is interested in the slow oscillatio
only the course-grained time scale may be introduced w
the grain size being great compared to 2p/vM , but much
smaller than the specific time for the slow oscillations. Fro
this point of view one may consider the quasienergy opera
as the ‘‘slow Hamiltonian,’’ which governs the slow oscilla
tions but neglects the fast oscillations. The slow oscillatio
are described here in the course-grained time scale.

Now, let HamiltonianH(t) be a sum of the two time-
periodic terms: the zeroth-order HamiltonianH0(t), and the
small perturbation termV(t)

H~ t !5H0~ t !1V~ t !,
~2.5!

H0~ t1T!5H0~ t !; V~ t1T!5V~ t !; uVu!uH0u.

Furthermore, we suggest that the zeroth-order Sch¨-
dinger equation with HamiltonianH0 may be solved to yield
the corresponding quasienergy operatorQ0 and time-
periodic operatoru0(t).

Substituting Eq.~2.4! into Eq. ~2.3! and using presenta
tion ~2.5! yields the following equation:

i
d

d t
u1u•Q5~H01V!•u, ~2.6!

while the zeroth-order operatorsQ0 andu0(t) obey the same
equation, with termV being eliminated
1-2
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SINGULAR POINTS, SQUEEZING, AND . . . PHYSICAL REVIEW A64 053801
i
d

d t
u01u0•Q05H0•u0 . ~2.7!

Our aim is to develop the perturbation technique for so
ing Eq. ~2.6!. As a first step, we use unitary transformu0(t)
to get a new time representation referred to here as the t
periodic picture~TP!. Within the TP operator,u(t) is pre-
sented as

u~ t ![u0~ t !•W~ t !, ~2.8!

whereW(t) is unitary and time-periodic operator that obe
the initial condition

W~0!5I . ~2.9!

Simultaneously, the perturbation Hamiltonian is rep
sented by

VTP~ t!5u0
†~ t!•V~ t!•u0~ t!. ~2.10!

The equation for operatorW(t) is obtained here in a
straightforward manner. Substituting Eq.~2.8! into Eq. ~2.6!
and using Eq.~2.7!, one gets

i
d

d t
W1W•Q5~Q01VTP!W. ~2.11!

To simplify the further derivations, let us first replac
temporarily, initial condition~2.9! by the following condi-
tion:

M$W%5I , ~2.12!

where notationM$•% stands for time averaging of a time
periodic operator over its period, particularly,M$W%
5T21*0

TW(t)dt.
To get the solution of Eq.~2.11! satisfying condition

~2.12!, one may use various asymptotic methods descri
elsewhere~see book Ref.@21# for a detailed review!. A par-
ticular example is a direct expansion of the solution in
power series inVTP as outlined a shade below. At this poin
we suggest thatW(t) is a solution for Eqs.~2.11! and~2.12!
obtained in some way. How to get the quasienergy oper
Q from this solution? While averaging both sides of E
~2.11! over time intervalT52(p/vM) , one notes that the
time derivative of periodic operatorW averages to zero
Then, using condition~2.12! one gets

Q5Q01M$VTP~ t !•W~ t !%. ~2.13!

It should be noted that Eq.~2.13! does not give us the
final result yet, since initial condition~2.12! does not coin-
cide with the true initial condition~2.9!. To get the correct
quasienergy and time evolution operators, one has to a
the following transform:

Q5W̃~0!•Q̃•W̃~0!21; W~ t !5W̃~ t !•W̃~0!21,
~2.14!

whereW̃ andQ̃ are the solution obeying condition~2.12!.
05380
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Now, let us return to Eqs.~2.11! and ~2.12!. As argued
above, these two equations yield relationQ5Q0
1M$VTP(t)•W(t)%. Substituting the latter relation into Eq
~2.11! yields the self-consistent equation for operatorW(t)

i
dW

dt
1@W,Q0#5VTP•W2W•M$VTP•W%, ~2.15!

where square brackets stand for the commutator, i.e.,@a,b#
[a•b2b•a.

We seek for the solution of Eq.~2.15! in the form.

W5W01W11W21••• . ~2.16!

Here, termWn is of thenth infinitesimal order assuming
operatorVTP to be of the first infinitesimal order. Substitu
ing Eq. ~2.16! into Eq. ~2.15! and equating variables of th
same infinitesimal order yields the following set of equ
tions:

i
d

d t
W01@W0 ,Q0#50,

i
d

d t
W j1@W j ,Q0#5VTP•Wj212 (

n50

j 21

Wj2n21•M

3$VTP•Wn%, j 51,2, . . . .

~2.17!

One may choose the solution for the first equation of
~2.17! to be W05I . When solving the other equations, th
constants of integration should be chosen to meet condit
M$Wj%50, j 51,2, . . . .

III. POLICHROMATICALLY DRIVEN SYSTEM
OF ATOMS: A QUASIENERGY APPROACH

Now, let us apply the formalism of the previous section
study the dynamics of a system of two-level atoms dip
coupled to the quantized mode of electromagnetic field
to the polychromatic~modulated! electromagnetic field as
well. The modulation frequencyvM is assumed to be very
small compared to the carrier frequencyV of the polychro-
matic field, the quantized field carrierv, and the atomic
transition frequencyv0. Dropping the fast-oscillating terms
the Hamiltonian of the system reads

H~ t !5va†
•a1v0Sz1g~ t !exp~2 i Vt !S1

1g* ~ t !exp~ i Vt !S21kaq~S1•a1S2•a†!,

~3.1!

where the first two terms are the Hamiltonians of the unp
turbed quantized mode and the unperturbed TLA, resp
tively, the next couple of terms describes the interaction
tween the TLA and the polychromatic field, and the la
couple of terms are the interaction Hamiltonian between
TLA and the quantized mode. The notations in Eq.~3.1! are
as follows:v is the eigenfrequency of the quantized mod
v0 is the atomic transition frequency,g(t) is the strength of
1-3
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the polychromatic field assumed to be a periodic function
time with periodT52 p/vM , kq is the coupling constan
between the atom and the quantized mode,a anda† are the
annihilation and creation operators of the quantized mo
S1 , S2 , andSz are the cooperative pseudospin operat
obeying commutation relations:

@S1 ,S2#52Sz ,@Sz ,S1#5S1 , @Sz ,S2#52S2 ,
~3.2!

and, finally, the unit system is used where both the Pla
constant and the speed of light are set to one.

To make the model Hamiltonian time periodic, we turn
the rotating frame by applying unitary transformR(t)
5exp@2i V(Sz1a†

•a)t#. The model Hamiltonian and th
other operators of the system are transformed here in
following manner:

H8~ t !5R†~ t !•H~ t !•R~ t !2 i R†~ t !•
d

d t
R~ t !,

~3.3!
A8~ t !5R†~ t !•A•R~ t !,

whereA stands for each operator of the system. This yie
the time periodic Hamiltonian

H~ t !85~v02V!Sz81~v2V!a†8
•a81g~ t !S18 1g* ~ t !S28

1kaq~S18 •a81S28 •a†8!. ~3.4!

In Eqs. ~3.3! and ~3.4!, the primes are used to label op
erators in the rotating frame. It is conventional, however,
use the same notations for operators in all the time repre
tations. For this reason we drop the primes hereafter.

The next step in our paper is to present the model Ham
tonian~3.4! as a sum of the zeroth-order Hamiltonian and
interaction Hamiltonian. Assuming coupling constantkq to
be small compared to both the modulation frequency and
strength of the polychromatic field, max(ug(t)u), we set

H0~ t !5H0a~ t !1H0f , ~3.5!

H0a~ t !5~v02V!Sz1g~ t !S11g* ~ t !S2 , ~3.6!

H0f5~v2V!a†
•a, ~3.7!

V~ t !5k fq~S1•a1S2•a†!. ~3.8!

The zeroth-order Hamiltonian is a sum of the two co
mutative operators: the time-periodic Hamiltonian of t
dressed atomH0a(t), and that of the quantized modeH0f .
The time-periodic field strengthg(t) may be represented a
follows:

g~ t !5g01g̃~ t !; g05M$g%; M$g̃%50, ~2.26!

whereg0 is the amplitude of the field component oscillatin
at the carrier frequencyV, while functiong̃(t) is the remain-
ing part of the driving field oscillating at frequencies oth
05380
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thanV. Assuming the carrier frequency to coincide with th
atomic transition (V5v0), one solves the zeroth-orde
Schrödinger equation to yield

Q05~v2V!a†
•a1g0~S11S2!,

~3.10!
u0~ t !5cos@G~ t !#I2 i sin@G~ t !#~S11S2!,

whereG(t)5*0
t g̃(t8)dt8 is a time-periodic function.

For the sake of simplicity, we consider below the case
pure resonance only, wherev5v05V. If this is the case,
one may set amplitudeg0 to zero without limiting the gen-
erality of the analysis. Actually, ifv5V term g0S1

1g0* S2 is eliminated from Hamiltonian~3.4! by applying
unitary transformD(2g0 /kaq), whereD(a) is the shift op-
erator given byD(a)5exp(aa†2a* a) @20#. Physically, the
transform mentioned above moves the field componen
frequencyV from the driving field to the quantized mod
without changing the actual dynamics of the system. For
reason, we assume hereafter thatg050 and, therefore,Q0
50. Moreover, we consider here the case of a single a
called the dressed-atom Jaynes-Cummings model~DAJCM!
~see@17# and @18#! where pseudospin operatorsS1 and S2

obey relations

S1•S21S2•S15I ; ~S1!25~S2!250. ~3.11!

Using unitary transformu 0(t) to convert the interaction
term ~3.8! to the time-periodic picture one gets

VTP~ t !5k fqH Sx1 i cos@2G~ t !#Sy2
i

2
sin@2G~ t !#SzJ •a

1H.c., ~3.12!

where Sx5(S11S2)/2, Sy5(S12S2)/(2i ), and H.c.
stands for Hermitian conjugation. The first-order quasiene
operator is then obtained from Eq.~2.13! assumingQ0

50, W̃(t)5W0(t)5I . In this way one gets

Q15M$VTP%5k fqH Sx1 ic1Sy2
i

2
c2SzJ •a1H.c.,

~3.13!

wherec15M$cos@2G(t)#% andc25M$sin@2G(t)#%. The first-
order quasienergy operator above coincides with the ef
tive Hamiltonian obtained in@17# using the other approach
The spectrum of this Hamiltonian is calculated, in its turn,
Ref. @18#.

Let us focus on a particular case where the driving field
bichromatic. More precisely, we setg(t)5svM sin(vMt),
wheres is the scaled amplitude of the driving field assum
to be much greater than the scaled coupling constank
[k fq/vM . This yields c15J0(2s) and c250. Based on
Ref. @18#, the eigenvalues of the first-order quasienergy o
erator are

E050; E6n56vM kAuDun, n51,2, . . . ,
~3.14!
1-4
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SINGULAR POINTS, SQUEEZING, AND . . . PHYSICAL REVIEW A64 053801
whereD is the numeric parameter called the DAJCM d
criminant. The discriminant above depends on the strengt
the driving field. The particular values of the field streng
whereD50 are referred to here as the singular points.
these points, the quasienergy spectrum$En :n50,61,
62, . . . ,% becomes continuous while the eigenvectors g
infinite norm. The discriminant of quasienergy operatorQ1 is
D5J0(2s) and, therefore, the singular points are the ze
of the Bessel function.

Based on the formalism of Ref.@18# the eigenvectors o
quasienergy operatorQ1 in case of the bichromatic driving
field are obtained from those of the conventional JC
Hamiltonian by applying squeeze operatorS(r )5exp(@r*a2

2r (a†)2#/2) to yield

uc0&5S~r !uc0&JCM5u0;r &uu1&,
~3.15!

uc6n&5S~r !uc6n&JCM5~1/A2!~ un;r &uu0&6 i un21;r &uu1&),

where the squeeze parameter is given by

r 52 ln~AuJ0~2s!u!. ~3.16!

Here,uu0& anduu1& are the eigenvectors of operatorSz in
the time-periodic representation called the quasienergy s
or the Floquet states as well and vectorsun;r &5S(r )un& are
the squeezed number states of the quantized mode. Note
u0;r &5S(r )u0& is the conventional squeezed vacuum stat

The quasienergy operatorQ calculated to an arbitrary or
der of the perturbation theory may be represented as

Q5L•QE•L†, ~3.17!

where operatorQE includes the odd-order perturbations on
The unitary transformL is given by

L5exp~ i A2kx•Szf 1!exp~2 ik2~p•x1x•p!•Szf 2!,
~3.18!

with x5 i (a2a†)/A2 andp5(a1a†)/A2 being the effective
coordinate and the effective momentum of the quanti
field, respectively. Numeric parametersf 1 and f 2 depend on
the strength of the driving field. We do not issue the cumb
some relations for these parameters here since the eigen
spectrum of the quasienergy operator does not depend of 1
and f 2.

Apparently, the eigenvalue spectrum of the reduc
quasienergy operatorQE is the same as that of the quasie
ergy operatorQ. In the framework of the third-order pertu
bation theory operator,QE assumes the form

QE5Q11QE3 ,

QE35vMA2k3~x•p•x•SxF1~s!2 1
2 x3

•SyF2~s!! ,

where ~3.19!

F1~s!522(
k51

` S Jk~2 s!

k D 2

,
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F2~s!52 (
k,k852`

`
J2k811~2 s!J2k11~2 s!J2k12k812~2 s!

~2k11!~2k811!

2
1

2 (
S k,k852`
k,k8,k1k8Þ0

D
`

J2k8~2 s!J2k~2 s!J2k12k8~2 s!

2k2k8
,

with Jk(2s)5(21)k J2k(2s).
For x!1, one may setQE'Q1. The corresponding eigen

values given by Eq.~3.14! may be attributed therefore to th
central potential well centered atx50. There are two other
potential wells settled symmetrically around the central o
and referred to here as the side wells. To reveal the pres
of the side wells, let us transform operatorQE in the follow-
ing manner:QE85exp(ix0p)QE exp(2ix0p) with x0 being a
real number. It is worth noting that exp(ix0p) is the unitary
shift operator obeying relation exp(ix0p)x exp(2ix0p)5x
1x0. Parameterx0 should be chosen here to eliminate t
pure atomic term inQE8 which does not depend on bothx and
p. This yields the following expression determining the l
cation of the side dips related to the central one:

x056A2J0~2 s!/@k2F2~s!#. ~3.20!

It is assumed here that 2s does not exceed the first zero o
the Bessel function, J0(2s).

To find the approximate expressions for the quasiene
spectrum of the side dips, one may linearize operatorQE8
with respect tox yielding

QE
lin5A2vM k@p SxJ~2 s!22 x SyJ0~2 s!#, ~3.21!

where J(2s)[112 F1(s)J0(2 s)/F2(s). Similarly to the
first-order quasienergy operatorQ1, the linearized third-order
quasienergy operatorQE

lin is the bilinear combination of the
atomic pseudospin operators and the photon annihilation
creation operators. The formalism of Ref.@18# may be ap-
plied, therefore, to find the eigenvalues of operatorQE

lin

yielding

E6n
lin 56vM kAD8n, n50,1, . . . , ~3.22!

with the discriminant given byD852J0(2 s)J(2 s). The
eigenvectors of this operator may be expressed here in te
of the shifted squeezed number states of the quantized m
un;r 8;x0&[exp(2i x0 p)un; r8& with the squeeze parameter d
termined by: exp(22 r8)5J(2s)/@2J0(2s)#. Using the for-
malism of Ref.@18# one gets@compare with Eq.~3.15!#

uc08&5u0;r 8;x0&uu1&,

uc6n8 &5~1/A2!~ un;r 8;x0&uu0&6 i un21;r 8;x0&uu1&).
~3.23!

It appears, therefore, that the spectrum of the quasien
operator includes three series of eigenvalues correspon
to three potential wells: the central well and the side ones
well. Here, the term ‘‘potential well’’ refers to the domain o
x values where the generalized JCM Hamiltonian conside
1-5
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in Ref. @18# may approximate the quasienergy operator of
system in question. Apparently, if the distance between
side wells determined by Eq.~3.20! is large enough, the ei
genvalues~3.22! are doubly degenerate. However, bringi
together the side wells should remove the degener
through the barrier tunneling effect. This means that
quasienergy levels of the side wells should split into doub
at certain values of field strength,s. The results of the per
turbation approach, including the quasilevel splitting effe
are proved below using the precise numerical solution of
time-dependent Schro¨dinger equation.

Apparently, the conclusion that three wells are on
present comes from using the third-order perturbation the
Including higher-order perturbations may increase the nu
ber of wells. However, to reach a well of high order, o
needs a significant number of photons to be present in
quantized mode. It seems, therefore, that the wells of a
order are only relevant to the up-to-date QED experimen

The accuracy of the analytical theory above can hardly
evaluated. For this reason, we present the comparison o
analytical results and the straightforward numeric compu
tions below.

IV. QUASILEVEL DIAGRAM OF THE
BICHROMATICALLY DRIVEN DAJCM

We used the sparse matrix technique ofMATLAB 6 to cal-
culate the quasienergy spectrum of the bichromatic
driven DAJCM. The calculations were organized in the f
lowing order: First, we applied the fourth-order Runge-Ku
method for solving the matrix differential equation for th
time-evolution operator:

d

d t
W~ t !52 iVTP~ t !•W~ t !, ~4.1!

with initial condition W(0)5I . Here,W(t) is the time evo-
lution operator, andVTP(t) is the time-periodic perturbation
Hamiltonian with periodTM52p/vM given by Eq.~3.12!.
The driving field was implied bichromatic and, therefore, w
setG(t)5s sin(vMt). We used the matrix representation
operatorsW(t) and VTP(t) in the basis of product state
un&uu0& and un&uu1& where n50,1,2, . . . ,. Therepresenta-
tion was truncated atn5nmax. The maximum number o
photonsnmax was chosen here to calculate all the quasi
ergy levels of interest with a sufficient accuracy. Practica
the numeric results were obtained fornmax560–130. Equa-
tion ~4.1! was solved for matrixW(t) within the time do-
main 0<t<TM to yield the monodromy matrixM
5W(TM) @19#. Then, given the monodromy matrix, th
quasienergy operatorQ is determined by the relation@19#
M5exp(2i Q TM). At the final step of our calculations, th
eigenvaluesEn of the quasienergy operator were evalua
numerically and put in the ascending order.

Figure 1 presents the quasienergy diagram obtained in
way for k50.1. To get the reliable results, the calculatio
were repeated several times for various values ofnmax. It
was found that the sufficient accuracy was reached fornmax
570. The additional plots 1–4 crossing the horizontal axe
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the singular point are the approximated~first-order! quasien-
ergy values of the central potential well given by Eq.~3.14!
with D5J0(2s). Far from the singular point, the approx
mated quasienergy values come close to those calculated
merically.

The quasienergy levels undergoing double splitting at c
tain values of the driving field strengths are attributed to the
side potential wells. More detailed diagrams of the
quasienergy levels are presented in Figs. 2~a! and 2~b!. In
this figure, the solid plots are calculated using the nume
technique above fornmax5125. Simultaneously, the dashe
plots obtained within the third-order perturbation theo
show the eigenvalues of quasienergy operatorQE given by
Eq. ~3.19!. In casek50.05 @Fig. 2~a!#, the third-order per-
turbation theory describes the splitting of the quasiene
levels due to the tunneling effect with rather good accura
For k50.1 @Fig. 2~b!#, the third-order calculations yield ap
preciable errors yet exhibiting the qualitative agreement w
the numeric results.

V. SQUEEZING AND NONADIABATIC TRANSITIONS IN
THE BICHROMATICALLY DRIVEN DAJCM

This section discusses a possible way of obtaining a h
squeezing degree in one of the field quadratures. The con
eration is restricted to the case of the bichromatic driv
field with the function of modulation given byg(t)
5svM sin(vMt).

It is seen from Eq.~3.15! that eigenvectoruc0& of the
first-order quasienergy operator includes the squee
vacuumu0,r & of the cavity field. The squeeze parameterr is
obtained here from Eq.~3.16!. Within the first-order approxi-
mation, the squeeze parameter becomes infinitely large w
2s tends to the first zero of the Bessel function,J0(2s). To
get a large degree of squeezing, one may start, there
from the situation where the driving field is off, the cavi

FIG. 1. Quasilevel diagram of the bichromatically drive
DAJCM. Quasilevels 1 – 4 are obtained by Eq.~3.14! assuming
D5J0(2•s) and correspond to the limiting case of infinitesimalk.
The other quasilevels are obtained fork50.1 using the numeric
technique described in Sec. IV.
1-6
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SINGULAR POINTS, SQUEEZING, AND . . . PHYSICAL REVIEW A64 053801
field is in the vacuum stateu0&, and the TLA is in the upper
energy stateu1&. This means that the DAJCM is initially a
the quasienergy levelE0 with the zero value of the squeez
parameter. Then, the driving field amplitudes should grow
slowly until J0(2s) becomes zero. At the same time, t
squeeze parameter should reach its maximum value.

Using the procedure above, the maximum attainable
gree of squeezing is limited by the two unavoidable effec
First, the higher-order terms of the quasienergy operator m
cause additional fluctuations of the cavity field. Second,
system may skip nonadiabatically from quasienergy levelE0
to the other quasienergy levels@22#. The skipping probability
increases here near the singular point where the quasien
levels come close to each other.

To study the dynamics of the bichromatically drive
DAJCM at the slow increase of the driving field amplitudes
we solved the Schro¨dinger equation with Hamiltonian~3.4!
numerically assumingg(t)5s(t)vM sin(vMt). The tech-

FIG. 2. Fragments of the quasilevel diagram fork50.05~a! and
0.1 ~b! exhibiting the quasilevel splitting effect. The solid plo
present the precise numeric results. The dashed plots are the e
values of the third-order quasienergy operatorQE given by Eq.
~3.19!.
05380
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nique for solving the atom-field Schro¨dinger equation and its
software implementation were similar to those described
the previous section. At the final step of the calculations
evaluated the standard deviationDX1 of cavity field quadra-
ture X15(a1a†)/2. It is worth noting here that the squee
ing occurs providedDX1<0.5 @20#.

The alternative way of describing the nonadiabatic tran
tions between the quasienergy states is to include a sp
Hamiltonian proportional toṡ(t). This Hamiltonian called
hereon the nonadiabatic Hamiltonian may be derived as
plained below.

It follows from Eqs. ~3.13!–~3.15! that the first-order
quasienergy operator of the bichromatically driven DAJC
Q15vMk@Sx1 iJ0(2s)Sy#•a1H.c., can be represented a
Q15AJ0(2s)S(r (s))HJCMS†(r (s)), where HJCM
5vMk(Sx1 iSy)•a1H.c. is the conventional JCM Hamil
tonian andS(r )5exp(@r*a22r (a†)2#/2) is the squeeze op
erator with the squeeze parameterr given by relation~3.16!.
Neglecting the fast oscillations at the multiples of the mod
lation frequency, the first-order Schro¨dinger equation is

i
d

d t
uc&5Q1@s~ t !#uc&. ~5.1!

One may describe the nonadiabatic time evolution in
explicit manner using the following change of time represe
tation

uc̃~ t !&5S†@r ~s~ t !# !uc~ t !&. ~5.2!

Actually, applying transform~5.2!, the Schro¨dinger equa-
tion becomes

i
d

d t
uc̃&5@AJ0~2s!HJCM1Hnon#uc̃&, ~5.3!

with the nonadiabatic Hamiltonian given by

Hnon52
i

2

d s

d t
@a22~a†!2#UJ1~2s!

J0~2s!
U. ~5.4!

The first term in Eq.~5.3! describes the adiabatic tim
evolution of the DAJCM. Given by this type of time evolu
tion the probability of disclosing the system at any quasi
ergy level,E6n , n50,1,2. . . , is held fixed in time while
the phases of the corresponding wave functions change
the contrary, HamiltonianHnon enforces transitions amon
the quasienergy states with the transition rate being pro
tional to the first-time derivative of the driving field ampl
tude. It should be emphasised that expression~5.4! for the
nonadiabatic Hamiltonian is valid for the first-order pertu
bation theory only. Therefore, it becomes inapplicable j
near the singular points where the denominator,uJ0(2s)u,
becomes small. Simultaneously, the numeric results are
ways available by solving the Schro¨dinger equation with
time-dependent Hamiltonian~3.4! using a Runge-Kutta
method. The latter calculations are rather time consum
Actually, the time step should be chosen much shorter t

en-
1-7
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GEORGII P. MIROSHNICHENKO AND MICHAEL Z. SMIRNOV PHYSICAL REVIEW A64 053801
the modulation period while the simulation should cove
long time interval wheres changes from zero to the singula
point.

Let us turn to the calculation results. In Figs. 3 and 4,
TLA is initially in the upper-state one while the cavity fiel
starts its time evolution from the vacuum state. Therefo
the system is initially at the quasienergy levelE0 while both
the driving field amplitude and the squeeze parameter
zero. Figure 3 shows the standard deviation of quadratureX1
against amplitudes when the amplitude grows linearly i
time: s50.05vMkt, with k50.15~a! andk50.005~b!. Plot
1 is calculated using relationDX150.5 exp@2r(s)#, where
the squeeze parameter is given by Eq.~3.16!. Hence, this
plot neglects the effect of the higher-order perturbations
that of the nonadiabatic transitions either exhibiting the in

FIG. 3. The standard deviation of quadratureX1 vs the scaled
amplitude of the driving field fors50.053vM3k3t, with k
50.15~a! andk50.005~b!. Plot 1 is obtained within the first-orde
perturbation theory dropping the nonadiabatic transitions, plo
allows for the nonadiabatic transitions but still uses the first-or
perturbation theory, and plot 3 presents the precise numeric solu
for the time-dependent Schro¨dinger equation.
05380
e
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nitely large squeezing at the singular point. Plot 2 is obtain
by using the nonadiabatic Hamiltonian as described abo
This approach allows for the nonadiabatic transitions but
it neglects the perturbations of order more than one. The
fore, it becomes invalid just near the singular point where
interrupt plot 2. Finally, plot 3 presents the precise nume
solution of the Schro¨dinger equation with Hamiltonian~3.4!
as explained above.

It appears that for the sufficiently small coupling consta
k'0.005, the first-order perturbation theory gives rather p
cise results. Actually, one finds no appreciable distinct
between lines 2 and 3 in Fig. 3~b!. Furthermore, fast oscilla
tions at frequencyvM are still present fork50.15@Fig. 3~a!#
but they fully smooth out fork50.005@Fig. 3~b!#. However,
the maximum attainable degree of squeezing does not
crease significantly when switching the coupling const
k from 0.15 to 0.005.

In order to enhance squeezing of the cavity field, one m
try to cross the singular point several times in alternat
directions. However, Fig. 4 suggests that the effect of
second crossing should be rather small because the
crossing perturbs the system so that it skips levelE0 with a
significant probability.

VI. CONCLUSION

We have developed a perturbation technique to derive
quasienergy operator of the dressed-atom Jaynes-Cumm
model ~DAJCM!, the latter being the dipole-coupled syste
of a polychromatically driven atom and a cavity mode. T
eigenvectors of the first-order quasienergy operator incl
the squeezed number states of the cavity mode. At cer
values of the driving field amplitude called the singul
points, the squeezing degree becomes infinitely large w
the eigenvalues of the quasienergy operator come togeth
form the continuous spectrum. The infinite values are
moved by allowing for the perturbations of order more th
one. Simultaneously, the additional eigenvalues appear.

2
r

on

FIG. 4. The standard deviation of quadratureX1 vs the scaled
amplitude of the driving field for s51.353sin(0.23vM3k
3t/1.35) andk50.005. Plot 1 is the same as in Fig. 3; plot
(ABCD) is the precise numeric solution for the time-depend
Schrödinger equation.
1-8
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SINGULAR POINTS, SQUEEZING, AND . . . PHYSICAL REVIEW A64 053801
the eigenvalues obtained within the third-order perturbat
technique may be attributed hereby to three potential w
with the eigenvalues of the central well corresponding to
first-order quasienergy operator. The doubly degenerated
genvalues of the side wells correspond to the third-or
term in the perturbation expansion of the quasienergy op
tor. At certain values of the driving field amplitude, the si
wells come sufficiently close to the central one to remove
degeneracy. This results in double splitting of the cor
sponding quasienergy levels.

In addition to the approximated analytical theory, we ha
developed the numerical technique for calculating the eig
value spectrum of the quasienergy operator. It appeared
the numerical and analytical results exhibit quantitat
agreement. The calculated quasienergy levels undergo s
ting and avoided crossing when the amplitude of the driv
field approaches the singular points.

A possible way of squeezing a cavity field quadratu
consists of tempering the amplitude of the driving field
wards a singular point. In this respect, there are two unav
s

y

.

et

v

un
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able effects that limit the maximum attainable squeezing
gree, specifically, the nonadiabatic transitions among
quasienergy levels and terms of order three and higher in
perturbative expansion of the quasienergy operator. Both
fects gain special significance near the singular points.
former effect may be described by embedding the additio
term in the first-order Schro¨dinger equation. Being propor
tional to the first-time derivative of the driving field ampl
tude, this term is called the nonadiabatic Hamiltonian.

We used the precise numerical solution of the tim
dependent Schro¨dinger equation, and the first-order perturb
tion technique with nonadiabatic Hamiltonian as well,
analyze the limitations of the attainable squeezing degree
enhance squeezing, one may cross the singular point se
times in alternating directions. It appears, however, that
nonadiabatic effect perturbs significantly the quantum s
of the system at the first crossing. Consequently, the a
tional squeezing in time of the subsequent crossings red
or becomes fully eliminated.
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